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Abstract

In this paper annual Canadian exploration data are used to estimate a

multiple-output translog exploration cost function. A new definition of

depletion is introduced and its estimated coefficient is found to be

statistically significant. Another novel feature is the application of Monte

Carlo integration to ensure the estimated cost function satisfies concavity

and monotonicity. The *fitted cost function parameters are then used to

obtain estimates of the marginal costs of exploration for oil and gas. Our

estimated marginal exploration costs are smaller than previous* studies'

because we have allowed for technical progress which offsets the depletion

effects. These marginal cost estimates are employed, along with previous

estimates of exploration rents, to measure resource scarcity. We find some

evidence for the increased scarcity of oil and gas in Alberta- • For oil

there is a 10.07. per year increase in scarcity along' the trend line while for

natural gas there is a 1.87. per year increase in scarcity along, the Crend

line.



1. Introduction

A fundamental problem in resource economics is to measure resource

scarcity. Conceptually the most appropriate measure of resource scarcity is

resource rent, where the resource rent is just the difference between the

price of a good produced and the unit cost of turning the natural resource

into the good. 
1

The unit costs include the value of the labour, capital,

energy and materials needed to convert the natural resource into a finished

product.
2

There are, however, several fundamental problems with using rent

as a measure of resource scarcity. These include the fact that resource

rents• are affected by government tax policies and market imperfections.

There is also the problem that resource rents are difficult to measure.

This suggests that some suitable alternative method of measuring resource

rents is required.

,Theoretical results by Brown and Field [1978], Devarajan and Fisher

[1982] and Lasserre [1985] suggest that marginal exploration costs may be

used to measure resource scarcity. The measurement of resource scarcity is

an empirical issue. One aim of this paper is to empirically measure oil and

gas scarcity for the province of Alberta.

In this paper we follow Livernois [1988] and model an aggregate

multiple-output exploration cost function by the multiple-output translog

cost function. This paper differs from the existing literature in three

important ways. First, we introduce a new measure of resource stock

/This is discussed in Hartwick and Olewiler [1986].
2
For non-renewable resources such as oil and gas, rising scarcity Is
indicated by rising resource rents.

3



depletion, which we call X, than the one commonly used. In connection with

this. new depletion variable we also include a time trend which allows for the

measurement of technological change in -exploration. Third we .make use of

Monte Carlo integration techniques to directly impose the monotonicity and

concavity restrictions onthe. cost function. We discuss each of these issues

in turn.

Most studies choose to measure the effect of depletion by specifying the

variable X as a measure of cumulative drilling activity. For instance, X may

represent the cumulative meters drilled to date or it may represent the total

number of wells drilled to date. The. intention is that as the resource is

exploited it makes it 'harder. and therefore more costly to discover any

further amount. While it may seem reasonable that increases in exploration

effort reflect measures of depletion, we.would. argue this is .not necessarily.

true. Instead,- increases In exploration drilling may just reflect bad luck.

on the part of the firm. By bad lubk on the part. ofthe firm we mean that

there may be large reserves of the resource available but firms are drilling

in the wrong place.
3

Instead, we prefer to measure resource depletion by the

cumulative sum of .proven reserves. If the rate of accumulation of reserves

is slowing then we infer that resource depletion is being manifested.

The most direct way to incorporate technical change into exploration

activity is to assume that exploration costs are a function of time, t. In

this •case, exploration costs can be written as C C(w,Q,X,t). Here, w is

a vector of input prices, Q is a vector of outputs, X is a variable for

3
There are other problems with using cumulative drilling as a measure of

depletion. When a large new deposit is first discovered, •increased drilling
activity occurs not because the resource is scarce but because the resource
is plentiful.

4



depletion and t is a time trend. We would expect the marginal effect of

technical change to be negative (8C/8t < 0) since the lapse of time reduces

marginal, exploration costs as new techniques are utilized. Thus, while

depletion effects tend to raise exploration costs (ac/ax > 0), technical

• advance leads to lower exploration costs if auat <O. The net effect on

exploration costs is ambiguous. Consequently, any empirical study which only

includes depletion effects (but does not include technical change) will

overestimate (underestimate) marginal exploration costs if there has been

technical progress (regress).

Our third point of departure concerns a more general issue that arises

when estimating. any type of demand or cost system. It is often the case, that

after 'estimating a system* of demand equations the researcher finds 'that the

estimated coefficients violate the requirements for . concavity and

monotonicity. This means that the parameter- estimates and associated

elasticities of substitution are not economically meaningful. While ..

traditionally one could reject the concavity* conditions or estimate a more

general flexible functional form, Chalfant and White [1987] have proposed a

Bayesian inference procedure 'using inequality constrained Monte Carlo

integration ( Geweke [1986]), to impose curvature restrictions on demand

systems. Following Geweke [1986], they use Monte Carlo integration and

importance function sampling to obtain an inequality constrained estimate of

the parameter vector for a demand system together with a probability that the

restrictions hold. In this paper we adopt the Geweke procedure to ensure our

estimated exploration cost function satisfies the requirements of

monotonicity and concavity and this leads to direct economic interpretation.

