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ABSTRACT

Models of spatial competition have proven to be very useful in describing
differentiated products markets. A serious problem is that nonexistence of
Nash equilibria seems endemic. This problem is resolved by modelling the
price formation process using the core. The equilibrium is the outcome of a
two-stage process. In the first stage, two firms choose locations
simultaneously, looking ahead to the second stage. The second stage has
prices determined by an allocation in the core of a cooperative subgame
allowing for coalitions of buyers and sellers. The price selection is the
joint profit maximum for the duopolists. This selection exists for all
location pairs and coincides with the pure strategy Nash equilibrium of

duopoly competition when the latter exists. Furthermore, these prices

approach the competitive level as the distance between the firms goes to zero,

thus capturing the essence of duopoly rivalry. For this price selection, in
the location game, the two firms establish themselves at the efficient

locations--the first and third quartiles.




INTRODUCTION

Models of spatial competition have proven to be very useful in describing
differentiated products markets. However, one major problem with these models
is that nonexistence of equilibria seems endemic. In particular, in
Hotelling's [1929] original model, there exists no Nash price equilibrium in
pure strategies for a wide range of firms' locations. This .is so because of
the large gain in sales that a firm can obtain by undercutting its rival and,
therefore, capturing the whole market when firms are not sufficiently far
apart (see d'Aspremont et al., [1979]). One way to restore the existence of
equilibrium in Hotelling model is to use mixed strategies in the price subgame
as shown by Osbo_rne and Pitchik [1985].

In this paper, we resolve this problem by modelling the price formation
process using the core. The equilibrium is the outcome of a two-stage
process. In the first stage, firms simultaneously choose their locations in
the market. In the second s'tage, a core allocation between buyers and sellers
who are free to form any coalition determines the terms of trade.

Our justification for using the core is that, once a firm has chosen its

~ location, the actual process of price determination can be quite complicated.

For example, individuals buying expensive durables conmonly attempt to use -
price quotes from a seller to obtain a better deal from a eompetltor As
Milgrom [1987] has pointed out in the context of price dlscrnmmatlon, models
of price determination should explicitly include the possibility that both
buyers and sellers may behave strategically. To analyze such markets, a
preferred research strategy might be to specify a bargaining game that is more
realistic. However, this requires the definition of a specific game for each
conceivable situation (see Bester [1986] for an example). The core solution
has the advantage of not being sensitive to the rules of the game under

consideration, except rules about possible coalitions. In our approach, the




core is better viewed as a stability concept which defines the set of allocations
which cannot be upset by bargaining. Although the core may seem restrictive in
that it allows for any possible coalitions of agents, it will be seen that the
only relevant coalitions are quite simple; they consist of one seller and its
customers. A coalition therefore corresponds to the set of agents :ihvolved in a

simple retail transaction. Through use of the core, we have a model sensitive to

the power of all agents in the economy and that does not suffer the weakness of

strategic models whose outcomes are sensitive to the rules of the game.

Though the core restricts the set of possible allocations, it does nét
yievld a unique outcome. We resolve this by having the firms select the core
outcome which maximizes joint profit. This assumption is. consistent with
views of the duopoly problem dating back to Bertrand. This approach has
surprising consequences. If a Nash equilibrium for the price game exists,
then it corresponds to the core allocation that maximizes any weighted sum of
profits. 'This suggests that, in an oligopoly, the Nash equilibrium is biased
‘in favor of producers. In section 2, we show that the core is never empty for
any pair of firm locations. In section 3, we study the pfo;ierties of the core
.all§c;ation and its relationship to the Nash equilibrium for the price subgame.

| Though we assume that the terms of trade are determined using the core
,séluticn, we model the locatio_rn choice in the first stage vés a simultaneous
move game ‘This is appropriate givéﬁ the s'tandéhrd interpretaﬁion of location
choice as a once-and-for-all decision not subject to readjustme'nt’, unlike
prices. In section 4, we show that the equilibrium for the full two stage
game is characterized by firms locating at the quartiles, which are the cost-
minimizing locations. Even though, by assumption, firms choose locations

noncooperatively, the equilibrium has efficient locations.

One of the first papers to apply the core notion to the problem of

imperfect competition is that of Aumarn [1973]. He shows that, for a




monopolist facing a continuum of buyers, there may be allocations in the core
that are worse for the monopolist than the competitive allocation. Shitovitz
[1973] shows that, if there were at least two large identical traders, then
the core and competitive allocations coincide. These results, as well as
those of Gabszewicz and Mertens [1971] and Okuno, Postlewaite and Roberts
[1980], suggest that the core does not adequately capture the essence of

imperfect competition. Our results show that it is not the size of the

sellers that is crucial, but their ability to commit to decisions, such as the

degree of product differentiation, that allows them to extract surplus in a

core allocation.

