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ON THE CORRESPONDENCE BETWEEN MULTIVARIATE RISK AVERSION AND
RISK AVERSION WITH STATE-DEPENDENT PREFERENCES

by
Edi Karni*

Tel Aviv University

INTRODUCTION

Advances in the analysis of risk bearing in situations involving univariate
state-independent utility functions, made possible with the introduction of risk

aversion measures by Arrow [1971] and Pratt [1964], inspired the search for similar

measures for other utility functions.! Research of this subject has been pursued in

two directions: (i) the development of risk aversion measures for utility functions
with many commodities and multivariate risks (Stiglitz [1969], Kihlstrom and Mirman
[1974], Duncan [1977], Karni [1979]) and (ii) the development of risk aversion

measures for state-dependent utility functions (Karni [1981]).2

Pursuing the first line of research, Kihlstrom and Mirman [1974] observed that
a necessary prerequisite for the comparison of attitudes towards multivariate risks
is that the decision-makers being compared have identical ordinal preferences over
the commodity space. Restricting comparability in this manner permits the development
of risk aversion measures which capture those cardinal properties of the utility
functions relevant for decision-making unaer uncertainty. Not surprisingly, these

measures were found to be the same measures suggested by Arrow and Pratt. The




restriction on the ordinal preferences is not explicitly mentioned in the discussions

of Arrow [1971] and Pratt [1964] since, unlike the multivariate case, all univariate

utility functions represent the same ordinal preferences.

Pursuing the second line of research, the present author (Karni [1980]) observed
that the measurement of risk aversion requires a definition of reference points in the
domain of the utility functions where the measure of risk aversion can be properly
defined. Univariate state-independent utility functions have ''natural" reference
points - the certainty points. These are points in the domain of the utility
function, say wealth, which have the following three properties: (i) wealth is the
same across states-of-nature; (ii) wutility is the same across states-of-nature, and
(iii) marginal utility of wealth is the same across states-of-nature. Moreover, this

set of points, which we call the reference set, is the same for all state-independent

univariate utility functions. Hence,in this sense all such functions are comparable.

State-dependent utility functions do not have reference sets which share the
aforementioned attributes. Thus, the first question we must ask is: Which property
is essential to retain in defining a reference set for state-dependent preferences? We
find, perhaps not surprisingly, that the important attribute of the reference set is
the equality of the marginal utility of wealth across states-of-nature. Defining the
reference set in this manner, we see immediately that the reference sets of different
decision-makers are not, in general, the same. Because of the indispensability of the
reference set in the measurement of risk aversion, a necessary prerequisite for the

comparison of aversion to risk among decision-makers when preferences are state-




dependent is that the decision-makers have identical reference sets.

So far the discussion indicates the necessary limitations in trying to extend
the Arrow-Pratt measures of risk aversion beyond the relatively simple case of
univariate state-independent utility functions. In all of these extensions, the partial
ordering given by the relation '"more risk averse than..." must be restricted to subsets
of decision-makers; those with identical preference ordering in the case of multi-
variate utility functions, and those with identical reference sets in the case of
state-dependent utility functions.

In this paper, we study the correspondence between multivariate risk aversion and
risk aversion with state-dependent preferences. In particular we show that these are not
two distinct theories applicable to different problems but rather that the theory of multi-
variate risk aversion is a specific case of the more: general theory of risk aversion for
state-dependent preferences. Since the theory of risk aversion for state-independent
utility functions may also be regarded as a particular case of the same theory, the
theory of risk aversion for state-dependent utility functions appears to be a general
theory of measurement of risk aversion.

In Section II below, we define the notion of a reference set for utility functions
with many commodities and state the condition for comparability for these. functions.

Section III contains the main results of the paper in the form of two theorems.




II. THE REFERENCE SET FOR UTILITY FUNCTIONS WITH MANY COMMODITIES

Let x ¢ Rﬁ, be a vector of commodities and u(x) ¢ R! be a utility representation
of the preference ordering }:u, Denote by y and p e Rz the money income and the
n-dimensional vector of money prices, respectively, and define the indirect utility

function, U(y,p) = u(x*(y,p)), were x*(y,p) 1is the solution to:

(P.1) Max u(x
{x} -
The price vector p may be interpreted as a '"state-of-nature'". Then the set of states
of nature is Ri, Uncertainty in this interpretation is the lack of advanced knowledge
regarding the realization of p. Suppose that to every realization of p corresponds

A

an income level given by the function y(p) and consider the following problem:

Max J U(y(p),p)dF(p)
{y(p) }gn T
+

(P.2)
subject to J , [y - y(@)I1dF(p) < 0.
. R ~ - -

+

where F(p) 1is the joint cummulative probability distributionlof P- That is, find
the function y*(p) which, for a given F(p) and an iﬁitialfincome distribution ;(?)
maximizes the expected indirect utility function provided théf the actuarial value of
y*(g) does not exceed that of ;(p). In other words, y*(p) represents the optimal
distribution of income across states of nature for a given actuarial value of money
income. Let c¢ denote this actuarial value, i.e. c = JRnY(p)dF(P)' Then the Euler

.. +
conditions are:




(1) U (y*(p;c),p) = A(c) for all pe R)

where Uy(") denotes the partial derivative of U(.¢) with respect to y, and } (c)

is the Euler-Lagrange multiplier. Clearly, A(c) 1is equal across states-of-nature.