This paper is organized as follows. Section 2 discusses the
•a'

multiple-output translog cost function and presents parameter and

5



Allen-Uzawa partial elasticities of substitution. In section 3 the estimated

cost function parameters are used to determine the marginal exploration cost

for oil and.gas in Alberta. In section 4 these.marginal exploration costs

are augmented with independently obtained measures of exploration rents to

form a measure of resource scarcity. Section 5 concludes the paper.

2. The Multiple-Output Translog Cost Function

We assume that competitive input markets exist for the exploration

industry. We do not, however, make any assumptions about the structure of

output markets. Exploration activity is a multiple-output technology that

uses three inputs, exploratory, drilling, geophysical. effort and land acquired

for, exploratory drilling to. produce two outputs, oil discoveries and gas

discoveries. We assume the multiple-output technology can be represented by

the .dual cost function.

(1) C = C(w ,w ,w! X,t)
D G L' l' 2'

where w., i = D,G,L are the input prices, (D=price of exploratory drilling,

G=price of geophysical effort and L= price of land acquired for exploratory

drilling) Ql = oil discoveries, Q2 = gas discoveries and X is a variable that

measures the effect of depletion. For (1) to be a proper cost function the

following regularity conditions must hold: C(w, Q, X,t) is nondecreasing in

w, concave in w, continuous in w and satisfies monotonicity. Here w equals

the vector of input prices (wir wG,wL) and Q equals the vector of outputs,

The variable X captures the effect of depletion. We would expect the

largest pools are discovered first making it more difficult and therefore

more costly to discover subsequent pools. This implies the cost function is

6



increasing in X.

Letting C(w,Q,X,t) denote the total cost of joint exploration for oil and

natural gas in Alberta, the three input (price of drilling,

geophysical effort, wG, and price of land acquisition,

translog cost function can be written as (2).
4

(2) 1nC(w,Q,X,t) = ac + aDlnwD + aGlnwG + aLlnwL + aTt
,

+ 0.57oD inwD,
2
 7DG 1 nWo 1 nWG 70L- lnwolnwL

+ 0.57GG(lnwG)
2 
+ 7GLinwcinwL

+ O. 
57LL(lnwi..)2

 + ban% + b21nQ2

▪ 13x1nX (3xDinX1nwp + f3xGinX1nwc + 13xL1nX1nwL

▪ 7-n-t
2 
+ aptinwp + 8GtlnwG + aLtlnsk

Wt.)

wb, price of

multiproduct

where symmetry and homotheticity have been imposed. Here we are considering

the translog cost function as a second order approximation to • a true• cost

function. Equation (2) also includes a time trend variable, t , to account

for technological 'change. The translog cost function exhibits constant

returns to scale if 1)1 + b2 = 1 and is linearly homogeneous in the input

prices if the following conditions hold.

aG + aL =1

Too '0G +• 2 ?Cm =0

(3) 'DG • Tcc 'GL = 0

2I'LD • 7fLc 21t. =0

13X0 + r-XG t-• i3XL =0

4
The multiple-output translog cost function is discussed in some detail in

Denny and Pinto [1978].
5
Ideally one would want to test the symmetry condition. In practice this

is rarely done since the estimation period for these cost functions is

usually only 30 or 40 observations. Without imposing symmetry, (2) has 24

estimated parameters but only 29 observations. Homotheticity implies no

price output interactions (le. all terms of the form: lnwilnQi,= 0, V WI.=

D,G,L and j=1,2).



•

so =0

The dual cost function in (2) will not exhibit any technical 
progress or

•
regress if it is independent of time.

aT =0

(3a) 7TT = 0

a° = ac= & = 0

The share equations can be easily derived from the cost function
 given

in (2). Differentiating (2) with respect to the logarithm of wo, for 
example,

we have

(4) aln C 
alnwo

ao + ioolnwo + a'oclnwc+ zsoLlnwL

gxolnX Sot

Under the assumption of cost minimization and if . the cost fun
ction is

linearly homogeneous in prices then,

aln C wo ac. woD 

alnwo = 
= So

C Ow() C

where SD is the cost share of drilling. Shephard's Lemma and logarithmic

differentiation with respect to each input price yields the following set of

cost share equations.

(5)

SD = at) + 700lnw0 + Tacinwc+ 7DLlnwL + 13xo1nX

+ apt

aG. + 7colnwo + TGGlnwc+ 7cLinwL gxG1nX

+ act

SL = aL + nolnwp TLG1nwG4- Zu_lnwL 13xL1r1X

▪ aLt

where SG is the share of geophysical effort and SL is the share of la
nd

acquisition. This assumes that in each observation period there has been a

full and complete adjustment of the input mix to the factor prices so 
that

8



the minimum cost level is achieved.

In this study annual observations from 1955 to 1983 on the exploration

industry in Alberta are used.
6 

Exploratory drilling is measured by the total

number of meters drilled annually while geophysical effort is measured by the

total number' of annual crew months. Land is total area of land acquired

under lease and license annually for exploratorydrilling. Input prices are

calculated by dividing the annual expenditures on these activities by their

respective quantities. The total cost of exploration is calculated as the

sum of these three expenditures. The output variables (Q1 F oil discoveries

and 'Q = gas discoveries) are the 1985 estimates of the values discovered in2

subsequent years.

