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Abstract

The present investigation was carried out in the wastewater treatment plant of ENACAL, in
the site known as San Isidro stabilization reservoirs, located in the department of Leon, in
the period March-August 2015. The aim was to evaluate the dynamics of the concentrations
of the chlorophytes and cyanophytes microalgae groups and relate them to the fluctuation of
the physicochemical parameters. The water samples were taken once a month, using 350 ml
amber colored bottles and the physicochemical parameters were measured (temperature, pH,
dissolved oxygen and turbidity). The results show that, in general, the cyanophytes group are
the microalgae that prevailed throughout the study period and differ significantly (P<0.05)
from the chlorophytes group. We identified 15 genera in total, of which 7 genera belong to
the chlorophytes group and 8 to the cyanophytes group. Likewise, there is a marked tendency
to increase the levels of dissolved oxygen, pH and turbidity as the primary battery-secondary
battery-tertiary battery, observing significant differences (P<0.05) in most months of the
study. The batteries module B had a higher number of significant correlations P <0.05 than

the batteries module A.
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Resumen

La presente investigacion se realizd en las pilas de tratamiento de aguas residuales de
ENACAL, en el sitio conocido como pilas de estabilizacion San Isidro, ubicado en el
departamento de Ledn, en el periodo marzo-agosto 2015. EI objetivo consistié en evaluar la
dindmica de las concentraciones de los grupos de microalgas cloréfita y cianofita y
relacionarlas con la fluctuacién de los parametros fisico-quimicos. Las muestras de agua se
tomaron una vez al mes, usando botellas de 350 ml, color &mbar y se midieron los parametros
fisicoquimicos (temperatura, pH, oxigeno disuelto y turbidez). Los resultados muestran que,
de manera general, el grupo cianofita son las microalgas que prevalecieron en todo el periodo
de estudio y difieren significativamente (P<0.05) del grupo cloréfita. Se identificaron 15
géneros en total, de los cuales 7 géneros son pertenecientes al grupo cloréfita y 8 al grupo
cianofita. Asimismo, se observa una marcada tendencia a incrementar los niveles de oxigeno
disuelto, pH y turbidez a medida que se avanza de pila primaria-pila secundaria-pila terciaria,
observandose diferencias significativas (P<0.05) en la mayoria de los meses de estudio. El
modulo de pilas B present6 mayor nimero de correlaciones significativas P<0.05 que el
maodulo de pilas A.
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. Introduccion

Las lagunas o pilas de estabilizacion de San Isidro, son parte del sistema para el tratamiento de aguas
residuales de la Empresa Nicaragliense de Acueductos y Alcantarillados (ENACAL, Leon). Se
crearon el 4 de febrero de 2003 durante el gobierno del ex presidente Ing. Enrique Bolafios Geyer y
ejecutado por ENACAL en conjunto con la cooperacion de Luxemburgo.

La contaminacion de numerosos cuerpos de agua en Nicaragua por vertidos de aguas residuales es ya
muy bien conocida, en verano estos cuerpos de agua pueden llegar a tal alto grado de contaminacion
que se desprenden malos olores producto de la descomposicidn anaerébica que en ellos se produce
(Bonilla, 2009). La tendencia a que la contaminacién de los cuerpos de agua aumente es
probablemente alta con el aumento de la poblacién en funcion del tiempo, tanto que llegara a limites

peligrosos y perjudiciales.

En Nicaragua las lagunas de estabilizacion se vienen usando desde hace algunos afios como método
de tratamiento para las aguas residuales de varias ciudades del pais (Leon, Chinandega, Masaya,
Granada, Rivas, Somoto, etc.) (ENACAL, 2003).

Una laguna de oxidacion o de estabilizacion, es un estancamiento superficial, natural o artificial, de
area relativamente extensa y de poca profundidad, de aguas negras o desechos industriales,
desprovisto de equipo mecénico, y conservado bajo condiciones especificas, en la cual se controlan,
favorecen o intensifican, un conjunto de acciones fisicas, quimicas y bioldgicas, verificandose una
accion depurativa natural de estabilizacion, fundamentalmente por medio de procesos naturales de

oxidacion aerobia y fotosintesis (Bonilla, 2009).

El complejo de pilas de estabilizacién San Isidro ubicado en Ledn, cuenta con seis pilas y un sistema
de procesamiento previo del agua para luego ser vertida en dichas pilas, el agua tras ser tratada, es

recepcionada por el rio El Platanal.

El funcionamiento de la poblacion de grupos de fitoplancton Clordfita y Cianofita, con respecto a los
parametros fisicoquimicos de las aguas de las pilas de estabilizacién durante el tratamiento de las
aguas residuales, es un tema poco estudiado, por ello, se decidi6 llevar a cabo este estudio con el fin
de aportar al conocimiento de la limnologia de cuerpos de aguas altamente eutrofizados como son las

pilas de estabilizacion.
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Il. Objetivos

Objetivo General

e Evaluar larelacion de la dindmica fitoplancténica de los grupos Cloréfita y Cianofita con los
parametros fisicoquimicos (temperatura, pH, oxigeno disuelto y turbidez) en el complejo
Pilas de Estabilizacion San Isidro-ENACAL, Ledn. Periodo Marzo — Agosto, 2015.

Objetivos Especificos

e Medir los parametros fisicoquimicos temperatura, pH, oxigeno disuelto y turbidez en las
aguas de las Pilas de Estabilizacion.

e Cuantificar las concentraciones de los grupos de microalgas Clorofitas y Cianofitas en las
Pilas de Estabilizacion San Isidro-ENACAL.

¢ Relacionar las fluctuaciones de las concentraciones de los grupos de microalgas Cianofitas y
Clorofitas con la fluctuacion de los valores de los parametros fisicoquimicos en las Pilas de

Estabilizacion.

I
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I1l1. Marco Tedrico

3.1. Tratamiento de Aguas Residuales en Nicaragua y América Latina

En Latinoamérica solamente el 10% de las aguas de alcantarillado recolectadas son sujetas a cualquier
tipo de tratamiento. Ademas, contintan las dudas acerca del modo apropiado de operar las plantas de
tratamiento existentes. Una evaluacion de las plantas de tratamientos de aguas residuales en México
calcula que solamente el 5% de las plantas existentes estan operando de manera satisfactoria. Mientras
que cada region tiene sus propias necesidades correspondientes a métodos de tratamientos
particulares, cierto niamero de opciones tradicionales y modernas de tratamiento se encuentran

disponibles al disefiar una planta de tratamiento de aguas residuales (Reynolds, 2002).

Tabla 1. Poblacién Servida con Suministro de Agua Publica y Saneamiento en Latinoamérica y el Caribe, 1995.

Poblacién (millones, redondeados) Agua Potable (% hogares Saneamiento Publico (%
Pais conectados) hogares conectados)
Urbana Rural Urbana Rural Urbana Rural

Argentina 30.3 4.1 68 24 39 42
Bahamas 0.3 il 88 86 16 100
Barbados 0.1 0.2 98 98 4 98
Belice 0.1 0.1 89 51 44 21
Bolivia 4.2 3.0 74 42 31 39
Brasil 1245 37.2 74 28 35 43
Chile 12.2 2.0 99 47 79 7
Colombia 26.4 10.3 86 32 65 27
Costa Rica 1.5 1.6 100 99 55 95
Dominicana 5.2 2.9 56 55 28 68
Ecuador 6.5 4.7 79 10 61 26
El Salvador 2.7 34 78 24 60 65
Guatemala 4.2 6.1 84 48 70 50
Guyana 0.3 0.5 77 69 27 28
Haiti 2.2 4.9 29 39 - 16
Honduras 2.8 3.1 77 66 50 71
Jamaica 14 1.1 57 53 34 65
México 68.1 22.7 93 57 81 29
Nicaragua 2.5 1.6 86 28 34 28
Panama 1.6 1.4 98 73 64 81
Paraguay 2.6 2.4 59 6 20 44
Perli 16.8 6.6 63 31 59 23
Surinam 0.3 0.1 95 70 2 36
Trinidad 0.9 0.4 90 88 32 92
Uruguay 2.7 0.3 90 - 56 -
Venezuela 19.8 17 73 79 62 60

Total 340.2 122.4 79 39 52 39

**|nsignificante, -No disponible
Fuente: Edelovitch, E., y Ringskog, K. (1997).

I
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Segin ENACAL (2003) el volumen recolectado por los 27 sistemas de alcantarillados a nivel nacional
se estima en 57.9 millones de metros cubicos anuales de los cuales solo al 39.4% de esto se le da
tratamiento. AECID contempla que el Programa Integral Sectorial de Agua y Saneamiento Humano
impulsa un proyecto de saneamiento en 19 ciudades de nuestro pais que serdn mas modernos, lo que
implica la incorporacion de 13 nuevas plantas de tratamiento de agua residuales lo que beneficiara a

al menos 600,000 personas.

Las plantas de tratamientos de aguas residuales en la zona del Pacifico de Nicaragua estan organizadas
de tal forma que el departamento de Ledn tiene la gran mayoria de estas, en la siguiente tabla se puede
apreciar mejor de qué manera estan distribuidas (ENACAL, 2003).

I
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Tabla 2. Distribucién de Plantas Procesadoras de Aguas Residuales en la region del Pacifico de Nicaragua

. . . Poblacién MEDIC CAUDAL
Departamento Localidad Sistema No. Unidades . Conexas Cuerpo Receptor
P Servida AS CAUDAL me/d P P
1. Chinandega/Cementerio Lagunas de Estabilizacion 2 Médulos (Prim + Secund) Parshall Rio Acome
56,810 8,740 7,101
2. Chinandega/ Hospital Lagunas de Estabilizacion 2 Médulos (Prim + Secund) Parshall Rio Acome
Chinandega
3. Chichigalpa T. Imhoff + Biofiltro 1 Modulo (Imhoff + Biofiltro) 2,085 331 V. Triang - Rio La Zopilotera
4. ElViejo T. Imhoff + FAFA 2 Moédulos 17,696 2,528 V. Triang 1,143 Rio Viejo
5. Ledn/Sutiava Lagunas de Estabilizacion 2 Modulos (Prim+Secund) Parshall 8,986 Rio Chiquito
6. Ledn/San Isidro Lagunas de Estabilizacion 2 Médulos (Prim+Secund+Madurac) 93,042 15,507 Parshall 2,765
7.  Le6n/El Cocal Lagunas de Estabilizacion + [ 2 Prim+1Secund+2Macrofitas Parshall 3,535 . -
) Rio Chiquito
Macrofitas
Le6n 8.  Ledn/San Carlos Fo§a ) Sept.+FAFA+Zanja | 1 Modulo 2,000 No 260 Rio Pochote
infiltracion
9. LaPaz Centro Fosa Séptica + FAFA 4 Médulos 6,804 972 V. Trang 384 Cauce Naural/Infiltracién
10. Nagarote/Santa Elena Lagunas de Estabilizacion 1 Modulo (Prim+Secund) No 273 Rio Obraje
11,879 1,697
11. Nagarote/El Patriarca 1 Modulo (Prim+Secund) No 1,106 Rio Obraje
12. Tipitapa Lagunas de Estabilizacion 2 Modulos (Prim+Secund) 16,725 2,573 No Rio Tipitapa
Managua — - ——
13. San Rafael del Sur Lagunas de estabilizacion 1 Modulo (Prim+Secund) 2,646 411 No 752 Quebrada El Retiro/Rio
Navarrete
Granada 14. Granada Lagunas de Estabilizacion 1 Modulo (Prim+Secund) 19,428 3,238 Parshall 3,139 Lago Cocibolca
15. Masaya Lagunas de estabilizacion 3 Médulos 51,968 7,995 Parshall 5,953 Laguna de Masaya
Masaya
16. Masatepe T. Imhoff+Biofiltro 1 Modulo 1,087 191 Parshall 41 Infiltracion/Lag. Masaya
17. San Marcos Lagunas de Estabilizacién 1 Modulo (Prim+Secund) 9,943 1,102 No 742 Cauce/Laguna de Masaya
Carazo
18. Jinotepe T. Imhoff+FAFA 2 Médulos 1,191 217 Parshall 731 Quebrada EIl Tigre
19. Rivas Lagunas de estabilizacion 2 Modulos (Prim+Secund) 12,722 2,052 No 2,982 Rio de Oro/Lago Cocibolca
Rivas
20. SanJuan del Sur Lagunas de Estabilizacion 1 Primaria 2,050 329 No 422 Océano Pacifico

Fuente: ENACAL, 2003.
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El articulo 19 del capitulo 10 de las descargas domésticas, industriales y agropecuarias a las redes de
alcantarillado del decreto No. 33 — 95 dispone que los parametros de calidad de vertidos liquidos que
sean descargados en las redes de alcantarillado sanitario del pais, provenientes de vertidos domésticos
y actividades industriales y agropecuarias autorizadas deberdn cumplir con los rangos y limites

maximos permisibles siguientes:

Tabla 3. Limites maximos o rangos para parametros fisico quimicos de vertidos liquidos.

Limites maximos permisibles

Parametros Hasta 75,000 | Mas de 75,000
habitantes habitantes

pH 6-9 6-9
Solidos suspendidos totales (mg/l). 100 80
Grasas Y aceites (mg/l) 20 10
Solidos sedimentables (mg/l) 1.0 1.0
DBOs (mg/l) 110 90
DQO (mg/l) 220 180
Coliformes Fecales (NMP/100ml) 10,000 10,000
Sustancias activas al azul de metileno 3 3
(mg/l).

Fuente: Arto. 19 del cap. 10 del decreto No. 33 — 95. Disposiciones para el control de la contaminacién
proveniente de las descargas de aguas residuales domésticas, industriales y agropecuarias.

3.2. Tipos de Tratamientos de Aguas Residuales

El tratamiento de las aguas residuales es un proceso que puede varias dependiendo de la necesidad
que se tenga al momento de tratar el agua, puede ir desde pasos sencillos hasta involucrar un conjunto

de subprocesos gue a simple vista se pueden considerar como complejos (Garcia et al., 2012).