Using this result we define the reference set as follows:

Definition 1: RS(U) = {y*(p,c)IUy(y*(p,c),p) = A(c), ¢c>0, pe RE} .

The reference set is the set of functions y*(p,c) such that for every given
¢ > 0, the marginal utility of income is equal across states of nature. This notion
of a reference set was introduced in Karni L1981] in the more general context of state-
depéndent utility functions.

Utilizing definition 1, we define two indirect utility functions, U(y,p) and

V(y,p) to be comparable if they have identical reference sets. Formally,

Definition 2: Let U(y,p) and V(y,p) be two indirect utility functions, then

U(y,p) and V(y,p) are said to be comparable if and only if RS(U) = RS(V).

IIT, THE MAIN RESULTS

In this section we state two main results. The first is that U(y,p) and

V(y,p) are comparable if and only if wu(x) and v(x), the corresponding direct

utility functions, represent the same ordinal preferences on the commodity space. The
second result is that U(y*(p,c),p) 1is a concave transformation of V(y*(p,c)p)

(that is U(*®) 1is a concave transformation of V(:¢) on the reference set) if




and only if u(x) is a concave transformation of v(x) on the commodity space.
The latter claim ties together well-known results from the literature on risk

aversion, These are summarized in Theorem 2 below.

Theorem 1. Let U(y,p) = u(x*(y,p)) and V(y,p) = v(x*(y,p)) be two indirect
‘utility functions, then U(y,p) and V(y,p) are comparable (in the sense of
Definition 2) if and only if u(x) and v(x) represent the same ordinal

n
preferences, 2, on R,.

Proof: (a) Necessity. Suppose that u(x) and v(x) are two representations
of 2 on Ry, then there exists H[v(x)], H'( ) > 0 such that u(x) = H[v(x)].

Let vy*(p,c) be the solution to (P.2) above.

But,
U(y,p) = H[V(y,p)], H' > 0.

Hence, y*(p,c) is the solution to:

Max [ . V(v (p)p)dF(p)
(P.3) {y(p) 'R, R

subject to ( y (p)dF(p) = c.

jen
Ry

Thus y*(p,c) is in both RS(U) and RS(V). Since this is true for all p e R:

and all ¢ >0, it follows that RS(U) = RS(V) and U and V are comparable.

(b) Sufficiency. Let U(y,p) and V(y,p) be comparable and let the solution

of (P.2) and (P.3) be vy*(p,c). Then there exists a transformation G, such that




U(y*(p,c),p) = G[V(y*(g,C),g)], G' >0 .

The existence of this transformation can be shown as follows.

t = V()’*(I;",C) ’g)

y*(p,0),p) = V(D).

Thus, for all ¢ >0 and p e R?,

U(y*(p,c),p) = UV (6] = GIV(y*(p,c),p)]

The monotonicity of G follows from the monotonicity of U and V in y*(p,c).

But {y*(g,c),g | c >0, Pe Rg} covers the domain of U and V. Hence,
U(y,p) = GLV(y,p)]
This implies that u(f) and ch) represent the same ordinal preferences over RE.
Q.E.D.

The following notation and definitions facilitate the statement of the second
result. Let L(z) be a joint probability distribution over Rn, and E{z} =0
where E denotes the expectations operator. Following Paroush [1975] we define

a vector-valued risk premium function Hu(x;L) by the equation

(2) U(x - M) = E{u(x + 2)}




where the expectations on the right-hand-side of (2) is assumed to exist; The
risk premium defined above is a vector of commodities. Next we define a risk
premium, IIU(y(p),F), in terms of income on the reference set by the following

equation,

(3) [ Uly*(p,c-(y(p),F)),pldE(p) = J Uy (p,c),p)dF(p)
. ~ ~ ~ ~ R ~ ~ ~

‘R
+ +

where

JRn[Y*(g,C) - y(p,c)]dE(p) = 0 .

+

du 0 vy i Using these definitions we are in a

Finally, u; = /axi agd ug, =

position to state Theorem 2.

Theorem 2. Let U(y,p) = u(x*(y,p)) and V(y,p) = u(x*(y,p)) be comparable

(in the sense of Definition 2), suppose that V(y,p)is concave in y for every p
in R?, then the following conditions are equivalent,

(a) a0 v (9 for all
T C A €3] or et ¥

(b) There exists a transformation T such that u(x) = T[v(x)]

T >0, T"'"<O.