All input prices are converted to constant 1981 dollar prices using the

industrial selling price index (ISPI) which is available from Statistics

Canada. Assuming an additive . disturbance for the trans log cost function

leads to the following *regression equation 
7

.(ZA) 1nC = .ac + apinwo + aGlnwG + aLlnwL + aTt

+ 0.57Do lnwo )
2 
+ ToGlnwolnwG + ToilnwolnwL

+ 0.57GGClnwG 2) + 3%011140-mA.

+ 0- 52cLL(lnwL)
2 + 131 + b21n(22

+ 13x1r1X + gxplralnFD + (3xG1nXinwG + 13x

+ Trrt
2 
+ aptinwD + 5GtlnwG + aLtinwi.

lnX1nwL

+u

The results from OLS estimation of (2a) are shown in Table 1: From the

parameter estimates in Table 1 we see that the cost function is increasing in

6
We are grateful to J. Livernois for the data.

7
We assume the cost function C(w,Q,X,t) has errors distributed as lognormal.
Taking natural logs yields (2a). .•



cumulative depletion, X, which is significant at the 10% leve1.8 This would

seem to indicate that the largest pools are discovered first and that

subsequent exploration turns up small low quality reserves. In this case

future exploration leads to smaller and smaller discoveries which not only

add to existing reserves and lower extraction costs but also increase

exploration costs. The cost function is decreasing in Ql and increasing in

Q2, but neither is statistically significant.

To evaluate the estimated cost equation we apply several diagnostic

tests to the residuals from OLS estimation of (2a). The results are shown in

Table la. Throughout this paper (unless otherwise noted) the 5% critical

value is used for hypothesis testing. The null hypothesis of no

autocorrelation can not be rejected by a Godfrey [1978] t statistic of• +.478

(critical value = +2.45). Also shown in Table 1 are several tests for

homoskedasticity. The null hypothesis of homoskedasticity cannot be rejected

by either the Breush-Pagan [1979] test (test value of 14.003 compared with a

'critical value of 31.410) or the Harvey [1981] •test (test value of 29.379

compared to a critical value of 31.410). The normality of residuals was

tested using the Jarque-Bera [1980] asymptotic LM test. Since the

computed value of 10.66 is greater then the critical value of 5.99 we can

reject the null of normality.
9 
Several Ramsey [1969] Regression Specification

Error Tests (RESET) were computed using the powers of the fitted values from

8
All estimation was carried out using White's [1978] SHAZAM Version 6.0.

9
This is an asymptotic test but our sample size is only 29. The small sample

size may lead to inappropriate rejection of the null. The normality
assumption is quite important since the Monte Carlo integration procedure
assumes the data is distributed normally (at least asymptotically).

10



(2a). The computed F statistic values for RESET (2) (1.5
 d.f.), RESET (3)

(2,4 d.f.) and RESET (4) (3,3 d.f.) were 0.031, 0.0
12 and 0.014 respectively:

Thum' on the •results of these RESET tests the regression equation seems

•satisfactory. An Engle [1982a] test for autoregressive conditional

heteroskedasticity (ARCH (1)) revealed a computed ch
i-squared test of 0.935.

•

We can thus not reject the null of no ARCH (1).

Consistent estimation .of (2a) requires the exogeneity of input
,,•

prices w, .output reserves •Q and depletion X. While it seems reasonable to

expect that input prices are exogenous it may be 
less reasonable to assume

reserves Q1 and Q2' are exogenous. Following Davidson and Mackinnon [1987a],

a joint test for the endogeneity of both Qi and Q.2 turned .up an T statistic

of 1.971 with 2" and 5 degrees of freedom. Since 1.971 is well below the 5%

critical value* of 5.79 we do not. reject the null. Qi . and Q1,2 are both

• 10
exogenous.

,Since the computed F statistic for. constant returns to scale is

.78.191 with 1. and 8 degrees of freedom we can reject the null- h
ypothesis of

constant returns to Scale. The computed F statistic for neutral technical

change was 0.711 with 5 and 8 degrees of freedom
 which. is less then the

critical value of 3.69. Finally the computed F statistic for linear

homogeneity in the input prices is 1.450 with 6 and 8 degrees of freedom

which may be compared to the 5% critical F value of 
3,58. • Thus we cannot

reject the null of linear homogeneity in prices at. the 5% level.. In light of

these results we shall impose linear homogeneity.

With linear homogeneity in input prices, the share eq
uations are given in

(5). The cost function and the share equations form a sy
stem of seemingly

SI •

10
Further tests also revealed the exogeneity of the dep

letion variable, X.

11



unrelated regressions and we assume the errors are normally distributed with

contemporaneous covariance matrix E. Since, by definition, the shares must

sum to unity, one of the share equations is dropped to guarantee that E is

positive definite. Given that the maximum likelihood estimation is invariant

to which share equation is dropped we decided to exclude the share of land

.equation since the land share equation revealed the poorest set of diagnostic

11
tests.- After imposing symmetry and linear homogeneity the 15 parameters for •

the three input cost function are

(ac, ap, ac, ar, Too Toc bi b2, gx, /3X0,13XG, 45TT, 81), 8G )

Estimation of the cost function was by the method of. nonlinear maximum

likelihood using the Davidson-Fletcher-Powell algorithm.. Kmenta and Gilbert

[1968], show that under the assumption of no heteroskedasti6ity or

autocorrelation within equations the iterative Zenner method yields full

information maximum likelihood estimates. Iterating until convergence on a

system of the cost function and two of the .share equations yields maximum

likelihood estimates of the yector of translog parameters and the resulting

covariance matrix E. The results appear in Table 2.