3.2.1. Tratamientos Convencionales

Garcia et al., (2012), plantean que los tratamientos de aguas residuales convencionales incluyen tres

tipos de tratamientos, dentro de estos estan el Tratamiento Primario, Secundario y Terciario.

3.2.1.1. Tratamiento primario

Este tratamiento es para realizar una reduccién de aceites, grasas, arenas y solidos de tamafio
considerablemente mayor. Este paso esta enteramente hecho con maquinaria, de ahi conocido
también como tratamiento mecanico. Este tipo de tratamiento estd asociado a procesos que se

mencionan a continuacion (Garcia et al., 2012).

I
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e Remocidn de solidos

En el tratamiento mecanico, el afluente es filtrado en cAmaras de rejas para eliminar todos los objetos
grandes que son depositados en el sistema de alcantarillado. Este es el mas usado cominmente
mediante una pantalla rastrillada automatizada mecanicamente. Este tipo de basura se elimina porque
esto puede dafar equipos sensibles en las siguientes etapas del tratamiento de aguas residuales,
ademas los tratamientos bioldgicos no estan disefiados para tratar residuos solidos (Garcia et al.,
2012).

e Remocion de arena

En este proceso se incluye un canal de arena donde la velocidad de las aguas residuales es
cuidadosamente controlada para permitir que el area y las piedras de esta tomen particulas, pero
todavia se mantiene la mayoria del material organico con el flujo. A este equipo se le llama colector
de arena. La arena y las piedras necesitan ser quitadas a tiempo para prevenir el dafio en bombas y

otros equipos en las etapas restantes del tratamiento del agua (Garcia et al., 2012).

¢ Investigacion y maceracion

El liquido libre de abrasivos es pasado a través de pantallas arregladas o rotatorias para remover
material flotante y materia grande, asi como particulas pequefias. Los escaneos son recolectados y
podran ser regresados a la planta de tratamiento de fangos o podran ser dispuestos al exterior, al
campo o a su posible incineracion. En la maceracion los sélidos son cortados en particulas pequefias
a través del uso de cuchillos rotatorios montados en un cilindro revolvente, es utilizado en plantas

gue pueden procesar esta basura en particulas (Garcia et al., 2012).

e Sedimentacion

Muchas plantas tienen una etapa de sedimentacion donde el agua residual se pasa a través de grandes
tanques circulares o rectangulares. Estos tanques son comunmente llamados clasificadores primarios
o tanques de sedimentacién primarios. El proposito de esta etapa primaria es producir generalmente
un liquido homogéneo capaz de ser tratado biolégicamente y unos fangos o lodos que puedan ser

tratados por separado (Garcia et al., 2012).

3.2.1.2. Tratamiento secundario

Disefiado para degradar sustancialmente el contenido biolégico del agua residual, el cual deriva de
residuos de actividades humanas. La mayoria de las plantas municipales utilizan procesos biol6gicos

aerobicos para este fin (Edelovitch y Ringskog. 1997).
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e Desbaste

Es un proceso de filtracion para proteger los equipos involucrados en las siguientes fases del
tratamiento del agua residual. Los filtros de desbaste son utilizados generalmente para tratar cargas
orgénicas fuertes o variables, tipicamente del tipo industrial, para permitir que sean tratados por

procesos de tratamiento secundario (Busetti et al., 2005).

e Fangos activos

Las plantas con sistema de fangos activos usan una gran variedad de mecanismos y procesos para
usar oxigeno disuelto y promover el crecimiento de organismos biol6gicos que remueven
substancialmente materia organica (Garcia et al., 2012). También pueden atrapar particulas de
material y puede, bajo condiciones ideales, convertir amoniaco en nitrito y nitrato, y en ultima

instancia a gas de nitrogeno (Seames et al., 2002).

3.2.1.3. Tratamiento terciario

Su fin es garantizar el aumento de la calidad del efluente al estandar requerido antes de que sea
descargado en el ambiente receptor (mar, rio, lago, campo, etc.). En esta etapa se puede utilizar mas

de un proceso de tratamiento. (Garcia et al., 2012).

e Filtracién
La filtracion de arena remueve gran parte de los residuos de materia suspendida. El carbono activado
sobrante de la filtracion remueve las toxinas residuales (Garcia et al., 2012). Este método puede
utilizarse como etapa Unica de separacion de sélidos en suspension o con un tratamiento previo de
coagulacién-floculacién que permita separar los sélidos de menor tamafio y de materia coloidal
(Otero, 2006).

Los filtros pueden efectuarse de muchas formas: con baja carga superficial (filtros lentos) o con alta
carga superficial (filtros rapidos), en medios porosos (pastas arcillosas, papel de filtro) o en medios
granulares (arena, antracita, granate o combinados), con flujo ascendente; descendente y mixto (parte

ascendente y parte descendente) (Otero, 2006).

e Lagunaje
El tratamiento de lagunas proporciona el establecimiento necesario y fomenta la mejora bioldgica de
almacenaje de agua residual en charcos o lagunas artificiales. En este proceso se trata de imitar a los
procesos de autodepuracion que somete un rio 0 un lago al agua residual de forma natural. El

tratamiento por lagunaje de aguas residuales consiste en el almacenamiento de estas durante un
]
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tiempo variable en funcion de la carga aplicada y las condiciones climaticas, de forma que la materia
orgéanica resulte degradada mediante la actividad bacteriana heterétrofas presentes en el medio (La
Iglesia, 2016). Los invertebrados pequefios de alimentacion por filtracién tales como Daphnia y
especies de Rotifera asisten grandemente al tratamiento removiendo particulas finas (Garcia et al.,
2012).

Al estar basada en tecnologia de procesos bioldgicos naturales, los rendimientos de depuracion que
se alcanzan estan muy relacionados con las condiciones climéticas imperantes. Por otra parte, estos
procesos bioldgicos se ven muy afectados por la presencia en el agua residual de sustancias andmalas,
procedentes de vertidos industriales que pueden llegar a hacer inviable su tratamiento (La Iglesia,
2016).

Dado a la presencia de oxigeno disuelto en las lagunas de estabilizacion determina qué tipo de
mecanismo van a ser responsables de la depuracion, los estanques de estabilizacion suelen clasificarse
en aerobios, anaerobios y facultativos. Ademas de esta clasificacion basica también se utilizan otras
relacionadas con sus caracteristicas fisicas, tales como la profundidad. Ambas clasificaciones estan
relacionadas, ya que las fuentes de oxigeno disuelto en lagunas son fendmenos de superficie. Estas
fuentes de oxigeno son el resultado de la actividad de las algas microscépicas y la reaireacién a través
de la interface aire-agua (La Iglesia, 2016).

3.3. Lagunas de Estabilizacion

Se consideran como grandes depédsitos de poca profundidad donde los microorganismos se
encuentran en suspension a lo largo de la columna de agua y prevalecen condiciones aerobias. El
oxigeno es suministrado en forma natural por la aireacidon de la superficie del agua o por la fotosintesis
de las microalgas. La poblacion bioldgica esta comprendida por bacterias y algas principalmente,

protozoarios y rotiferos, en menor medida (Comisidén Nacional del Agua, 2007).

Las algas constituyen la mejor fuente de oxigeno, para mantener las condiciones aerobias y los
protozoarios Yy rotiferos ayudan a mejorar la calidad del efluente al alimentarse de las bacterias. El
oxigeno (O) liberado por las algas después de la fotosintesis es utilizado por las bacterias en la
degradacion de la materia orgénica. El diéxido de carbono (COy) y los nutrientes liberados por las
bacterias son a su vez utilizados por las algas para la fotosintesis. Existe una relacion simbidtica entre
algas y bacterias en estas lagunas, la cual es fundamental para el proceso de depuracion del agua en

las lagunas de estabilizacion (Comision Nacional del Agua, 2007).
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Una laguna facultativa esta caracterizada por presentar tres zonas bien definidas. La zona superficial
donde las bacterias y algas coexisten simbi6ticamente como en las lagunas aerobias. La zona de
fondo, que es de caracter anaerobio, donde los sélidos se acumulan por precipitacién y son
descompuestos fermentativamente. Y por Gltimo una zona intermedia, parcialmente aerobia y
parcialmente anaerobia, donde la descomposicion de la materia organica se realiza mediante bacterias
aerobias, anaerobias y facultativas a como se muestra en la Figura 1. (Comision Nacional del Agua,
2007).
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SEDIMENTAILES
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Figura 1. Representacion del funcionamiento de una laguna de estabilizacion.
Fuente: Manual de Agua Potable, Saneamiento y Alcantarillado (Comisién Nacional del Agua, 2007).
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3.4. Factores que definen el funcionamiento de las lagunas de estabilizacién.

El tipo de comunidad biolégica que se desarrolla en las lagunas y por lo tanto la eficiencia del
tratamiento, depende de multiples factores como calidad del agua a tratar, aspectos fisicos, intensidad
de la luz solar, viento, nubosidad, precipitacion pluvial, infiltracion y evaporacion, temperatura,
aspectos quimicos, material disuelto y suspendido, oxigeno disuelto, diéxido de carbono, pH y

nutrientes disueltos (Comision Nacional del Agua, 2007).

3.4.1. Intensidad de la luz solar

Esta constituye una fuente de energia para algunos de los procesos biol6gicos de la laguna y determina
su estructura térmica. La cantidad de luz se mide como la cantidad de energia que incide en el &rea
donde se lleva a cabo la fotosintesis. La energia solar es un factor clave en el funcionamiento de los
ecosistemas acuaticos ya que influye sobre la tasa de fotosintesis de los organismos acuéticos y la
estructura vertical de las masas de agua (Castillo, 2007). La iluminacién que se requiere para la

actividad biol6gica de las algas varia entre 5,000 a 7,500 luxes.

La fotosintesis y, por lo tanto, la luz solar, son relevantes para las lagunas aerobias, cuya oxigenacion
es suministrada, parcialmente, por algas. Delaunoy (1982) considera que la mayoria de las veces, la
actividad bioldgica ocurre a 25 0 30 cm bajo la superficie. La temperatura es un factor tan importante

como la radiacién solar para controlar la productividad de las algas.

RADIACION

ABSORCION
ATMOSFERICA
REFLEXION DIFUSA PRAIADON. S
RADIACION
DIRECTA
RADIACION
REF POR FUSA
SUPERFICIE o RADIACION

Figura 2. Comportamiento de la radiacion solar sobre la superficie del agua.
Fuente: Manual de Agua Potable, Saneamiento y Alcantarillado (Comisién Nacional del Agua, 2007)
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3.4.2. Viento

El viento interviene en el proceso de autodepuracion en algunas lagunas al provocar la mezcla y
generar corrientes verticales del agua. Asi mismo, el oxigeno disuelto presente en la superficie es
llevado a las capas méas profundas. También, ocurre la dispersion del agua residual y de los
microorganismos en toda la laguna por el mismo efecto de la aireacion. El viento ayuda al movimiento
de las algas, principalmente de aquellas que son consideradas como grandes productoras de oxigeno

como las algas verdes del genero Chlorella (Comision Nacional del Agua, 2007).

3.4.3. Temperatura

La temperatura del liquido en la laguna es probablemente uno de los pardmetros importantes en la
operacion de esta y, por lo general, se encuentra dos o tres grados arriba de la temperatura ambiente
(Comisidén Nacional del Agua, 2007).

La mayoria de las bacterias trabajan en el intervalo de temperatura meséfilo por lo que las altas
temperaturas no son problema. El incremento por encima de 25 °C acelera los procesos de
biodegradacién. Las temperaturas altas permiten el desarrollo de algas verdes-azules (Cianofitas)
pero su presencia se relaciona con la muerte de otro género de algas. En contraste, las bajas
temperaturas disminuyen la eficiencia del tratamiento de las aguas en la pilas o lagunas de oxidacion,
cuando la temperatura disminuye se presenta una reduccion de la poblacion de algas y del
metabolismo bacteriano implicando una disminucion de la eliminacién de la contaminacion organica

y bacterioldgica (Comision Nacional del Agua, 2007).

Los periodos de estratificacién y mezcla pueden influir sobre procesos como la produccién primaria
y secundaria de un cuerpo de agua, ya que afectan la distribucion de los nutrientes, oxigeno y la
transparencia del agua. Durante el periodo de estratificacion generalmente se observan diferencias en
el pH, concentraciones de oxigeno y nutrientes ente las masas de agua superficiales y de fondo,
mientras que, durante el periodo de mezcla estas variables presentan valores similares (Castillo,
2007).

La produccion optima de oxigeno se obtiene a los 20 °C, los valores limites son 4 °C y 35 °C. En
efecto a partir de 3 °C la actividad fotosintética de las algas decrece. En cuanto a la fermentacion
anaerobia, esta se origina después de los 22 °C y decrece a casi nada por debajo de los 15 °C

(Comision Nacional del Agua, 2007).
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3.4.4. Oxigeno disuelto

El oxigeno disuelto es fundamental para la realizacion del proceso aerobio, este varia en funcion del
dia y la profundidad. La evolucién diurna de la laguna muestra que el contenido de oxigeno es mas
elevado en el centro y en la superficie. Durante la noche, las corrientes térmicas mezclan las capas
estratificadas lo que garantiza una produccion constante de oxigeno durante las mafianas. Para que se
lleve a cabo una adecuada estabilizacion se requiere de valores de oxigeno disuelto comprendidos

entre el valor de saturacion y un minimo de 2 mg/l (Comision Nacional del Agua, 2007).

En algunos casos se tienen valores muy por arriba de la saturacion en la capa superior de la laguna
debido a la gran actividad fotosintética de las algas. La saturacién por oxigeno se obtiene alrededor
de 4 horas antes de la aparicion del sol y se mantiene durante todo el periodo de insolacién (Comision
Nacional del Agua, 2007).

3.4.5. Dioxido de carbonoy pH

El diéxido de carbono (CO>) es altamente soluble y forma acido carbénico el cual se disocia y libera
iones hidronio. En sistemas donde los carbonatos son abundantes, el pH es relativamente constante

(Comision Nacional del Agua, 2007).

