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Abstract

In this paper annual Canadian exploration data are used to estimate a
multiple-output translog exploration cost function. A new definition of
depletion is introduced and its estimated coefficient is found to be
statisticaily significant. Another novel feature is the~application of Monte
Carlo integration to ensure the estimated cost function satisfies concavity
and honotonicity. The fitted cost function parameters are then used to
obtain estimates of the marginal costs of exploration for oil and gas. Our
estimated marginal éxploratidn costs are smaller than previous studies”
because we have allowed for technical progreés'which offsets the depletion

effects. These marginal cost estimates are employed, along with previous

estimates of exploration rents, to measure resource scarcity. - We find some

evidence for the increased scarcity of oil and gas in Alberta.. - For oil
there is a 10.0% per year increase in scarcity along the trend line while for
natural gas there is a 1.8% per year increase in scarcity along the trend

line.




1. Introduction

A fundamental problem in resource economics is to measure resource
scarcity. Conceptually the most appropriate measure of resource scarcity is
resource rent, where the resource rent is Jjust the difference between the
price of a good produced and the unit cost of turning the natural resource
into the good.1 ’i‘he unit costs include the value of the labour, capital,
energy and materials needed to convert the natural resource into. a finished
product.z There are, however, several fundamental problems with using rent
as a measure of resource scarcity. These include the fact that resource
rents are affected by government tax policies and market imperfections.
There is also the problem that resource rents are difficult to measure.
This suggests that some suitable alternative method of measuring resource
rents is required.

.Theoretical results by Brown and Field [1978], Devarajan and Fisher
[1982] and Lasserre [1;85] suggest that marginal exploration costs may be

used to measure resource scarcity. The measurement of resource scarcity is

an empirical issue. One aim of this paper is to empirically measure oil and

gas scarcity for the province of Alberta.

In this paper we follow Li?ernois (1988] and model an aggregate
multiple-output exploration cost function by the multiple-output translog
cost function. This paper differs from the existing literature in three

important ways. First, we introduce a new measure of resource stock

1This is discussed in Hartwick and Olewiler [1986].

zFor non-renewable resources such as oil and gas, rising scarcity Jdis
indicated by rising resource rents.




depletion, which we call X, than the one commonly used. In connection with
this. new depletion variable we also include a time trend which allows for the
measurement of technological change in exploration. Third we make use of
Monte Carlo integration techniques to directly impose the monotonicity and
concavity restrictions on the cost function. We discuss each of these issues
in turn.

Most studies choose to meagure the effect of depletion by specifying the
variable X as a measure of cumulative drilling activity. For instance, X may
represent the cumulative meters drilled to date or it may represent the total
number of wells drilled to date. The intention is that as the resource is
exploited it makes it harder. and therefore more costly to Qiscover any
further amount. While it may seem reasonable that increases in exploration
effort reflect measures of depletion, we would argue this is not necessarily -
" true. Instead, increases in exploration-drilling may just reflect bad luck .
-on the part of the firm. By bad luck on ‘the part.-of the firm we mean that
fhere may be large resérves of the resource available but firms are drilling
in the wrong place.3 Instead, we prefer to measure resource depletion by the
cumulative sum of proven reserves. If the rate of accumulation of reserves
is slowing then we infer that resource depletion iS‘being manifested.

The most direct way to incorporate technical change into exploration

activity is to assume that exploration costs are a function ofltime, t. In

this case, exploration'costs can be written as C = C(w,Q,X,t). Here, w is

a vector of input prices, Q is a vector of outputs, X is a variable for

3There are other problems with using cumulative drilling as a measure of
depletion. When a large new deposit is first discovered, ‘increased drilling
activity occurs not because the resource is scarce but because the resdurce
is plentiful. : ’




depletion and t is a time trend. We would expect the marginal effect of
technical change to be negative (8C/8t < 0) since the lapse of time reduces
marginal exploration costs as new techniques are utilized. Thus,. while
depletion effects tend to raise exploration costs (8C/8X > 0), technical
-advance leads to lower exploration costs if 3C/8t <O. The net effect on
exploration costs is ambiguous. Consequently, any empiricai study which only
includes depletion effects (but 'does not include technical change) will
overestimaté (underestimate) marginal exploration costs if there has been
technical progress (regress).

Our third point of departure concerns a more general issue that arises
-when estimating. any type of demand or cost system. It is often the case that
after ‘estimating a system of demand equations the researcher finds that the
estimated coefficients 'violate the requirements for . concavity and
monotonicity. This means that the parameter. estimates and associated
elasticities of substitution are not economically meaningful. While .
Eraditionally one could reject the concavity conditions or estimate a more
general flexible functional form, Chalfant and White [1987] have proposed a
Bayesian inference procedure wusing inequality constrained Monte Carlo
integration ( Geweke [1986]), to impose ‘curvature restrictions on demand
systens. Following Geweke [1986], they use Monte Carlo integration and
importance function sampling to obtain an inequélity constrained estimate of
the parameter vector for a.demand'system together with-a probability that the
restrictions hold. In this papér we adopt the Geweke procedure to ensure our
estimated exploration cost function satisfies the  requirements of
monotonicify and cohcavity and this leads to direct economic interpretation.