Our results also provide a simple solution to the generic non-existence
problem in spatial models, as pointed out in d'Aspremont et al. [1979] and
MacLeod '[ 1985]. What causes non-existence in some of these models is the
potential f.or' undercutting in price and capturing all a ri\}al's customers. A
standard solution is to expand the strategy space to allow the use of mixed
strategies, as done for the Hotelling model by Osborne and Pitchik [1985].

While this provides a formal solution to the existence problem, there are many

" difficulties‘ of interpretation and stability of equilibria in mixed ‘.strategies

(see Luce and Raiffa [1958, p. 74-76]). By using the core to model trade, ve
ﬁave' a model that depends only on the fxmdamental characteilistics and is not
sens:.tlve to the rules of the game. The work of Kreps and Schelnkman [1983]
and Davidson and Deneckere [1986] shows that the equilibria are sensitive to
the rules for rationing output in short supply across buyers. Recent
literature on durable goods monopoly shows that the lack of éonmitment in
output leads to the competitive allocation in a dynamic game. The use of the
core is consistent with this latter result, while avoiding much of the

analytical difficulty of dynamic games.




II. THE MODEL AND SCME PRELIMINARY RESULTS

Consider an economy with two firms, i =1, 2, selling a homogeneous
product to a contimum of consumers uniformly distributed at unit density
along a line of unit length. Each consumer derives utility from conéumption
of a numeraire and at most one indivisible unit of product sold by the firms.
Firms produce the product at zero marginal cost up to a fixed capacity.
Transportation costs for the product are linear in distance and weight.

We model Hotelling's spatial competition as a two-stage game. In the
first stage, firms 1 and 2 simultaneously choose their locations at respective
distances a and b from the endpoints of the market (with a + b < 1). In the
second stage, trade between firms and consumers takes place according to a
process described as a cooperative game. ‘.

Each consumer is identified by his location x € [0,1] and has a utility
function of the form
if c=1

' o +m
ux(c, m) ={
m

ife=0

where ¢ denotes consumption of the fimm's product, m is consunption of the
_.mJI_nerairé and o is the reservation price of the productv by the consumer.
Except f'o'r‘ .location, consumers ai'e identical and have an initial endowment m
of the mumeraire and zero of the product. Denote consumer‘x's endowment by
w(x) = (m, 0). | Let z(x) = (m(x), c(x)) be x's consumption at an allocation Z.
Apart from locations, the firms are identical and each have an endowment
¢ of the product given by its capacity and zero of the mumeraire. Denote firm
i's endowment w(i) = (0, ¢). In order to allow each firm to. serve the entire
set of consumers so that all coalitions are possible, we assume that c = 1.
The firms' payoffs are the amounts of mmeraire received from consumers in the

trading process, m(i), so y; (c, m) =m(i). Let z(i) = (m(1), c(i)) denote the

firm's allocation at Z.




A tradé between a firm and a consumer consists of a transfer of mmeraire
to the firm for a transfer of one unit of the good to the consumer and
transportation of the good by the consumer to his location. Let t be the umit
transport cost, so that a consumer at x who obtains the good at location 1i
uses up t'x - 1i| of the mmeraire in transportation cost. We assume that the
firms and other consumers are unable to identify a consumer's location. Since
consumers obtain only zero or one unit of the good, each firm will transfer
the good to all consumers for the same quantity of mumeraire. In additionm,
éonswmrs will not méke any side payments with each othér, since they are
identical except for locations. Rather than imposing these informational and
demand constraints as self-selection constraints, we implicitly include them
below‘in our definition of a feasible allocation.

Let N = [0, 11{J {1, 2} be the set of agents, We now proceed by defining

a feasible allocation with respect to a coalition S N.