Cuando las sales disueltas en el agua son pobres en carbonatos, la actividad biolégica ocasiona
grandes cambios de pH. Durante las primeras horas del dia, los valores de pH son bajos (menores a
7) debido al exceso de CO, producido por la respiracion bacteriana aerobia durante la noche. En horas
de la tarde, el pH aumenta, ya que las algas se encuentran en plena actividad fotosintética. Durante la
noche el pH vuelve a declinar porque las algas dejan de consumir CO; y porque continua la

produccion de CO; por la respiracion de las bacterias (Comision Nacional del Agua, 2007).

3.4.6. Turbidez

La turbidez refleja una aproximacion del contenido de materias coloidales, minerales u organicas, por
lo que puede ser indicio de contaminacion. Elevados niveles de turbidez pueden proteger a los
microorganismos de los efectos de la desinfeccidn, estimular la proliferacion de bacterias y aumentar

la demanda de cloro (Marco et al., 2004).

La turbidez del agua se genera por la presencia de particulas en suspension. La velocidad de
sedimentacion de las particulas pequefias es muy baja, por lo que requieren tratamiento para lograrla

en tiempos Utiles. Mientras algunas son de naturaleza inorganica (arcillas, fangos y éxidos minerales)
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que provienen de la erosion del suelo, otros son de naturaleza orgénica (bacterias, parasitos, algas,
zooplancton, &cidos falvicos y coloides humicos). Ademas de las fuentes naturales, las actividades
humanas generan efluentes cargados de estas particulas y el aporte de otras sustancias que pueden
combinarse con ellas (virus entéricos, contaminantes quimicos, cloro, etc.) tanto en el cuerpo de agua
como en las plantas y redes de distribucidn. Segin el tamafio, la composicion quimica y otras

variables dependientes del agua seran los tratamientos efectivos para eliminarlas (Marcé et al., 2004).

3.4.7. Materia orgénica

Cerca del 75% de los sélidos en suspension y del 40% de los solidos filtrables de un agua residual de
concentracién media son de naturaleza organica. Son sélidos que provienen de los reinos animal y
vegetal, asi como de las actividades humanas relacionadas con la sintesis de compuestos organicos
(Raffo y Ruiz, 2014).

Los compuestos organicos estan formados normalmente por combinaciones de carbono, hidrogeno y
oxigeno. También pueden estar presentes otros elementos como azufre, fosforo o hierro. Los
principales grupos de sustancias organicas presentes en el agua residual son las proteinas (entre el 40
al 60%), hidratos de carbono (entre el 25 al 50%), y grasas y aceites (mas 0 menos un 10%), otro
compuesto organico con importante presencia en el agua residual es la urea, principal constituyente
de la orina. Junto a las proteinas, los hidratos de carbono, las grasas y los aceites y la urea, el agua
residual también contiene gran nimero de moléculas organicas sintéticas cuya estructura puede ser

desde muy simple a extremadamente compleja (Raffo y Ruiz, 2014).

3.5. Descomposicion de la materia organica en ambientes acuéticos

La palabra descomposicion se usa de forma general para referirse a la destruccion de la estructura
natural de materiales organicos, ya sean de origen animal, vegetal o microbiano (Mason, 1976). El
proceso de degradacion encierra a su vez dos subprocesos que actllan de manera simultanea, como lo
son la fragmentacion de particulas de tamafio mayor a otras de menor tamafo y el catabolismo de

compuestos organicos (Satchell, 1974).

La materia organica en ambientes acuaticos (autéctona u aloctona) esta compuesta por dos conjuntos
basicos de constituyentes: materia organica disuelta (DOM), estas son pequefias fracciones menores
a 0.2 um, y materia organica particulada (POM). Las concentraciones de DOM en aguas naturales

dependen de su estado tréfico y puede variar de 1 mg C/I en aguas oligotroficas hasta 50 mg C/l en
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aguas altamente eutroficas (Siuda y Chrost, 2001). Las concentraciones de POM usualmente
contribuyen menos del 10% del total de la materia organica y esta concentracion no excede a 0.2 mg
C/l en aguas oligotréficas y 1 a 2 mg C/I en ambientes eutréficos (Thurman, 1985). En general, la
descomposicion es un proceso de vital importancia en el ecosistema, comparable a la produccién

primaria (Moorhead et al., 1996).

El carbono detritico representa un 50% del total del flujo de carbono en las redes troficas de los
ecosistemas acuaticos (Mann, 1988). La relacion entre materia organica viva (MOV) y materia
organica muerta (MOM) se estima en el rango de 1:10 — 100 probando asi la gran abundancia de
material detritico (Wetzel, 1992).

La proporcion de DOM y POM es variable, pero oscila entre 1:6 y 1:10 para POM y DOM (Wetzel,
1990). La DOM, debido a su pequefio tamafio es mayormente consumida por hongos y bacterias
principalmente, y diversos protozoos y componentes de la meiofauna. Estos microorganismos mueren
y liberan otra vez la MO como DOM que es nuevamente asimilada. Este proceso con muy poco
traspaso de energia a metazoos de mayor tamafio en relacién al flujo total de MO, es el dominante
desde el punto de vista energético en todo el ecosistema y domina los procesos de regeneracion de

nutrientes y reciclado de carbono (Wetzel, 1999)

En las dltimas décadas se han realizado estudios en el area de Ecologia Microbiana que han Ilevado
a la idea del llamado “loop” microbiano (Azam y Cho, 1987) que supone que una gran cantidad de la
produccion primaria no es consumida por herbivoros, sino que es aprovechada por los mismos

organismos heter6trofos para convertirlo en biomasa microbiana (Lowell y Konopka, 1985).

Estudios han demostrado que la actividad de varios tipos de bacterias con enzimas hidrolasas, es
principalmente responsable de la descomposicién y utilizacidn de la materia organica en ambientes
acudticos. Las hidrolasas se encuentran localizadas en la superficie externa de la membrana celular
y/o en los espacios periplasmasmaticos de las células bacterianas (exoenzimas) (Hernandez et al.,
2015).

3.5.1. Descomposicion de la celulosa

La celulosa es el carbohidrato més abundante en la biomasa vegetal forma el 40-60 % de la pared
celular de las plantas. La celulosa en su forma nativa consiste en una cadena lineal de unidades de
glucosa con enlaces glicosidicos $-1,4 por lo que constituye una abundante fuente de carbono limitada
a los microorganismos capaces de hidrolizar este enlace. La susceptibilidad de la celulosa a la

hidrolisis enzimatica esta afectada por la estructura natural de los materiales celul6sicos, la celulosa
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esta asociada a lignina y hemicelulosa, con una conformacion capilar, un orden molecular variable y
fuerte cristalinidad, por ello se considera el pre tratamiento de los sustratos lignocelulosicos como
paso necesario para una hidrolisis enzimatica optima por un aumento de la accesibilidad a la celulosa
(Ferrer et al., 2011).

Cada complejo de celulosa estd compuesto por una variedad de enzimas con diferentes
especificidades y modos de accidn que acttan en sinergismo para degradar la celulosa. Las celulasas
son sintetizadas por una gran variedad de hongos y bacterias, pero relativamente pocos
microorganismos pueden producir las enzimas necesarias para degradar la celulosa cristalina. Los
hongos filamentosos son responsables de la mayor celulosis en la naturaleza, por la eficiencia y
diversidad de sus sistemas celuloticos. Las especies de hongos celuloliticos mas estudiados
pertenecen al género Trichoderma sp. considerado unos de los mejores productores de enzimas
(Ferrer et al., 2011).

3.5.2. Hidrolisis como proceso de degradacion de la materia organica

Considerado como uno de los procesos de degradacién de la materia mas importante, este puede tener
lugar en condiciones tanto acidas como bésicas. La hidrolisis aplicada a los lipidos puede tener como
objetivo la obtencion de acidos grasos y/o alcoholes, productos de gran interés industrial, o bien la
descomposicién de la grasa en si. En comparacion, la hidrolisis enziméatica puede tener mayores
ventajas que la hidrolisis quimica para la obtencién de &cidos grasos libres y alcoholes, ya que esta
emplea temperaturas superiores a 250 °C y presiones de 30 a 50 atm, mientras que la lipolisis

enzimatica transcurre a presion atmosférica ambiental y a 40 — 60 °C (Garcia, 2005).

3.6. Caracteristicas Generales del Fitoplancton

El fitoplancton es el conjunto de organismos aut6trofos del tipo procariota o eucariota. Son los
productores primarios que se encuentran asociados a la columna de agua donde la incidencia de la
luz es mayor, su crecimiento esta limitado por la disponibilidad de la luz o bien de la disponibilidad

de nutrientes disueltos en el agua (Margalef y Vives, 1972).

Como caracteristica comun poseen clorofila en sus células, aunque existen formas o especies
acloroticas. Pueden adquirir una gran diversidad de formas, que van desde especies unicelulares hasta
agrupaciones en colonias, con filamentos o estructuras mucho més complejas (Moreira y Garcia,
2007).
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De acuerdo al tamafio de los organismos que lo constituyen, el fitoplancton se clasifica en
nanofitoplancton (< 20 micras) y microfitoplancton (> 20 micras) (Parsons et al., 1977; Malone, 1971,
Lara Lara et al., 1984). De acuerdo con Reynolds (1996) el tamafio de los organismos gue componen
el fitoplancton es: picoplancton (0.2 — 2 um), nanoplancton (2 — 20 um), microplancton (20 — 200
pUm) y mesoplancton (200 — 2000 pm).

Las algas pueden reproducirse por dos vias, la sexual, que en el caso de algas verdes azules es
tipicamente por fision binaria y en otras algas unicelulares es mitosis, y la sexual en donde se puede
observar la oogamia, isogamia o anisogamia. EI método de reproduccion asexual consiste
simplemente en la division repetida de un mismo organismo resultando en el aumento de la biomasa
de la poblacion, en este proceso no se implica la recombinacién genética. Contrariamente, la
reproduccion sexual implica la recombinacion genética y con ella el aumento de la variabilidad

genética en una poblacién (Dreckmann et al., 2013).

La alternancia entre la reproduccion sexual y asexual o entre fases somaticas y fases nucleares de un
organismo, se denomina ciclo de vida. En las algas se puede diferenciar hasta tres tipos de ciclo de
vida, que de acuerdo al sitio donde ocurre la meiosis, se denominan cig6tico, gamético o esparico
(Dreckmann et al., 2013). También dependiendo del nimero de fases adultas de vida libre que
participen en el ciclo de vida, se denominan monofasicos, difasicos y trifasicos. La carga genética o
numero cromosomico, que presentan las fases adultas, también juegan un papel en la nomenclatura

de los ciclos de vida, estas pueden ser haploides (n) o diploides (2n) (Dreckmann et al., 2013).

Dicho lo anterior y dependiendo de la predominancia genética, se denominan: a) Ciclo de vida
cigotico (haplobiodntico haploide) (Figura 3a), b) Ciclo de vida gamético (haplobidntico diploide)
(Figura 3b) y c) Ciclo de vida espérico o alternancia de generaciones (diplobiéntico haplo-diploide)

(Figura 3c).
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Figura 3. Ciclos de vida de las algas. a) Ciclo de vida cigético (una fase adulta n), b) Ciclo de vida gamético (una fase adulta 2n),
¢) Ciclo de vida espdrico o alternancia de generaciones (dos fases adultas, gametofito n y esporofito 2n).

Modificada de Graham & Wilcox, 2000.

Extraido de: Dreckmann et al., 2013. Manual de précticas de laboratorio. Biologia de Algas.

3.6.1. Division Cianofita

Las Cianofita o cianobacterias, son microorganismos procariéticos, puesto que carecen de membrana
nuclear. Estos microrganismos presentan pigmentos fotosintéticos como la clorofila, carotenos como
las xantofilas (mixoxantina, flavacina, luteina y zeaxantina), ficocianinay las ficobilinas un pigmento

por el cual se les debe su nombre como algas verdes azuladas (Bonilla, 2009).

Las cianobacterias son en general organismos fotosintetizadores, pero algunas viven
heterotréficamente. Estas microalgas comparten con otras bacterias la capacidad de usar N

atmosférico como fuente de nitrogeno (Lee, 2008 y Bonilla, 2009).

Las cianobacterias son organismos unicelulares o pluricelulares. La reproduccion de las algas verde-

azules se lleva a cabo por division celular por fragmentacion de colonias o de filamentos, y por

I
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esporas. Tiene una pared celular similar a la de las bacterias. En el citoplasma se distingue una zona
central o centroplasma, donde se halla el ADN, y otra periférica o cromoplasma, donde estan los
corpusculos con los pigmentos. Las algas Cyanophyceas viven en ambientes acuaticos (Lee, 2008).

En algunos casos viven sobre rocas y arboles, y las hay también que habitan en aguas termales,
soportando temperaturas hasta de 90 °C. También pueden vivir en simbiosis con hongos, formando
liquenes (Lee, 2008).

3.6.1.1. Ecologia y caracteristicas adaptativas de Cianofitas

Las algas Cianofitas pueden desarrollarse en los ambientes mas diversos. Se encuentran en el plancton
y en el bentos tanto del mar como de aguas continentales, aunque su diversidad es mucho mas alta en
las ultimas. Pueden vivir en rocas y arboles, y también en simbiosis con diversos organismos, como
se da con los hongos (formando liquenes) o plantas vasculares (genero Azolla). Soportan condiciones
muy extremas, como una salinidad o temperatura muy altas, pudiendo llegar a crecer en aguas
termales que alcanzan hasta 80-90 °C, y también en aguas muy frias (fusion de glaciares). Estos
microorganismos presentan gran plasticidad para manifestarse en ambientes cambiantes, siendo

organismos mas bien oportunistas (Margalef, 1983).

La proporcién de los pigmentos fotosintéticos puede ser alterada para aumentar la absorcién de la luz
en el espectro visible (400 a 700 nm). Esta es una diferencia fundamental entre las cianobacterias y
las algas eucariotas (excepto criptofita) (Bonilla, 2009). Como la intensidad de la luz disminuye
exponencialmente en la columna de agua y su calidad espectral cambia, las cianobacterias pueden
utilizar parte de esta energia luminica en rangos del espectro que no son utilizados por otros grupos
(Jeffrey et al. 1997).