This paper 1is organized as follows. Section 2 discusses the

multiple-output translog cost function and presents parameter and




Allen-Uzawa partial elasticities of substitution. In section 3 the estimated
cost function parameters are used to determine the marginal exploration cost
for oil and gas in Alberta. . In section 4 these marginal exploration costs
are augmented with independently obtained measures of exéloration rents to

form a measure of resource scarcity. Section 5 concludes the paper.

2. The Multiple-Output Translog Cost Function

We assume that competitive input markets exist for the exploration
industry. We do not, however, make any assumptions about fhe structure of
output markets. ‘Exploration activity is a multiple-output techno;ogy that
uses three inputs; exploratory.drilling, geophysical.effort and land acquired
for exploratory drilling to producg two outputs; oil discoveries and gas
discoveries. _w¢ assume the multiple-output technology can be represented by

the dual cost function.
A (1) ¢ =.C(wD,wG,.v.JL,Q1,Q2,X,t)'

where wi,i = D,G,L are the input pfices, (D=price of exploratory drilling,

=price of geophysical effort and L= price of land acquired for exploratory
drilling) Q1 = o0il discoveries, Q2 = gas discoveries and X is a variable that
measures the effect of depletion. For (1) to be a proper cost function the
.following regularity conditions must hold: C(w, Q, X,t) is nondecreésing in
w, concave in w, continuous in w and satisf;es monotonicity. Here w equals
the vector‘of'input pr&ces (wD,w ,wL) and_Q equals the vector of'outputs,‘
(Q,.Q,). |

The variable X captures the effect of depletion. We would expect the

largest pools are discovered-first making it more difficult and therefore

more costly to discover subsequent pools. This implies the cost functiSn is




increasing in X.

Letting C(w,Q,X,t) denote the total cost of joint exploration for oil and
natural gas in Alberta, the three input (price of drilling, wp, price of

geophysical effort, wg, and price of land acquisition, QL) multiproduct

translog cost function can be written as (2).4

(2) 1InC(w,Q,X,t) = ac + aplnwp + aglnwg + a lnw_ + art
+ 0.5700(1nwo)2 + ¥pclnwplnwg + ypLlnwplnw,
+ O.Sycc(lnwc)z + yoLlnwglnw,
+ O.SvLL(lnwL)z + b;1nQ; + bo1nQ;
+ BxInX + ByplnXlnwp + BxglnXlnwg + Bx 1nXlnwg

+ yrrt2 + Sptlnwp + Sctlnwg + S tlnw, -

where symmetry and homotheticity have been imposed.S Here we are considering
the translog cost function as a second order approximation to-a true cost

function. Equation (2) also includeé a time trend variable, t , to account
for technological ‘change. The translog cost function exhibits constant

returns to scale if b; + b, = 1 and is linearly homogeneous in the input

prices if the following conditions hold.

ap + ag + g

+

4The multiple-output translog cost function is discussed in some detail in
Denny and Pinto (1978].

SIdeally one would want to test the symmetry condition. In practice this
is rarely done since the estimation period for these cost functions is
usually only 30 or 40 observations. Without imposing symmetry, (2) has 24
estimated parameters but only 29 observations. Homotheticity implies no
price output interactions (ie. all terms of the form: 1lnw;lnQ;,= 0, V i;j-i=
D,G,L and j=1,2).




3p + 38 +

The dual cost function in (2) will not exhibit any technical progress oOF
regfess if it is independent of time.
ar = 0
(3a) 777 =
60 = 3(; = 5]__ = 0

The share equations can be easily derived from the cost function given

in (2). Differentiating (2) with respect to the logarithm of wp, for example,

we have

(4) 8ln C _ ap + polnwp + Yoclnwg+ FpLlnw
dlnwp .
BxolnX + 3pt

Under the assumption of cost minimization and if . the cost function is

linearly homogeneous in prices then,

dln C _ wp 8C. _ woD  _ S
8lnwp C 8wp C o

‘where Sp is the cost share of drilling. Shephard’s Lemma and logarithmic
differentiation with respect to each input price yields the following set of

cost share equations.

So ap + 7oolnwp + pclnwg+ FpLlnw. + BxolnX
Spt
Sc ac + yeolnwp + ¥gelnwg+ 7oLlnwy + BxglnX

3qt
Su a_ + yplnwp + yielnWet i lnwg + Bx 1nX
+ 5 t
where S; is the share of geophysical effort and S_ is the share of land
acquisition. This assumes that in egch observation period there has been a

. s

full and complete adjustment of the input mix to the factor prices so that

8




the minimum cost level is achieved.

In this study annual observations from 1955 to 1983 on the exploration
industry in Alberta are used.6 Exploratory drilling is measured by the total
number of meters drilled annually while geophysical effort is measured by the
total number of annual crew months. Land is total area of land acquired
under lease and license annually for -exploratory drilling. Input prices are
calculated by dividing the annual expenditures -on these activities by their
respective quantities. The total cost of exploration is calculated as the
sum of these three expenditures. The output variables (Q1 = o0il discoveries
and‘Q2 = gas discoveries) are the 1985 estimates of the values discovered in
subsequent years.