From Table 2, the estimates of 131 and b2 (corresponding .to ln(21 and

lnQ2) are both positive, implying the cost.function is increasing in outputs.

The estimated coefficent on our new depletion measure, gx,. (the coefficient

on lnX) is positive and significant demonstrating that the cost function is

increasing in cumulative depletion. 
12

A significant estimated gx indicates

the intercept of the cost function has shifted over time. From Table 2 we

11
Diagnostic tests on the residuals from the other two share equations

indicated little evidence of either heteroskedasticity, first order seral
correlation , ARCH(1) or absence of normality.
12

In Livernois [1988] X was measured as cumulative drilling activity.
found a negative but insignificant coefficient on the variable lnX.

12

•I •



see that except for ac, bl and b2 all the paramater estimates are

statistically significant. The coefficients fixo and gxc (by linear

homogeneity 13xL =--- f3xo gxG) are both 'negative and significant indicating

that changes in depletion have been factor saving (cost reducing) for

drilling and geophysical effort but factor using (cost increasing) for land.

The effect of technological change is measured by the coefficients ar, Trr,

8 and SG. The coefficient on the time trend variable aT is positive and

significant suggesting a positive shift over time in the cost function. The

estimated coefficient 'TT is negative and significant verifying the cost

function is concave in time. The coefficients ap and 43G are both

statistically significant "indicating technological change has not been Hicks

neutral. The coefficient 4 is positive and significant suggesting

technological change in drilling has been cost increasing. Both SG and 8L

are negative indicating technological change has been cost reducing for

geophysical and land inputs. Using the parameter estimates from Table 2 we

Computed the conditional mean functions for each of the three cost shares and

found that all shares were positive in all the years.

As further evidence that technical change has not been neutral, consider

* Table 2a. Table 2a reports likelihood ratio (LR) test statistics for the

hypothesis of constant returns to scale (CRS), no technical change (NTC) and

the *joint hypothesis of constant returns to scale and no technical change

(CRS+NTC). The critical chi-squared values at the 5% level of significance

for 1,4 and 5 degrees of freedom are 3.841, 9.488 and 11.070 respectively.

Hence we can individually reject the null hypothesis of CRS, NTC and also

reject the joint hypothesis of CRS+NTC. We again raise the point, however,

that these LR test are asymptotic test's whereas our sample size is only 29x3

=87.

13

I. •



The residuals from each of the three equations in the system were

subjected to various diagnostic tests. Heteroskedasticity as measured by the

Breusch-Pagan and Harvey tests was not detected in any of the three

equations. Using a Gauss-Newton artificial regression a test for AR(1)

turned up asymptotic t statistics (with probability values
 in parenthesis) of

-0.7201 (0.600), 0.9299 (0.313) and 1.8558 (0.070) for the cost, drilli
ng

share and geophysical share equations respectively.
13 The reported

chi-square4 test statistics for ARCH(1) (with probability values in

parenthesis) were 1.036 (0.308) , 0.191 (0.662) and 0.2
52 (0.616) for the

cost, drilling and geophysical share equations respect
ively. For each of

these three equations we cannot reject the null of no A
RCH(1).

Imposing Concavity Conditions through Monte Carlo Integrat
ion

,Negative semidefinitness of . the matrix of second order partial

derivatives of the cost function is a necessary and suffic
ient condition for

a twice continuously differentiable cost function to be con
cave in,prices, w,

over the positiveS orthant. This requires V
2

C(w,Q,X,t) be negative

semidefinite for Q > .0, w >>0 and t = Here V2 aw,Q,X,t) denotes

the 3X3 matrix of second order partial derivatives of C 
with respect to the

components of w. Denote Ci = aC(w,Q,X,t)/awi, Cu = 82C(w,Q,X,t)/8wiawi

and au = .1 for i = j, and au = 0 otherwise. By straightforward

differentiation it can be shown that,

a2inC(w,Q,X,t) auw,ci wiwjcici wiwici;
(6)  

alnwilnwi C
2

13
A good discussion of artificial regressions can be found in

 DavidsOn and

Mackinnon [19841 and (1987b].
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a21nC(14,Q,X,t)
For the translog in (2),   =

alnwialnwi

Using.Shephard's Lemma and the definition of share functions, Diewert and

Wales [1987] show that (6) can be written as

Diag(w)[V
2
 ww C(w,Q,X,t)]Diag(w)

(7)   = r - [Diag(s) - ss']•
C(w,Q,X,t)

where s is a vector of factor shares (which is evaluated at some point in the

sample), Diag(s) is a diagonal matrix formed from s, Diag(w) is a diagonal

matrix formed from the vector of input prices (evaluated at some point in the

sample) and r = 71J (i,J=D,G,L) is the matrix of -coefficients from the

trans log multiple output cost function. Provided that C64,Q,X,t1 > 0 V
2
WW

C(w,Q,X,t) will be negative semidefinite if and only if,

F - [ Diag(s) - ss']

is negative semidpfinite. A sufficient condition for concavity of the cost

function C(w,Q,X,t) is that the matrix of coefficients, r, be negative

semidefinite.