En ambientes donde la concentracién de fosforo y nitrégeno es muy alta, las cianobacterias pueden
proliferar enormemente dando lugar en muchas ocasiones a una eutrofizacion del medio.
Generalmente, cuando las condiciones se vuelven a normalizar, incluso por su propia actividad, son

desplazadas facilmente por la competencia de otras algas (Margalef, 1983).

Los afloramientos de este grupo son un buen indicador de eutrofia sobre todo en sistemas de agua
profundos y rico en fosforo, en los que normalmente predominan sobre el resto de grupos algales en
estas condiciones. EI consumo de nitrogeno por las algas y la riqueza de fosforo, hace que la relacion
entre nitrogeno y fosforo varie a favor del segundo. Ante la disminucidn de nitrégeno en el agua, hay

cianoficeas capaces de tomarlo de la atmosfera, por lo que, mientras haya fosforo, las poblaciones
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crecen sin cesar. Ademas, muchas de estas especies tienen capacidad de flotar, por lo que la falta de

luz por el excesivo desarrollo del fitoplancton no les perjudica (Margalef, 1983).

3.6.1.2. Cianofitas productoras de toxinas

Existen diversas cepas de cianobacterias que producen toxinas peligrosas para otros organismos

acuaticos e incluso para el hombre. La microsistina es una de esas toxinas mas conocida.

Las cianotoxinas pertenecen a diversos grupos de sustancias quimicas, cada una de las cuales
muestran mecanismos de toxicidad especificos en vertebrados. Algunas cianotoxinas son potentes
neurotoxinas (anatoxinas, saxitoxina) y otras poseen actividad toxica primaria sobre el higado

(microcistinas, nodularina y cilindropermospsina) (Garcia, 2005).

Las cianobacterias pueden producir varias toxinas simultaneamente y se ha caracterizado mas de una
microcistina a partir de una Unica cepa, aunque usualmente solo una o dos toxinas son dominantes
para una cepa especifica. Las microcistinas se encuentran distribuidas geograficamente en cuerpos de
agua dulce preferentemente. Microcystis es un género gque no fija nitrégeno y frecuentemente es
dominante bajo condiciones ricas en nutrientes (especialmente donde hay un gran aporte significativo
de amonio), aunque también forma florecimientos en aguas menos contaminadas. Microcystis sp.,
comunmente M. aureginosa, se relaciona mas frecuentemente con florecimiento algales

hepatotoxicos en todo el mundo (Garcia, 2005).

3.6.1.2.1. Caracteristicas de los principales grupos de cianotoxinas

Las cianotoxinas son un conjunto de compuestos tdxicos de diferente naturaleza quimica, producidas
por cianobacterias como metabolitos secundarios. La funcién de estas toxinas se ha asociado como
mecanismos de defensa (Komarek, 2013), asi como para contrarrestar la competencia con otras algas
gue componen el fitoplancton. Segin su naturaleza ciclica se clasifican en péptidos ciclicos
(hepatopéptidos y pentapéptidos), alcaloides (guanidinicociclico, carbamatos no sulfatados,
monosulfatados o disulfatados) y organofosforado natural (Almanza et al., 2016). Segln su efecto

sobre el organismo se clasifican en:

3.6.1.2.1.1. Hepatotoxinas

Como las microcistinas, nodularina y cylindrospermopsina. Son producidas principalmente por los

generos Anabaena, Nostoc, Oscillatoria, Anabaenopsis, Nodularia, Dolichospermun y Microcystis
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(Paerl, 1996). La hepatotoxina mas comuln y frecuente es la microsistina, debe su nombre a que fue
identificada inicialmente en especies del genero Microcystis. Las microcistinas son una familia de
maés de 90 heptapéptidos ciclicos, que provocan colapso de la organizacion tisular hepatica, necrosis
y hemorragia intra-hepatica. Es una toxina inhibidora de la fosfatasa proteica tipo 1 y 2A cuya
ingestion en altas concentraciones ocasiona la muerte de animales y/o efectos acumulativos crénicos,

como la induccion a la formacion de tumores hepéaticos (Almanza et al., 2016).

e Microcistinas: Las microcistinas, por tratarse de péptidos ciclicos, son extremadamente estables
y resistentes a la hidrolisis quimica y a la oxidacion a pH neutro, manteniendo su potencia aun
por encima de las temperaturas de ebullicién. En las aguas naturales y en la oscuridad pueden
persistir por meses o afios. A altas temperaturas (40°C) y a pH elevado o bajo se ha observado
hidrolisis lenta, alcanzando el 90% de destruccidn en aproximadamente 10 semanas a pH 1y en

mas de 12 semanas a pH 9 (Garcia, 2005).

Las microcistinas pueden ser oxidadas por el 0zono y otros agentes oxidantes fuertes, y degradada
por la luz ultravioleta intensa. Estos procesos tienen relevancia para el tratamiento del agua. En
condiciones de intensa radiacion solar, las microcistinas pueden sufrir degradacién fotoquimica lenta
y procesos de isomerizacion, con una velocidad de reaccién que aumenta por la presencia de
pigmentos celulares solubles en agua. Ante la presencia de pigmentos la degradacién fotoquimica de
microcistinas en condiciones de intensa radiacion solar puede alcanzar hasta el 90% entre dos y seis
semanas dependiendo de la concentracion de pigmento y de toxina, aunque esto alin no ha sido objeto

de ensayos (Garcia, 2005).

Esta cianotoxina parece ser retenida solo débilmente en solidos suspendidos totales en rios y

reservorios; usualmente no se adsorbe mas del 20% de las concentraciones totales de microcistinas.

Los estudios en cultivos indican que las microcistinas se degradan solo muy lentamente (en el orden
de semanas), cuando estan dentro de células vivas. Del mismo modo, las peliculas de M. aureginosa
gue se secan en las orillas de los lagos pueden contener altas concentraciones de microcistinas por
varios meses. Estas toxinas son liberadas nuevamente al cuerpo de agua cuando se sumergen (Garcia,
2005).

Las microcistinas se bioacumulan en vertebrados e invertebrados acuéticos comunes, incluyendo
peces (higado de salmén) y zooplancton. Por lo que hay un potencial considerable para que los efectos
toxicos se magnifiquen en la cadena alimentaria acuética. Tal biomagnificacion de la toxicidad es

muy bien conocida para el caso de los metales pesados y pesticidas (Garcia, 2005).
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3.6.1.2.1.2. Neurotoxinas

Como saxitoxinas y anatoxinas. Estas toxinas acttan inhibiendo la transmision del impulso nervioso
a través del bloqueo de los canales de sodio, uniéndose a los receptores de la acetilcolina, o
impidiendo la degradacion de la acetilcolina, las producen principalmente los géneros
Dolichospermun, Microcystis, Oscillatoria, Aphaenizomenon y Lyngbya. Recientemente, se ha
establecido al aminoacido no proteico B-metil amino alanina (BMAA), producido por gran variedad
de cianobacterias, como una nueva cianotoxina neurotdxica que podria ser agente causal de algunos
trastornos degenerativos en seres humanos incluyendo el sindrome complejo de esclerosis lateral
amiotropica-demencia parkinsoniana, comun en poblaciones del Pacifico Occidental (Almanza et al.,
2016).

e Anatoxinas: La anatoxina-a es relativamente estable en la oscuridad, pero en soluciones
puras en ausencia de pigmentos, sufre una rapida degradacion fotoquimica bajo radiacion solar. La
vida media para la degradacion fotoquimica es de 1-2 horas. Bajo condiciones normales de luz durante
el dia y la noche, a pH 8 0 10, y con bajas concentraciones iniciales (10 W/1), la vida media de

degradacion de anatoxina-a fue de aproximadamente 14 dias (Garcia, 2005).

Segun Garcia (2005) se ha realizado determinaciones cuantitativas de las concentraciones de toxina
en cultivo lifolizados (secos y congelados), muestras de floraciones algales en rios y de material
particulado suspendido de las aguas (que puede contener también otras algas, algo de zooplancton y
posiblemente material inorganico como suelo y particulas de sedimento). Los resultados son
usualmente expresados en miligramos o microgramos de toxina por gramo de peso seco. Las
concentraciones mas altas de cianotoxinas publicadas a partir de muestras de floraciones, medidas

por HPLC (High Perfomance Liquid Chromatography), son:

e Microcistina — 7,300 pg/g de peso seco en China y Portugal.
¢ Anatoxina-a — 4,400 pg/g de peso seco en Finlandia.
e Saxitoxinas — 3,400 pg/g de peso seco en Australia.

e Anatoxina-a(S) — 3,300 pg/g de peso seco en EEUU.

Para los propositos del tratamiento del agua y el manejo de salud puablica, la unidad mas relevante es
la concentracion de toxina por litro de agua. La concentracién de toxinas por litro usualmente se
refiere a toxinas contenidas dentro de las células, asi como toxinas disueltas en el agua, y para un
volumen de agua definido. Se han reportado concentraciones muy altas de microcistinas por litro de

agua:
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e Microcistina: > 25,000 pg/l.
¢ Anatoxina-a(S) > 3,300 pg/l.

3.6.1.2.1.3. Dermatoxinas

Los LPS (lipopolisacaridos) son endotoxinas pirogenicas también llamadas dermatoxinas capaces de
producir irritaciones en la piel, efectos gastrointestinales y alergias. Algunas especies de
cianobacterias liberan compuestos volatiles (geosmina, [B-metilisoborneol, etc.) que alteran
significativamente las caracteristicas organolépticas del agua al generar olores y sabores
desagradables (Almanza et al., 2016).

3.6.2. Divisioén Clorofita

Son las algas verdes, las cuales presentan clorofila a y clorofila b, cuya capacidad de absorcion del
espectro de luz estd comprendida entre los 454 y 670 nm (Manrique, 2003). El tamafio de los
organismos de esta division comprende desde las microscépicas, unicelulares, hasta las grandes algas
formadas por filamentos de considerable longitud. Sus especies se hallan profusamente distribuidas
por todo el mundo. Todas contienen clorofila, lo que les permite sintetizar sustancias alimenticias a
partir de materiales minerales, adicionalmente tienen carotenoides como la luteina. Los alimentos
sobrantes los almacenan en forma de almiddn. Su reproduccién puede ser tanto sexual como asexual;

incluso algunas especies presentan una reproduccion con alternacion de generaciones (Lee, 2008).

Las clordfitas son principalmente de agua dulce, representando el 90%, el 10% restante son
organismos marinos. Las especies de agua dulce son cosmopolitas, las marinas tienden a estar en

aguas tropicales (Lee, 2008).

Se trata de un grupo muy diverso y, al igual que otras divisiones de algas, presenta variados problemas
de clasificacion taxondmica. Abarca una amplia gama de niveles de organizacion, desde células
libres, flageladas o no, hasta la formacion de cenobios y colonias con una multitud de formas
(globosas, parenquimaticas, laminares, filamentosas ramificadas, etc.) En el agua dulce, mientras que
las Cyanophyceas suelen ser un grupo dominante en cuerpos de agua profundos eutréficos, las
Chlorophyceas suelen dominar el plancton eutréfico de cuerpos de agua mas someros (Jensen et al.,

1994 y Bécares et al., 2004), como lagunas y humedales.

I
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3.6.3. Efecto de las microalgas en el tratamiento de aguas residuales

Las microalgas que se utilizan en el tratamiento de aguas residuales se caracterizan por soportar
elevadas concentraciones de nutrientes, presentar una actividad metabdlica elevada, contribuir con la
oxidacion bacteriana, capacidad de resistir variaciones ambientales y estrategias fisioldgicas para

exhibir un crecimiento mixotrofico e interacciones favorables microalgas-bacterias (Salazar, 2005).

Entre los organismos fotosintéticos comunes en lagunas de estabilizacion de aguas residuales urbanas
se encuentra una diversidad de microalgas (Diatomeas, Euglenophytas, Chlorophytas),
cianobacterias (coloniales, filamentosas y unicelulares) y bacterias fotosintéticas (Arauzo et al.,
2000).

Las bacterias aerobias heterotrdficas, al degradar la materia orgéanica del agua residual, producen
compuestos inorgéanicos sencillos como producto de su metabolismo (didxido de carbono, amoniaco
y ortofosfato). El fitoplancton puede aprovechar estos compuestos, junto con el diéxido de carbono
atmosférico y el amoniaco y el ortofosfato del agua residual, como sustancias nutritivas para su
crecimiento. La actividad fotosintética del fitoplancton genera oxigeno que puede ser utilizado por
las bacterias aerobias heterdtrofas para degradar la materia organica y disminuir la DBOs, del agua
residual (Garcia et al., 1998). La eliminacion de nutrientes (principalmente Nitrogeno y Fosforo) del
agua residual afluente a una laguna de alta carga tiene lugar por asimilacion del fitoplancton y su
posterior separacion en instalaciones adecuadas. Por otra parte, la actividad fotosintética diurna
también contribuye a la eliminacién de nutrientes, ya que al elevar el pH del liquido de mezcla se
produce la volitizacién del amoniaco hacia el medio atmosférico y la precipitacién del ortofosfato
(Cromare et al., 1991; El Halouani et al., 1993; Nurdogan y Oswald, 1995).

El Halouani et al., (1993) y Oswald (1995) observaron que la eliminacion de nutrientes en aguas
residuales como consecuencia de la actividad fotosintética predomina sobre la asimilacién en el tejido

celular.

Una de las primeras descripciones del empleo de algas en el tratamiento de aguas residuales se
remonta a 1957, donde se describe un sistema de tratamiento mediante lagunaje. Las algas han ido
ganando atencion desde entonces debido a su potencial de eliminacién de nutrientes de aguas
residuales urbanas (de Bashan, 2010), industriales (Bordel, 2009) y de la agricultura (Olguin, 2003).
Se han probado tanto monocultivos como cultivos de varias especies en aguas residuales artificiales

y reales.
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Algunos de los géneros estudiados son Phormidium, Botryococcus, Chlamydomonas, Scenedesmus
obliquus (Martinez et al., 2000, Park et al., 2010), Spirulina platensis (Lodi et al., 2003. Olguin et
al., 2003) y Chlorella (Hernandez et al., 2006).

