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Abstract

We consider several issues related to what Hausman [1978] called
“specification tests”, namely tests designed to verify the consistency of
parameter estimates. We first review a number of results about these tests in

linear regression models, and present some new material on their distribution

when the model being tested is false, and on a simple way to improve their

power in certain cases. We then show how in a general nonlinear setting they
may be computed as “score” tests by means of slightly modified versions of
any artificial linear regression that can be used to calculate Lagrange
Multiplier tests, and explore some of the implications of this result. In
particular, we show how to create a variant of the information matrix test
that tests for parameter consistency. We examine both the conventional
information matrix test and our new version in the context.of binary choice
models, and provide a simple way to compute both tests based on artificial
regressions. Some Monte Carlo evidence is also presented; it suggests that
the most common form of the.information matrix test can be extremely badly

behaved in samples of even quite large size.

Key Words and Phrases: Durbin-Hausman tests, information matrix tests, binary

choice models, outer-product-of-the-gradient regression.




1. Introduction

There are at least two distinct questions we may ask when we test an
econometric model. The first is simply whether certain restrictions hold,
i.e. whether the model is specified “correctly”. This question is what

standard t and F tests attempt to answer in the case of regression

models, and what the three classical tests, Wald, LM 'and LR, attempt tb

answer in models estimated by maximum likelihood. The second is whether the
parameters of the model have been estimated consistently. Hausman [1978], in
a very influential paper, introduced a family of tests designed to answer
this second question and called them “specification tests”. The basic idea of
Hausman’s tests, namely that one may base a test on a “vector of contrasts”
between two sets of estimates, one of which will be consistent under weaker
conditions than the other, dates back to a relatively neglected paper by
Durbin [1854]. We shall therefore refer to all tests of this general type as
Durbin-Hausman or DH tests. |

There has been a good deal of work on DH tests in recent years; see the
survey paper by Ruud [1984]. In this paper we consider several issues related
to tests of this type. In section 2, we reviéw a number of results on DH
tests in linear regression models. The primary function of this séction is to
present results for the simplest possible case; these should then serve as an
aid to intuitioh. We also present some new material on the distribution of DH
test statistics when the model being tested is false, and on a simple way to
improve the power of the tests in certain cases.

In section 3 we provide a simple and intuitive exposition of results,
originally due to Ruud [1982, 1984] and Newey [1985], on the calculation of
DH tests in nonlinear models as “score” tests by means of artificial linear

regressions. We go beyond previous work by showing that any artificial




regression which can be used to compute LM tests can be modified so as to
compute DH tests. An immediate implication of our argument is Holly’s [1982]
result on the equivalence of DH and classical tests in certain cases. They
will be ‘equivalent whenever the number of restrictions tested by the
classical test is no greater than the number of parameters the consistency of
which is being tested by the DH test, if those parameters would be estimated
iﬁconsistently when the restrictions were incorrect. We also show that there
are circumstances in which the DH and classical tests will be equivalent (in
finite samples) even when the parameters in question would be estimated
consistently when the restrictions are incorrect. Thus rejection of the null
by a DH test does not always indicate parameter inconsistency.

In section 4, we build on results of Davidson and MacKinnon [1987] to
show how to compute a DH version of any score-type test based on an
artificial regression, even one not designed against any explicit
alternative. We show how this procedure may be applied to tests such as the
information matrix test (White [1982], Chesher [1984]), and Newey’'s [1985]
conditional moment tests.

In section 5, we discuss the power of DH tests as compared with
classical tests, in the case where the two are not identical. Finally, in
section 6, we discuss the information matrix test and its DH version in the
context of binary choice models. We provide a simple way to compute both
tests based on artificial regressions. Some Monte Carlo evidence is also
presented; among other things, it suggests that the most common form of the
information matrix test can be so badly behaved in samples of even quite

large size as to be totally useless in practice.

2. The Case of Linear Regression Models

Suppose the model to be tested is
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y=X8+u, u~IID(0,6%) , (1)

where there are n observations and k regressors. When conducting
‘ asymptotic‘ analysis, we shall assume that plim[XTu/n] =0 and that
plim[XTX/n] is a positive definite matrix. When conducting finite-sample
analysis, we shall further assume that X 1is fixed in repeated samples and
that the ui’s are normally distributed.
The basic idea of the DH test is to compare the OLS estimator

B = (XTX]'IXTy
with some other linear estimator

B=(Xax)"xay , (3)
where A is:a symmetric n x n matrix assumed for simplicity to have rank
no less than k (otherwise, not all eiements of ﬁ could be estimated and
we would only be able to compare the estimable part of B with the
corresponding subvector of é » as in Davidson, Godfrey and MacKinnon
[1985]). If (1) actually generated the data, these two estimates will have
the same probability limit; they will have the same expectation if X is

fixed in repeated samples or independent of u . To see the former result,

observe that

’

plim(B) = [plim([xTAX/n]")] [plim[XTAX/n]B + plim[XTAu/n]]

which equals B provided that plim(XTAu/n] =0 .
The test is based on the vector of contrasts
B-F=(xXax)XTay - (x™x) Xy
(x"ax) 7 (x"ay - (x"Ax)( X'x)"'xTy)
(X"aX) T (XTA(T - x(x"x%)7XT)y)
(XTAX) "X AMyy | (4)

where My =1 - X(XTX]_lxT is the orthogonal projection onto the orthogonal

complement of the span of the columns of the matrix X . The complementary
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orthogonal projection will be denoted Py, and throughout' the paper the
notations P and M subscripted by a matrix expression will denote
orthogonal projections onto and off the span of the columns of that
expression.

The first factor in (4), (xTAxy*, is simply a k x k matrix with
full rank. Its presence will obviously have nb effect on any test statistic
that we might compute. Hence what we really want to do is test whether

plin(X AMxy/n) = 0 . : (5)
The vector XTAMxy has k elements, but even if AX has full rank, not all
those elements may be random variables, because My may annihilate éome
columns of AX . Suppose that k* is the number of linearly independent
columns of AX which are not annihilated by My . Then if we let the
corresponding k* columns of X be denoted by X* , testing (5) is
equivalent to testing
plim(X* AMyy/n) = 0 .
Now consider the artificial regression
y = XB + AX*8 + errors .
It is easily shown that the OLS estimate of & is
8 = (x*TAMax*) "+ Tamyy |
and it is evident that plim(8) = 0 iff (8) holds.
The ordinary F statistic for 8 =0 in (7) is

T 3*
y PMXAX*y/k

= (8)

y M[X MxAx*]y/(n—k—k*)

If (1) actually generated the data, this statistic will certainly be valid

asymptotically, since the denominator will then consistently estimate ¢° .

