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ABSTRACT

The paper shows that: (1) The preference reversal phenomenon is

consistent with transitive preferences and constitutes a violation of the

independence axiom. (2) The preference reversal phenomenon is accounted for

by the interaction between the experimental design and respondents preferences

and there is no experiment wnich can overcome this difficulty.
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1. INTRODUCTION

Preference reversal, first reported by Lichtenstein and Slovic [1971],

describes experimental results which appear to indicate systematic violations

of the transitivity of preferences axiom. In these experiments respondents

were asked to express their preferences between, suitably chosen, pairs of

lotteries. Having done so they were asked to state the lowest price they

would be willing to accept in exchange for their right to participate in the

lotteries. In many cases the respondents set a lower price for the preferred

lottery. This phenomenon is more prevalent when the preferred lottery assigns

high probability to winning a small sum of money and low probability for

losing a small sum of money.

The original results of Lichtenstein and Slovic were replicated by

Grether and Plott [1979] in experiments carefully designed to test for various

explanations, including inter alia misspecified incentives, strategic

responses and decision and information processing costs. Experiments by

Pommerehne, Schneider, and Zweifel [1982] and Reilly [1982] employing the

method of Getner and Plott with variations in the design to increase the

motivation and reduce the possible sources of confusion and misunderstandings

produced a slight decline in the observed reversals. By and large, however,

these studies reaffirmed the existence of the phenomenon.1
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From the point of view of the theory of choice these results challenge

one of the most fundamental tenets of rational behavior, namely the

transitivity of preferences. Unlike the Allais paradox and other reported

violations of the independence axiom which challenge the expected utility

theory, the phenomenon of preference reversal, if true, contradicts any theory

of choice under risk which is based on transitive preferences.2

In this paper we show that the aforementioned experimental evidence does

not imply reversal of preferences. We present a theory of choice under risk

based upon transitive preferences consistent with the experimental results.

According to this theory, the preference reversal phenomenon is accounted for

by the experimental design which solicits the respondents reservation prices

of the lotteries presented to them. The reservation prices differ from the

certainty equivalents of the lotteries. Furthermore, under the rules of the

experiments it is quite possible that the reservation prices of some

respondents are in reverse order to tneir certainty equivalents. Thus, the

experimental results indicate reservation price reversal rather than

preference reversal. In addition, the theory presented here postulates that

the preferences are complete, continuous, monotonic (in the sense of

first—order stochastic dominance), and satisfy the axiom of reduction of

compounded lotteries. The preferences do not satisfy the von

Neumann—Morgenstern independence axiom.

We also prove the futility of attempting to observe such preferences by

experimental methods. There is no experiment which would reveal the certainty

equivalents or will not produce reservation—price reversals for some

preference orderings.

The formal presentation of the theory appears in Section 2. In Section 3

we show how, given the nature of the experiments, the theory accounts for the
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reservation price reversal phenomenon. The impossibility of observing

preferences by experimental methods is proved in Section 4. Additional

aspects of the theory are discussed in Section 5.

2. THE THEORY

Let X be a set of prizes. A finite lottery on X is a function from a

finite subset of X to the half—open interval (0,1] and the values taken by

the function add up to one. The set of all finite lotteries on X is:

{(x1,131;x2,p2;...;xn,pn) e [X x (0,1En 1 17.1pi . 1, 1 n < .1.

A binary relation on L is said to be a preference relation if it is

complete and transitive. We define the relation of strict preference, ? ,

and indifference, as follows: For any A, B e L, A ›- B if and only if

A g-,E3 and not B A, and A B if and only if both A :4,-. B and Bit A.