Definition 1: An allocation Z is feasible for S iff

(a) When SM{1, 2} =P, z(x) = w(x) Vx ¢ S;

() When S {1, 2) =1 and §/) [0, 1] =¥, there is a scalar p,, which

~is the amount of mmeraire transferred to the firm, and a function
‘c: M=+ {0, 1} such that
1) m) =p; [ ex)dx;
' M

(ii) mx) =m - (p; + tlx - lil)c(k)
where L, =a®) if 1 =1(2); }
(c) When S(1{1, 2} = (1, 2} and S(\ [0, 1] = M, there is a pair of
scalars, p; and py, and functions, ¢;: M=+ {0, 1} and

c2: M~ {0, 1}, such that:




(1) c(x) =c1(x) +c2(x) s 1 for x € M;

(ii1) m(x) =m - f (pi + tlx - lilc.(x)') for x € M;
i=1 1

(iii) m(i) =p; 1{1 c; (x)dx, for i =1, 2.

Let A(S) be the set of feasible allocations for S. We can now define the

set of core allocations.

Definition 2: An allocation Z € A(N) is in the core iff there does not exist

a coalition SC N and an allocation Z' € A(S) such that 'uﬁ(z'(n)) > un(z(n))
for all n € S, |

Core allocations can bé completely described by a pair of mill pi:ices
(p1, p2) which are the scalars describing the amounts of mumeraire transferred
by cbnsumers to firms. Clearly, in a core alloéétion, there is no nomnull set
M* of consumers who do not buy from the firm offering them the lower full
price, p(x) =min{p1 + tla - x|, p2 + |1 - b - xl}_for xeM. Otherwise,
these consumers could form a blocking coalition with the other firm and its
customers and make everybody in the coalition strictly better off by choosmg
thlS firm's mill price appropriately.

Given this rule we may define the firms' profit ‘functions as follows:

I, (p1, p2) = md) =p; [ et
X,
) 1
. where X]._ = {x € [0, 1]; p; + tlx - lil =p(x)}

and c(x) = 1 iff p(x) =

Assume that @, the reservation price, is large enough (relative to t) for

all conémners to buy at prices p1 and p2. Denote by x the market boundary




between firms 1 and 2. If |p; - po| s t(1 - a - b), then X is the location of

consumer indifferent between purchasing the product from either firm:

= _ - l1+a-b

X—P'?”Zt_EL-F—T— :
If pp <py - t(l - a - b), then all consumers choose to buy from firm 1 and x
is the right endpoint of the market:

x=1,

Finally, if p; > po + t(1 - a - b), then all consumers purchase from firm 2

and x is the left endpoint of the market:
x=0,

Since each consumer consumes a single unit of the product the demands to firms

1 and 2 are

Di(p1, p2) =%
‘Dp(p1, P2) =1-x.

Fdr given locations a ahd b, the profit' functions for the two firmsAare

-~

_ Hl(Pi_: p2) %pl(pﬁt_ P1) 4 p1d ; a-b) ;¢ lp1 - p2| s t(1 - a - b)

=p L, ifp; <py - t(l - a -b)
=0 ifpp>pp+tl -a-b)

T,(p1, Pa2) =P_L(R§t_"l?zl+92(1 £a+b) if |py - po| S £(1 - a - b)

= P2 ‘ _ ifp, <p; -t(l-a->b)

ifp2>p1+t(l-a-b) .




Under the restrictions on o, t and ¢ such that the whole market is

served, a pair of prices is sufficient to identify an allocation. All

consumers in [0, x] purchase the good from firm 1 and receive utility
ux(c, m) =o+m-p; - tla - x|, while all consumers in [X, 1] purchase from
firm 2 and receive utility ux(c, m) =a+m-pp - t|]l - b - x|. For firms,
payoffs are simply given by profits, u; (¢, m) = I (p1, p2).

Let A*(pl » P2) be'the set of feasible allocations corfesponding to prices

12 and Py- The following result characterizes the core allocations.

Proposition 1: An allocation Z € A (p1, p2) with corresponding prices, p1 and

p2, is in the core iff:

~

(1) Hl(p_l, p2) 2 Mi(p1, P2), V¥ p1Sp1

(2) HZ(I;I, p2) & Ia(p1, P2), V¥ p2sp2.

Proof: (i) Let Z e A*(pl, p2). Suppose that (1) does not hold; then by
lowermg P1, M increases. Thus there exists a bldcking coalition since fimm
1's custguiers' face lower prices. A similar argument applies if (2) does not
- hold. (ii) Assume now that conditions (1) and (2) hold. Clearly, all
~blocking c'oaliﬁidris must include at least one firm. No'bloclvcving coalition can
be férmed in which one fiim increases_ its price, because if;s customers are
made worse off. - If one firﬁ lowers its price, ﬁiien conditioné '(1-) and (2)
ensure that the firm does not gain. Thus, no blocking coalition can be formed
with one firm decreas‘ing its price. Similarly, the twob firrﬁs caﬁnot gain by
jointly lowering prices since one firm's market will not be larger thah with

({)1, 1;2) , so this firm is made worse off. Q.E.D.