‘All input prices are converted to constant 1981 dollar prices using the -
industrial selling price index (ISPI) which is available from Statistics
Canada. Assuming an additive disturbance for the translog cost function

leads to the foliowing‘regression equation 7
(Zg) InC = ac + aglnwg + aglnwg + a_lnw, + art
+ 0. Szbo(lnwo) + 7pclnwplnwg + yp lnwplnw,
+ O.SWGG(Ian) + yeLlnwglnw,
+ O,SyLL(lnwL)z + b1lnQ; + bz1nQ;
+ Bx1nX + ByplnXlnwp + BxclnXlnwg + Bx 1nXlnw,

+ 3’TT.t2 + dptlnwp + Sgtlnwg + S tlnw, + u

The results from OLS estimation of (2a) are shown in Table 1. From the

parameter estimates in Table 1 we see that the cost function is increasing in

6We are grateful to J. Livernois for the data.

7We assume the cost function C(w,Q,X,t) has errors distributed as lognormal
Taking natural logs yields (2a). ..




cumulative depletion, X, which is significant at the 10% level.8 This would
seem to indicate that the largest pools are discovered first and that
subsequent exploration turns up small low quality reserves. In this case
future exploration leads to smaller and smaller discoveries which not only
add to existing reserves and lower extraction costs but also increase
exploration costs. The cost function is decreasing in Q; and increasing in
Q2, but neither is statistically significant.

To evaluate the estimated cost equatioh we apply several diagnostic
tests to the residuals from OLS estimation of (2a). The results are shown in
Table 1la. Thrdughout this paper (unless otherwise noted) the 5% critical
value is wused for hypothesis testing. The null hypothesié of no
autocorrelation can not be rejected by a Godfrey [1978] t stétistic of +.478
(critical value = +2.45). Also shown in Table 1 are several tests for
homoskedasticity. The null hypothesis of homoskedasticity cannot be rejected
by e;thér the Breush-Pagan [1979] test (test value of 14.003 compared with a
critical value of 31.410) or the Harvey [1981] test (test value of 29.379
compared to a critiéal value of 31.410). The normality of residuals was
tested using the Jarque-Bera [1980] asymptotic LM test. Since the

computed value of 10.66 1é,greater then the critical value of 5.99 we can

reject the null of'normality.9 Several Ramsey [1969] RegressioniSpecification

Error Tests (RESET) were computed using the powers of the fitted vglﬁes from

8All'estimation was carried out using White’s [1978] SHAZAM Version 6.0.

9This is an asymptotic test but our sample size is only 29. The small sample
size may lead to inappropriate rejection of the null. The normality
assumption is quite important since the Monte Carlo integration procedure
assumes the data is distributed normally (at least asymptotically).

10




(2a). The computed F statistic values for RESET (2) (1.5 d.f.), RESET (3)
(2,4 d.f.) and RESET (4) (3,3 d.f.) were 0.031, 0.012 and 0.014 respectively.
Based - on the -results of these RESET tests the regression equation seems

satisfactory. . An Engle [1982a] test  for autoregressive conditional

heteroskedasticity (ARCH -(1)) revealed a computed chi-squared test of 0.935.

We can thus not reject the null of no ARCH (1).

Consistent estimation .of (2a) requires the exogeneity of input
prices w, output reserves Q and depletion X. While it seems reasonable to
expect that 1nput-prices are exogenous it may be less reasonable to assume
reserves Q1 and'Qz'are exogenous. Following Davidson and Mackinnon [1987a],
a joint test for the endéggneity of both Q; and Q, turned up an F statistic
of 1.971 with 2 and 5 degrees of freedom. Since 1.971 is well below the 5%
" critical value of 5.79 we do not- reject the null' Q. and 'Qz are both
exbgenoué.10

'~Since the computed F statistic - for . constant returns to scale is
578.191 with 1 -and 8 deérees of freedom we can reject the null~hypothesis of
constant returns to scale. The computed F statistic for neutral technical
change was 0.711 with 5 and 8 degrees of freedom which. is less then the
| critical ‘value of 3.69. Finally the computed F stgtistic for linear
homogeneity in the input prices 'is 1.450 with 6 and 8 degrees of freedom
which may be compared to the 5% crltlcal F value of 3:58. - Thus we cannot:
reject the null of linear homogeneity in prices at the SA level.  In light of.
these results we shall impose linear ‘homogeneity.