For every x e X, we identify x with (x,1) e L, thus X is ordered by

preference relations on L. Given a preference relation t on L and any A e

L we assume that xi+ot, xi i = 1,...,n-1. We assume further that ;!: is

represented on L by a function V:L A of the following form:

(2.1) V ,p1;x2,p2;...;xn,pn) =IL1u(x1)[(4.ip1)—f(13=1+1p1)]

where u(xi) V(Xi,l) is a real valued continuous function on X and

f:[0,1] LOW is a continuous and monotonic increasing function satisfying

f(0) . 0 and f(1) . 1. The function u(.) is referred to as a utility

function and represents the preference relation X restricted to the subset
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of L which consists of the sure outcomes, (i.e., n = 1). The function

f(.) is a probability transformation function. Both u(-) and f(.) are

unique up to a positive linear transformation. For any A, B e L, A B if

and only if V(A) > V(B). We denote by 1) the set of all preference relations

on L tnat are representable by V(*) given in (2.1).

The function V(.) may be thought of as a measure of the area above the

distribution on {u(x1), u(x2),...,u(xn)). When f(-) is the identity

function V(.) is the expected utility functional.

Yaari [1982] shows the existence of a function like that of (2.1) where

the utility function u(.) is linear. Segal [1984] shows the existence for

general utility functions u(-). Both Yaari and Segal assume that 4 satisfy

among otner conditions: weak order, continuity; and monotonicity in the sense

that for A, B c L such that A stochastically dominates B to the first

order, A B.

3. RESERVATION PRICE REVERSALS AND TRANSITIVITY

In this section we show that if, when choosing among risky prospects in

L, decision-makers maximize the value of the functional V(.) given in (2.1)

then the results of the studies of Grether and Plott [1979], Pommerehne,

Schneider, and Zweifel [1982]; and Reilly [1982] do not imply a violation of

transitivity of tne decision-maker's preferences. Rather, given the nature of

the preferences, the design of the experiments and lotteries A and B in L such

that A B it may be optimal for the decision-maker to announce reservation

prices for A and 6, P(A) and P(B) respectively, such that P(A) < P(6).

The announced prices are not equal to the certainty equivalents C(A) and C(B)

of the respective lotteries which satisfy C(A) > CM. Consequently the
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reservation price reversal does not imply preference reversal and a violation

of transitivity.

(3.1.) Reductions of compounded lotteries - Anticipating the experimental

evidence we shall assume henceforth that the prizes in X are sums of money.

The real line is embedded in L by the identification of x cg with (x,1) E L.

A two-stage compounded lottery is a lottery which offers elements of L

as prizes. Thus the vector (A1, ql; A2, q2;...;Am,qm) c EL x

(0,1Am, 1 < m < . represents a two-stage lottery if 7 1.

We assume that compounded lotteries are reducible to elements of L using the

usual calculus of probabilities, (i.e., L is a mixture set). This

assumption may be stated formally as the axiom of reduction of compounded 

lotteries:

If Ai

then

(3.1)

1. vi
A20J2'—';An ,Pn )

(A1011; A2,q2;.

• • •

.; Am,qm)

;x
m 
,q p

m 
)

n
m 

m nm

(xl,q1p1;
n n le 1 n n

2"1r2;—"-n
1 1

Given the nature of X, another way of reducing compounded lotteries to

elements of L is by replacing the lotteries Ai with their certainty

equivalents, C(Ai). This reduction is possible if the preference

relations on L satisfy the independence axiom, namely, for every A, B

and C in L and a c (0,1) if A B then (A,a;C,1-a) > (6,a;C,1-a). The

independence axiom implies that:

(3.2) (A1,q1;A2,q2;...;Am, (C(A1),q1;C(A2),q •...;C(Ani),qm)
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where C(Ai) e X and (C(A1),1)", Ai, i = 1,...,m.

Each method of reducing compounded lotteries is consistent with the

representation of preferences on L by a function V(-) of the type (2.1).

Except in the case where V(.) is linear in the probabilities, however, (3.1)

and (3.2) are not equivalent.3 We choose to assume the reduction of

compounded lotteries and abandon the independence axiom.4 Thus in

evaluating a non—degenerate compounded lottery we cannot replace a lottery in

L by its certainty equivalent. This is stated formally in:

Lemma 3.1.: Suppose that the preference relation 4- on L is monotonic

in the sense of satisfying first—order stochastic dominance and that the

independence axiom does not hold. Then there exists A, B e L and a c

(0,1) such that (A, a; 6, (1—a)) (C(A), a; 6, (1—a)) where

(C(A),1),- A.