A direct consequerice'of the result is:




Proposition 2: The core of the price subgame is non-empty for any location

pair (a, b) witha +b s 1.

Proof: Consider 1;1 = f)z = 0. Conditions (1) and (2) are trivially satisfied,
*
so that any Z ¢ A (0, 0) belongs to the core. Q.E.D.

Intuitively, when an allocation is such that both firms charge zero prices, no
consumer wants to join a blocking coalition with a firm charging a positive
price. An allocation in A*(O, -0) is competitive and belongs to the core.

As in many cooperative games, the core may be large so that there‘ exist
many price pairs associated with core allocations. As suggested by the proof
of Proposition 2, some of these pairs may be unreasonable outcomes from the

firms' point of view. Given that in this game, firms have more market power
P

than consumers, it seems natural to focus on allocations favorable to the

firms. More specificaliy, we choose prices that are ‘Pa'reto-opti.mal for firms,
since theée prices maximize convex combinaﬁions of profits.

Assuming, for the moment, | that a single pair of such prices- exists for
- all lbcations a and b, we can now describe the first stage of the game--the
Location choices. Let f)l (a, b) and f)z (a, b) be the prices obtained from the
vselecltion described above. Flrms 1 and 2 locate at a and b; when a +b > 1
they locat.e at 1 - aand 1 - b. The payoff functions of f;rms 1 and 2 at the
location pair (a, b) are given by the profit f@étiom evaluaﬁed at (f)l (a, b)_,

pa(a, b)):

fyGa, by = P& D [pa, b) - fn(a,vbn + P18, bl +a - b]

ﬁz(a, b) = ,62(3; b) [I‘;l(a’ 12)3: - ﬁz(a, b)] ¥ f’?_(a, b) [% - a +b] .




An equilibrium for the first stage game is a Nash equilibrium for the
noncooperative game whose payoffs are Mj(a, b) and N2(a, b), i.e., a pair

* % . 1
(a , b) of locations such that

-~ % % fll(a, b*) , Va 1] and a +b*
Mi(a, b) 3{~ * "
’ M;(1-a, 1-b ), V a ll]anda +b

- % + (M@,b ,¥b [0,1]ada +bs1
Ta(a, b) 2 { - a "
| M(l-a', 1-b), ¥b [0, 1] and a” +b > 1

* *
When both inequalities are strict for all a # a and b-# b , we describe

* _k
(a , b) as a strict Nash equilibrium.

III. PRICE DETERMINATION

We now devélop the selection of a price pair from the core for ény given
locations a and b which maximizes any convex combinatioﬁ of profité. For
Locations élfficiently far apart it is well-known that a unique Nash
equilibrium in prices exists (see d'Aspremont et al., [1979]). We first show
that this noncooperative Nash equilibrium satisfies the above requirements.

Let Z*_ denote the set of core allocations and let ;I’* = {(p1 y P2); (p1, p2)

*
correspond to an allocation in Z }.
. _ -~

» ' % % ) a
Proposition 3: If (p1, p2) is a pure strategy Nash equilibrium in price, then

% * * -k * )
(p1, p2) € ¢ and (p1, p2) maximizes All} (p1, p2) + (1 - MIa2(p1, p2) for all

Ae (0, 1) and (p1, p2) € & .

* K *
Proof: (i) We show that (p1, p2) € ¢ . By definition of a Nash equilibrium,

* % .
(p1, p2) satisfy

H(*A *)>H *)'3"—12
i \P;>» Pj = i(Pi’ Pj 1*=3,1=1,
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. ) * % %
Thus, conditions (1) and (2) are clearly satisfied, and (p1, p2) € ¢ .
* %
(ii) We now establish that (p1, p2) solves

Max . Alll (p1, p2) + (1 - MI2(p1, p2)
(PI;P?_)E‘I’

* % '
Since the Nash equilibrium exists, (p1, p2) lies at the intersection of the

best reply functions:

3) 51 (p2) = p2 + t(12+ a - b)

and

(4) | "132(131) = Pl + t(lz- a + b) .

No price pair w:Lth one price above that given by the corrésponding best reply

can be associated with an allocation in the core. Indeed, the firm withv the

lower price can increase profits by reducing price to the best reply level; thus

forming a 510cking coalition with all customers wﬁo gain at the new price.
(Figure 1 illustrates the price pairs associated with core allocations.)