It will be exactly distributed as F(k*,n-k-k*) in finite samples if the

uy’s in (1) are normally distributed.
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There are many possible choices.fér A . In the case originally studied

by Durbin [1954], B is an IV estimator formed by first projecting X onto

the space spanned by a matrix of instruments W » SO0 that A = P, . The test
is then often interpreted as a test for the exogeneity of those compoﬁents of
X not in the space spanned by W ; sée Wu [1973], Hausman [1978], Nakamura
and Nakamura [1981] and Fisher and Smith [1985]. This interpretation is
misleading, since what is being tested is not the exogeneity or endogeneity
of some components of X , but rather the effect of possible endogeneity on
the estimates of B .
Alternatively, ﬁ may be the OLS estimator for B in the model
y=XB+ 2y +u, (9)
where 2 is an n x £ matrix of regressors not in the span of X , so that
A = M; . This form of the test is thus asking whether the estimates of g
when 2Z 1is excluded from the model are consistent. This is a simple example
of the case examined, in a much more general context, by Holly [1982]. As is
now well-known, the DH test is equivalent to an ordinary F test for y =0 ,
provided that k = £ and a certain matrix has full rank. This is easily seen
from regression (7), which in this case is
y = XB + M;X8 + errors (10)
X(B+8) - PzX8 + errors . (11)-
It is evident from (11) that whenever the matrix 2 X has rank £ ,
regression (10) will have exactly the same explanatory power as regression
(9), since X and PyX = Z[ZTZTAZTX will span the same space as X and
Z2 . The F test for & =0 in (10) will thus be identical to the F test for
¥ =0 in (9), which is Holly’s result specialized to the linear regression
case. A necessary but not sufficient condition for Z'X to have rank £ is

that k = £ .




There is an interesting relationship between the “exogeneity” and

omitted-variables variants of the DH test. In the former, A =P, and P/X*

consists of all columns of PwX that do not lie in the space spanned by X ,

so that the test regression is

y = XBl+ P,X*8 + errors . (12)
In the latter, MzX* = MyX , so long as the matrix [X 2] has full rank.
Now suppose that we expand 2Z so that it equals W ; i.e. it includes at
least as many variables as X , including some variables that are in the span
of X . Evidently X* will then consist of those columns of X which are
not in the span of W, so that the test regressién is

y = XB + MyX*S + errors . (13)
But it is evident that (12) and (13) will have exactly the same explanatory
power, since the matrices [X PyX] and [X MX] span the same space. This
means that the test which is interpreted as a test for exogeneity and the
test which is interpreted as a test for the consistency of parameter
estimates when certain variables have been omitted, are in fact exactly the
same test.

Although (12) and (13) yield the same test statistics, they yield

different estimates of B . As an illustration, consider the case where
X* = X . In this case

MMWXX = PyX (14)

Mp X = MX (15)
so that the estimate of B from (13) is (X'PyX)’X"Pyy , which is the IV
estimate, and the estimate of B from (12) is [XTMWX]—leMwy , which is the

OLS estimate from the unrestricted model (9). In the more usual case where

X* # X , one or both of the equalities (14) and (15) will not hold, depending




on whether X* # X because some columns of X are in the span of W or

because X contains fewer columns than W .

The matrix A could also be almost any sort of n x n covariance
matrix, so that (3) would then be a GLS estimator. It is a familiar result
that OLS and GLS estimators have the same probability 1imit if the regression
model is specified correctly, but not in general otherwise. Thus this form of
the DH test is not testing for a non-scalar covariance matrix, but rather for
misspecification of the regression model. One can ﬁse a similar procedure
when the null hypothesis involves estimation by GLS; see Boothe and MacKinnon
[1986].

Yet another example is the differencing specification test, where A is
an ingeniously chosen matrix such that B is a vector of estimates based on
first-differenced data (see Plosser, Schwert and White [1982] and Davidson,
Godfrey and MacKinnon [1985]). In this case there are a few minor
complications caused by the fact that XTAX does not have full rank. For
still more examples, and discussion, see Breusch and Godfrey [1986].

One of the unique and potentially valuable features of DH tests is that
they may be used when the null hypothesis is not that the data were generated
by (1), but simply that the OLS estimates B from (1) are consistent.
However, if in fact neither (1) nor (7) represents the actual data generating
process, or DGP; the denominator of (8) will provide an overestimate of the
amount of noise in the actual DGP, so that (8) will have actual size less
than its nominal size, with consequent loss of power when the null is false.
Specifically, if the data are generated by the process

Yy =XBo +a +u, u-~NO,0’1) ,
where a, may be thought of as a linear combination of omitted variables,

the F-statistic for 6 = 0 in (7) will be distributed as dbubly non-central




F(k*,n-k-k*) with numerator and denominator non-centrality parameters

T 2 . :
aoPMxAx*ao/O‘o ; (16)

(agM a0) /00> | - (17)

[X MyAX*]
respectively. These non-centrality parameters are evidently 1/c~o_2 £imes the
explained sum of squares and the residual sum of squares from the artificial
regression

Mxao = MxAX*71 + errors . (18)
This explained sum of squares is of course the reduction in the . sum of
squared residuals in the regression

ap = Xo + AX*7 + errors (19)
which is due to AX* . When regression (18) fits perfectly, this means that
X and AX* in (19) jointly explain all the variation in 'éo . The numerator
NCP (16) then simplifies to

agMyao/oo> (20)
and the denominator NCP (17) is equal to zero. The test will then have as
much power as any test with k* degrees of freedom could have. H;wever, when
(18) fits less than perfectly, the numerator NCP (16) is smaller than
(20) and the denominator NCP (17) is greater than zero, both of which cause
the test to have less power. For more on test statistics which are
distributed as doubly non-central F , see Thursby and Schmidt [1977].

In certain cases it may be possible to improve the estimate of oé ,
thus reducing the denominator NCP and hence increasing power. Consider again
the case where A =M; . Whenever p(AX) = p(MzX) < p(2) , so that the DH
test differs from the classical test for y = 0 1in (9), regreésion (10) must
fit less well than regression (9), because the latter has k+2 regressors

while the former only has k+k* (= 2k in regular cases). Instead of using the




ordinary F statistié, then, one might use the test statistic

T "
y PMxMsz/k

(21)

T, :
y M[X Z]y/(n--k—,e)

The nuﬁerator of (21) is thus the same as the numerator of the ordinary F
statistic for & =0 in (10), while the denominator is the estimate of o~
from (9). It is obvious that this statistic will be asymptotically valid
whenever (9) generated the data. It is also easy to see that it will actually
have the F(k*,n-k-2) distribution in finite samples whenever (9) generated
the data and the null hypothesis that E(B) = E(B) is true, assuming of
course that we are dealing with fixed regressors and normally distributed
ut’s . This is because the quadratic forms in the numerator and denominator
of (21) are independent, which follows from the fact that MMzX is in the
null space of [X 2]

By itself, reducing the number of degrees of freedom in the denominator
of an F test has the effect of reducing power (see Das Gupta and Perlman
[1874]). Thus if the data were generated by (10), the modified F test (21)
would have slightly less power than the ordinary F test for & = 0 in (10)
(unless n-k-£ is very small, in which case the loss in power may not be
slight). However, in some cases where (1) is false, (9) may fit much better
than (10), thus yielding a much lower estimate of o° . In such cases, the
modified F test (21) will be much m&re powerful than the ordinary one.