(c) For every HV(X,L) there exists Hu(x,L) such that Hu(x,L) ;:HV(X,L) for all

. n
joint probability distributions L(z) on R" and all x in R, .




u . O*(,c),p) vV . *(p,c),p)
S 4 A— = > - X = =~ for all p in R.
U, &*(p,clp) vV, (7 (psc),p) d

+

and c > 0.

(e) For every joint probability distribution F(p) on Rf there exists a

transformation HF such that

J o VO (@,c),p)dF(p) = HF[J LV Or*(p,c),p) dF(p) ]
R - T R -7

+ +

0, and Hp is independent of F.

(£) HU(YCE)’F) ;‘HVCY(E)’F) for all y(E) and all F(E) on Rz.

To prove Theorem 2 we need to establish the following result:

Lemma 1: For any given F(p) and all h-w(p,c) such that J nw(p,c)dF(p) =0,
e 3 £ - z
H_[V(y*(p,c) - hw(p,c),p)]dF(p) < Hyl V(y*(p,c) - hw(p,c)fp)dF(p)], where H_(
RE P ol - 3 ~ Frjpn - ~ ~ ~ B,

+

is Hp for F such that Pr{p} = 1.

The proof of Lemma 1 is provided in the Appendix.

Proof of Theorem 2:(a) <=> (b) <=> (c) follows from Kihlstrom & Mirman(1974) and Paroush (1975).

We shall prove the equivalence of (d), (e) and (f), and then the equivalence

of (b) and (e).

(d) => (e). Differentiating with respect to c, and using (1) we get:

3y*(p,c) 3y*(p,c)
A(C)JR+ ———sé——— dF(P) = H%[ 18(c) JRn ———5é-—dF(E) where &(c) 1is the
Euler-Lagrange multiplier corresponding to (P.3).




Since U and V are comparable it follows that:

' . _ A(e)
() “F[JRnV(y R C e

+

and H% is independent of F(p). Differentiating -4&n Hé with respect to ¢ we get

Hp ay* (p,c)
F % 5 _ At (c) §'(c)
- H%[JRHV(Y (E’C) ,?)dF(E)]G(c)JRn__..é.é__.dF(?) = [- }\(C)]_[ : Ta—)—]
+

But from the concavity of V(y,p) in y it follows that Ody*(p,c)/9c > 0. Hence,
At (c) §' (¢) U}’}’(y* (IE,C) ,13) dy* (E:C)

HY [ | 120 <= [- 5] 2 [- 5yl From 1, BN OB ¢

\ *(p,c),p) ay*(p,

g L8 yy V" (@s¢) g)[ y*(p,c)
6 (c) Vy(y* (p,c)p) dc

that in the degenerate case, (e) implies U(y(c),p) = Hp[V(y(c),p)] for all

] . Therefore, (d) implies (e). Notice also

c > o, and

hence for all y > 0, and all pe RE.

(e) = ().
Let x(p,c) = y*(p,c) - y(p,c), then from (3) we have

JRnU(y*(p,c-HU) ,P)dF(p) = jRnU(y*(P,C) - x(p,c),p)dF(p) = JR“H [V(y*(p,c)-x(p,c),p) JdF (p)

+ + + ~
= HF[JRHV(Y*CP,C) - x(p,c), P)AF(p)] = HF[IRnV(y*(?,c-nV) ,?)dF(?)]

+ +

; J UCy*(p,cTy) ,p) dF () -
G P)dF(y
+

where use has been made of the definition of risk premium and Lemma 1.




Since U is monotonic increasing in ¢, it follows that

m,(v(p),F) 2 1, (y(p),F) .

(f) = (d).

Let x(p,c) = h.w(p,c). Differentiating I, with respect to h we obtain:

J (U, (y*(p,c)-hw(p,c),p)w(p,c)dF(p)
d R YT - R -

+
ay*(p,c-T)
A (C-HU)J n —-———a—c—-—-—dF (p)
R =

+

dh

Since J nw(p,c)dF(p) = 0, and Uy is constant on RS(U),
RD - z
+

]
H| o

The same result obtains for V. Hence, (f) implies that

2 2
d HU § d HV
2 = 2

dh h=0 dh h=0

| fRnuyy(y (2,)p) [W(p,<) 1247 (p)

+

3y*(p,c)
|h=0"(¢) J T

+

Since A(c) = Uy(y*(p,clp) it follows that (f) implies




U v
(5) jRn[- Lt (,0),p) + L0 ()P [w(p,) 1%dF(p) 2 0
.Y y -

for all w(p,c) such that J nw(p,c)dF(p) =0,
s Y- -
U V,+
Thus, - EXX-(y*(p,c)p) > - vlz{y*(p,c)p), otherwise we can choose w(p,c) so
y T y -7 -

as to reverse the inequality (5).