Since pfofits in this region are increasing with prices, maximm profits for

' *
both firms are obtained at the Nash equilibrium for (p1, p2) € @ . Q.E.D.

~

Insert here Figure 1

We now turn to the set of locations for which there does not exist a Nash

- equilibrium in pure strategies. It is well known that the nonexistence problem
resﬁlts from the fact that, at the price pair given by the intersection of curves
given by (3) and (4), at least one firm has an incentive to undercut its rival

and serve the whole market. It is precisely this characteristic of preferring to




undercut a rival which generates a blocking coalition formed by the undercutter
and the whole set of consumers that prevents this candidate equilibrium from
being associated with a core allocation. This implies that in order to achieve a

core allocation, firms 1 and 2 have to choose prices in the set
T ={(p1, P2) ¢ R_zi_; M (py, P2) 2 p2 - t(1 - a - b) and
(1, P2) 2P - t(l -a-Db)} .

In other words, given P; for which there exists P; such that (pi, pj) e T,

firm i quotes a price P; belonging to

We now establish that for those locations for which no pure strategy Nash
equilibrium exists, we can find a price pair satisfying conditions (1) and (2)

and makimizing any convex combination of firms' profits.2

Proposition 4: For all location pairs, there exists a price pair (f)l , f)z) e T

such that

(5) I (P s pj) 2 I (p;, .pj), vV op;e Ti(pj)’ i=1,2, j=1.

:M: Given that -
(a) Ti(pj ) = ¢ for pj € Tj where Tj is ﬁhe projection of T on the iaj axis;
(b) Ti(pj) is compact since I, (p,, pj) and 8 (py» pj) are continuous in
| P; for '(pi,"pj) e T;
(c) Ti'(pj) is convex since Hi(pi, pj) and Hj (pi, pj) are concave in P;
for (p;, py) ¢ Ts |

(d) Hi(pi, pj) is continuous and concave in P; for (pi, pj) e T; then

(1;1 , '1’;2) satisfying (5) exists by Theorem 7.3 of Friedman [1977].
Q.E.D.
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This result has the following implications. (i) For locations such that a
Nash equilibrium exists, the price equilibrium satisfies (5) (see d'Aspremont
et al. [1979] for necessary and sufficient conditions of existence). (ii) For
locations such that no Nash price equilibrium exists, the solution to (5)
involves the constraint P; € Ti(f)j) for at least one i. In this case, as
ni(pi,'pj) is strictly concave on Ti(pj) , p; must be equal to Fi(pj) = max
{pi; p; € Ti(pj)}. We then say that firm i is constrained in its price choice.

Accordingly, the price domain can be partitioned into four regions (see

Figure 2). 3

Region I: (}31, f)z) is such that no firm is constrained in its price choice.
)=p2+t(1+a-b)
2

Hence (1;1, 1;2) is the solution of the system p; = p;(p,
) = Py + t(l -a+ b)
2 ' ?

and p, = P2 (P i.e.

pr=t(l+23%) and p, = t(1 + 2598 .

This is the Nash price equilibrium.

‘Region II(IID): (p;, p,) is such that firm 1 (firm 2) is constrained in its

price choice while firm 2 (firm 1) is not. Hence (1;1, f:z) is the solution of

| 2 2 .
- l-a+b) -p,+2t(l-a-b
p1 = Fi1(p2) = tpp{l - ath) thg Dy (t-a-b

+ t(l - a+b)
2

and P2 = ﬁé(P;) =R

whose solution is

pr=t(3+a-b-4 3 =Fpy) and p, = 2t(1 - /a)
(py =2t(1 - /B) and p, = t(3 - a+b - 4 /B) = F,(p,)) .




Region IV: (1;1 » P2) 1is such that both firms are constrained in their price
choice so that
- ~2 2
_tp2(1 —a+b) -pr +2t (1l -a-b)

P = : = - = F1(p2)
2t - p2

- ~2 2 )
p2=tpl(1+a-b) - P .+2t (l1-a-b) = F»(p1)
| 2t - py

Unfortunately, we have not been able to derive a closed form solution for the

above system.