These tests are easily modified so as to test the consistency of a
subvector of the parameters rather than the whole parameter vector. A
simple expression for the k-vector of contrasts was given by (4). We can
select any k; of these by premultiplying (4) by a k; x k matrix B

consisting of zeroes and ones; for example, B would consist of a k; x k4

identity matrix placed beside a k; x (k-k;) matrix of zeroes if we wanted to
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select the contrasts corresponding to the first k; elements of- B . The
vector of contrasts we are interested in is thus

B(X AX) "X AMyy . (22)-

Evidéntly a test that (22) is asymptotically zero may be based in the usual

way on the artificial regression
y = XB + AX(X"AX)'B"u + errors .

The test will have k4 degrees of freedom, unless ' some columns of
AX(X"AX)'B" have to be dropped because the matrix [X AX(X"AX)B"] does
not have full rank. Whether this test would have more or less power for
a given DGP than a joint test of all k parameters will depend on the extent
to which the columns of AX(X'AX)™' are collinear, just as the individual
t-tests for a set of collinear variables may or may not be more powerful than

a single F test.

3. General Nonlinear Models

Since the work of Hausman [1978], it has been well known that DH tests
may be used in thé context of very general classes of models involving
maximum likelihood estimation. There are three principal theoretical results
in this literature. The first, due to Hausman, is that the (asymptotic)
covariance matrix of a vector of contrasts is equal to the difference between
the (asymptotiq) covariance matrices  of the two vectors of parameter
estimates, provided that one of the latter is (asymptotically) efficient
under the null hypothesis. This is essentially a corollary of tbe Cramér-Rao
bound.

The second principal result, due to Holly [1982], is that when the two
parameter vectors being contrasted correspond to restricted and unrestricted
ML estimates (the vectors consisting only of those parameters which are

estimated under the -restrictions), the DH test will wunder certain
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circumstances be equivalent to the three classical test statistics, Wald, LM

and LR. Whether this equivalence holds or not will depend on the number of

parameters in the restricted and unrestricted models, and on the rank of
certain matrices;‘as we show below, the results are completely analogous to
those on whether the DH test based on (10) is equivalent to the ordinary F
test based on (9).

The fhird principal result, due to Ruud [1982, 1984] and Newey [1985], is
that tests asymptotically equivalent to DH tests can be computed as score
tests. This implies that various artificial regressions can be used to
compute these tests. The only artificial regression which has been explicitly
suggested for this purpose is the so-called outer-product-of-the-gradient or
OPG regression, in which a vector of ones is regressed on the matrix of
contributions from single observations to the gradient of the loglikelihood
function. This regression is widely used for calculating LM tests (see.
Godfrey and Wickens [1981]), and has more recently been suggested by Newey
[1985] as an easy way to calculate his “conditional moment” tests, including
some which are DH tests. Unfortunately, the OPG regression is known to have
poor finite-sample properties (see Davidson and MacKinnon [1983, 1985] and
Bera and McKenzie [1986]1). As we shall now show, any artificial regression
that can be used to compute LM tests can also be used to compute DH tests. In
view of the undesirable properties of the OPG regression (a dramatic example
of how‘bad these can be is presented in Section 6), this result may be
important for applied work.

There are many classes of models for which artificial linear regressions
other than the OPG regression are available. These include univariate and
multivariate nonlinear regression models (Engle [1982, 1984]), probit and

logit models (Davidson and MacKinnon [1984b]) and a rather general class of




.

nonlinear models, with nonlinear transformations on the dependent
variable(s), for which “double-length” artificial’ regressions with 2n
“observations” are appropriate (Davidson and MacKinnon | [1884a]). To the
extent that evidence 1is available, these all appear to have better
finite-sample properties than the OPG regression.

We shall deal with the following general case. There is a sample of size

n which gives rise to a loglikelihood function

£(e4,63) =t)_:1ec(91»92) » (23)

where 6; 1is a k-vector and 6, an #-vector of parameters, the latter equal
to zero if the model is correctly specified. Maximum likelihood estimates of
the vector 6 = [9.{ el]T under the restriction 6, = 0 will be denoted & ,
while unrestricted estimates will be denoted 6 . The scores with respect to

81 and 6, are denoted by g,(6) and g.(8) ; thus

%aet(ehez)

gi(e) = 3 38, ,

i=1,2.

@ _»
~

A “~” or a over any quantity indicates that it is evaluated at 6 or &
respectively.

The model represented by (23) is assumed to satisfy all the usual
conditions for maximum 1likelihood estimation and inference to be
asymptotically valid (see, for example, Amemiya [1985, Chapter 4]). 1In
particular, we assume that 6 1is interior to a compact parameter space, and
that the information matrix ¢ = lim[E(ggT/n)) is a finite, non-singular
matrix. The submatrix of ¢ corresponding to 6; will be denoted ¢;; ; the
corresponding submatrix of .7‘_1 will be denoted (3-1)n

Taking Taylor series approximations to the first-order conditions for
9, and (61,52) around the true parameter vector 6% , and applying a

suitable law of large numbers, we find that

. - -1
n2(61—9?) 9111[Ik O]D 29(60)
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1 . -1 =1
n2(6,-6%) = [1, 0]¢ h 2g(8°) ,
where Iy is a k x k identity matrix and 0 is a k x £ matrix of

zeroes. It follows that

1 ~ - _ 1
n?(8,-6,) = [9H1[Ik 0] - [1. o]¢ 1]“ 2g(e°)

R ST [ 4y Yook o
*911 - (¢ )11 n 91(9)“ (¢ )121’1 gz(e) . (24)

From (24) it is easy to show that the asympototic covariance matrix of

n%(§1-§1) is
1 -1 -1 1 T
[(fi”)' [1x 0] - [1, o0]¢ ]9[(&”) [1x 0] - [1 0].?']