Proof: Assume by way of negation that for all A, B e L and all a e (0,1)

(A,a;B,(1—a)) (C(A), a; 6, (1—a)). Let D e L, then, since C(A), C(B),

C(D) are in X,

(A, a;B, (1—a)) '(C(A), a; C(6), (1—a))

and

D,a;B,(1— )) (C(D),Ct; CO 1-a)).

But A > D .> C(A) > C(D) .> (C(A), a; C(B), (1—a)) )- (C(D), a; C(B), (1—a),

where the first implication follows from the monotonicity of u(.) and the

second implication follows from the first—order stochastic dominance

assumption. Thus, by transitivity, we have for all D, B and A in L and

any a c (0,1), A > D .> (A, a; 6, (1—a)) (0, a; 13, (1—a))

and the independence axiom holds. A contraction. if
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Lemma 3.1. has far reaching consequences for the interpretation of the

"preference reversal" phenomenon. To see this we must first describe the

experiment used to produce tnis phenomenon.

(3.2.)The experimental design — To obtain the certainty equivalents of the

lotteries which were used in their experiments Grether and Plott [1979]

employed a method which was suggested by Becker, DeGroot, and Marschak

[1964].5 According to this method participants in the experiments were

given the right to participate in some lotteries. For each lottery A c L

each participant was asked to state the smallest price, P(A) say, for which

he would sell tnis right. The participants were informed that after they have

set the prices a random sum would be chosen uniformly from {$0.00, $ 0.01,

I 0.02, . ..,t9.98, $ 9.99}. If the sum of money selected in this way exceeds the

price set by the participant then he is paid the.money and foregoes the right

to participate in the lottery. If the sum of money selected randomly falls

short of the price set by the participant, then the lottery is played out and

the participant is paid the prize according to the outcome. The participants

in the experiments were told that it is in' their best interest to be

accurate. If a participant sets a price wnich exceeds his reservation price

and the outcome of the random draw is an amount between the stated price and

the reservation price, the participant is forced to participate in the lottery

while he would ratner take the sum of money that was drawn. Similarly, if he

states a price lower than
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nis reservation price and the outcome of the random drawing is between the two

prices, then he is forced to forego the opportunity to play the lottery when

he would rather participate in it. This elaborate experiment is designed to

motivate the participants to be as accurate as possible and to eliminate

strategic responses which may cause preference reversal.

We claim that while this method reveals the reservation price of the

participants for the given lotteries, it does not reveal the certainty

equivalents of the lotteries. Furthermore, it is quite possible, as we show

below, that the reservation prices which are affected by the experimental

design will rank lotteries in reverse order to their certainty equivalents.

To grasp the argument, suppose that the respondent declared a reservation

price of 5.00 for a lottery A, (i.e., P(A) = $5.00). Then, by the rules of

the experiment he faces the following two—stage compounded lottery

(A, -Atici-; 4 5.01, -A-6-0-;—; t9'99'7; $5 .00 , -----

Any other choice of P(A) results in a different two—stage compounded

lottery. Presumably the rational participant is looking for the response

which yields the most preferred among these lotteries, and declares the

corresponding P(A) to be his price for A. Given the design of the

experiment, this is indeed the reservation price for A. However, except when

the participants preferences satisfy the independence axiom, the reservation

price obtained in this manner is not the certainty equivalent of A. Next we

show that given there exist E /) and A, B e L such that A > B then

C(A) > CM but, given tne experimental design, P(B) > P(A).
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3.3. Reservation price reversal- We shall now show that reservation price

reversal of the kind obtained in the experiments described above do not

contradict the transitivity of the preference relation c .

THEOREM 3.1: There exist in A and A, B e L such that A ›- B

(and C(A) > C(B)) and P(A) < PM.