Using the parameter estimates from Table 2 the cost function was found

to be concave in all but one year. Since concavity is a fundamental property

of the dual cost function and if violated yields biased parameter estimates

and biased elasticities, we decided to follow Chalfant and White [1987] and

impose monotonicity and concavity through Monte Carlo integration. The

Chalfant and White procedure for imposing monotonicity and concavity is

described in detail in Chalfant and White [1987] and we will only sketch the

steps involved.

The Bayesian procedure for estimating an inequality constrained cost

-•function envolves first obtaining maximum likelihood estimates of the

15



parameter vector 0 and associated variance-covariance matrix E. Prior

densities are specified for both E and 0. .If there are no inequality

restrictions the. priors for E and 0 are diffuse. While the joint posterior

for E and 0 is very complicated the marginal posterior for 0, which we will

denote as f(01y) may be fairly simple. Here y.= (1nC,sp,sc,s0• Adding

inequality constraints in the form of monotonicity and concavity restrictions

implies a truncated marginal posterior for 0 (f
R
(1/10)). For convenience a

quadratic loss function is used. Given that the restrictions are imposed the

posterior mean is,

E(0) = OkfR(y10)d0

where 0 is restricted to lie in 0, the region of the parameter space where

the concavity and monotohicity conditions are imposed and k is a constant of

proportionality.' The probability that the restrictions hold • under

noninformative priors is given by p,

p = I(0)kf(011/)00

0

where I(0) is the indicator function and .I(0) = 1 if the restrictions hold (0

E 0) and I(0) = 0 otherwise. The numerical problem is that the integrals

used in evaluating E(0) and p are both too complicated •to evaluate

analytically. Consequently, Monte Carlo integration techniques are

suggested. Moreover, kf(01y) is in general an unknown density and as such

importance sampling is used because it is not possible to generate

replications from the exact posterior density. The method of importance

sampling substitutes a well known and simple density (say g(01y)) for the

unfamiliar true posterior density. In addition, an adjustment is made for the

fact that g(ely) is not the true posterior density. If the data are normally

distributed then two obvious choices for g(eIY) are multivariate normal-(for

16



large samples) or multivariate t (for small samples) both with parameters 0

and E, the maximum likelihood estimates from unrestricted estimation.
.401.

Essentially, the maximum likelihood estimates of 0 and E(0) are used to

generate antithetic draws from the multivariate t distribution with mean

*vector 0.and •covariance E(0). For each draw and its antithetic replication

concavity was checked at the mean budget shares for the three inputs and

monotonicity was checked by computing the' predicted shares for all 29 data

points.
14 

The mean of the posterior distribution can be obtained by using only

those draws which satisfy both concavity and monotonicity. Finally, the

probability that the restrictions hold can be obtained by using all the

replications.

Table 3 reports the results from the calculation of the posterior mean

using the multivariate t distribution to generate replications in importance

sampling. The results in Table 3 are very similar to those of Table 2. Of

the ,4000 replications 97.05% of these satisfied the concavity and

monotonicity constraint. Also shown in Table 3 is the standard error of

proportion which is just the estimated standard error for the binomial random

variable p (evaluated at .97050) and the numerical standard error of the

parameter estimates (the square root of the variance divided by the number of

replications ). The numerical standard errors of the estimated parameters

are measures of the precision of the .estimated parameters. The posterior

mean values for the parameters in Table 3 were then used to compute the

14
Concavity was also checked at the minimum and maximum of the budget shares.

At the minimum of the budget shares the probability that the restrictions
held was 5.57%. At the maximum of the budget shares the probability that the
restrictions held was 0.0%. Thus we conclude that the probability of the
restrictions holding is highly sensitive to where the budget share g' are
evaluated.

17



fitted shares (Figure 1) and the Allen-Uzawa partial elasticities of

substitution (Figure 2). Summary statistics for each of Figures 1-4 are

shown in 'Table 4:

Figure 1 reports the three sets of share estimates. 
15

Clearly all shares

are positive in all years which verifies that the monotonicity condition Is

satisfied. Over the period 1956 to 1983, the share of. drilling has doubled

while the *share of geophysical effort has fallen from .29 in 1956 to .12 in

1983. The share of land has also fallen somewhat over the specified period.

Figure 2 reports the Allen-Uzawa partial elasticities of substitution for

the estimates in Table 3. The Allen-Uzawa partial elasticity of

substitution (PES) is a useful way of measuring the percent change in the

ratio of the two factors resulting from a 1% change in their relative prices

(holding output constant). The estimated Allen-Uzawa partial elasticities of

substitution between input price i and j are given by

= 7.: 4. S. S.
13 1 j

"

S.S
1j

T.. = 7 4"11 ii

" 2
S.
1

,

where are the fitted coefficients from the cost function and Si is the

fitted share of input i, i = D,G,L (D = exploratory drilling effort, G =

geophysical effort and L = land acquired for exploration). If orij is less

15 
Unfortunately the Monte Carlo integration procedure in SHAZAM does not

provide covariance estimates between parameters so that we are unable_ .to
obtain standard errors for the estimated shares and elasticities.
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than or equal to zero, the inputs are c
omplements. If cij is positive, the

inputs are substitutes with a larger po
sitive value of orij indicating the

inputs are better substitutes for one anot
her.