= [3_1)11 - (37 (25)
The first term in (25) is the asymptotic covariance matrix of n%(§1—6?) and
the second is the asymptotic covariance matrix of n%(§1~e?) , so that (25)
is a special case of Hausman’'s principal result.
Standard results on partitioned matrices tell us that

(9-1)11 = (%14 - 31'2(3251)3‘21)—1

(3-1)12 =- [911 - 512(3251)321]-191292;1'-
Substituting these into (24) yields the following expression for n%(§1—é1)
91;19—591 + ($41 - 912(92;1)321]-1[51292;1D-%92 - n_%g1] . (28)
This expression allows us to derive easily computed test statistics based on
the general notion of an artificial regression.
In the usual case of testing restrictions in the context of maximum
likelihood estimation, an artificial regression involves two things: a

regressand, say r(0) , and a matrix of regressors, say R(8) , partitioned as

[R1 Rz] , which have the properties that

(i) RT(G)P(G) is the gradient of the loglikelihood function at 6

’
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(ii) RT(é)R(é)/n consistently estimates the information matrix whenever

6 consistently estimates o .

Replacing the gradienps and information sub-matrices in (26) by their
finite-sample analogues, evaluated at & , and ignoring factors of n,
yields the expression

(R1R,)'RIF - , (27)
where ﬁi denotes Mﬁs . Notice that the left-hand side of (27) resembles the
expression for a restricted OLS estimator minus an unrestricted one: think of
r as the regressand, R, as the matrix of regressors for the null
hypothesis and M, as the matrix which projects off the space spanned by the
additional regressors whose coefficients are zero under the null.

Now consider the artificial regression

r = Rib, + ﬁ2ﬁ¥b2 + errors , _ (28)
where the n x k* matrix R* consists of as many columns of R, as

possible subject to the condition that the matrix [R, M.R*] have full

rank. The explained sum of squares from this regression is

PR T T T PR
by the first-order conditions. Under suitable regularity
conditions it 1is easily shown that this statistic is asymptotically
distributed as x2(k*) under the null hypothesis that 6, = 0 . This result
also extends to any situation where the data are generated by a sequence of
local DGP’s with 6,%,; = 0 which tends to 6, =0 , provided that %,; has
full rank; we discuss this important proviso below.
Notice that (28) may be rewritten as
r = Ry(by+b,) - ﬁz[ﬁgﬁz]-lﬁgﬁ1b2 + errors .

Thus, as with the linear case, it makes no difference whether we use (28) or

r = Ryc, + P.R%., + errors ) (29)
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for the purpose of computing a test.

The classical LM test can of course be computed as the explained sum of

squares from the artificial regression

r = Ry + R.b, + errors . (30)
The equivalence result of Holly [1982] is now obvious. Suppose that £ < k ,
so that there are fewer restrictions than . parameters under the null
hypothesis, and that ﬁ;ﬁ, has rank £ . Then it must be the case that R,
and P.R, = ﬁz[ﬁ;ﬁz]_1ﬁ;ﬁ1 span the same space as R, and R, , so that
(30) and (29) will have exactly the same explanatory power. The LM and
DH tests will then be numerically identical. Provided that
Foq = plim[§;ﬁ1/n] has full rank £, the asymptotic equivalence of all
forms of classical and DH tests, which is Holly’s result, then follows
immediately from the numerical equality of these two tests.

When F24 does not have full rank, some elements (or 1linear
combinations of elements) of 8; will be estimated consistently by 8, even
when the restrictions are false, and regardless of the actual values of 6, .
In this situation, the results of the DH test may easily be misinterpreted.
The appropriate thing to do when J21 does not have full rank is to drop as
many columns of IE"2§1 as necessary, and reduce the degrees of freedom for
the test accordingly. In practice, however, ﬁ;ﬁ1 may well have full rank
even though ¢,; does not, so that the investigator may not realize there is
a problem. As a result, he may well reject the null hypothesis of consistency
even when 8, is in fact consistent. The key to understanding this is to
recognize that, even though the null hypothesis of the DH version of a
classical test is 6,%,; = 0 rather than 62 = 0, the test is still testing
a hypothesis about 6, and not a hypothesis about 321 . When the test is

done by an artificial regression, the latter is simply estimated by Rif,/n

’
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and if ¥37 does not have full rank, the estimate will almost never reveal
that fact.
To see this clearly, consider the following very simple case. Suppose
that the restricted model is
y =XB +u

and the unrestricted one is

y=XB + yz + u, : (32)

with the n x k random matrix X and the n x 1 random vectors =z and u
being distributed in such a way that plim(X'z/n) =0 and plim(X'u/n) = 0 .
Under these circumstances it is clear that OLS estimation of (31) will yield
consistent estimates of B . Now consider the DH test, which may be based on
the regression

y = XB + z[sz]_lzTX*S +u, | (33)
where X* may be any column of X . Unless z'X* happens to be exactly
equal to zero, in which case the test cannot be computed, a t-test for &6 = 0
in (33) will be numerically identical to a t-test for . ¥ =0 in (32). Thus
if ¥ # 0 and the sample is large enough, the DH test will reject the null
hypothesis with probability one, even though B 1is in fact consistent.

The reason for this apparently puzzling result is that in a finite
sample we have computed a DH test which it would have been impossible to
compute asymptotically . Unfortgnately, it is often possible to do this. In
such circumstances, the finite-sample test results will not mean what they
ordinarily mean. This is true of all forms of the DH test, and not simply the
score form. In cases where the information matrix is block-diagonal between
the parameters which are estimated under the null and the parameters which
are restricted, the former will always be estimated consistently even when

the restrictions are false. This implies that the covariance matrix of the




vector of contrasts, expression (25), must be a zero matrix. But the
finite-sample analogue of (25) will aimost never be a zero matrix, and it is
usually computed in such a way as to ensure that it 1is positive
semi-definite. As a result, it will be Just as possible to compute, and

misinterpret, the DH statistic in its original form as in its score form.

4. DH Tests in Other Directions

In Davidson and MacKinnon [1987], we showed that the Hblly result is
perfectly general when the null hypothesis is estimated by maximum
likelihood. The reason for this is that when one set of estimates is
asymptotically efficient if the model is correctly specified, the other set
is always asymptotically equivalent (locally) to ML estimates with some set
of restrictions removed; Holly’s result then shows that, when the number of
restrictions removed is no greater than the number of parameters estimated
under the null, and the information matrix satisfies certain conditions, a DH
test is equivalent to a classical test of those restrictions.

As a corollary of this result, we can start with any score-type test and
derive a DH variant of it, sjmilar to the test based on regression (28).
Consider an artificial regression analogous to (30) » but with R, replaced
byan n x m matrix 2 = 2(8) :

r = Ryc; + Zc, + errors . (34)
The matrix 2 must satisfy certain conditions, which essentially give it the
same éroperties as ﬁz ; these are discussed below. Provided it does so, and
assuming that the matrix [ﬁ, 2] has full rank, the explained sum of squares
from this regression will be asymptotically distributed as xz(m) when the

DGP is (23) with 6, =0 .