Numerosos estudios se han centrado en el secuestro del CO; por parte de las algas, debido al efecto
invernadero del gas y al hecho de que las microalgas y cianobacterias pueden fijar CO2 con una

eficiencia entre 10 y 50 veces mejor que las plantas terrestres (Ruiz, 2011).

Tabla 4. Microalgas empleadas en la degradacion de diversos contaminantes.

Microalga Tipos de aguas residuales
Prototheca zopfi Hidrocarburos derivados del petréleo.
Chlorella pyrenoidosa Tintes azoicos.
Chlorella sp. Residuos de ganaderia digeridos anaerébicamente.
Ankistrodesmus y Scenedesmus = Aguas residuales de industria del papel y alperujos.
Spirulina platensis Agua residual urbana.
Chlorella sokoniana Agua residual heterotrofia sin luz.
Botryococcus braunii Agua residual tras tratamiento secundario.
Scenedesmus Altos niveles de amonio en efluente de digestion anaerobia.

Fuente: Rawat, et al., (2011).

Scenedesmus sp., mostro un crecimiento significativo con agua residual derivada de restos de pescado
fresco. La remocion de nutrientes y materia organica obtenida en las aguas residuales cultivadas con
Scenedesmus sp demuestra su efectividad en el tratamiento de las mismas, reportandose eficiencias
del 100% de remocion de nitrégeno, del 78% de fosfatos y el 36% de remocion de materia organica
(Andrade et al., 2009).

El crecimiento de la microalga produjo un mejoramiento notable en la calidad del agua residual,
debido a la reduccion en las concentraciones de nitrdgeno amoniacal, fosfato y materia organica segun
Andrade et al., (2009).

3.6.3.1. Microalgas productoras de enzimas

Una de las estrategias fisiologicas de estos microorganismos, se encuentra la capacidad de producir
exoenzimas degradadoras de compuestos organicos en las aguas residuales a fin de generar sustratos
mas asimilables para su crecimiento y metabolismo. Lo cual significa que la carga organica en estos
efluentes puede ser degradada por esta maquinaria enzimética; por lo cual la DBOs es removida en

funcion del tiempo y actividad metabdlica de bacterias, microalgas y cianobacterias presentes (Hosetti
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y Patil, 1992). Las aplicaciones de los grupos de enzimas dependen de la necesidad de hidrolizar

polimeros complejos para incrementar su posterior degradacion microbiolégica.

La produccién de enzimas extracelulares, tales como; amilasa, proteasa, lipasa, celulasa y fosfatasa
constituye una propiedad bien conocida en microalgas y cianobacterias; por ser utilizadas con caracter
taxondmico, para la identificacion a nivel de especie como es el caso de la microalga Chlorococcum
y Spongiococcum quienes producen enzimas proteoliticas extracelulares y enzimas amiloliticas
(Archibald y Bold. 1970; Deason, 1976). La capacidad de produccion de exoenzimas por parte de las
microalgas, de su flora bacteriana asociada, y de otros microorganismos heterotréficos, puede ser
utilizada como herramienta para inducir a la mayor eficiencia en la degradacion de materia organica
existente en aguas residuales. Las enzimas extracelulares o ectoenzimas que estan unidas a la
superficie de la célula y las de forma libre como las exoenzimas son absorbidas dentro de las
sustancias poliméricas extracelulares (EPS) de la matriz del lodo del tratamiento de aguas residuales
(Cadoret et al., 2002); las hidrolasas son importantes especialmente para la velocidad de la hidrolisis

de la digestion anaerobia.

3.7. Eutrofizacion

Las aguas residuales provenientes de las actividades industriales como petroquimica, alimentos, asi
como de fuente domestica constituyen las bases mas importantes de residuos con elevados niveles de
nitrégeno, el cual es un nutriente que provoca una de las formas mas importantes de degradacion de
la calidad del agua Ilamada eutrofizacion. El nitrgeno es incorporado a las aguas por las descargas
residuales domesticas e industriales, por arrastres de los suelos fertilizados con abonos nitrogenados,

lo cual provoca la eutrofizacion de lagos y embalses (Charles, 1993).

La Eutrofizacion es el proceso natural de envejecimiento de los lagos. Progresa aun sin tener la ayuda
del hombre. La contaminacion, sin embargo, acelera el envejecimiento natural y acorta

considerablemente la vida del receptor acuatico (Ramalho, 1996).

Consiste en una progresion gradual (sucesion ecolégica) de una etapa a la otra, basada en cambios en
el grado de nutricién o productividad. La etapa mas joven del ciclo se caracteriza por una
concentracién muy baja de las plantas y una productividad bioldgica pequefia. Tales lagos se llaman
oligotroficos (del griego oligo, que significa poco, y trofico que significa alimentar, de tal forma que
oligotrofico significa pocos nutrientes). En una etapa posterior a la sucesion, el lago se hace

mesotrofico (meso igual a intermedio). A continuacion, el lago puede llegar a ser eutréfico (eu igual
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0 bien altamente productivo). La etapa final antes de la desaparicion puede ser una tierra himeda, una

marisma (Ramalho, 1996).

El enriquecimiento y la sedimentacion son los principales contribuyentes al proceso de
envejecimiento. La vegetacion en la orilla y las plantas acuéaticas superiores utilizan parte de los
nutrientes que llegan, crecen abundantemente y en consecuencia retienen los sedimentos (Ramalho,
1996).

En 1967, el reconocido limnélogo G.E. Hutchinson inauguro el Primer Simposio Internacional sobre
Eutrofizacion en ambientes de agua dulce, donde procedi6 a dar una clara nocion y la historia de este
concepto, pero tuvo dudas al tratar de proponer una definicion operacional convincente (NAS, 1969).

El interés de estudiar el flujo de nutrientes, nitrégeno y fosforo, a los cuerpos de agua, fue motivado
por la evidente degradacion de los ecosistemas de agua dulce, por la excesiva acumulacion de estos
nutrientes; asi, el estudio del Proceso de Eutrofizacion se inici6 en los lagos y rios en investigaciones

ecologicas y geoquimicas en la década de 1960 (NAS, 1969).

Bustamante et al., (2002) y Ruibal et al., (1999), demostraron que las algas causantes de floraciones
en el embalse San Roque en la ciudad de Cérdoba, Argentina, son principalmente las cianobacterias

Anabaena spiroides y Microcystis aeruginosa, y la pirréfita Ceratium hirundinella.

3.7.1. Principales elementos quimicos involucrados en la eutrofizacion

» Fosforo: El fosforo favorece la eutrofizacion. Se ha demostrado que la ausencia de este elemento
es mas importante que la del nitrogeno para limitar el crecimiento de las algas plantdnicas,

especialmente en algunos tipos (algas “azules-verdes”), capaces de fijar nitrégeno atmosférico.
El fosforo aparece como fosfato en las formas siguientes (Ronzano y Dapena, 2015):

e Ortofosfatos solubles: Facilmente precipitables, pueden proceder directamente de los
vertidos o del resultado de una degradacion en el proceso del tratamiento de los polifosfatos
organicos o inorganicos.

e Polifosfatos: Organicos o inorganicos, que pueden bien degradarse en ortofosfatos, o bien
permanecer inertes. A su vez pueden estar en solucion o en suspension mas o menos

sedimentable.
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La relacion entre estas diversas formas es muy variable y no se pueden proporcionar datos demasiado

concretos:

e Enuna ARU (Agua Residual Urbana) bruta, los ortofosfatos pueden representarse del 15%
al 35% de los fosfatos totales.

e Enlas ARU decantadas, la proporcién aumenta en un 5% a un 10%.

e En una ARU con tratamiento secundario (Bioldgico), la fraccion de ortofosfatos llega a
alcanzar el 50% o incluso el 90%.

¢ Si comparamos las formas inorganicas y organicas, estas Ultimas representarian del orden de
un 30%.

» Nitrégeno: Los nitritos y nitratos aparecen generalmente en concentraciones casi siempre
despreciables. Cuando la concentracion de NHa, es elevada (purines de cerdos, por ejemplo), se
produce una mayor accién inhibidora sobre los nitrobacter que sobre los nitrosomas, debido a
esto la nitratacion no puede seguir a la nitritacion, y por lo tanto las concentraciones de nitritos

son bastante apreciables (Ronzano y Dapena, 2015).

Las dos principales fuentes de contaminacion nitrogenada son los vertidos de proteinas y urea;
algunos autores clasifican esta ultima independientemente. La fraccion organica degradable se
transforma, por accién enzimatica, en forma amoniacal, mediante el proceso denominado
amonificacion. La cinética de esta reaccion es muy rapida para la urea, pero inferior para las proteinas

(Ronzano y Dapena, 2015).
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V. Materiales y Métodos
4.1. Area de Muestreo

El estudio se realiz6 en Las Pilas de Tratamiento de Aguas Residuales San Isidro, Departamento de
Ledn, Nicaragua. La zona de muestreo estd ubicada especificamente a 3.74 kms del centro de la
ciudad de Leén, exactamente en las coordenadas 12°26'14.69"N, 86°54'43.32"0. Dicho
establecimiento estd comprendido por 6 pilas; 2 pilas primarias, 2 pilas secundarias y 2 pilas
terciarias. Tanto las pilas primarias como secundarias presentan las mismas dimensiones, 81.8 metros
de ancho por 91.7 metros a lo interno y con un area total de 85.5 metros de ancho por 95.4 metros de
largo incluyendo los muros perimetrales. Las pilas terciarias presentan dimensiones de 61.7 metros
de ancho por 71.75 metros de largo a lo interno y un area total de 65.7 metros de ancho por 75.75
metros de largo incluyendo los muros perimetrales.
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Figura 4. Esquema general de las pilas de estabilizacion San Isidro.

Las pilas de tratamiento cuentan con un sistema de pretratamiento compuesto por un pozo de visita

(Figura 5.1), estacion de bombeo (Figura 5.2), rejilla manual (Figura 5.3), desarenador, canal de
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conduccion, interconexion, cajas de paso y distribucion de flujo (Figura 5.4), canaletas Parshall
(Figura 5.5), tamizado automatizado (Figura 5.6) y lecho de secado de arena (Figura 5.7). El
mantenimiento de las pilas de tratamiento esta sujeto a un protocolo elaborado en conjunto por la
Cooperacion Alemana, GIZ (Agencia Alemana de Cooperacién Técnica), PROATAS

(Programa de Asistencia Técnica en Agua y Saneamiento) y ENACAL.

OJNONNCENG

Laguna primaria
modulo "A"

Figura 5. Esquema del sistema de pretratamiento de las pilas de estabilizacién San Isidro.

4.2. Metodologia para la Toma de Muestras

Los muestreos se realizaron una vez al mes, en el periodo de marzo-agosto. El area de estudio fue
georeferenciada con un GPS marca Garmin eTrex 10. Las muestras de agua para conteo de
fitoplancton se tomaron por duplicado, entre 9 a 11 am, en cambio los pardmetros fisicoquimicos (pH,
Turbidez, Oxigeno disuelto (OD) y Temperatura), se midieron por triplicado y se calcul6 una media
aritmética. La medicion de los parametros se realizé en la superficie del agua de las pilas. Para la
toma de temperatura y OD se utiliz6 un oximetro marca Fisher scientific, que se introdujo en la
superficie del agua para determinar el oxigeno disuelto y la temperatura en el lugar. El pH se midi6
con un pH-metro marca pHTestr 20 y el procedimiento se realiz6 de manera similar al utilizado para
la toma de medida del OD. La turbidez se midié con un disco de secchi elaborado por el Laboratorio
de Fisiologia Animal de la UNAN-Le0n, el cual esta graduado con franjas blanca y negra cada 5cm,
en el cual se registro la profundidad de desaparicion del disco, que consistia en descender el disco
dentro del agua hasta que desaparezca y se registre la profundidad. Las lecturas de disco de secchi

fueron medidas siempre por la misma persona.

La extraccion de las muestras de agua con fitoplancton se realizé utilizando un tubo PVC de 2

pulgadas de didmetro por 1 metro de largo, el cual es atravesado por una cuerda en cuyo extremo se
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encuentra atada una bola de tenis, la que sirve como tapa para que el agua que entrase en el tubo en
el momento de ser sumergido no saliera. Se llen6 2 envases por cada pila, previamente rotulados y
preparados con 5 gotas de lugol neutro y se llevaron al Laboratorio de Fisiologia Animal de la UNAN-
Ledn.

4.3. Identificacion de grupos algales y conteo celular

La identificacion de los grupos de fitoplancton se realiz6 haciendo una comparacién con guias
ilustradas de Moreira y Garcia, (2007), corroborados con Almanza (2016) de géneros pertenecientes
a las divisiones Clordfitas y Cianofitas. Las muestras fueron visualizadas al microscopio utilizando
la cAmara de Conteo Celular Neubauer o Hematocitometro, los conteos se realizaron por
quintuplicados.

4.4, Camara Neubauer o Hematocitometro

Utilizando un gotero se tomd 10 ul de la muestra de agua y se colocé en la camara para su posterior
examinacién en el microscopio. Se fijé con la lente de menor aumento (10X) los cuadrantes para
después utilizar el lente de 40X y tener una mejor percepcion visual de los organismos vy realizar su
identificacion y conteo. La camara Neubauer cuenta con cuatro cuadrantes de mayor tamafio (1 mm
de alto por 1mm de ancho), el cual alberga 16 cuadrantes de tamafio menos (0.25 mm de alto por 0.25
mm de ancho). Los cuadrantes se encuentran separados por una rejilla de 0.05 mm de alto tal y a

como se muestra en la figura 6.
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Figura 6. Disefio de la cAmara Neubauer o hematocitometro.
Fuente: Bastidas, O. (s.f.).
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El recuento se realizd siguiendo un patrén de zig-zag en cada cuadrante a como se muestra en la

figura 7.