To complete the proof it remains to be shown that (b) <=> (e). From (4) we

have Hﬁ = ——= and the equivalence of (d) and (e) means that HE 20 if and only

n Bxi
Ae) = Lo qu X (2, 0)p) I 5=

doy™*

ax*
1T T (et (7 (ps€) P 1V, (% 7+ (2, )P =gy T [V 18 () .
i=1 - - T
Hence, H% = T' for all F(p) on Rf. Furthermore, differentiating

-2n T'[v(x* (y*(p,c),p)] with respect to c we obtain

| 3y*(p,c) ' '
A P (e, 8'(9)
G R ey v VORI O)

Consequently, T"[v(x*0] <0 if and only if

T™ < 0 if and only if H! <0, and (b) <=>




- 13 -

APPENDTIX

Lemma 1  For any given F(p) and all h.w(p,c) such that

jRHW(g,C)dF(g) =0,

+

(A.1)

J H VO (2,0) -hw(p,e) P 1AF(R) S Hpl (VO (p,e)-hw(p,e) p) dF ()]
Rn ~ R+
+

Proof: For a given W(p,c) such that f nw(p,c)dF(p) =0 define the following two

R+

functions:

J H [V(y*(p,c) - hw(p,c),p)]dF(p)
Rn~

J(h) HF[J LVOr*(p,c) - hw(p,c)p)dF(p)]
RN o -

-+

Clearly 1(0) = J(0). Furthermore, since V is concave in vy,

Viy*(p,c) - hw(p,c)p) - V{y*(p,c)p) <
- hv' (y*(p,c) - hw(p,c),p)w(p,c) * -h.B(p,c)
Similarly,
V(}’*(P,C) - hW(E,C) :g) < V(}’*(E,C),E) Z

- Wy (L) ,pIw(p,e) = ~h.a(p,c)




and
B(E,C) = V'(}’*(E,C) - hW(]:?,C) ,g)w(g,c) = V'(Y*(Q,C)sg)w(p ’C) +

- Wy (pse) - 9w(Q,C),g)[w(g,C)]%;V'(y*(g,CJ,QJW(g,C) = a(p,c), 0<6 <h,

Hence, B(p,c) < 0 implies o(p,c) < 0, and by (A.5) and concavity of Hé it also implies:

~

HI[V(r* () - hui(p,e)p)] < HIVO*(pye) ,p)] (A.6)

~ ~

Similarly, using (A.4), B(p,c) > 0 implies:

B[V (pse) - hw(p,c),p)] 2z HI[V(y™(p,c),p)]

~ ~

Differentiating I(h) with respect to h we obtain,

(
I'(h) Al VO™ (pse) - w(p,e),p) V! (y* (p,c) -hw (p,c),p) w(p,c)dF(p)

‘R

VO (pae) - hw(p,c),p)B(p,e)dE (p)

~

(

nfip VO (p,e),p) 18(p, ) dF (p)

R =

where the last inequality uses (A.6) and (A.7). Since y*(p,c) is in RS(V),




nﬂﬁ[JRnV(y*(g,C),g)dF(g)]B(g,C)dF(g)

+4

- JRnHﬁ[JRnV(Y*(g,C) - hw(p,c)p)dF(p)]18(p,c) dF (p)
+

nV(Y* (P,C) :P) dF (E) —->__— nv(y* (psc) - hw (P,C) :P) dF (P)
'R - - R - - - -
+ +

The last inequality makes use of [the fact that by definjjtion of RS (V)

\

Now differentiating J'(h) with respect to h, we get

J'(h) = -Hg[I V*(p,c) - hw(p,c),p)dF(p)]- J V' r*(p,e) - hw(p,c)plw(p,c)dF(p)
R £ AR A ¢ E RS T 4 d

R

+ +

= - Hg[[ LVO*(pse) - hW(p,C),p)dF(p)]J .8 (Psc)dE(p)
R £ SRS SR ? £

R
+ +

Hence, J'(h) > I'(h) for all h > 0. Therefore J(h) 2 I(h) for all h.

Q.E.D.
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FOOTNOTES

* Partial financial support by the Foerder Institute for Economic Research is

gratefully acknowledge.

Stronger measures of risk aversion for univariate state-independent utility
functions were developed in a recent paper by Ross [1979]. These measures resolved

some difficulties in the theories of portfolio selection and optimal insurance.

The references are to studies that emphasize the measurement of attitudes towards
risk. Numerous authors have dealt with other aspects of the theory of risk bearing
with state-dependent utility functions and utility functions with many commodities.
See, for example Arrow [1974], Cook and Graham [1977], Paroush [1975].

Notice that in this problem the reference set is independent of F(p).