The variety of tests covered by (34) is very great. In addition to LM

tests based on all known artificial regressions, tests of this form include
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Newey’s [1985] conditional moment tests, all the score-type DH tests

discussed in sections 2 and 3 above, White’s [1882] information matrix test
e

in the OPG form suggested by Lancaster [1984], and Ramsey’s [1969] RESET

test.

We now briefly indicate how to prove the above proposition. The'proof is
similar to standard proofs for LM tests based on artificial regressions, and
the details are therefore omitted. As noted above, it is necessary that 2
satisfy certain conditions, so that it essentially has the same properties as
R, . First, we require that plim[FTi/n) = 0 under the null hypothesis; if
this condition were not satisfied, we obviously could not expect cx in (34)
to be zero. Second, we require that

plim[ZTFFTi/n] = plim[iTi/n]

plim[iTFFTﬁ1/n] = plim[2T§1/n] ,
which are similar to the condition that

plim(R,r Ri/n) = plin(R&,"R,/n) ; (37)
(37) does not have to be assumed because it is a consequence of property (ii)
and the consistency of & . Finally, we require that a central limit theorem
be applicable to the vector

n 22T (38)
and that laws of large numbers be applicable to the quantities whose
probability limits appear on the right-hand sides of (35), (36) and (37).

Consider the vector (38). Asymptotically, it has mean zero under the
null hypothesis, and its asymptotic covariance matrix is
MiZ2/n) ,

which is equal to

plin %[ETFFTE - SRR (RTR)IRT2




+ 2R, (RiR ) RIFFTR, (RTR, )‘lﬁIi)]] : | (39)

Rewriting (39) so that each term is a product of probability limits which
are 0(1), using (35), (36) and (37), and simplifying, we find that
plim(Z'%,F " M,2/n) = plin(2"M,2/n) .
This plus the asymptotic normality of (38) implies that the statistic
(n 2 T§,3) (prin(2 i 2/n)) " (n"25H ) | (40)
is asymptotically distributed as xz(m) . But since our assumptions imply
that a law of large numbers can be applied to iTﬁlﬁ/n » the explained sum of
squares from regression (34), which is
FM 22T 2) TR
will asymptotically be the same random variable as (40).

It is obvious how to construct a DH version of this test, and it is now
obvious that such a test will be asymptotically valid. We obtain the DH
version by simply replacing 2 in (34) with MR, or PoR; . It is evident
that if 2 satisfies the conditions imposed on it above, then so will
P,R, , because it is simply the projection of R, onto the Space spanned by
2. As usual, the number of degrees of freedom of the test will in regular
cases be m if m =k, in which case the DH and ordinary score test
statistics will be numerically identical. When m > k » however, the DH test
will have fewer degrees of freedom than the ordinary score test (i.e., at
most k ).

The DH versions of score tests may be particularly useful when m is
large. Consider White’s [1982] information matrix (IM) test. As Lancaster
[1984] has shown, this can easily be computed via the OPG regression, which
is a special case of regression (34). In this case, r is an n-vector of

ones, R; is the matrix &, , the tit" element of which is 48&.(9)/3e; ,

evaluated at 6 , and 2 is a matrix of which a typical element is
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66,69J 69‘ aeJ 1= 1"" LIRS S (4:1)

8224 (8) [azt(e)] [aet(e)] ,
evaluated at ® . The number of columns in 2 i k2+k , although in
practice some columns often have to be dropped if [&, 2] has less-than-full
rank.

Except when k 1is very small, the IM.test is likely to involve a very
large number of degrees of freedom. Various ways to reduce this have been
suggested; one could, for example, simply restrict attention to the diagonal
elements of the information matrix, setting j =1 in (41). But this seems
arbitrary. Moreover, as Chesher [1984] has shown, the implicit alternative of
the IM test is a form of random parameter variation which will not
necessarily be of much economic interest. People frequently employ the test
not to check for this type of parameter variation, but because it is thought
to have power against a wide range of types of model misspecification. Model

misspecification is often of little concern if it does not affect parameter

estimates. An attractive way to reduce the number of degrees of freedom of

the IM test, then, is to use a DH version of it. This can easily be

accomplished by replacing Z in the artificial regression by P,G,

In many circumstances, we believe, the DH version of the IM test will be
more useful than the original. Instead of asking whether there is evidence
that the gradient outer product and Hessian estimates of the information
matrix differ, the test asks whether there is evidence that they differ for a
reason which affects the parameter estimates. One would expect the DH version
of the test to have more power in many cases, since it will have at most k
degrees of freedom, instead of %(k2+k) for the usual IM test; see Section
5. Note, however, that it will still be impossible to compute the test when
n < %(k2+k) , since P;6; would then equal &; . Even in its DH version,

then, the IM test remains a procedure to be used only when the sample size is
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reasonably large.

Of course, it only makes sense to do a DH version of the IM test when
the latter is testing in directions which affect parameter consistency. This
is not so in the case of linear regression models, where it is easy to see
that the IM test is implicitly testing for certain ., forms of
heteroskedasticity, skewness and kurtosis (see Hall [1987]1). For a linear
regression model with normal errors, the contribution to the loglikelihood

function from the t'" observation is

& = 1log(2m) - log(o) - ((y¢ - XtB)a]/[Zo?] R (42)

where B 1is a p-vector so that k = p+1 . The contributions to the gradient
for B; and ¢ respectively are

Gei = (¥ = XeB)Xei/o” ,

G,k = ~1/0 + (ye - XeB)2/6°
and the second derivatives of (42) are

a%e,

_ 2 _ _ 2,4
m = 1/c¢ 3(yt XtB) /0,

8%,

_ _ 3
3008, 2(yr = X¢B)Xei /0

8%,
0B 0B

= Xy Xey/00 .