Figura 7. Patron de zig-zag en cuadrante de hematocitometro.
Fuente: Bastidas, O. (s.f.).

4.5. Analisis Estadistico

Para los experimentos la comparacion entre los grupos se realiz6 usando el software SigmaPlot (SPSS
Inc., Chicago, IL) version 12.5 para Microsoft Windows. Los datos fueron analizados mediante una
prueba de normalidad (Shapiro-Wilks) y de homogeneidad de varianzas (prueba C de Cochran). La
relacién entre los parametros fisicoquimicos y las concentraciones de los grupos de microalgas se
determind usando el andlisis de Correlacion de Pearson (R). Los datos se muestran como media +
E.E.M. de cada grupo v las diferencias entre ellos se evaluaron mediante un ANOVA de una via. Tras
los analisis de varianza se realizd el test de comparaciones multiples de Student Newman Keuls. En

todos los casos el nivel de significacion se establecié con un valor de P<0.05.

I
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V. Resultados

5.1. Pardmetros fisico quimicos registrados en las pilas de estabilizacion

En la figura 8 se observan las fluctuaciones promedio de los pardmetros temperatura, OD, pH y
turbidez a lo largo del periodo de estudio. Los parametros en su mayoria presentaron una tendencia
ascendente hasta el mes de junio, comenzando un descenso gradual a partir del mes de julio. Los
parametros temperatura, pH y Turbidez presentaron comportamientos similares en ambos maédulos,
no asi el parametro OD.
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Figura 8. Comportamiento de los parametros fisico quimicos en las pilas del médulo Ay B del sector San Isidro,
ENACAL-Leon. T-PA=Temperatura de las pilas del médulo A, T-PB=Temperaturas del mddulo B, O-
PA=0xigeno de las pilas del médulo A, O-PB=0xigeno de las pilas del modulo B, pH-PA=pH de las pilas del
mddulo A, pH-PB= pH de las pilas del médulo B, TU-PA=Turbidez de las pilas del médulo A, TU-PB= Turbidez
de las pilas del médulo B. MA= Marzo, AB=Abril, MY=Mayo, JN=Junio, JL=Julio, AG=Agosto. (**) No
disponible. Cada valor corresponde a la media + EEM. N=9. Letras diferentes indican diferencias significativas
(p<0.05).
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En la tabla 5 se observan los valores de las temperaturas registradas durante el periodo de muestreo

en las pilas del modulo Ay B. El valor méximo se registré en el mes de junio en la PTA, asi mismo,

el valor minimo de temperatura se registro en el mes de marzo en la PPB.

Tabla 5. Valores de temperatura registrados en los médulos de pilas Ay B. San Isidro-ENACAL, Ledn. Valores
mostrados en grados Celsius (°C). PPA= Pila primaria A, PSA=Pila secundaria A, PTA=Pila terciaria A, PPB=
Pila primaria B, PSB=Pila secundaria B, PTB=Pila terciaria B. (**) no disponible, (*) valor maximo, () valor
minimo.

Marzo Abril Mayo Junio Julio Agosto
PPA 28.8 30.2 32.6 30.3 30.8 32.3
PSA 28.5 28.3 317 36.3 29.8 305
PTA 28.5 28.9 32.2 37.9* 30.1 32.1
PPB 27.3% 28.6 317 34.9 *k ok
PSB 28.1 28.4 314 34.9 29.6 =
PTB 28.3 28.1 31.6 33.0 30.1 ok

La tabla 6 muestra los valores de OD registrados durante los meses de estudio en las pilas del médulo
Ay B. El mes de junio registro el valor mas alto de OD en la PTA, no asi el mes de julio que presentd

el valor mas bajo en la misma pila.

Tabla 6. Valores de OD registrados en los mddulos de pilas A y B. San Isidro-ENACAL, Le6n. Valores
mostrados en miligramos por litro (mg/l). PPA= Pila primaria A, PSA=Pila secundaria A, PTA=Pila terciaria
A, PPB= Pila primaria B, PSB=Pila secundaria B, PTB=Pila terciaria B. (**) no disponible, (*) valor méximo,
(%) valor minimo.

Marzo Abril Mayo Junio Julio Agosto
PPA 6.3 11.0 12.6 6.6 75 15.0
PSA 8.4 6.3 121 10.2 8.4 12.3
PTA 9.8 10.9 14.0 17.5% 2.2% 13.3
PPB 5.4 5.1 121 14.7 o o
PSB 11.0 9.0 9.2 15.4 35 o
PTB 10.7 11.7 13.0 7.3 4.7 o
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La tabla 7 muestra los valores de pH registrado durante los meses de estudio en las pilas del modulo
Ay B. El valor de pH mas bajo registrado en el estudio se present6 en la PPA durante el mes de

marzo, no asi la PTA que registré el valor méas alto durante el mes de mayo, llegando a un pH de 10.9.

Se observa ademas la tendencia del pH a aumentar entre las fases del tratamiento, notandose el
aumento desde la PPA hasta la PTA y de igual forma para el modulo B.
Tabla 7. Valores de pH registrados en los moédulos de pilas A y B. San Isidro-ENACAL, Ledn. PPA= Pila

primaria A, PSA=Pila secundaria A, PTA=Pila terciaria A, PPB= Pila primaria B, PSB=Pila secundaria B,
PTB=Pila terciaria B. (-) no registrado, (**) no disponible, (*) valor maximo, (¥) valor minimo.

Marzo Abril Mayo Julio Agosto
PPA 7.6* 8.5 9.3 8.8 9.9
PSA 8.3 9.1 9.3 9.4 10.2
PTA 9.1 9.5 10.9% 10.2 10.4
PPB 8.3 7.9 9.3 *k ok
PSB 9.0 9.1 9.3 9.5 5
PTB 9.38 9.64 9.90 10.43 ok

En la tabla 8 se pueden observar los valores de turbidez registrados durante el periodo de muestreo
en las pilas del modulo A y B. La turbidez estuvo dada por los valores registrado por el disco de
Secchi, registrandose asi el valor més alto de disco de Secchi en la PPB durante el mes de abril y el

valor mas bajo en la PTA durante el mes de agosto.

Igual que el pH se puede observar gue existe una ligera tendencia decreciente del valor del disco de
Secchi entre las fases de tratamiento, notandose valores mas altos en la PPA y disminuyendo

gradualmente hasta la PTA y de igual forma para el modulo B.

Tabla 8. Valores de turbidez registrados en los médulos de pilas A y B. San Isidro-ENACAL, Leon. Valores
mostrados en centimetros (cm). PPA= Pila primaria A, PSA=Pila secundaria A, PTA=Pila terciaria A, PPB=
Pila primaria B, PSB=Pila secundaria B, PTB=Pila terciaria B. (-) no registrado, (**) no disponible, (*) valor
maximo, (¥) valor minimo.

Marzo Abril Mayo Junio Julio Agosto
PPA 15.0 18.3 16 19.0 15.3 16.0
PSA 15.0 12.7 14.7 14.0 13.7 13.7
PTA 12.7 14.0 9.0 14.7 8.7 8.0*
PPB 19.3 26.0% 14.7 12.7 *x *x
PSB 15.7 13.0 15.3 18.7 14.3 *x
PTB 14.00 16.67 14.33 10.33 8.33 x

I
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5.1.1. Variacion de los pardmetros fisico quimicos por pila
Parametros fisico quimicos en la pila primaria del médulo A

En la figura 9 se muestra el comportamiento de los pardmetros fisico quimicos en la pila primaria del
maodulo A durante el periodo de muestreo. De manera general podemos se observa que todos los
parametros exiben el mismo comportamiento, el valor de esos aumenta gradualmente hasta el mes de

mayo y luego disminuyen en el mes de junio para volver a aumentar hasta el mes de agosto.
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Figura 9. Comportamiento de los parametros fisico quimicos en la pila primaria del médulo A del sector
San Isidro, ENACAL-Leon. T-PPA=Temperatura de la pila primaria del modulo A, OD-PPA=0xigeno de
la pila primaria del médulo A, pH-PPA=pH de la pila primaria del modulo A, TU-PPA=Turbidez de la
pila primaria del médulo A. MA= Marzo, AB=Abril, MY=Mayo, JN=Junio, JL=Julio, AG=Agosto. (**)
No disponible. Cada valor corresponde a la media £+ EEM. N=3. Letras diferentes indican diferencias
significativas (p<0.05).
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Parametros fisico quimicos en la pila secundaria del médulo A

En la figura 10 se observan las fluctuaciones que se registraron en los parametros fisico quimicos en
la pila secundaria del médulo A durante los meses de muestreo. De manera general se observa un
comportamiento similar a la pila primaria A. El pardmetro turbidez mantuvo un comportamiento casi

similar durante todos los meses de estudio.
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Figura 10. Comportamiento de los parametros fisico quimicos en la pila secundaria del médulo A del sector
San Isidro, ENACAL-Le6n. T-PSA=Temperatura de la pila secundaria del médulo A, OD-PSA=0xigeno
de la pila secundaria del médulo A, pH-PSA=pH de la pila secundaria del médulo A, TU-PSA=Turbidez
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Parametros fisico quimicos de la pila terciaria del médulo A

La figura 11 muestra el comportamiento de los parametros registrados a lo largo del periodo de
estudio en la pila terciaria del médulo A. De manera general se puede observar que el mes de junio
registré los valores mas altos durante el periodo de muestreo. Ademas, se registrd un patrén

ascendente en los pardmetros OD, temperatura y Ph hasta mediados del periodo de muestreo.
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Figura 11. Comportamiento de los parametros fisico quimicos en la pila terciaria del mddulo A del sector
San Isidro, ENACAL-Le6n. T-PTA=Temperatura de la pila terciaria del moédulo A, OD-PTA=0xigeno de
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Pardmetros fisico quimicos de la pila primaria del médulo B

En la figura 12 se muestra el comportamiento de cada pardmetro registrado durante el periodo de
muestreo en la pila primaria del mdédulo B. Como se puede observar en la figura 12, no hay
disponibilidad de datos en los meses de julio y agosto, esto debido a que esta pila estuvo sujeta a
mantenimiento (extraccion de lodos) durante estos 2 meses. Al igual que las pilas de modulo A, esta
presento una tendencia creciente en cuanto a los valores de los parametros temperatura, OD y pH, no

asi el parametro turbidez que presentd un comportamiento inverso.
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Parametros fisico quimicos de la pila secundaria del modulo B

En la figura 13 se muestra el comportamiento de los pardmetros fisico quimicos registrados en los
meses de muestreo en la pila secundaria del médulo B. Como se puede observar en la figura 13, no
hay disponibilidad de datos en el mes de agosto, esto debido a que esta pila estuvo sujeta a
mantenimiento (extraccion de lodos) durante este mes. EI pardmetro pH mostré cierta estabilidad en
cuanto a su valor durante el periodo de muestreo, no asi el parametro turbidez y OD donde se vieron
muchas fluctuaciones. El parametro temperatura presento una tendencia creciente hasta el mes de

junio y luego descendi6 en el mes de julio.
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Pardmetros fisico quimicos de la pila terciaria del médulo B

En la figura 14 se puede observar el comportamiento de los pardmetros fisico quimicos obtenidos
durante el periodo de muestro en la pila terciaria del médulo B. Como se puede observar en la figura
14, no hay disponibilidad de datos en el mes de agosto, esto debido a que esta pila estuvo sujeta a
mantenimiento (extraccion de lodos) durante este mes. El pardmetro OD y turbidez presentaron
comportamiento descendente similares no asi el parametro pH y temperatura que fueron aumentando

gradualmente durante todo el periodo de estudio.
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Figura 14. Comportamiento de los parametros fisico quimicos en la pila terciaria del médulo B del sector
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5.2.Concentraciones de grupos fitoplanctdénicos en los meses de estudio.

La figura 15 muestra los valores promedios de la concentracion de microalgas (cel/ml) en el sistema

de pilas A y B en cada mes de muestreo. De manera general, los resultados muestran que en todos los
meses de estudio la division predominante es cianofita.
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Figura 15. Concentracion de cloréfita y cianofita en las pilas de oxidacion del sector San Isidro, ENACAL-
Leon. PA-MA= Pilas A en mayo, PB-MA= Pilas B en mayo, PA-AB= Pilas A en abril, PB-AB= Pilas B en
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La tabla 9 muestra las concentraciones de algas de la division clordfita (cel/ml) en cada una de las
pilas del médulo Ay B de las pilas de estabilizacion de San Isidro. Donde se refleja que la PPB en el
mes de julio y agosto no pudo ser muestreada debido a que la pila estaba en proceso de extraccion de
lodos por lo que necesaria la evacuacién del agua que contenia, esto se repitié en laPSB y PTB en el
mes de agosto. La PSA presentd la concentracidn de cloréfitas mas alta en el mes de mayo y la
concentracién mas baja se registrd en la PTA en el mes de agosto.

Tabla 9. Concentraciones de la division clordfita en los modulos de pilas A y B. San Isidro-ENACAL, Leon.
Valores mostrados en células por mililitro (cel/ml). PPA= Pila primaria A, PSA=Pila secundaria A, PTA=Pila

terciaria A, PPB= Pila primaria B, PSB=Pila secundaria B, PTB=Pila terciaria B. (**) no disponible, (*) valor
maximo, (X) valor minimo.

Marzo Abril Mayo Junio Julio Agosto
PPA 56500 26500 17000 13000 57000 26500
PSA 26500 18000 66000* 1000 68000 2500%
PTA 35000 21000 23000 4000 69000
PPB 27000 40000 41500 35000 x o
PSB 13500 20000 13500 3500 25500 Fx
PTB 20500 8000 21000 18000 30500 o

En la tabla 10 se puede apreciar las concentraciones de algas de la division cianofita (cel/ml) en las
pilas del modulo Ay B de las pilas de estabilizacion de San Isidro. La concentracion més alta se
registré en la PPA durante el mes de marzo mientras que la concentracion mas baja se logr6 observar
en la PSB durante el mes de junio.