Insert here Figure 2

The uniqueness of the solution to (5) can be established as .follows. In
Regions I and III, the slope of firm 1's best reply with respect to p2 equals
%. In Regions II and IV,

' 2 2
- 0F _ (2t - p2) - lat

9p2 (2t - p2)2

which is nonnegative and strictly less than one for a positive.é The same holds
. : - -

for firm 2 if b is positive. A standard argument then shows that the solution
to (5) is unique for all palrs of locations such that a >0andb> 0 (see, e.g.,
Rosen [1965]) It remains to deal with the case a = 0 and b2 0(az0 and b =0
can be similarly treated) For b s 15 - 6/6 (Region I), the solution to (5) is
unequivocally g].ven by p1 = t(1 - 3) and pp = t(1 +g) for 15 - 66 s b s 1
(Region III), py = 2t(1 - ¥B) and p2 = t(3 +b - &/b).

We now show that (131 ) 1;2)'has the same properties as the pure strategy.

Nash equilibrium as stated in Proposition 3.
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Proposition 5: For all location pairs, the solution to (5) (f)l, 1;2) € <I>* and

({)1, 132) maximizes ANy (py, p2) + (1 - A) N,(py, py) for all A ¢ (0, 1) and

*
(P15 P2) € ¢ .

Proof: First, (f)l, 1;2) € Q* since any solution to (5) trivially satisfies
conditions (1) and (2). Second, répeating the argument developed in
Proposition 3, in each region with the appropriate best reply functions (i.e.,
ﬁi(pj) or F; (pj)) yields the desired result since the derivatives of functions

are always positive. v Q.E.D.

To summarize, the selection from the core allocations given by (5) has

the desirable property that it maximizes joint profits for any profit-sharing

rule between the firms over the allocations in the core.

We have obtained a complete characterization of (f)l ) f)z‘) when firms are
symetrically located (a =b). It has been shown by d'Aspremont et al. [1979]
that, for a < %—, 1;1 = {)2 =t if and only if a s 71; (Region I). Thus; for
%— <acx -%-,'both firms are constrained and it is easy to verify that there

exists a unique solution to (5) given by {)1 = ;;2 = 2t(1 - 2a) (Region IV).

Finally, when a = %—, there exists a unlque solution which is the Bertrand

solution, i.e., p;y = p, = 0. Given Proposition 1, the only core allocation is

the competitive one. Interestingly, this result is reminiécent of a theorem
derived by Shitovitz [197Bj in the context of an exchange econdny. An

illustration of the price pattern for a = b is provided in Figure 3.

Insert here Figure 3

Some of the properties of {ai shown in Figure 3 remain valid in the

asymmetric case. In particular, P; is a continuous function of a and b.




- IV. LOCATION EQUILIBRIUM

is also differentiable in a and b except on the boundaries between regions
where the RHS and LHS derivatives exist but differ. Furthermore, when firms 1
and 2 are close together, (a, b) is in Region IV and 13]._ is a decreasing
function of a and b. The argument is given for f)l. Taking the total

differential of p; - F1(p,, a, b) = 0 and p, - F,(p;, a, b) = 0 yields

dp, _ a3F,/%a + (3F,/3p;) (3F,/3a)
da 1 - (3F,/3p,) (3F,/ap,)

- ' ~ 2 2
with aFl/aa = - Eﬁgg;i%RZL , 3F2/33 = - t, 3F1/3P2 = (2t - ppz - bLat and
2t - py (2t - py)2

- 2 2
(2¢ - p;) - 4bc
(2t - p1)2
Region IV, we obtain gg‘- < 0. A similar calculation covers the case g%l- < 0.

oF,/ap; = As 9F;/op; > 0 and p; is smaller than t in

Thus the equilibrium prices decrease to the competitive level when the distance

between the two firms goes to zero. In other words, as differentiation between

the firms decreases, the core shrinks to the competitive allocation
corresponding here to the Bertrand solution. This suggests .that firms have

incentives to differentiate themselves to earn positive profits, as we will show

in the location game.

~

The location game can be described as follows: firms 1 and 2 are the two
players; a and b are the strategies; the unit interval is the common ‘strategy
set; and fIl(a, b), ﬁz(a, b) are the payoff functions for a + b s 1, and
T(1-a, 1-b), 1(l-a 1-b)fora+bs> L,

. . *
PROPOSITION 6: In the location game, a =b = 21; is a strict Nash

equilibrium,




Proof: Let b = %— and show that

ﬁl(ly ':[l;) §'> fll(a, 71;—) for all a ¢ [0, 23:-] and a z%—

ﬁl(l, %; = I,(1 - a, -13;) for all a ¢ ]2—, 11 .