The OPG regression consists of p regressors Gyi , which correspond to the
Bi’s , and one regressor éhk which corresponds to o » plus the test
regressors 2 . The first two of these are expressions (43) and (44)
respectively, evaluated at OLS estimates f and o (the latter using n
rather n-p in the denominator). The test regressor corresponding to any
pair of parameters is the sum of the second derivative of ¢ with respect

to those parameters and the product of the corresponding first derivatives,

again evaluated at B and o . We simplify all these expressions by using
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the fact that, since the test statistic is an explained sum of squares,

multiplying any regressor by a constant will have no effect on it, and by

defining e. as /o .
The regressors for the OPG version of the IM test are thus seen to be:

for Bi: eiXey (45)
for o: etz -1 ’ (48)
for Bi,Bj: (e¢” = 1)Xe;Xe, | | (47)
for B;,o: (et3 - 3ey)Xy; ‘ (48)
for o,o0: et4 - Set2 +2 . | (49)

When the original regression contains a constant term, (47) will be perfectly

collinear with (46) when i and j both refer to the constant term, so that

one of them will have to be dropped and the degrees of freedom for the test

reduced by one to %(p2+3p)

It is evident that the (B;,B;) regressors are testing in directions
which correspond to heteroskedasticity of the type that White’s [1980] test
is designed to detect (namely heteroskedasticity that affects the consistency
of the OLS covariance matrix estimator) and that the “(Bi, o) regressors are
testing in directions that correspond to skewness interacting with the
X¢i’s . If we subtract (46) from (49), the result is et4 - Set2 + 3, from
which we see that the linearly independent part of the (o,0) regrgssor is
testing in the kurtosis direction. The IM test is thus seen to be testing for
heteroskedasticity, skewness and kurtosis, none of which prevent B from
being consistent. Hence it would make no sense to compute a DH variant of the
IM test 1in this case, and indeed it would be impossible to do so
asymptotically. If one did do such a test in practice, one would run into
precisely the problem discussed in the previous section: the test might well

reject if the model suffered from heteroskedasticity, skewness or kurtosis,




but the rejection would not say anything about the consistency of J .

5. The Power of DH and Classical Tests

When the DH version of a classical test differs from the original, the
former may or may not be more powerful than the latter. Although this fact
and the reasons for it are reasonably well-known, it seems worthwhile to
include a brief discussion which, we hope, makes the issues clear. We shall
deal with the general case of section 3, and will rely heavily on results in
Davidson and MacKinnon [1987].

Suppose the data are generated by a sequence of local DGP’s which tends
to the point g° = (69,0) . The direction in which the null is incorrect can
always be represented by a vector

M (Rowz + Riw;)
where  M; = Mi(6°) , R = Rp(6°) and R; is a matrix with the same
properties as R; and R, , which represents directions other than those
contained in the alternative hypothesis. The vectors w, and w3 indicate
the weights to be given to the various directions; one can think of W, as
being proportional to 8, . Following Davidson and MacKinnon [1987], it is
possible to show that under such a sequence any of the classical test
statistics for the hypothesis 62 = 0 will be asymptotically distributed as

noncentral x2(£) with noncentrality parameter (or NCP)

~1
plim[rl—;[w;R; + w§R§]M,nz] [plim(nlm,nz/n]] plim[%R;m[sza + R3w3]] . (50)

This NCP is the probability limit of 1/n times the explained sum of squares
from the artificial regression

M;(Row> + Rsw;) = M;Rob + errors . (51)
When the DGP belongs to the alternative hypothesis, so that w3 = 0, this

regression fits perfectly and (50) simplifies to




plim [%w;RZMngg] ,

which is equivalent to expressions for noncentrality parameters found in
standard references such as Engle [1984].

Similarly, the noncentrality parameter for the DH variant of the
classical test against 6, =0 wil; be the probability limit of 1/n times
the explained sum of squares from the artificial regression

M, (Raws + ngé) = M;P,R;b* + errors .
If we make the definition

C = (RiR:)'RIR, ,
regression (52) can be rewritten as

M;(Rowz + Raws) = M;R.Cb* + errors . (53)
From (51) and (53) it is clear that the DH and classical tests will have the
same NCP in two circumstances. The first of these is when £ = k and the
matrix C has full rank, which is the familiar case where the classical and
DH tests are equivalent. The second is when

Rowz = RoCw* ' : . (54)
where w* is a k-vector. In both these cases regressions (51) and (53) will
have the same explained sum of squares.

When the DH test is not equivalent to the classical tests and condition
(54) does not hold, it must have a smaller NCP than the classical tests. This
will be true whether or not w3 = 0, since R.C can never have more
explanatory power than R, . Whether the DH test will have more or less power
than the classical test then depends on whether its reduced number of degrees

of freedom more than offsets its smaller NCP.

6. Binary Choice Models: An Example

In this section we consider a simple example where a DH variant of the




IM test does make sense. Failures of distributional assumptions, of the sort
which do not affect the consistency of least squares estimates, do render ML
estimates of binary choice models inconsistent. It 1is therefore both
important to test for these and interesting to see if they are affecting the
parameter estimates.
We shall be cbncerned with the simplest type of binary choice model, in

which the dependent variable Yt may be either zero or one and

Pr(ys = 1) = F(XB) , (55)
where F(x) is a thrice continuously differentiable function which maps from
the real line to the 0-1 interval, is weakly increasing in x , and has the
properties

F(x) = 0; F(r@) =0 ; F(w) =1 ; F(-x) =1 - F(x) . (56)
Two examples are the probit model, where F(x) is the cumulative standard
normal distribution function, and the logit model, where F(x) is the
logistic function. The contribution to the loglikelihood of the tth
observation is

(B) = yi1og(F(XeB)) + (1-y¢)log(F(-X.B)) .
The contributions to the gradient for y, =1 and y, = 0 are respectively

f(XeB)Xe; /F(XB)

"f("XtB)Xt,/F(—XtB) ’

where  f(x) is the first derivative of F(x) . Thus the corresponding

elements of the matrix GTG are

(£(XeB)/F(XeB) ) %Ko Xe s

(£(-XcB)/F(~XeB) )X KeiXe;
The second derivatives of &.(B)

respectively




(£ (XeBIF(XeB) = £2(XeB))XeiXe s/ (F(XeB)2) (59)

(=£ (XeBIF(-XeB) = £2(-X¢B) )XesXey/ (F(-Xe8)?) (60)
where f’(x) denotes the derivative of f(x) and we have used the symmetry
property of (56) which implies thét f’(x) = -f’(x) . The sum of (57) and
(59) is

£/ (XeB)Xei X j/F(XeB)
and the sum of (58) and (60) is

-/ (XeB) Xei Xe3/F(=XB) . (62)
The expectation of the random variable whose two possible realizations are
(61) and (62) should be zero if the model is correctly specified, and this is
what the IM test would be testing. This expectation is

F(XeB) (£’ (XeB)XeiXej/F(XeB)) + F(=X¢B) (-£ (X¢B)Xei Xe 3/F(-XB) )

= £/ (XeB)XeiXey = £/ (XeB)XeiXe; = O .

The IM test may be based on the OPG regression, as usual, or it may be
based on the artificial regression proposed by Engle [1984] and Davidson and
MacKinnon [1884b] specifically for binary choice models, which we shall refer
to as the PL (for probit/logit) regression. Computing the IM test by means of
an artificial regression other than the OPG regression may be attractive
because of the poor finite-sample properties of the latter (see below!).
Unless one counts White’s [1980] heteroskedasticity test for regression
modeis as an IM test, this does’not seem to have been suggested previously.