With linear homogeneity in input prices,Athe share equations are given in

(5). The cost function and the share equations form a system of seemingly

-

10Further tests also revealed the exogeneity of the depletion variable, X.
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unrelated regressions and we assume the errors are normally distributed with
contemporaneous covariance matrix Z. Since, by definition, the shares must
sum to unity, one of the share equations is dropped to guarantee that I is
positive definite. Given that the maximum 1ikelihood estimation is invariant
to which share equation is dropped we decided to exclude the share of land
.equation since the land share equation revealed the poorest set. of diagnostic
tests-.:~l1 After imposing symmetry and linear homogeneity the 15 parameters for -

the three input cost function are

6 = (ac,ap,ac, ar, %0 s, ¥acs b1, b2, Bx, Bxo, Bxa» 17, 8p, 3¢)
Estimatioﬁ of the cost function was by the method of  nonlinear maximum
likelihood using the bavidson—?letcher-?owell algorithm. Kmenta and Gilbert
[1968], show that under the assumption of no heteroskedasticity or

autocorrelation within equations the iterative Zellner method yields full

information maximum likelihood estimates. Iterating until convergence on a

system of the cost function and two of the .share equations yields maximumv
likeiihood estimates of the vector of translog pa;ametgrs~and the.resulting
covariance matrix Z. The results appear in Table 2{.

Frqm Table 2,.: the estimates of b; and b, (correspor;ding .to 1nQ; and
1nQ,) are both positive, implying the cost. function is;increa$ipg in outputs.
The estimated coefficent.on our new depleﬁion measure, Bx, (the coefficient
on 1lnX) is'positive aqd.significant demonstrating tbat the cost function is

2

increasing in cumulative depletion.; A significant estimatedlﬁx indicates

the intercept of the cost function has shifted over time. From Table 2 we

11Diagnostic tests on the residuals from the other two share equations
indicated 1little evidence of either heteroskedasticity, first order seral
correlation , ARCH(1) or absence of normality. ..

12In Livernois [1988] X was measured as cumulative drilling activity. He
found a negative but insignificant coefficient on the variable 1nX.

12




see that except for ac, b; and b, all the paramater estimates are
statistically significant. The coefficients Byxp and By (by linear
homogeneity Bxi ="Bxp = Bxg) are both negative and significant indicating
that changes in depletion have been factor saving .(cost reducing) for
drilling and geophysical effort but factor using (cosf increasing) for land.

The effect of technological change is measured by the coefficients ar, 777,

dp,and &g. The coefficient on the time trend variable a; is positive and-:
significant suggesting a positive shift over time in the cost function. The
estimated coefficient %7y is negative and significant verifying the cost
function is concave in time. The coefficients 3o and &g are both
statistically significant indicating .technological change has not been Hicks
neutral. The coefficient &p is positive and significant suggesting
technological change in drilling has been cost increasing. Both 8¢ and §_

are negative indicating technological change has been cost reducing for

- geophysical and land inputs. Using the parameter estimates from Table 2 we

computed the conditional mean functions for each of the three cost shares and

found that all shares were positive in all the years.

As further evidence that technical change has not been neutral, consider

" Table 2a. Table 2a reports likelihood ratio (LR) test statistics for the
hypothesis of constant returns to scale (CRS), no technical change (NTC) and
the joint hypothesis of constant returns to scale and no technical change
(CRS+NTC). The critical chi¥squared values at the 5% level of significance
for 1,4 and S degrees of freedom are 3.841, 9.488 and 11.070 respectively.
Hence we can individually reject the null hypothesis of CRS, NTC and also
reject the joint hypothesis of CRS+NTC. We again raise the point, however,
that these LR test are asymptotic tests whereas our sample size is only 29x3

= 87.




The residuals from each of the three equations in the system were
subjected to various diagnostic tests. Heteroskedasticity as measured by the
Breusch-Pagan and Harvey tests was not detected in any of the three
equations. Using a Gauss-Newton artificial regression a test for AR(l)
turned up asymptotic t statistics (with_probaﬁility_values in parepthesis) of
-0.7201 (0.600), 0.9299 (0.313) and 1.8558 (0.070) for the cost, drilling
share and geophysical share equations respectively.13 The reported
chi-squared test statistics for ARCH(1) (yith probability values in
parenthesis) were 1.036 (0.308) , 0.191 (0.662) and 0.252 (0.616) for the
cost, drilling and geophysical share equations respectively. For each of

these three equations we cannot reject the null of no ARCH(1).

Imposing Concavity Conditions through Monte Carlo Integration

Negative semidefinitness of . the. matrix .of second order partial
fderivatiVes of the cost function is a necessary and sufficient condition fér
a twice continuously differentiable cost function to be concave in prices, w,
over the positive orthant. This requires V2m£Xw,Q,X,t) be negative
semidefiﬁite for Q >.0; Q >>0 and t = 1,2,...,T. Here Vzwa(W,Q,X,t) denotes
the 3X3 matrix of sgcond order partial derivatives of C with reépect to the
components of w. Denote C; = 8C(w,Q,X,t)/8w;, GCi; = BZC(V,Q.X,t)/awian
and &;; =1 for i = j, and &;; = 0 otherwise. By straightforwafd‘

differentiation it can be shown that,

621nC(w, Q, X, t) 6{JWiC{ wm,-CiCj W§chij

(6) —— - S ki
8lnw; 1nw; c C C

13A good discussion of artificial regressions can be found in Davidson “and
Mackinnon [1984] and [1987bl].
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azlnc(w,Q,X,t)