Proof: Since V(A) > V(B) and u(C(A)) = V(A), U(C(B) = V(B), C(A) > C(B) by

monotonicity of u. To show that P(A) < P(B) we use a pair of lotteries

that were used in the experiments of Grether and Plott [1979]. Let

1 A 35)
A = ,, 36,

6
25 

and B =(-1.5, 
ig

76; ", 
111 

36"

Consider the following functions and u(-) respectively:

f(P) =

1.1564p

0.9p + 0.047

0.5p + 0.327

10

30 x + 30

10 x + 10

\, 6.75 x +49

0 < p < 0.1833= =

0.1833 < p < 0.7

0.7 < p < 0.98= =

0.98 < p < 1_

x< -1

-1 < x < 12= =

12 < x

These functions are depicted in Figure 1 panels (a) and b respectively:
7
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. 1 3

(A) The probability transformation function

FIGURE 1

)/ 16

tir
b The Utility function

For simplicity we suppose that the random drawing is from the set of five

numbers {1, 2, 3, 4, 5} and the probability of drawing any one of these

numbers is 1/5.8 For i < P(A) < i = 0,...,4, the value of V is

given by:

1 1 i 1 i 35 • 1 1
V(A1P(a)) V(A,-5-; i+1, -5;... ;5,3-) = V(-1,

Similarly for B. The values of V for different choices of P(k), k = A,

B are summarized in Table 1 below. (Notice that if P(A) < 1 then the

respondent sells the right to participate in A with certainty, thus, for

k = A, B

1 1 1 1 1
V(k P(k) < 1) . V(1,3-;2,-5;3,-5;4;--6;5,-5).)

First we note from the first line that V(A) > V(B), thus A;>. B as

hypothesized. Second, Max V(A I P(A)) . 45.25.
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TABLE 1

V(B I P(B)) Value of P(k)

1) 40.65 . V(A) 40.38 . V(B) 5 < P(k)

2) 43.06 44.42 4 < P(R) < 5

3) 44.53 46.66 3 < P(k) < 4

4) 45.25 45.06 2 < P(k) < 3

5) 43.70 39.61 1 < P(k) < 2

6) 39.48 39.48 P(k) < 1

7) 3.065 = C(A) 3.038 . C(B)

(line 4) and thus 2 < P(A) < 3 while Max V(B I P(B)) . 46.66
(line 3) and hence 3 < P(B)--< 4 and the reservation price reversal is
established. e

We thus proved that reservation price reversal do not imply

intransitivity of preferences. (As is shown in line (7) C(A) > C(B)). The

term preference reversal is misleading and should be replaced by the term

reservation price reversal as a description of the phenomenon under

consideration.

Next we show that, given the nature of the experiments, the results are

not independent of the range of the offer prices, i.e., the range of the sums

of money used to establish whether the individual participates in the

lottery. In other words, by changing the range we can obtain reversal of the

reservation price reversal. This observation is of immediate relevance for

the interpretation of the results of Reilly [1982], who modified the original
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Gretner and Plott [1979J experimental design in several ways, including an

extension of the range of the offer prices. This extension in itself may

account for the reduction in the reservation price reversal.

THEOREM 3.2: There exist preference relation ?t, e II , lotteries A, B

in L and offer price ranges II, 12 contained in g such that A?'

6, P(A111) < P(B1I1), P(A112) > P(Bk2), where P(kIIi), k

A, 6, i = 1,2 is the reservation price of k conditional on the offer

price range Ii.

Proof: Consider again the lotteries A and 13 as in the proof of Theorem 3.1.

Let I {1,2,3,4} and 12 = {1,2,3,4,5}. Let

that u(x) takes the following values:

f(p) = P2 and suppose

u(x) 0 10 20 75 120 200 210 1000

—15 —1 1 2 3 4 5 16

(Since these are the only relevant values for the present purpose u(x) can

be tnought of as consisting of linear segments). Tables 2 and 3 below

summarize the values of V(A1P(A)) and V(BIP(B)) for I and 12

respectively. Clearly V(A) > V(B). Given the offer price range Max

V(AIP(A)) . 192.21 and consequently tne conditional reservation price p(Al

Ii) satisfies 3 < P(A Ii) < 4. Max V(BIP(B)) = V(B) = 93.4

consequently the conditional reservation price P(B111) > 4. Hence P(Al

I) < P(BII1), a reservation price reversal.