The regressand for the PL artificial regression is

1
F(X.B) |2

1

-X.RB)12

=Yt EL—Z%EA =
F(XtB) F(-XtB)

+ (yt—l)

and the regressors corresponding to the pB;’s are

. ~ o1 -
Rei = (F(XeBIF(-X:B))™2 £(XeB)Xes




We want to construct the test regressors so that the ij*h test regressor
times (63) yields (61) when y; =1 and (62) when Y¢ =0 . It is thus
easily seen that the ij*" test regressor must be

Zy,55 = (F(st)F(—xtE)]"% £/ (XeB) XeiXej . (65)

In the probit case, this artificial regression has a very interesting

interpretation. Since f(X.8) is the standard normal density,

£/ (XB) = -(2n)_%exp[—%(xt3)2]xt6 = =XB F(XB),
so that (65) becomes

-(F(XtE)F(—XtE')]—% £(XeB) XeB XeiXey . (68)
This is identical to the test regressor one would get if one did an LM test

of the model (55) against the alternative

1

Ko
Pr(y, = 1) = F [XtB]/exp[ ) .21 Xtixtj7ij] ,
= J=

which can be derived from the latent variable model

kK4
Yt =XeB+u , u ~N O»GXP[Z.El ):1 Xtixtj'b'ij] ,
i= J=

(68)
Vi 1 if y¥>0; y¢ =0 otherwise .

The model (68) is thus a special case of a model which incorporates a natural
form of heteroskedasticity. The general model was considered by Davidson and
MacKinnon [1984b], who derived the appropriate LM test. This model is special
because fhe variance of uy depends exclusively on the cross-products of the
Xti's . It is clear that the implicit alternative of the IM test is precisely
this heteroskedastic model. Moreover, just as for ordinary regression models
it is only heteroskedasticity related to the cross-products of the regressors
which affects the consistency of the covariance matrix estimates, so for
probit models it is only heteroskedasticity of this type which (locally)
prevents the information matrix equality from holding and which thus renders

ML probit estimates inconsistent. This is purely a local result, of course;




if a DGP involving any form of heteroskedasticity were some fixed distance
from the probit model, one could not expect ML estimates based on
homoskedasticity to be consistent.

Notice that if one of the X.i’s , say Xt; , 1s a constant term, the

test regressor (66) which corresponds to th is

-1 ~ ~
—(F(XBIF(-XeB)) 2 £(XeB) XeB

which is a linear combination of the regressors (64) that correspond to the
Bi’s . This test regressor must therefore be dropped, and the degrees of
freedom of the test reduced to 3k(k+1) - 1 .

Newey [1985] recognized that the IM test implicitly tests against
heteroskedasticity in the case of probit models, and suggested that this test
may be particularly attractive for such models. We now report the results of
a2 small Monte Carlo experiment designed to shed light on this conjecture.
There are two main results. First, we find that the OPG form of the IM test
for probit models rejects the null far too often in samples of moderate or
even rather large size, while the PL form of the‘IM test proposed above
performs much better. Second, we find that in some realistic cases the DH
version of the IM test may have significantly more power than the ordinary
version.

In all our experiments the matrix X consisted of a constant term and
one or more other regressors, which were normally distributed . and
equi-correlated with correlation one half. Only one set of realizations of
these variables was generated, and only for 100 observations. For larger
sample sizes this set of observations was replicated as many times as
necessary. This scheme reduced the costs of the simulation, made it easy to
calculate NCP's (which for a given test depend only on X and on the

parameters of the DGP), and ensured that any changes as n was increased




were not due to changes in the pattern of the exogenous variables.

We first investigated the performance under the null of the ordinary IM
test and its DH version, calculated by both the OPG and PL regressions, for
samples of size 100, 200, 400, 800 and 1600. We let the number of parameters
under the null hypothesis, k , vary from 2 to 4, so that the number of
degrees of freedom for the ordinary IM test was 2, 5 or 9, and for the DH
version 2, 3 or 4. The DH and ordinary IM test are thus identical when
k=2.

Results for samples of size 100, 400 and 1600 are shown in Table 1. The
most striking result is the extréme tendency to over-reject of the OPG tests,
which worsens rapidly as k increases, and diminishes only slowly as the
sample size increases. For k = 4 , the OPG IM test rejects over 88% of the
time at the nominal 5% level when n = 100 , and over 50% of fhe‘time even
when n = 1600 ! It is clear that the sample would have to be enormous for
this test’s true size to be anywhere close to its nominal one. The DH version
of the OPG test is slightly better' behaved than the original, but the
improvement is marginal. Previous results on the finite-sample performance of
the OPG test have generally not been favorable to it, but the present results
are far worse than those reported previously. Since most applications are
likely to involve many more than four parameters, it seems doubtful that the
OPG form of the IM test for probit models can ever yield even approximately
reliable results in samples of the size that are typically wused by
econometricians.

The tests based on the PL regression are far better behaved than the OPG
tests, but are still a long way from their asymptotic distribution even in
samples of 1600. They have roughly the right mean, but their standard

deviations are too high because very large values occur much more often than




they should by chance. As a result, they tend to under-reject at the 10%
level and over-reject at the 1% level, while being fairly close to their
nominal size‘at 5% . Curiously, the problem of too many outliers appears
ini£ia11y to get worse as n increases; for k =4 (the worst case), the
standard deviation for both the ordinary and DH versions is largest for
n = 400, as is the rejection fbequency at the nominal 1% level. |

Since the OPG test rejects so often as to be completely useless, there
is apparently no choice but to use the PL version; however, these results
suggest that even it should be regarded with considerable suspicion,
especially if there are more than a very few parameters and the sample size
is not very large indeed.

Our second set of experiments was designed to investigate power when the
data were generated by (67). Calculation of NCP’s, using the artificial
regression (51), showed that for a wide range of %;;’s chosen so that all
cross-products contributed very roughly the same amount to the variance, the

NCP for the DH version was only slightly smaller than the NCP for the

ordinary IM test. In more extreme cases, such as when only one iy was

non-zero, the NCP for the DH version could be less than half as large. In the
former case, the DH version should be more powerful asymptotically, since a
slight reduction in the NCP is more than offset by what can be a substantial
reduction in degrees of freedom, but in the latter the ordinary IM test would
be more powerful.

The object of the Monte Carlo experiments was to see how
accurately the asymptotic analysis of Section 5 predicted finite-sample
power. We considered a single “plausible” pattern for the %i;’s, and
then scaled the latter to the sample size so that the tests would have power

somewhere around 50% at the nominal 5% level. The resulting NCP’'s, which are




of course invariant to the sample size, were 5.15 for k = 2 » 6.18 and
5.97 (DH version) for k = 3, and 9.16 and 8.57 (DH version) for k =4 .
Results for the PL tests only are shown in Table 2; results for the OPG
tests are not shown because, as one would expect from the resﬁlts in Table 1,
they always rejected far more often than asymptotic theory predicted. The

table also shows, in rows labelled “Asymp”, the values that would be expected

if the test statistics actually had their asymptotic non-central chi-squared

distributions.