For the translog in (2), = ¥ij
dlnw;dlnw;

Using -Shephard’s Lemma and the definition of share functions, Diewert and

Wales [1987] show that (6) can be written as
Diag(w) [V%uw C(w,Q,X, t)1Diag(w)
(7) - =T - [Diag(s) - ss’]
C(w) Q! X’ t) :

‘where s is a vector of factor shares (which is evaluated at some point in ‘the
sample), Diag(s) is a diagonal matrix formed from s, Diag(w) is a diagonal
matrix formed from the vector of input prices (evaluated at some point in the
sample) and T = %y; (i,j=D,G,L) is the matrix of .coefficients from the
translog multiple output cost function. Provided that C(w,Q,X,t). > O, VzW

C(w,Q,X,t) will be negative semidefinite if and only if,

r-I Diag(é) - ss’]
is negative semidefinite. A sufficient condition for concavity of the cost
»ffunction C(w,Q,X,t) is that the matrix of coefficients, I, be negative
semidefinitef . | | ‘

Using the parameter estimates from Table 2 the cost function was found
to be concavevin all But one year. Since‘concavity is a fundamental property
of the dual cost function and if violated yields biased paraheter estimates
and biased elastiéities, we deéided-td follow Chalfant and White [1987] and
vimpose monotonicity. and concaQity through Monte ‘Carlo integration. The
Cﬁalfant and White procedure for imbosing .monotdnicity‘ and concavity is
described in detéil in Chalfant aﬁd White [1987] and we will only sketch the

steps involved.

The Bayesian procedure for estimating an inequality constrained cost

function envolves first obtaining maximum likelihood estimates of the

1S




parameter vector 6 and associated variance-covariance matrix Z. Prior
densities are specified for both £ and 6. -If there are no inequality
restrictions the priors for Z and 6 are diffuse. While the joint posterior
for £ and @ is very complicated the marginal posterior for 6, which we will
denote as f(9|y) may be fairly simple. Here y.= (1nC, sp, Sg,SL). Adding
inequality constraints in the form of .monotonicity and concavity restrictiohs
implies a truncated marginal posterior for 6 (fR(yle)). For convenience a

quadratic loss function is used. Given that the restrictions are imposed the

posterior mean is,
E@) = [ oxe"(y|o)de
Q

where 6 is restricted to lie in Q, the region of the parameter space where
the concavity and monotonicity conditions are imposed and k is a constant of
proportionality. The probability that- the restrictions hold ‘- under

noninformative priors is given by p,
p = J' I(e)kf(e]|y)de
e !

where I(0) is the indicator function and I(8) = 1 if the restrictions hold (o
€ Q) and I(8) = O otherwise. The numerical problem is that the integrals
used in evaluating E(6) and p are both too complicated to evaluate

analytically. Conseduentiy, Monte Carlo integration techniques are.

suggested. Méreover, kf(ely) is in general an unknown density and as such

importance sampling is used"because 'it is not possible to generate
replications from the exact posferior density. The method of importance
sampling substitutes a well known and simple density (say g(ely)) for the
unfamiliar true posterior density. In addition, an adjustment is made for the
fact that g(GIy) is not the true pésterior density. If the data are normally

distributed then two obvious choices for g(8|y) are multivariate normal -(for




-~

large samples) or multivariate t (for small samples) both with parameters @
and f:, the maximum likelihood estimates from unrestricted estimation.

Essentially, thé maximum likelihood estimates of 8 and 2(5) are used to
generate antithetic draws from the multivariate t distribution with mean
‘vector (; and covariance 2(8). For each draw and its antithetic replication
concavity was checked at the mean budget shares for the three inputs and
monotonicity was checked by computing the predicted shares for all 29 data
points. 14 The mean of the posterior distribution can be obtained by using only
those draws which satisfy both concavity and monotonicity. Finally, the
probability that the restrictions hold can be obtained by using all ‘the
replications.

Table 3 reports the results from the Qalculatioh of the posterior mean
gsing the multivariate t distribution to generate replications in importance
sampling. The results in Table 3 are very similar to those of Table 2. Of
the 4000 replications 97.05% of these satisfied the concavity and
.monotonicity constrainf. Also shown in Table 3 is the standard error of
proportion which is just the estimated standard error for the binomial random
variable ;; (evaluated at .97050) and the numerical standard error of the
_parameter estimates (the square root of the variance divided by the number of
replications ). The numerical standard errors of the estimated parameters

are measures of the precision of the estimated parameters. The posterior

mean values for the parameters in Table 3 were then used to compute the

1l’lConcavity was also checked at the minimum and maximum of the budget shares.
At the minimum of the budget shares the probability that the restrictions
held was 5.57%. At the maximum of the budget shares the probability that the
restrictions held was 0.0%. Thus we conclude that the probability of the
restrictions holding is highly sensitive to where the " budget shares dre
evaluated.




fitted shares (Figure 1) and the Allen-Uzawa partial elasticities of
substitution (Figure 2). Summary statistics for each of Figures 1-4 are
shown in Table 4.