Consider next the offer price range 12. Max V(A)P(A)). 194 and the

corresponding conditional reservation price P(AII2) satisfies 3 < P(Aj

12) < 4. Max V(BIP(B) . 97.69 and the corresponding conditional

reservation price P(6112) satisfies 2 < P(B112) < 3. Thus, P(B112)

< P(AII2)."
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TABLE 2: OFFER PRICE RANGE Ii

V(AfP(A)) V(BIP(B)) Value of P(k)

189.59 . V(A) 93.4 . V(B) 4 < P(k)

192.21 88 3 < P(k) < 4

159.9 82.48 2 < P(k) < 3

127.45 79 1 < P(k) < 2

66.8 66.8 P(k) < 1

TABLE 3: OFFER PRICE RANGE 12

V(AIP(A)) V(BIP(B)) Value of P(k)

189.59 . V(A) 93.4 . V(B)

192 87.3

194 96.73

168.6 97.69

131.1 95.25

84.6 84.6

5 < P(k)

4 < P(k) < 5

3 < P(k) < 4

2 < P(k) < 3

1 < P(k) < 2

P(k) < 1
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4. NON—OBSERVABLE PREFERENCES

What Grether and Plott and others tried and, as our discussion

indicates, failed to do is to identify by experiments the elements of

equivalence classes of given lotteries in L that belong to a pre—specified

subset of L, namely the real line. Their failure is exacerbated by the fact

that the elements in IR, identified by the experiments do not preserve the
preference ordering on tne lotteries that were used in the experiments. This

raises the question of whether there exist experiments, which, for any given

element of L, identify a corresponding element in a subset M of L such

that for every preference ordering on L which belong to a prespecified set,

these elements belong to the same equivalence class ? Failing that, is there

an experiment that reveals the respondents' preference relation on L by

making him assign elements of L to elements of M which, for every

preference relation in a given set preserve the order on L ? To answer these

questions, we must first define the set of admissible experiments and the set

of preference relations to be considered. We assume that M = {(x,1) e Lix'011}.

(4.1) Preliminaries — If the preference relations to be considered satisfy the

von Neuman—Morgenstern axioms of weak order, independence, and continuity,

tnen obviously the experiments of Grether and Plott [1979] would reveal the

certainty equivalents and the answer to both questions raised here would be

positive. The results of these experiments, however, imply that either the

independence axiom or the transitivity axiom must be dropped. We shall

consider preference relations that do not satisfy tne independence axiom.

Thus let .S1' be the set of all the preference relations on L which are

complete, transitive, continuous, and satisfy first—order stochastic dominance.
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To define the set of admissible experiments we begin by considering the

strategies of the respondents and of the experimenter respectively.

Let (,A) x L. A strategy of a respondent whose preference

relation is and is endowed with a right to participate in A is to

announce a real number p say which has the interpretation of a reservation

price. An experiment E is a function which assigns to every pair (p,A) an

element E(p,A) e L. The set of admissible experiments, , ie the set of

all E:R x L -* L9.

For all E in we define

EOZ,A) = {E(r ,A) I E(r,A)?- E(P,A) for all P EV}

R(E,)7‘„A) = {r c iiJE(r,A) c E(t,A)}.

E(s,,A) is the set of ?' —maximizers subject to {E(P,A)}
PeR •

is the set of reservation prices that give elements of E(,A).

If E(,,A) =(1) we define R(E,,A) ={.}.

Notice that {E(PA)}peR depends on A but not on >h* since the

experimenter does not know the preference relation )" .

Define the certainty equivalence function C:_51 1 x L N by the

number C(t,A) such that (C(>-,A),1)

Definition 4.1. The set ,r1 ' is observable at C under if there exists

E in sucn that

R(E,>-, A) = {C(>',A)} for all x L.
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is non—observable at C under ,if for every E in

x L such that

R(E, , A) I {C( ,A) }

there is

In other words,SP is observable at C under if there is an experiment

in such that, given the rules of that experiment, for every lottery A in

L, every participant with preference relation in S:1' will announce his

certainty equivalent of A.