The behavior of the PL tests when the null is false is broadly
consistent with their behavior when it is true. In particular, they reject
much too often at the 1% level, and have means which are often far too large,
because there are many more extremely large values than asymptotic theory
predicts. However, they do not consistently under-reject at the 10% level,
and the pattern as n increases is not always monotonic. For the case
considered here, asymptotic analysis predicts that the DH version will have a
modest power advantage. This is usually the case in the experimental results
as well, although the ordinary IM test is sometimes more powerful when n is
small, especially at the 1% level.

Based on these results, we find it difficult to endorse Newey’s [1985]
recommendation of the IM test for probit models. The conventional OPG form of
the test should clearly not be used. Among the tests we studied, the DH
version computed via the PL regression generally performs the best, both
under the null and under the alternatives we studied, but even it generates
far too many realizations in the right-hand tail. It might well be more
productive to test for particular, relativelyl simple forms of hetero-

skedasticity which do not involve many degrees of freedon, especially those




which seem plausible for the model at hand, rather than to calculate any form

of the IM test.

7. Conclusion

This paper has dealt with several aspects of Durbin-Hausman tests of
parameter consistency. Its main contribution has been to show that tests of
parameter consistency may be based on any artificial regression that can be
used to compute score-type tests, and that any test based on such a
regression can be converted into a test of parameter consistency. In
particular, we have shown that this is true for the information matrix test,
and we have also shown that, for the case of binary choice models, the IM
test may be computed by means of more than one artificial regression. The
latter is a valuable result, because our Monte Carlo work suggests that the
usual OPG form of this test has appallingly bad finite-sample properties when

applied to probit models, even when the sample size is quite large.
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Table 1 Performance of Alternative Tests Under the Null

Rejection Frequencies at Nominal Levels
Test Mean Std. Dev. 10% 5% 1%

OPG . 94%** . 36%* 46.5%* 40. 1%* 28.2%*
PL .81% .BT7** 7.8% 5.2 2. 3%*

6
1
OPG 4.11%* . 45%* 28.0%** o 21.4%* 12.4**
1
2
1

PL .81 | .04 8.2% 4.1 1.2

OPG LT4x* . BO** 17.3%* . 11.0%* 4,9%*
PL .88 .95 8.3 4.3 1.0

OPG 21.71%* L2T** 84, 5%** 79.5%** B7.6%*
PL 4.14** L 8T** 6.6%** 4.9 2.7%*
OPG-DH 15.79** LOT7H** 76.7** 70. 1%* 57.5%*
PL-DH 2. 44%* .Bg** 6.0%* . 4.4 2.3%*

OPG . 40** . 82%* 55.7** 47.5%* 32.2%*
PL .79 . BT7** 9.8 B. 4% 3. 1**
OPG-DH .31%* . 0g** 51.2%* 44, 0%* 30. 3**
PL-DH .81* .51x* 8.8 57 2. 4%

OPG . 53** . 94** 33.6%* 25. 3** 14, 2%*
PL .81 . 04x* 8.7 6.2% 2. g¥*
OPG-DH . 55** .B1%* 28. 3%* 22. g** 12, 7**
PL-DH .95 L21%* 9.6 5.8 2. 4%*

OPG L37** .T0** 88. 4%** 98, 3** g4, 2%*
PL .B4** LT2%* B.2%* 4.5 2.6%%
OPG-DH . Qg** .01%* 92. O** 88. 7** 79. 4%*
PL~DH . BO** . 19%** 4.8%* 3.0%* 1.6*

OPG . 48%* . 15%* 88.9%* 84. 4%** 75.2%*
PL . 22%* . 92%* S.1 6.6* 3. 7%*
OPG-DH LT2%* . B2¥* 82.0%* 75.8%* B5. 4%*
PL-DH . BT7** L1T7H* 8.0* 5.6 2.8%*

OPG . 84x* .B1¥* 62.5%* 53. 1** 38.5%*
PL .78 S R 8.8 6.0* 2.6%*
OPG-DH . Q2% * . 35%* 55, 7** 47, 3%* 33. 3%
PL-DH .T76% .B3** 8.9 5.8 2. 2%*

Notes: All results are based on 2000 replications.

* and ** jindicate that a quantity differs from what it should be
asymptotically at the .05 and .001 levels respectively.

Degrees of freedom for the ordinary IM tests are 2 for k=2, 5
for k=3 and 9 for k=4 .

The standard deviations of »° random variables with 2, 3, 4, 5 and 9
degrees of freedom are respectively 2, 2.45, 2.83, 3.16 and 4.24.




Table 2 Power of Alternative Tests

Rejection Frequencies at Nominal Levels
10% 5% 1%

PL . 64.0 51.6 28.3
PL . 47. 4% 40. 3%* 27. 1%
PL . 53. 44, 0%* 27.7
PL . 59. 48.9* 30.0
PL . 62. 51.0 30.1
PL . 65. 53.2 31. 4%

PL 11.18 57. 44. 22.
PL-DH 8.97 64. 51. 28.

PL 35. 19%* 55. 52. 46.
PL-DH 31.43** 57. 51. 44.

PL 37.29%* 63. 58. 51.
PL-DH 33.02%* 65. 58. 49.

PL 30.76 B1. 56. 48.
PL-DH 26.62%** 64. - 57. 47.

PL 23.22%* 65. 58. 47.
PL-DH 18.27** 67.2* 60. 4B.

PL 17.84%* 64.6% ‘ 56. 42.
PL-DH 14.47** 67.1* 58. 43.

Asymp. PL 18.16 64.5 51. 28.
PL-DH 12.57 75.0 63. 40.

100 PL 114.08%* 50.8%** 48. 45.
PL-DH 114.18%* 51.7** 50. 47.

200 PL 159. 94** 67.0* 64. - B8,
PL-DH 141.66%** B63. 8** 66. 61.

400 PL 120.85%* 68.7** 64. 57.
PL-DH 107.29** 73.0%* 68. 61.

800 PL 69.29%* 66.0 61. 51.
PL~-DH 60. 12** 72.6%* 67. 56.

1600 PL 33.78%* 60.0** 53. 40.
PL-DH 27.15%* 68.5%* 60. 48.

Notes: All results are based on 2000 replications.

* and ** indicate that a quantity differs from what it should be
asymptotically at the .05 and .001 levels respectively.

Degrees of freedom for the ordinary IM tests are 2 for k=2, 5
for k=3 and 9 for k=4 .
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