First, we know from d'Aspremont et al. [1979] that Ty (3, 3) > m(a, 3) for all
ae [0, %—[. Let then a ¢ ]71;, -Z—[. First, for a > %-but close to -11;, (a, %—)

lies in Region II (see Figure 2). A straightforward calculation leads to

fIl (a, %—) = t/a (2.75 + a - 4/a) which is a decreasing function of a in Region
II. For largef values a, (a, 21;) is now in Region IV (see also Figure 2).
Differentiating 1 (a, 71;) w.r.t. a in this region, we obtain %-BL(DI + f)lg—gll-) +
1;1(2—3-12- -529— g—g]-) . As fimm 1 is constrained in its price choice it must be
that D, + pl_gl- > 0. Given that -B—R]- < 0, the first tem is therefore nega-
tive. The second term is equal to p1 (2— T 34 'Z) A direcl: calculation shows
that 521 s - t. Consequently, '2?3'52'+7< 0 and, hence, -g—gl < 0. This iniplies
that fll(-zl;, 21;) > ﬁl(a, -11;) for all a ¢ ]%—, -Z—[. At a = -13;, we have f[l(?’, -11;] =0 <
%="fll(1, -:ZL;) . Finally, we have to show that T, (21;, 21;) > 1 (1-a, -Z—) for all
ace ]%, 1]. First, for a > %but close %, (1 - a, %) lies.in Region IV so that

afrllaa > 0 as above. Second, for a > %such that (1 - a, %—) is in Region III, a

- 2
direct calculation shows that m, (1 - a, %) = 2t(1 - -‘2/—3) . This implies that
2

ﬁl(l - a, 2—) s 2t(1 - {—3) for all a e ]%, 1]. The desired inequality then
follows from the fact that 2t(1 - % <5 =M(p 7. Q.E.D.

The entire set of Nash equilibria can be obtained by analyzing the
derivatives of fIl and fIz w.r.t. a and b in the interior of the four regions

I-IV. Essentially, these derivatives behave like those considered in the proof
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of Proposition 5. Figuré 4 gives their signs in each region. Because at least
one firm always prefers a unilateral move, only boundary points are possible

. Nash equilibria. Actually, it is easy to see that all points belonging to the
bouﬁdary between Regions I and II, and between Regions I and III are Nash
equilibria of the location game. However (%;, 71;) is the only strict Nash
equilibrium since, at the other equilibria, one fimm is indifferent between

staying on the boundary and moving inside the corresponding constrained reg:i.on.5

Insert here Figure 4

An alternative location game is sequential entry by the two firms, és
analyzed for the constant price case by Presscott and Visscher [1977] and Kats
[1986]. Firm 1 will choose a locétion, looking ahead to the price subgame
only. If fixed costs are high enough, it will be the case that both firms
know that no further entry will take place. For many locations of firm 1,
firm 2's best reply location is not Lmique, since it receives the same_payoff
over a range of loéations. If firm 2 chooses b tohﬂniﬁizé firm 1's profit'
'ove'r the set of locations to %ich he is indifferent, we have a umique best
i:eply for firm 2. Using the information on %g—z- 4fr0m Figure 4, firm 2 will
choose a location on curve X or Y according to firm's choiée of a. The
subgame perfect equilibrim'h of:this game is tﬁe same as that of vthe o

simultaneous location choice game.

Proposition 7: If firm 1 chooses its location first, then firm 2 chooses its

location, and then the price subgame determines payoffs, the subgame perfect

-1-5a+5a+ala is firm 2's choice
1+7/a

Nash equilibrium is a = 71;, b = %— ifb =

for b over a ¢ [21;, %—] where NI, is constant with respect to b, for b less than

or equal to that value.

B




Proof: For a e [0, 71;), M(a, b) = 11:'8' 3+a- b)2. Firm 2's best reply to a
is given by b = 15 + a - 6/6+ta (curve X in Figures 2 and 4). Thus, m,(a, b(a))
L (2 + 6/ and P =5 (12 + 6/BFD) (Br)E> 0 Vae [0, 3).