Tabla 10. Concentraciones de la division cianofita en los médulos de pilas Ay B. San Isidro-ENACAL, Ledn.
Valores mostrados en células por mililitro (cel/ml). PPA= Pila primaria A, PSA=Pila secundaria A, PTA=Pila

terciaria A, PPB= Pila primaria B, PSB=Pila secundaria B, PTB=Pila terciaria B. (**) no disponible, (*) valor
maximo, (¥) valor minimo.

Marzo Abril Mayo Junio Julio Agosto
PPA 279500* 82000 136500 165000 118000 92000
PSA 248500 146000 115000 242000 37000 110500
PTA 229000 124500 150500 153000 139000 142000
PPB 229000 93000 88000 164000 *k *k
PSB 232500 74000 89500 35000% 60500 *x
PTB 194000 59000 94000 74000 73500 x

I
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5.2.1. Comportamiento general de la division clorofita en Pilas Ay B

En la Figura 16 se observan las fluctuaciones de los promedios de la division clorofita en los médulos
de pilas Ay B a lo largo del periodo de estudio. De manera general, se observa que en el médulo de

pilas B hubo un aumento gradual en funcion del tiempo no asi en el médulo A donde las
concentraciones fluctuaron de manera irregular.
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Figura 16. Comportamiento general de la division clordfita en el modulo de pilas A y B. San Isidro,
ENACAL-Le6n. PA-CL= Pilas del médulo A, division cloréfita. PB-CL= Pilas del mddulo B, division

cloréfita. Cada valor corresponde a la media + EEM. N=15. Letras diferentes indican diferencias
significativas (p<0.05).

5.2.2. Comportamiento general de la division cianofita en Pilas Ay B

La figura 17 muestra las fluctuaciones de las concentraciones promedio de la division cianofita en los

maddulos de pilas A 'y B a lo largo del periodo de muestreo. Las concentraciones mas altas se
observaron en el mes de marzo en ambos mddulos.
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Figura 17. Comportamiento general de la division cianofita en el médulo de pilas A y B. San Isidro,
ENACAL-Leon. PA-CY= Pilas del médulo A, division cianofita. PB-CY= Pilas del mddulo B, division

cianofita. Cada valor corresponde a la media + EEM. N=15. Letras diferentes indican diferencias
significativas (p<0.05).
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5.2.3. Géneros de la division Cloroéfita

En la tabla 11 se muestran los promedios de las concentraciones de los géneros del grupo cloréfitas
identificados durante los meses de muestreo. Cabe destacar que géneros como Scenedesmus,
Crusigenia, Chlamidomonas y Volvox se identificaron unicamente en un mes. En total se logro
identificar nueve géneros pertenecientes al grupo clordfita.

Tabla 11. Valores promedios de las concentraciones de los géneros de la division clordfita identificados en las
pilas del sistema Ay B, sector San Isidro — Ledn. Valores mostrados en células por mililitro (cel/ml). PA=Pilas

del médulo A, PB= Pilas del médulo B. (**) no disponible, (*) valor maximo entre meses, (X) valor minimo
entre meses.

Géneros Marzo Abril Mayo Junio Julio Agosto
PA PB PA PB PA PB PA PB PA PB PA PB
Monoraphidium | 19167* 5667 2500 3507 3500 1500 1250% 2500 ok
Chlorella 9833 4667 11167 11167 23833 23833 4000 4000 46333* 18000  2000% o
Eudorina 6333* 3500 4167 2750 1000 1000 500% ok
Oocystis 5333 3667 1000% 14333* 8750 E
Scenedesmus 2250* =
Crusigenia L =
Actinastrum 6333 5833 1333 500 3000 19000%* 2333 1250 13500 ok
Chlamidomonas 2750%  750% =
Volvox 1500* -
5.2.4. Géneros de la division Cianofita
En latabla 12 se presentan los promedios de las concentraciones de los géneros de la division cianofita
identificados durante los meses de muestreo. El género Aphaenizomenon se presentd (nicamente en
el primer mes de muestreo en las pilas del médulo A. En total se contabilizd ocho géneros de la
division cianofita.
Tabla 12. Valores promedios de las concentraciones de los géneros de la division cianofita identificados en las
pilas del médulo Ay B, sector San Isidro — Leon. Valores mostrados en células por mililitro (cel/ml). PA=Pilas
del médulo A, PB= Pilas del médulo B. (**) no disponible, (*) valor maximo entre meses, (X) valor minimo
entre meses.
Géneros Marzo Abril Mayo Junio Julio Agosto
PA PB PA PB PA PB PA PB PA PB PA PB
Merismospedia 178000* 93667 44167 11667 37667 5000 34667 8250 19000 2000 500% o
Chroococcus 6167 3000 7500 3500 4000 2167 2000 17500% 2250 7000 **
Microcystis 29167% 53167 33333 31500 69333 47333 51333 52000  105500* o
Oscillatoria 20167 31333* 24833 26333 19500 31333 1667% 2750 o
Aphaenizomenon |  2500* **
Spirullina 5250* 1000 500% 1000 500 2250 o
Anabaena 16250 25833% 7000 2500 3167 4333 1500 16167 8500 8000 6833 o
Anabaenopsis 4000 12667* 500% 1000 *x

I
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5.3. Correlacién entre las concentraciones de microalgas y valores de los parametros

fisicoquimicos

La tabla 13 muestra los valores de correlacion entre el comportamiento de las concentraciones de

clordfitas y cianofitas con los pardmetros temperatura, O, pH y turbidez de los médulos de pilas Ay

B.

Tabla 13. Correlacion de las divisiones cloréfita y cianofita en los médulos de pilas A 'y B con los pardmetros

fisico quimicos registrados.

Temperatura Oxigeno pH Turbidez
Clorofita — Pilas A R2: -0.419 R2: -0.531 R2: 0.384 R2: -0.0462
P=0.0835 P=0.0234 P=0.116 P=0.855
N=18 N=18 N=18 N= 18
Clorofita — Pilas B R2: 0.684 R2: 0.387 R2: 0.541 RZ 0.633
P=0.00173 P=0.113 P=0.0203 P=0.00478
N= 18 N= 18 N= 18 N= 18
Cianofita — Pilas A R2: -0.0279 R2: -0.227 R2:-0.353 R2: -0.0451
P=0.913 P=0.366 P=0.150 P=0.859
N=18 N=18 N=18 N= 18
Cianofita — Pilas B R2: 0.584 R2: 0.505 R2: 0.490 R 0.596
P=0.0109 P=0.0324 P=0.0391 P=0.00901
N= 18 N= 18 N= 18 N= 18
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VI. Discusion

6.1. Caracterizacion preliminar del estudio

Las lagunas de estabilizacion son consideradas como embalses artificiales donde se realiza el proceso
de depuracién o auto purificacion que se da en los embalses de origen natural, ahi se presentan los
fendmenos tanto fisicoquimicos como bioldgicos (Comision Nacional del Agua, 2007). Por tanto, el
sistema de tratamiento de aguas residuales se emplea con la Unica finalidad de producir un efluente
cuya carga organica sea menor a la entrante para que el cuerpo receptor (rio, lago o laguna) lo asimile
de manera tal, que provoque el minimo impacto en la composicién bioldgica y evolucion de los

fendmenos fisicos y quimicos (Mara y Pearson, 1986).

6.2. Fluctuaciones de los parametros fisico quimicos

Se sabe, que los cuerpos de agua que presentan descargas con alto contenido de nutrientes tienden a
presentar modulaciones en los pardmetros fisicos y quimicos en oposicién a lo definido para un
cuerpo de agua considerado saludable (Constanza, 1992). Las pilas de estabilizacién muestreadas en
el desarrollo de nuestra investigacion presentan un sistema artificial similar al denominado en la
naturaleza como sistema de cuenca exorreica, donde se mantiene constante la entrada y salida de agua
en el sitio reservorio. Estudios realizados en cuerpos de agua que reciben volumenes de agua con
altos niveles de nutrientes, caso del rio Estero Real, presentan resultados opuestos a los nuestros, en
relacion con la concentracién de oxigeno disuelto debido a que los valores observados durante el dia;
en las pilas presenta valores por encima de 5 mg/L mientras que en el Estero Real los valores son
menores (Osorio y Prado, 2014; Lopez y Méndez, 2014). Por otro lado, nuestros resultados

concuerdan con lo reportado en estudios de pilas de estabilizacion en otros paises.

6.2.1. Oxigeno disuelto

Nuestros resultados muestran, de manera general, valores de oxigeno superiores a los 6 mg/L en los
maodulos de pilas A y B, asi como un patron ascendente de la concentracion en la ruta pila primaria-
secundaria-terciaria, similar a lo reportado por Kwong et al., (s.f.) en las lagunas facultativas de la
planta de Maracaibo sur, cuando la concentracién de materia orgénica presenta tendencia decreciente
a lo largo del sistema de tratamiento. Es mas, la concentracion creciente de oxigeno disuelto de la

pila primaria-secundaria-terciaria concuerda con lo encontrado por investigadores de nuestro grupo
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de investigacion, en las mismas pilas, donde la concentracion de aminoécidos y O, disuelto tiende a
incrementar en la misma direccién (datos no publicados), situacion que determina la relacion

oxigeno- metabolismo energeético acuético.

Bajo ese contexto, se deduce que al principio el oxigeno producido se utiliza para la degradacion
aerobica y a medida que la materia organica disminuye, mas oxigeno es liberado al agua producto de
la fotosintesis y menos oxigeno es requerido para las funciones metabdlicas de los microorganismos.
Por consiguiente, nuestros resultados coinciden con lo reportado por otros investigadores donde
afirman que las concentraciones de O,, son progresivas cerca de la salida del agua (Abreu y
Carrasquero, 2002).

6.2.2. pH

El pardmetro pH present6 valores de entre 7.6 y 10.9 a lo largo de nuestro periodo de estudio, similar
al comportamiento observado en la concentracién de oxigeno disuelto en la via Pilas primaria-
secundaria-terciaria, en ambos médulos (A y B). Por consiguiente, independiente de la entrada de
grupos fosfatados u otros que modifican los valores de pH, las variaciones observadas en la via
entrada-salida del agua se deben a la caracteristica ecoldgica acuatica referida a la modulacion
paralela de O.-pH en un cuerpo de agua. Amaya et al. (2004) afirman que, en una pila de oxidacion
ésta variable, es en general, dificil de controlar debido a la dependencia altamente no lineal entre los
reactivos que ingresan al sistema y el pH que se establece, de ahi que a veces al disminuir el flujo de
algun reactivo, se produce una disminucién de pH y en otras al aumentar el flujo se produce de igual

modo una disminucion del pH.

Estudios anteriores han demostrado que el pH del agua es fundamental para la buena salud de las
diversas formas de vida, en los ecosistemas acuaticos, debido a que en dependencia del valor del pH
flucttan las concentraciones de diversos metabolitos producidos por la biota bacteriana. La reduccién
del sulfato por bacterias anaerébicas genera sulfuro como producto final, que se disocia y mantiene
un equilibrio quimico entre S2—, HS— y H.S, controlados principalmente por el pH. Ademas, las
concentraciones de sulfuro son fitotdxicas y estan determinas por el pH del agua, donde la mayoria
se encuentra como H,S (pK1 = 6.9) y HS (pK2 = 11.9). Esto indica que la relacion de H,S y HS es
de aproximadamente 50% a pH 7; sin embargo, a pH 6 los niveles de sulfuro se incrementan a
aproximadamente 90%, mientras que a pH 8 se reduce a aproximadamente 10% (Korhonen et al.,
2012).
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Por tanto, este fendmeno podria estar generando severos dafios a la biodiversidad de microalgas que
habitan ese ecosistema acuético. Y, aunque en este periodo de la investigacion no evaluamos los
valores de pH al final del tiempo de oscuridad, podemos hipotetizar que la alta concentracion de CO-,
producto de la respiracion nocturna, disminuye el valor del pH en la noche (Boyd, 1982), facilitando
la produccién de sulfuro toxico. Ademas, se sabe que concentraciones de sulfuro entre 1 y 10 pM en
células eucariotas inhiben el citocromo ¢ oxidasa (Fenchel y Finlay, 1995) y que concentraciones en
el sedimento menores que 5000 uM limitan el crecimiento de las macrofitas en los humedales (Koch
y Mendelssohn, 1989; Koch et al., 1990; Erskine y Koch 2000).

En ese sentido, los valores de pH encontrados a lo largo del periodo de estudio denotan que las
concentraciones de SH, son bajas durante el dia, lo cual concuerda con el casi indetectable olor a
huevo podrido, contrario a lo que ocurre por la noche. Por consiguiente, cabe mencionar que el
incremento de los niveles de O disuelto a medida que se avanza en el proceso de tratamiento propicia

paralelamente el incremento del pH, repercutiendo de forma inversa en la produccion de SH..

6.2.3. Temperatura

El parametro temperatura, de manera general, presentd valores entre los 28 y 35 °C, lo que es
considerado como 6ptimo para que se lleve a cabo de forma correcta el proceso de biodegradacion,
el cual se da por encima de los 25 °C (Comision Nacional del Agua, 2007). Se observé que a medida
gue avanzaba el tratamiento de la pila primaria-secundaria-terciaria la temperatura presenta una ligera
tendencia a disminuir lo que concuerda con lo reportado por Kwong et al., (s.f.) y Jaeger y Villasmil
(2002).