Definition 4.2. The seta' is non—observable under C, if there is no E

in such that for all A, B in L and in Li

iff r1 > r2 for all r1 e R(Ed*, A) and r2 e R(E,>. , B).

In other words, for every E in there are lotteries A, B in L and a

participant with preference relation in 1-2: ' such that

A B and r1 < r2 for some r1 e R(E,„A) and r2eR(E,,B).

4.2. Non—observability of _CP. We now prove that 12.' is non—observable

under , i.e., there is no admissible experiment which does not result in

reservation price reversal for some in 11'. A corollary to this result is

that .fl . is non—observable at C (under ) 10

THEOREM 4.1. 12.' is non—observable under .

Proof: Let be an experiment in
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If there is ?: in Ja. . and A in L such that R(E,, A) . {00} take

a lottery B which first—order stochastically dominates A. We have A B

and r 
r2

for all r1 e R(E,?:,A) and r2 e Thus, by

definition 4.2 SI' is non—observable under

Suppose that E( )',A) / (1) for all (:,A) eja! x L. We now show that it

is possible to have ?: in i2 ' and A, B in L such that A / 6, A -N., 6,

and B E (t,A). Take some ( t,A) in,Q2 x L. If B A implies B e E(70A)

(which means E( - ,A) e LIB --Al) then change t slightly to ' in

_Al for which there exists B such that A B and A ›-B, (see Figure 2).

i,oddfcrt,00: .5.e .e 01

FIGURE 2

Since {E(P,A)}pdkdoes not change and there exists D such that D e E(t,A)

(which satisfies D A) and D>,' B, we get for jai the existence of B /

A such that B am,'A and B I E( -,A). Without loss of generality we denote

by .

Hencefortn let A, B in L be such that A and

B e E( ),,t,A) and consider the following cases:
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(a) There exists D e E(,B) such that D f B. Let r
2 be such that D

E(r2,6). If r2 > ri for some r1 C R(E,,A) then we change

slightly to ' in a small neighborhood of B such that ?: ' is in 11',

Vi>.1 13, R(E, >-',A) = R(E,>-,A) and r2 is still in R(E,',6). We get

A )>.' B and r1 < r2 for r1 e R(E,),:',A) and r2 e

Thus, by definition 4.1. „a' is non—observable under

If r2 < r1 for some r1 e R(E,>',A) then by similar argument we get

B such that

A ..< 1 E3 and r
1 > r2'

and again ...(1 . is non—observable under

(b) Suppose that E(,B) = {61. In this case A ji E(,6). Hence if there

exists D e E(e-,A) such that D / A then by the same arguments as above,

112 is non observable under

(c) Suppose that E(it,B) = {B} and E(,A) = {A}. Without loss of

generality assume the existence of r1 E R(E,:,A) and r2 E R(Ed1:,A)

such that r1< r2' We now change >' slightly to near A such

that .t." is in A B and still {A} E(e,B) and {B} = E(,13)

(see Figure 3).

FIGURE 3
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B and r1 < r2 for some r1 c R(E,>.",A)

and r
2 c R(E, B),

a violation of the condition of definition (4.2). Thus .0. ' is

non—observable under

Corollary 4.1. 12.1 is non—observable at C under e.
Proof. Immediately from Theorem 4.1., since for every experiment E in

the reservation price reversal imply the non—observability at C (the

function C(-,.) is monotonic in the second argument).#

Note that the reservation price reversal phenomenon is "open" in

i.e. if it is satisfied at for some A and B then it is still satisfied

for many others in j:L' which are close enough to .

Remark. If we replace the real line /i3 by more general set M (which is

ordered by the first—order stochastic dominance relation), then similar

results still hold.