From Figure 2 it is clear that all own p
rice elasticities are negative

. and fairly stable over ,time. All cross price elasticities (except 
abG for

the years 1981-1983) are positive indicating . that the three inputs are

substitutes.

3. The Marginal Cost of Exploration for Oil
 and Gas

The marginal costs of exploration for oil an
d gas are easily obtained by

straightforward differentiation of the cost
 function. The estimated marginal

costs of exploration for oil (Q1) and gas (Q2
) in each year is calculated as,

(8) act/aQlt =
b
1
/Q

lt ▪ gx/Xt gxDlnwp/Xt

• gxcinwc/Xt

(9) 3ct2t = 
b /Q
2 2t

"

gx inwLixt ct

• gx/Xt 13xpinwp/Xt

▪ gxclnwc/X 1- gm.lnwL/X C
t t

In the calculation of (8) and (9), the pred
icted values of C C areC, t'

used along with the estimated. parameter vector, O. The exponentiation 
of 1nCt

6.6

results in biased estimates of C. Hence the transformation suggested in

Goldberger [1968], p.469 is used in calculating C. These marginal cost

estimates are• shown. in Figure 3 where all es
timates have been converted to

1981 dollars using the industrial selling pri
ce index (ISPI).

From Figure 3 it appears that the estimated 
marginal discovery costs seem
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to be rising over time. In 1955, the marginal finding cost of oil is

estimated to be $.88 per cubic meter while in 1983 it is estimated at $2.93

per cubic meter. The estimated marginal finding cost of gas in 1955 is $1.23

per thousand cubic meters and $4.83 per thousand cubic meters in 1986.

To further investigate how the marginal exploration costs change over

time we regressed the natural log of the estimated marginal cost against a

time trend. The regression results are:
A.

1nMCo = -229.17 + -.1167 t + u

(41.72) (.021)
-2
R = .5110 s.e.e. = .95465 DW = 1.451

lnkg = -126.69 + .0645 t + u

. (29.95) (.015)
-2
R = .3756 s.e.e. = .08536 DW = 1.109

where the standard errors are in parenthesis and MCo is the estimated

A

marginal cost of oil (aciay and MCg is the estimated marginal cost of gas

(aci8Q
2
).
16
 Both trend coefficients are significant at the 10% level. For the

marginal cost of oil there is a 11.7% per year increase along the trend line

while for natural gas there is a 6.5% per year increase along the trend line.

Our results indicate trends that are roughly one-half as large as those

reported in Livernois [19881 who found a 21.1% per year increase in the

marginal cost of oil along the trend line and a 17.3% per year increase in

the marginal cost of gas along the trend line. Our estimated marginal

exploration cost measures are somewhat smaller than those of Livernois [1988]

because we have explicitly allowed for technical progress which helps to

offset the rise in exploration costs brought about by depletion effects. Our

16 • • •

Since any measurement error is in the dependent variable there is no need to
adjust the standard errors.
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results, like those of Livernois, indicate some strong evidence for the

increased marginal cost of oil and gas in Alberta.

4. The Measurement of Resource Scarcity

One outstanding issue is to determine how well these marginal cost

estimates approximate the unobservable resource rents. In extending the

Devarajan and Fisher [1982] two period exploration and extraction model to

many periods, Lasserre [1985], has shown that resource rents can be expressed

as the sum of the production cost of the expected marginal discovery unit,

the scarcity rent on exploration discovery per expected marginal discovery

unit and a term that accounts for uncertainty in the model. Lasserre refers

to the sum of these first two terms as "full marginal discovery cost" or

FMDC. If exploration rents and the effects of uncertainty are small compared

to the marginal cost of exploration then . we can expect ,our marginal

exploration cost estimates to be good measures of resource rents and hence

scarcity. Using data similar to ours, Lasserre showed that scarcity rent on

exploration discovery can be large (as much as 20% of FMDC). Livernois

compared his marginal discovery cost estimates to Eglington and.Uffelmann

• [1983] esitmates of the shadow price of reserves in the ground and found the

two to be unrelated. The. evidence from Lasserre and Livernois suggests that

marginal costs of exploration alone are not good measures of resource

scarcity.

• To get a better measure of resource scarcity we augment our estimated

marginal cost estimates with estimated exploration rent. Following Lasserre

21



we use the Eglington and Uffelmann data on bonus payments 
17

o measure rent

on exploration discovery.