Figure 1 reports the three sets of share estimates.15 Clearly all shares
are positive in all years which verifies that the monotonicity condition is
satisfied. Over the period 1956 to 1983, the share of drilling has doubled
while the share of geophysical effort has fallen from .29 in 1956 to .12 in
1983. The share of land has also fallen somewhat over the specified period.

Figure 2 reports the Allen-Uzawa partial elasticities of substitution for
the estimates in Table 3. The Allen-Uzawa partial elasticity of

substitution (PES) is a useful way of measuring the percent change in the

ratio of the two factors resulting from a 1% change in their relative prices

(holding output constant). The estimated Allen-Uzawa partial elasticities of

substitution between input price i and J are given by

"~

c 1 é. : i+

ij J

where ¥;; are the fitted coefficients from the cost function and S; is the
fitted share of input i, i = D,G,L (D = exploratory driiling effort, G =

geophysical effort and L = land acquired for exploration). If ci; is less

1sUnfort:unately the Monte Carlo integration procedure in SHAZAM doeé not
provide covariance estimates between parameters so that we are unable, _to
obtain standard errors for the estimated shares and elasticities.




than or equal to zero, the inputs are complements. 1f ;i.i is positive, the
inputs are substitutes .with a larger positive value of ;ij indicating the
inputs are better substitutes for one another.

From Figure 2 it is clear that all own price elasticities are negative
and fairly stable over  time. All cross pricg,elasticities (except opg for
the years 1981-1983) are positive indicating that the three inputs are

substitutes.

3. The Marginal Cost of Exploration for 0il and Gas

The marginal costs of exploration for oil and gas are easily obtained by
straightforward differentiation of the cost function. The estiméted marginal
costs of exploration for oil (Ql) and gas (Qz) in each year is calculated as,

‘(8) 6Ct/601t = { bl/Qlt + B,</Xt + onlnwo/xt

'+ ‘Bxclnwa/x.t‘ + €XL1nwL/Xt } Ct

-~

(9) aCt/BQZt =’{ bz/QZt

+ Bx/xt + ‘B.xoanP/xt

+ Bxclnwe/X, + BXLlnwL/Xt}Ct

-~

In the calculation of (8) and (9), the predicted values of Ct’ Ct’ are
used along with the estimated parameter vector, (3 The exponentiatioh of lnEt
results in biased'es‘ti'mates of Et' Hence the transformation suggested in.
Goldberger [1968], p.469' is used in calculating Et.’ These marginal cost
" estimates are shown in Figure 3 where all estimates ‘have been converted to
1981 dollars using the industrial selling price index (ISPI).

From Figure 3 it appears that the estimated marginal discovery costs seem




to be rising over time. In 1955, the marginal finding cost of o0il is
estimated tovbe $.88 per cubic meter while in 1983 it is estimated at $2.93
per cubic meter. The estimated marginal finding cost of gas in 1955 is $1.23
per thousand cubic meters and $4.83 per thousand cubic meters in 1986.

To further investigate how the marginal exploration costs change over
time we regressed the natural log of the estimated marginal cost against a

time trend. The regression results are:
1nﬁCo -229.17 + -.1167 t + G
(41.72) (.021)
R? = .5110 s.e.e. = .95465 DW

-126.69 + .0645 t + u
~(29.95) (.015)
R% 3756 s.e.e. = .08536 DW = 1.109

where the standard errors are in parenthesis and MCo is the estimated
'marglnal cost of oil (6C/6Q ) and MCg is the estimated marginal cost of gas
(6C/602). Both trend coefflcients are 51gn1ficant at the 10% level. For the
‘marginal cost of oil there is a 11.7% per year increase along the trend line
while for natural gas there is a 6.5% per year increase along the trend line.

Our results indicate trends that are roughly one-half as large as those

reported in Livernois [1988] who found a 21.1% per year increase in the

marginal cost of oil along the trenduline and a 17.5% per year increase in
fhe marginal coet of gas ‘aloné vthe trend line. Our eStimated: marginal
exnloration cost measures are somewhat smaller than thoee of Liverneis [1988]
because we have explicitly ailowed for teehnical progress which helps to

offset the rise in exploration costs brought about by depletion effects. Our

16Since any measurement error is in the dependent variable there is no need.to
adjust the standard errors.




results, like those of Livernois, indicate some strong evidence for the

increased marginal cost of oil and gas in Alberta.

4. The Measurement of Resource Scarcity

One outstanding issue is to determine how well these marginal cost

estimates . approximate the unobservable resource rents. In extending the
Devarajan and Fisher [1982] two period exploration and extraction model to
many periods, Lasserre [1985], has shown that resource rents can be expressed
as the sum of the production cost of the expected marginalA discovery unit,
the scarcity rent on exploration discovery per expected marginal discovery
unit and a term that accounts for uncertainty in the model. Lasserre refers
to the sum of these first two terms as "full marginal discovery cost" or
FMDC. If exploration rents and the effects of uncertainty are small compared
to tixe marginal cost ‘of exploration then we can expect | our marginal
exploration cost estimates to be good measures of resource rents and hence
scarcity. Using data.similar to ours, Lass.erre showed that scarcity rent on
exploration discovery can be large (as much as . 20% of FMDC). Livernois
compared his marginal discovery cost estimates to Eglington and  Uffelmann
- [1983] esitmates of the shadow price of reserves in the ground and found the
two to be unrelafed. " The evidence from Lasserre and Livernois suggests that
marginal costs of exploration alone are not good measures of resource
scarcity.