5. CONCLUDING REMARKS

We conclude with three additional observations:

(5.1.)Reservation price reversal and Machina's non—expected utility theory —

In a recent contribution Machina [1982] presented a theory of decision—making

under risk which is capable of accounting for several reported violations of

the independence axiom. The essence of this theory is the replacement of the
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independence axiom by a weaker assumption that the decision-maker's

preferences over the set of lotteries L are representable by a Frechet

differentiable preference functional.
11 Since, according to Machina's

theory preferences on L are complete, transitive, and satisfy first-order

stochastic dominance and are not inconsistent with the reduction of co
mpounded

lotteries axiom, it may seem that it includes (2.1) as a special case, at

least when X E [OA c 1P:\ . This impression, however, is wrong. For V(-)

in (2.1) to be Frechet differentiable the probability transformation

function f(.) must satisfy certain requirements which are not an intrinsic

property of the model (2.1). Thus, for continuous probability distribution

f(.) must be twice continuously differentiable. For discrete probability

distributions it must be continuously differentiable. Since the latter case

is relevant for the interpretation of the experimental evidence we
 present

here a formal proof of tnis claim.

Let T = {x1,...,xn} be a given set of prizes in a closed interval

on the real line such that xl < x2 < 1..., < xn. A probability

distribution on T is an n-dimensional vector (p p2,...on)

tnat pi > o i = 1,...,n and 17.1pi . 1.

Let P denote the set of all probability distributions on T.

such

Lemma 5.1. The preference functional V(.) in (2.1) restricted to

L is Frechet differentiable, if and only if P(-) in (2.1) is

continuous.

Proof: For p e P, V(p) = U(x1) + [u(x2) - u(x1)]f(17.2pi)

+ [u(x3) - u(x2)]f(17_3p1) + + [u(xn) - u(xn_l)if(pn)
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aV
Hence, 1-3-1 . 0, and for j > 1 rrj . 

k.2 
[u(x

k 
) — u(x ilf 1(Yn p )

L k-1 Li.k i •
aV

For p' c P let h = p — p', then -Ele(p + . 
n 

Xj_2 "Ty hj E 6V(p;h).
a.0 j

Hence 6V(p;h) is linear and continuous in h. It can now be shown that the

function 6V(p;h) is the FreChet differential of V(.) if and only if

aV is continuous for all j. (See Luenberger [1969]). This holds if and
apj

only if f'(.) is continuous.#

In the proof of Theorem (3.1) we assumed f(p) = p2. Thus, V(.) was

Frechet differentiable. Consequently Machina's theory is consistent with the

reservation—price reversal phenomenon and thus accounts for the experimental

results of Grether and Plott [1979] and others.12

(5.2) Reservation—price reversals and the reduction of compounded lotteries

by the independence axiom — As already mentioned, an alternative way of

reducing compounded lotteries is by substituting the certainty equivalent for

each of the lotteries that appear in each stage after the first. This method

was advocated by Segal [1984], who thus accepts the independence axiom and

rejects the reduction of compounded lotteries axiom. Segal's approach,

however, is inconsistent with tne experimental evidence concerning

reservation—price reversals. To see this, suppose that a participant in the

experiments of Grether and Plott is given a lottery A and is asked to announce

the smallest price, P(A) which he would be willing to accept for A. Since

the rules set by the experimenters imply that the respondent participates in a

two—stage compounded lottery, ne will substitute C(A) for A in evaluating

the optimal responses. Upon doing so, however, his optimal response is to

set P(A) = C(A). (If he sets P(A) / C(A) then he subscribed to a lottery

which is stochastically dominated by the lottery where p(A) = C(A). This can
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be shown Iv the following consideration: If the realization of the random

variable drawn to determine his position in the first stage is between P(A)

and C(A) and P(A) > C(A) he loses by having to accept C(A) instead of

the realized sum of money If P(A) < C(A) he is forced to accept a sum of

money smaller than C(A) instead of C(A) and thus loses again). In tnis

case, therefore, reservation—price reversal is indeed preference reversal and

the transitivity of preferences is violated.

This discussion shows that within the context of the theory of section 2,

the reservation price reversals phenomenon is a violation of the independence

axiom, rather than the transitivity axiom.