Figure 4 shows our estimated measures of resource scarcity for Alberta

which are computed as the sum of estimated marginal exploration costs plus

bonus payments (which are measures of exploration rents) where all values are

in constant 1981 Canadian dollars.
18

Regressing the estimated natural log of
•••

So (scarcity of oil) and Sg (scarcity of gas) on a time trend yields the

following results,

1nSo = -196.55 + .1006 t+ u

(38.50) (.019)
-2
R = .5366 s.e.e. = ..62249 DW = 0.533

lng = -34.561 + .0178 t + u

(21.27) (.011)

= .0726 s.e.e. = .34306 DW = 0.903

-If any uncertainty in the exploration process is reflected by large year to

year fluctuations in discoveries but not in the trend then our measure of

resource scarcity should be a good approximation to the true scarcity. For

oil there is a 10% per year increase in scarcity along the trend line and for

natural gas there is a 1.8% per year increase in scarcity along the trend

line. Again, both trend coefficients are significant at the 10% level. The

above regression results for 1nSo and 1nSg indicate a fairly strong increase

17Bonus payments include payments to the Director of Mineral Rights and the
Mining Recorder, payments for Crown Drilling Reservations, Petroleum and
Natural gas Drilling Reservations, Petroleum and Natural gas Leases, Natural
Gas licenses and Leases, Block A permits and Leases, Petroleum and Natural
Gas Permits, and Indian Lands and Federal Lands.

18The Eglington and Uffelmann [1983] measures of exploration rents only cover
the period 1957-1979.
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in the scarcity of oil 
in Alberta but a substan

tially less increase in t
he

scarcity of natural gas.

5. Conclusions

The calculation of margin
al exploration costs has 

receiyed a great deal

of attention in the lite
rature recently because o

f the .connection betwee
n

marginal exploration costs
 and measures of resource 

scarcity. In this paper

a multiple-output translog exploration cost function was estimated for

Alberta. A new definition of deple
tion was introduced and

 its estimated

coefficient was found to b
e empirically statisticall

y significant. Concayity

and monotonicity were imp
osed Using Monte Carlo int

egration techniques.
19

We found that the estimate
d cost function exhibits l

inear homogeneity in

the input prices and to be
 increasing in both oil a

nd gas discoveries. The

cost function was also inc
reasing in cumulative dep

letion. The estimated

cost function did not exhi
bit constant returns to s

cale. Our results show

that technological change over
 the period 1955-83, appears to have been

biased. We found that changes in t
echnology have been fact

or saving for

geophysical effort and lan
d but factor using for dr

illing. All of the own

price elasticities are negat
ive and except for the ela

sticity of substitution

between drilling and geoph
ysical effort in the years

 1981,1982 and 1983 all

cross price elasticities w
ere positive indicating tha

t the three inputs are

19
In our case the unrestricted and restricted cost function parameter

estimates do not change much given that 97% of the restrictions are

satisfied. However, in other applications this 
could change. Hence in

studies where the unrestr
icted model can be potenti

ally meaningless, this

Monte Carlo integration technique is a good procedure for generating

resticted estimates and at 
the same time delivers some

 measure of confidence

in the restrictions.
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substitutes.

There is strong evidence for the increased marginal cost of exploration

for both oil and gas over time. Our marginal exploration cost estimates are,

however, smaller than previous studies because we have explicitly allowed for

technical progress which helps to offset the rise in exploration costs

brought about by depletion effects. Augmenting these marginal cost estimates

with measures of exploration rent we found evidence, although not as strong

as other studies, for the increased scarcity of oil and gas in Alberta. It

would be interesting to compare our marginal cost estimates from a

multiple-output translbg cost function with those that would be obtained from

some other multiple-output flexible functional form like a Generalized

McFadden cost function or a Generalized Barnett cost function.

.11
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Table 1

OLS Regression Results from the Multiple Output

Translog Exploration Cost Function

Parameter estimated t- ratio
coefficient (8 d.f)

a
C 

26318 1.0127

a
D 

-126.65 -0.57042

a
G 

421.25 1.3337

a
L 

129.36 1.1023

'DD 
1.4074 0.7607

7 0.4221 0.2983
GG

'LL 0.4143 1.9120

7 1.4006 1.2734
DG

'GL 
-0.1730 -0.3032

'DL 
-0.6247 -1.3238

b
1 

-0.00853 -0.2128

b
2 

0.003092 0.0310

°X 
21.338 1.8713

-4.7521 -2.2195

(3)0 
6.3203 1.6447

13XL 
1.3796 2.4050

a
T 

-25.904 -0.9951

TT 
0.01258 0.9686

0.09827 0.8098
D
a
G 

-0.2596 -1.4526

-0.0743 -1.1988L

-2
R = 0.9706 s.e.e = 0.10519 DW = 1.761 •

LL = -150.938

28



^

Table 1A

Diagnostic Tests for the Regression Results Reported in Table 1

Test

t
C 
(6)

2
X (21)
BP

X
2
H
(21)

X2
JB
(2)

F
FF
(1,5)

F
FF
(2,4)

F
F 
(3,3)

g 
X' (1)

ARCH
F (2,5)
EXOG
F
CRS

(1,8)

FNTC 
(5,8)

F
HD1

(6,f3)

Test Statistic P-Value

0.478

14.003

29.379

10.656

0.0310

0.0120

0.0140

0.9550

1.9710

78.191

0.7110

1.450

0.649

0.830

0.105

0.004

0.867

0.998

0.997

0.333

0.234

0.211(10
-4
)

0.632

0.305

Notes:
The degrees of freedom for each test is shown in parenthesis.
tsc is a Godfrey [1978] t statistic for AR(1).