To get a bettér' measure of resoufce scarcity wel aﬁgment our estimatéd

mafginal cost estimates with estimated exploration rent. Following Lasserre




we use the Eglington and Uffelmann data on bonus payments 17 to measure rent
on exploration discovery. .

Figure 4 shows our estimated measures of resource scarcity for Alberta
which are computed as the sum of estimated marginal exploration costs plus
bonus payments (which are measures of exploration rents) where all values are
in constant 1981 Canadian dollars.18 Regressing the estimated natural log of

So (scarcity of oil) and Sg (scarcity of gas) on a time trend yields the

following results,

InSo = -196.55 + .1006 t + u
(38.50) (.019)
= .5366 s.e.e. =.62249 DW

-34.561 + .0178 t + u

(21.27) (.011)
.0726 s.e.e. = .34306 DW

‘If any uncertainty in the exploration process is reflected by large year to

year fluctuations in discoveries but not in the trend then our measure of
resource scarcity should be a good approximation to the true séarcity. For
oil there is a 10% per year increase in scarcity along the trend line and for
natural gas there is a 1.8% per year increase in scarcity along the trend
line. Again, both trend coefficients‘are significant at the 10% level. The

above regression results for 1nSo and 1nSg indicate a fairly strong increase

17Bonus payments include payments to the Director of Mineral Rights and the
Mining Recorder, payments for Crown Drilling Reservations, Petroleum and.
Natural gas Drilling Reservations, Petroleum and Natural gas Leases, Natural
Gas licenses and Leases, Block A permits and Leases, Petroleum and Natural

Gas Permits, and Indian Lands and Federal Lands. . .

18The Eglington and Uffelmann [1983] measures of exploration rents only cover
the period 1957-1979. :
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in the scarcity of oil in Alberta but a substantially less increase in the

scarcity of natural gas.

5. Conclusions

The calculation of marginal exploration costs has received a great deal

6f attention in the literature recently because of the connection between

marginal exploration costs and measures of resource scarcity. In this paper
a multiple—output translog exploration cost function was estimated for
Alberta. A new definition of depletion was introduced and its estimated
coefficient‘waé found to be empirically statistically significant. Concavity
and monotonicity were imposed using Monte Carlo integration techniques.

We found that the estimated cost function exhibits linear hpmogeneity in
the input prices and to be increasing in both oil and gas discoveries. The
cost function was also increasing in cumulativé depletion. The estimated
.cost function did not exhibit constant returns to scale. Our results show
that technological change over the period 1955-83, appears to have been
biased. We found that changes in technology have been factor saving for
geophysical effort and land but factor using for drilling. All of the own
price elasticities are negative and except for the elasticity of substitution
between drilling and geophysical effort in the years 1981, 1982 and 1983 all

cross price elasticities were positive indicating that the three inputs are

191n our case the unrestricted and restricted cost function parameter
estimates do not change much given that 97% of the restrictions are
satisfied. However, in other applications this could change. Hence in
studies where the unrestricted model can be potentially meaningless, this
Monte Carlo integration technique is a good procedure for generating
resticted estimates and at the same time delivers some measure of confidence
in the restrictions. . .




substitutes.

There is strong evidence for the increased marginal cost of exploratioh
for both oil and gas over time. Our marginal exploration cost estimates are,

however, smaller than previous studies because we have explicitly allowed for

technical progress which ‘helps to offset the rise in exploration costs

brought about by depletion effects. Augmenting these marginal cost estimates
Wwith measures of exploration renﬁ we found evidence, although‘not as strong
as other studies, for the increased scarcity of oil and gas in Alberta. It
would be interesting to compare our ﬁarginal cost esﬁimates from a
multiple-output transibg cost function with those that would be obtained from
some other multiple-output flexible functional form 1like a Generalized

McFadden cost function or a Generalized Barnett cost function.
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Table 1

OLS Regression Results from the Multiple Output

Translog Exploration Cost Function

Parameter estimated t- rétio
coefficient (8 d.f)

26318 1.0127
-126.65 -0. 57042
421.25 1.3337
129.36 1.1023
1.4074 0.7607
0.4221 : 0.2983
0.4143 .9120
1. 4006 .2734
-0.1730 .3032
~0. 6247 . 3238
-0. 00853 .2128
0. 003092 © 0.0310
21.338 1.8713
-4.7521 .2195
6.3203 1.6447
1.3796 . 4050
-25.904 . 9951
0.01258 0.9686
0.09827 0.8098
-0.2596 . 4526
-0.0743 .1988

s.e.e = 0.10519 DW
LL = -150.938




Table 1A

Diagnostic Tests for the Regression Results Reported in Table 1

Test Statistic P-Value

.649
.830
. 105
.004
.867
.998
.997
.333
.234
2110107 %)
.632
.305

0.478
14.003
29.379
10.656
0. 0310
0.0120
0.0140
0.9550
1.9710
78.191
0.7110
1.450

O O O O OO 0O O oo o o

Notes:
The degrees of freedom for each test is shown in parenthesis.
tsc is a Godfrey [1978] t statistic for AR(1).