Thus a =%—is best for firm 1 from a ¢ [0, -ll;]. For a ¢ (—%—, %—], firm 2

'1’5a+5‘/5fa‘/5(along
1+ /a

the border of regions II and IV in Figure 4). On this curve, I;(a, b) =

minimizes T,, at no cost to itself by choosing b =

t/a(3 + a - b - 4/a). Taking firm 2's best reply into account, 0;(a, b(a)) =

2t/5(2-3/§+a)andggl= t 2(2-6/5+2a/5)<0forae(21;,%].
1+/a » L Ya(l +/a)Y)

Thus a = %{ is firm 1's choice from a ¢ [Z" 2-]. For a > %-, firm 2 will prefer

to choose b > %, locating to the left of firm 2. Thus, it is sufficient to

consider a ¢ [0, %] . Hmcé, a=b =21; is the equilibrium pair of locations.

Q.E.D.

If b were chosen to maximize I; over the set of locations to which firm 2 is
indifferent, a = 15 - 6/8, b = 0 would be the equilibrium. Firm 2 clearly
benefits By attempting to minimize firm 1's payoff if it can signal its
intention to do so. The equilibrium would remain the quartiles if firm 1 made
the most pessimistic assumption about firm 2's response and located to
maximize its minimm level of profit. -
Thus, when the’ core is chosen as an equilibrium corncé;t for the price

subgame, we can say that the process of spatial competition ends up with the

two firms established at the socially optimal locations. This is in contrast

to the traditional claim that spatial competition is inefficient in providing

variety to consumers.




V.  CONCLUSIONS

In this paper, we have mixed two game-theoretic solution concepts to
model the process of spatial competition. In the tradition of Hotelling, we
have assumed a two-stage model in which firms first choose locations and then
prices. Instead of using Nash equilibria to describe the second stage, we
have considered the core in which firms and consumers may form cbalitions.
Although the core is a cooperative solution concept, the outcome is not
collusive from the firms' point of view, albeit we have chosen a selection
from the core corresponding to joint profit maximization. This occurs because
simple coalition involving a firm and the whole set of consumers can often
block collusive allocations in which firm would reap greéter profits.

Although the competitive allocations always lie in the. éore, the process of

product differentiation by firms enlarges the core and allows them to earn

positive profits. In particular, all core allocations provide the firms with

profits at least as great as in the competitive allocation. Therefore, in
this model, there do not exist disadvantageous oligopolists, as discussed in
Aumarn [1973]. However, as transport costs go to zero, differentiation is
reduced and the core shrinks to the competitive allocation in accord with

| Shitovitz [1973] who modelled trading with identical commodities. Two
opposing forces are at work in this game. First, coalitions formed by firms
and consumers erode profité. Sgcond, differentiation of products is ‘sought to
increases profits of firms. The resulting equilibrium is efficient in
minimizing transport costs 6f serving the entire market. Furthermore, it is

interesting to observe that the prices ultimately chosen by firms correspond

to the noncooperative Nash equilibrium in pure strategies.




FOOTNOTES

l'I‘he reversal of the subscripts is necessary because the functional forms
of profits depend on firm 1 lying to the left of fimm 2.

2‘I‘he pair of prices given by Proposition 4 is similar to the equilibrium
prices considered by Eaton and Kierzkowski [1984] in a different, but related,
context.

3The equations for the boundaries of the above regions can be obtained by

equating equilibrium prices corresponding to the different regions. Thus the
border of I and II is given by W= {(a, b); p1 = p1(p2) = F1(p2) and
p2 = p2(p1) < F2(p1)}; the border of II and IV is Y = {(a, b); p; = F;(p2) and

P2 = P2(p1) = Fo(p1)}; X and Z are similarly defined.

['E\raluating %i— at f)z = 2t(1 - Ya), py's largest value in Regions II and

IV, we see that % (f)z) = 0. For any smaller value of py, % is positive.

The reaction function (from below) thus has the property that both derivatives
are positive and strictly less than oneb.

5Notice also that the strategies corresponding to the equilibria other
than (1, 71;] are dominated'; a=b =-21; is the only Nash equilibrium in
undominated strategies. Indeed, inspection of Figure 3 shows that
a>15-6/6 and b > 15 - 6/6 are strategies dominated by a=15- 6/6 and
b =15 - 6/6 respectively.v Elﬁnu’mting those strategies, a < .25 and b < .25

are dominated by a = .25 and b = .25, thus giving the desired result.
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_p2+c(l+a-b>b)
1= 2

.p2=R1+C(%"a+b)

Figure 1: The Shaded Region Consists of Core Price Allocations

* %
‘When (p1, p2) is a Pure Strategy Nash Price Equilibrium
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Figure 3: The Solution of Equation (5) for a = b (Symmetric Locations)
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Figure 4: Location Equilibrium Derivatives in Interiors

of Price Equiiibrium Regions