Las altas temperaturas favorecen la produccion de algas azules, lo cual se relaciona con la muerte de
otros grupos de fitoplancton, por lo que podemos atribuir que uno de los factores que propician las
altas concentraciones de Cianofitas registradas en este estudio es la temperatura. Fue notable el
aumento de la temperatura (promedio de las tres pilas) desde el mes de marzo hasta el mes de junio,
para luego disminuir en los meses de julio y agosto. La maxima temperatura fue registrada en el mes
de junio. El descenso de la temperatura es atribuible a la entrada de la estacion lluviosa que por lo
general inicia después del mes de mayo. En todas las pilas, tanto del médulo A como del médulo B
se observa una tendencia ascendente a lo largo del periodo de estudio. La Alianza por el agua en el
Manual de Depuracion de Aguas Residuales Urbanas (2010) afirma que se debe tener en cuenta la

menor capacidad depuradora de las lagunas en los meses de invierno, ademas, que las cianobacterias
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se desarrollan en una temperatura optima que oscila entre los 35 a 40 °C, por otro lado, las algas
verdes se consideran las méas eficientes para sobrevivir a temperatura proximas a 30 — 35 °C.
Asimismo, con valores de temperatura encima de 28 °C se han observado descensos en la actividad
fotosintética, que se relacionan con un mayor crecimiento de las algas cianofitas, que son menos
productivas que las algas cloréfitas, y a las que progresivamente van desplazando (Ministerio de
Salud, 2011).

6.2.4. Turbidez

Los resultados muestran que el pardmetro turbidez no present6 grandes variaciones durante el tiempo
de estudio. Se registraron valores promedio de disco de secchi comprendidos entre 12y 17 cm a lo
largo de los 6 meses, registrandose un valor de lectura maximo de 26 cm en la pila primaria del

moédulo B durante el mes de abril.

Delgadillo et al., (2010) y Marcé et al., (2004) afirman que una elevada turbidez (menor valor de
disco de Secchi) puede afectar al proceso de depuracion de aguas debido a que se protege a los
microorganismos patdgenos de los efectos de la desinfeccion por accidn de la luz solar o estimulando
la proliferacion de bacterias. Ademas, que se puede llegar a disminuir la capacidad de fotosintesis de
muchos productores primarios acuaticos y un aumento en la temperatura superficial del agua en el
momento en que las particulas en suspension difunden la luz solar y absorben el calor. Efecto similar
se observa en nuestros resultados donde, en la mayoria de los casos, las pilas con menor valor de

disco de secchi (aguas mas turbias) presentaban temperaturas relativamente mas altas.

Por otro lado, de manera general, los valores bajos del disco de secchi registrados en este estudio se
observaron secuencialmente de la pila 3 a la pila 1, lo cual denota un incremento creciente de los
niveles de turbidez en ese cuerpo de agua que se opone a lo observado con la tendencia de la
concentracion de fitoplancton observado. Bajo ese contexto, nuestros resultados permiten sugerir que
los valores de turbidez pueden estar siendo modificado por material coloidal suspendido en la

columna de agua (Queralt, 2003).

I
Guevara A. y Calix L., 2015. 65



6.3. Comportamiento de las concentraciones de microalgas

Se sabe, que un complejo de pilas de estabilizacion es claramente un ambiente hipertréfico, por ende,
es de esperarse que se manifieste la dominancia fitoplanctdnica de las cianofitas, organismos que, en

su mayoria, son indicadores de aguas de alta eutrofia (Garcia et al., 1998; Ministerio de Salud, 2011).

En nuestro estudio, a pesar que tanto el sistema de pilas A como el B reciben las descargas de agua
residual del mismo sistema de distribucion, las concentraciones de clorofitas entre ambos sistemas
vario a lo largo del tiempo, notdndose una tendencia a disminuir sus concentraciones en el sistema de
pilas A y tendencia inversa en el sistema de pilas B. Por otro lado, de manera general, la division

cianofita presentd muy poca variacion de la concentracion a lo interno de cada uno de los sistemas.

Para nuestro grupo de investigacion es dificil encontrar una respuesta especifica sobre lo observado
en el comportamiento de las Clordfitas, entre los sistemas, lo cual invita a seguir investigando y
profundizar con evaluaciones de otros pardmetros. Otros investigadores plantean que la inestabilidad
fisica y quimica provocada por una fraccion importante de materia organica puede provocar grandes
fluctuaciones en periodos muy cortos, lo que llega a generar una modificacion en el funcionamiento
de ecosistemas como las pilas de estabilizacion (Marquez y Guillot, 2001), siendo determinante en la
diversidad de grupos de fitoplancton. Por otro lado, Beisner (2001) propone gue la heterogeneidad
temporal en cuanto a la disponibilidad de recursos y el nivel de fluctuacion del entorno tienen un
efecto particular en la diversidad del plancton, propiciando que la produccion de algas y otros
microorganismos Vvarie considerablemente de una laguna a otra, reflejando la influencia de
condiciones ambientales (Delaunoy, 1982), situacién que pudiese estar ocurriendo en los sistemas de
las pilas de tratamiento estudiadas. Sin embargo, nuestro estudio deja claro que la division cianofita
dominé durante todo el periodo del muestreo, en ambos sistemas, pilas A y B, concordando con lo
relativo a la capacidad de sobrevivir de este grupo de microalgas, en cuerpos de agua con alto nivel
de eutrofizacion (Bonilla, 2009, Ministerio de Salud, 2011).

6.3.1. Divisién Clorofita

El grupo de las algas verdes presentd una concentracion maxima en el mes de mayo en la pila
secundaria del médulo A. Se logré identificar 7 géneros como lo son: Monoraphidium, Chlorella,
Eudorina, Oocystis, Scenedesmus, Crusigenia, Actinastrum, Chlamidomonas y Volvox. Fue notoria
la presencia y ausencia de géneros como Scenedesmus, Crusigenia, Chlamidomonas y Volvox cuya

presencia se dio Unicamente en los meses de marzo, junio y julio, respectivamente. El
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comportamiento de este grupo vari6é durante todo el periodo de muestreo llegando a tener valores

indetectables en el mes de agosto. Se pudo observar una diferencia significativa (P<0.05) en casi
todas las pilas del modulo A, durante los seis meses de estudio. En este mismo mddulo de pilas se
pudo notar un comportamiento peculiar en el mes de julio en el cual la concentracion de algas
cloréfitas fue en aumento de la pila primaria-secundaria-terciaria. Por otro lado, el médulo de pilas B
se caracterizo por presentar las mayores concentraciones de clorofitas en la pila primaria, en los meses
de estudio. Los cambios repentinos e independientes en el estado tréfico de cada pila repercuten en
los patrones mostrados por este grupo, donde se nota que el fitoplancton responde al cambio en las

concentraciones de nutrientes en el medio (Coelho et al., 2007).

Monteagudo (2012) reporta en un estudio realizado en el embalse Minerva, en cuba, caracterizado
por ser mesoeutrofico, que el grupo dominante fue clorofita seguido del grupo cianofita, resultado

opuesto al obtenido en nuestro estudio.

6.3.2. Divisién Cianofita

El grupo de las algas verdes azules presentd la concentracion promedio mas alta en el mes de marzo
en la pila primaria del médulo A, de igual forma este mes se caracterizo por presentar la concentracion
promedio mas alta de todas las pilas, en ambos modulos. Este grupo estuvo caracterizado por
presentar una tendencia decreciente a lo largo del estudio, presentando las concentraciones mas bajas
en el mes de julio. Este comportamiento es atribuible meramente a un periodo de sucesién del
fitoplancton (Chindah et al, 2007; Martinez y Castillo, 1990). Se logr6 identificar ocho géneros como
son: Merimospedia, Chroococcus, Microcystis, Oscillatoria, Aphaenizomenon, Spirulina, Anabaena

y Anabaenopsis. De los cuales el género Aphaenizomenon se present6 Unicamente en el mes de marzo.

Por otro lado, la divisién Cianofita presento un comportamiento irregular en cuanto a las fases de
tratamiento, en cada mddulo, notandose que en el mes de marzo hubo un comportamiento descendente
en cuanto a la concentracién, en el orden de pila primaria-secundaria-terciaria y en el mes de agosto
hubo un comportamiento ascendente en el orden de pila primaria-secundaria-terciaria. Hubo
diferencia significativa entre cada pila del modulo A, durante el periodo de estudio, con la excepcion
de la pila primaria A del mes de julio y la pila terciaria A del mes de abril. En cuanto al médulo de
pilas B, se presentd el mismo patron descendente y ascendente en los meses de abril y mayo

respectivamente.
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6.4. Correlacion entre pardmetros fisico quimicos y los grupos fitoplancténicos

Tomando en cuenta que los modulos A 'y B presentaron diferentes comportamientos debido al proceso
de mantenimiento de las pilas del médulo B, evaluamos las concentraciones de las divisiones
Cianofita y Clorofita y de qué manera pueden estar relacionadas con los parametros temperatura, pH,

OD vy turbidez en ambientes altamente eutrofizados como los son las pilas de estabilizacion.

Los resultados indican que existe una correlacidn positiva entre las concentraciones de las divisiones
Clorofita y Cianofita del modulo B y los valores del pardmetro temperatura con P<0.05, lo que nos
indica que las concentraciones de ambos grupos estan relacionas con las temperaturas debido a que
fluctian en paralelo, concordando con la explicado por Alianza por el Agua en el Manual de
Depuracion de Aguas Residuales Urbanas (2010). Por otro lado, la division Clorofita del médulo A
y el pardmetro OD presentaron una correlacion negativa con P<0.05, evidenciando que las
concentraciones de este grupo fluctuaron inversamente a las variaciones del oxigeno disuelto en todo
el modulo A, no asi la division Cianofita que presento una correlacion positiva con P<0.05 con

respecto a la concentracion de OD en las pilas del médulo B.

Las concentraciones de ambos grupos fitoplancténicos en el mddulo B presentaron correlacion
positiva con el parametro pH con P<0.05, esta relacién esta meramente atribuida al proceso
fotosintético que realizan las algas. Por lo tanto, nuestros resultados concuerdan con otros estudios
(Kwong et al., s.f) y denotan que la dinamica ecolégica en ese cuerpo de agua se desarrolla de manera

similar a lo observado en cuerpos de agua con alto nivel de eutrofia (Boyd, 1982).

De manera general, nuestros resultados muestran que las mayores relaciones de comportamiento, en
el tiempo, se obtuvieron en las pilas del modulo B. Tanto los grupos de Cloréfitas como Cianofitas
fluctuaron en paralelo con los valores de temperatura, pH, turbidez y oxigeno (solo Clordfitas). Por
lo tanto, es razonable deducir que la turbidez en las pilas B esta inversamente relacionada debido a
que incrementos de concentracion de fitoplancton significa mayor namero de células, mientras que
incrementos de valor de lectura de disco de Sechhi significa menor turbidez. Bajo ese contexto,
probablemente la turbidez se relacione mas con la presencia de material coloidal (Queralt, 2003).
Asimismo, con lo referido al comportamiento de los valores de pH resulta I6gico que un cuerpo de
agua el pH fluctte en paralelo con la concentracion de fitoplancton debido a que este, en condiciones

de luminosidad normal, fluctGia en paralelo con la concentracion de oxigeno disuelto.
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VII. Conclusiones

1. De manera general, en promedio, tanto en el moédulo A como en el B, los pardmetros temperatura,
oxigeno disuelto y pH presentaron incremento de sus niveles de marzo a junio, decreciendo de
junio a agosto. Al evaluar los parametros fisicoquimicos en los médulos de las pilas Ay B se
encontrd, de manera general, que los valores de oxigeno disuelto y pH presentan tendencia
creciente en orden pila primaria-secundaria-terciaria y tendencia decreciente en el pardmetro

temperatura.

2. Entodo el periodo de estudio, la divisién Cianofita presento mayor concentracion que la division
Clordfita, tanto en el médulo A como en el médulo B. Se identificaron 15 géneros de los cuales 7
pertenecen a la division Clordfitay 8 a la division Cianofita. Chlorella sp. y Monoraphidium sp.
destacaron entre los géneros de la division Cloréfita con una concentracion maxima de 46,333 y
19,167 cel/ml, respectivamente. En cambio, Merimospedia sp. y Microcystis sp. destacaron por la
divisién Cianofita con una concentracion maxima de 178,000 y 105,500 cel/ml, respectivamente.

3. Al evaluar la relacién entre la fluctuacién de la concentracion de los grupos Cianofita y Clordfita,
en el tiempo, el mddulo de pilas B presentd mayor nimero de correlaciones significativas P<0.05
que el mddulo de pilas A. En el médulo de pilas B, la divisién Cianofita presentd correlacion
significativa P<0.05 con los pardmetros temperatura, oxigeno, pH y turbidez, mientras que la
division Clorofita presentd correlacién significativa con los pardmetros temperatura, pH y
turbidez. Contrario a lo ocurrido en el médulo de pilas B, no se observé correlacién significativa
en el moédulo de pilas A, a excepcién del grupo Clorofita que presento correlacion significativa

con el comportamiento de los niveles de oxigeno disuelto, en el tiempo.

En resumen, los resultados presentados en este trabajo de investigacion proporcionan evidencias sobre
la fluctuacion de los grupos Cloroéfita y Cianofita en las pilas de sedimentacion San Isidro. Asimismo,
se denota que el sistema de pilas B presentd mejor dinamica ecoldgica acuatica que el sistema de pilas
A, debido a que en el modulo B todos los parametros estudiados flucttan de acuerdo a lo esperado. Por
tal razon, nuestros resultados permiten deducir que hubo mayor eficiencia del metabolismo acuético en

el sistema de pilas B.
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VI1I1l.Recomendaciones

Extender el monitoreo de la dindmica fitoplanctdénica hasta el cuerpo receptor, en este caso
el rio El Platanal, a lo largo de su extension, para continuar evaluando el metabolismo

acuético y la prevalencia de microalgas.

Realizar unarevision y modificacion del protocolo de operacidén y mantenimiento de la planta
de tratamiento de aguas residuales San Isidro — Ledn, ya que determinamos que las
frecuencias con las que se extraen los lodos de los fondos de cada pila se prolongan

demasiado

Las universidades en conjunto con el MINSA deben impulsar proyectos estratégicos con
énfasis en la educacion ambiental dirigidos al pueblo, para darles a conocer de qué manera
pueden mitigar, por su propia cuenta, en casos de contaminacién de cuerpos de aguas de los
cuales ellos dependen.

La Universidad y la empresa ENACAL deben continuar desarrollando este tipo de estudios
en las pilas de tratamiento de agua residuales para que los resultados sean un insumo para la

mejora continua del sistema de tratamiento de aguas residuales.
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