XZBP is a Breusch-Pagan [1979] chi-squared test for heteroskedasticity.
XZH is a Harvey [1981] chi-squared test for heteroskedasticity.

XZJB is a Jarque and Bera [1980] chi-squared test for normality.
Frr(i, j) are Ramsey [1969] RESET F statistics for omitted variables.
XZARCH is an Engle [1982a] chi-squared test for ARCH(1).

Fexoc is a Davidson and Mackinnon [1987a] F test for exogeneity.

Fers is a F test for Constant Returns to Scale.

Fnre is a F test for NgutrallTechnical Chénge.

Fup1 is a F test for Linear Homogeneity in input prices.




Table 2

Estimated Parameters, Translog Exploration Cost Function
MLE Method

Parameter estimated t- ratio
coefficient (asymptotic)

0.975236 .9748
-35.616 .8151
. 8747 . 4646

. 10895 7.7849

. 14873 6.8795

. 06219 . 6539
0.11387 .2572
.035836 ‘ 1.3555
.064434 1.3740
.80744 ' . 1949

. 045892 . 7485
.048768 .6548
.000109 . 3960
.018279 ~ 9.6975

. 004235 . 4036

" Drilling Geophysical
Share Share

LL 124.554 124.554 124.554

2 .9422 . 8427 .6297 .
.e.e . 14499 . 03707 .04176

Notes: The residuals for each equation ,are calculated as the dependent
variable less the fitted values. The R® values are calculated for each
equation separately as ESS;/TSS; where ESS; is the explained sum of squares
from equation i and TSS; is the total sum of squares from equation i. The
standard error of the estimate is just the standard error of the residuals

from each equation.




Table 2a

LR Tests for CRS and NTC

Test Statistic DF P-Value

Unrestricted "124.554

CRS 88. 657 .596(1077)

99.525 .597(10" ")

62.089 . 0000

Notes: LL is the log of the likelihood function.
DF is the degrees of freedom and P-Value is the probability value.
CRS denotes constant returns to scale.
NTC denotes no technical change.
-CRS+NTC denotes the joint hypothesis of CRS and NTC.




Table 3

Posterior Mean Values: Multiple-Output Translog Cost
Function Parameters
Concavity and Monotonicity Imposed
Importance Function: Multivariate t

4000 Replications 3882 Satisfied

Proportion = 0.97050,

Numerical Standard Error of Proportion = 0.00268
Asymptotic Standard Error of Proportion = 0.00268

Parameter Mean St Dev Var Num Se

0.975236 1.0432 1.0883 .0167430
-35. 486 .3.6005 12.964 . 0577880
8.8461 3. 3495 11.219 . 0537590
0.10859 .01423 .0002022 .0002284
0.14791 .021069 .0004439 .00033816
-0.062210 .017029 .0002900 - .00027332
0.11437 .018150 .0003294 .00029131
0.035621 .027325 . 0007466 .00043856
0.064306 .048300 . 0023329 .00077521
0.80694 .161310 .026020  .00258900
.045407 .016917 . 0002862 .00027152
.04920S .018300 .00033489 .00029371
.000109 .0000151 .22917E-9 .24297E-6
.018213 .0018749 .35152E-5 .30092E-4
.004219 .0017585 .30923E-S .28224E-4

Notes:

1. The variance of a particular coefficient is the square of
its standard deviation (St Dev).

2. The numerical standard error (Num Se) for a particular
coefficient is the square root of its variance (Var)
divided by the number of replications.




Table 4

Summary Statistics for Figures 1 - 4

Figure 1 Fitted Shares

Parameter Mean St. Dev. Min

. 38274 . 08720 . 26202
. 24835 . 05792 . 12421
. 36890 . 08427 . 19238

Parameter i St. Dev. Min

Oop -. 58485 .12510 -.69020
Coc . 29006 . 16208 . 02370
ooL . 35206 . 11370 . 00226
Cae -1.0095 .34483  -1.18S8
ooL ! . 35850 . 26980 -. 54754
oLL -.64614 . 12136 -.81321

Figure 3 Predicted Marginal Discovery Costs

Parameter Mean St. Dev. Min

MCo 3.0223 4.1251 . 08835
MCg ' 1.1556 0.9870 . 06737

Figure 4 Predicted Marginal Scarcity Costs

Parameter Mean St. Dev. Min

So 7.0381 6.1265 1.7720
Sg 1.680S 0.6449 . 82227
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Fig. 3

Marginal Exploration Casts
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