X
2
Bp is a Breusch-Pagan [1979] chi-squared test for heteroskedasticity.

X
2 

iH s a Harvey [1981] chi-squared test for heteroskedasticity.

X
2

jEt is a Jarque and Fiera [1980] chi-squared test for normality.

FFF(1,i) are Ramsey [1969] RESET F statistics for omitted variables.

X
2
ARcH is an Engle [1982a] chi-squared test for ARCH(1).

FEx0G is a Davidson and Mackinnon [1987a] F test for exogeneity.

FcRs is a F test for Constant Returns to Scale.

FNTC is a F test for Neutral Technical Change.

FHDI is a F test for Linear Homogeneity in input prices.
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Table 2

Estimated Parameters, Translog Exploration Cost
 Function

MLE Method

Parameter

a

a
D
a

a
T

'DD

'DG

7GG
b
1

2
gX

gXD

gXG

7TT
a
D
a
G

estimated t- ratio

coefficient (asymptotic)

0.975236

-35.616

8.8747

0.10895

0.14873

-0.06219

0.11387

0.035836

0.064434

0.80744

-0.045892

-0.048768

-0.000109

0.018279

-0.004235

0.9748

-9.8151

2.4646

7.7849

6.8795

-3.6539

6.2572

1.3555

1.3740

5.1949

-2.7485

-2.6548

-7.3960

9.6975

-2.4036

Cost Drilling Geophysical

Share Share

LL 124.554 124.554 124.554

R
2 .9422 .8427 .6297.

s.e.e .14499 .03707 .04176

Notes: The residuals for each equation ,jare calculated as the dependent

variable less the fitted values. The R- values are calculated for each

equation separately as ESSi/TSSi where ESSi is the explained sum of squares

from equation i and TSSi is the total sum of squares from equati
on i. The

standard error of the estimate is just the s
tandard error of the residuals

from each equation.
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Table 2a

LR Tests for CRS and NTC

Model LL Test Statistic DF P-Value

Unrestricted 124.554

CRS 88.657 71.794 1 .596(10
-7
)

NTC 99.525 50.058 4 .597(10
-7
)

CRS+NTC 62.089 124.93 5 .0000

Notes: LL is the log of the likelihood function.
DF is the degrees of freedom and P-Value is the probability value.

CRS denotes constant returns to scale.
NTC denotes no technical change.
.CRS+NTC denotes the joint hypothesis of CRS and NTC.
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Table 3

Posterior Mean Values: Multiple-Output Translog Cost
Function Parameters

Concavity and Monotonicity Imposed
Importance Function: Multivariate t

4000 Replications 3882 Satisfied
Proportion = 0.97050,
Numerical Standard Error of Proportion = 0.00268
Asymptotic Standard Error of Proportion = 0.00268

Parameter

a
C
a
D
a
G
a
T

'DD

DG

GG
b
1

b
2

XG

TT
3
D

G

Mean St Dev

0.975236

-35.486

8.8461

0.10859

0.14791

-0.062210

0.11437

0.035621

0.064306

0.80694

-0.045407

-0.049205

-0.000109

0.018213

-0.004219

1.0432

3.6005

3.3495

.01423

.021069

.017029

.018150

.027325

.048300

.161310

.016917

.018300

.0000151

.0018749

.0017585

Var Num Se

1.0883

12.964

11.219

.0002022

.0004439

.0002900

.0003294

.0007466

.0023329

.026020

.0002862

.00033489

.22917E-9

.35152E-5

.30923E-5

.0167430

.0577880

.0537590

.0002284

.00033816

.00027332

.00029131

.00043856

.00077521

.00258900

.00027152

.00029371

.24297E-6

.30092E-4

.28224E-4

Notes:

1. The variance of a particular coefficient is the square of
its standard deviation (St Dev).

2. The numerical standard error (Num Se) for a particular
coefficient is the square root of its variance (Var)
divided by the number of replications.

32



Table 4

Summary Statistics for Figures 1 - 4

Eiggym 1 Fitted Shares 

Parameter Mean St. Dev. Min Max

SD .38274 .08720 .26202 .60443
SG .24835 .05792 .12421 .36114
SL .36890 .08427 .19238 .49479

Figure 2 Allen-Uzawa Partial Elasticities of Substitution

Parameter

coo
COG
COL
04GG
TGL

Mean St. Dev. Min Max

-.58485 .12510 -.69020 -.24959
.29006 :16208 .02370 .61418
.35206 .11370 .00226 .48959
-1.0095 .34483 -1.1858 .36238
.35850 .26980 -.54754 .56652
-.64614 .12136 -.81321 -.45794

Figure 3 Predicted Marginal Discovery Costs

Parameter Mean St. Dev. Min Max

MCo 3.0223 4.1251 .08835 20.573
MCg 1.1556 0.9870 .06737 4.8272

Figure 4 Predicted Marginal Scarcity Costs

Parameter Mean St. Dev. Min Max

So 7.0381 6.1265 1.7720 26.699
Sg 1.6805 0.6449 .82227 3.0825
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