(5.3.) Reservation price reversal and other violations of the independence

axiom — In view of the fact that the reservation price reversal phenomenon is

a violation of the independence axiom, is it consistent with other reported

violation of this axiom. Yaari [1984] and Segal [1984] demonstrate that with

appropriate restrictions on u(.) and f(-) preference relations in are

consistent with choice patterns, e.g., the Allais paradox, that violate the

independence axiom. These restrictions are not inconsistent with reservation

price reversals. For instance Segal shows that to obtain the Allais paradox

f(-) must be convex and

f(1) — f(0.99) + f(0.1) u(5M) f(0.11) 
f(0.1) > u(1M) > f(0.1) '

where iM stands for i million dollars. Let u(5M) . 1,500,000 and u(1M)

. 1,000,000 be the extension of the utility function in the proof of Theorem

3.2. and suppose that f(p) = p
2. A decision—maker whose preferences are

representable by a functional combining these functions will display pattern

of choice that violate the inddpendence axiom when facing the choices in



23

Alllais paradox and reservation price reversals. Generally speaking,

reservation price reversals are not inconsistent with reported violations of

the independence axiom.
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1. For an evaluation of the results of Pommerehne, Schneider and Zweifel

[1982] see Grether and Plott [1982]. For a broader perspective see

Slovic and Lichtenstein [1983]. A discussion of the significance of

these results appears in Arrow [1983] and Machina [1983].

2. A detailed discussion of the violations of the independence axiom will

take us too far afield. For excellent reviews of this evidence see

MacCrimmon and Larsson [1979] and Machina [1982]. Looms and Sugden's

[1983] explanation of the preference reversal phenomenon using regret

theory does not solve the intransitivity problem since regret theory does

not assume transitivity.

3. That (3.1) and (3.2) are equivalent under the expected utility theory

follows from tne fact that (3.1) implies that L is a mixture set and

since V(-) is a continuous linear representation of the binary

relation on L it satisfies the axioms of weak order and continuity.

By the von—Neumann—Morgenstern expected utility theory it must satisfy
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the independence axiom and consequently (3.2). Conversely, since V(.)

has the properties mentioned above and satisfies the independence axiom,

it follows from the expected utility theorem that L is a mixture set

and (3.1) must hold.
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4. Segal [1984] took the alternative approach accepting the independence

axiom and foregoing the reduction of compounded lotteries axiom. Segal's

approach is an attempt to explain the Ellsberg [1961] paradox.

5. Pommerehne et—al. [1982] and Reilly [1982] employed the same method.

6. In the terminology used by Grether and Plott [1979] lottery A is a P bet

and lottery B is a 4( bet. The majority of respondents who preferred

P bets over $ bets in these experiments set higher prices for the $

bets than for the P bets, thus creating reservation price reversals.

7. The probability transformation function is similar in shape to the

weighting function of Kahneman and Tversky [1979]. Notice, however, that

except for the case of two—price lotteries the probability transformation

function enter the preference functional V(-) differently from the

weighting function in prospect theory. Indeed prospect theory is

inconsistent with preference reversals.

8. Notice that the range includes the expected monetary value of the two

lotteries. The results for the case of the two numbers that were used in

the Grether and Plott experiments and for f(-) and u(-) as in the proof

of Theorem 3.1 are V(A) . 40.65557, P(A) = 3.43, V(B) . 40,384, P(B)

. 4.33. Thus, V(A) > V(B) and P(B) > P(A). By the monotonicity of

u(.) C(A) > C(B). We would like to thank Lawrence Lessig for doing the

calculations.

9. Notice that tne experiment of Grether and Plott is an element of

Notice also that an experiment where the participants are offered to sell

their right to participate in a lottery A e L for a given sum of money

is also in . Let this sum of money be s then E(P,A) = (s,1) c L

if p > s and E(P,A) . A if p < s.
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10. The weak version of reservation price reversal is enough for breaking the

transitivity when r(E,.,*) = C(*,.) since transitivity implies [A >• B

<=> C(L,A) >

11. The set of lotteries in Machina's analysis is defined on [0,M] e.

12. Machina didn't realize this fact. He regards the experimental evidence

produced by Grether and Plott as incompatible with any fixed preference

ranking over the set of lotteries (see Machina [1982] p.308).
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