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Abstract

We consider several issues related to what Hausman [1978] called

"specification tests", namely tests designed to verify the consistency of

parameter estimates. We first review a number of results about these tests in

linear regression models, and present some new material on their distribution

when the model being tested is false, and on a simple way to improve their

power in certain cases. We then show how in a general nonlinear setting they

may be computed as "score" tests by means of slightly modified versions of

any artificial linear regression that can be used to calculate Lagrange

Multiplier tests, and explore some of the implications of this result. In

particular, we show how to create a variant of the information matrix test

that tests for parameter consistency. We examine both the conventional

information matrix test and our new version in the context of binary choice

models, and provide a simple way to compute both tests based on artificial

regressions. Some Monte Carlo evidence is also presented; it suggests that

the most common form of the information matrix test can be extremely badly

behaved in samples of even quite large size.

Key Words and Phrases: Durbin-Hausman tests, information matrix tests, binary

choice models, outer-product-of-the-gradient regression.



1. Introduction 

There are at least two distinct questions we may ask when we test an

econometric model. The first is simply whether certain restrictions hold,

i.e. whether the model is specified "correctly". This question is what

standard t and F tests attempt to answer in the case of regression

models, and what the three classical tests, Wald, LM and LR, attempt to

answer in models estimated by maximum likelihood. The second is whether the

parameters of the model have been estimated consistently. Hausman [1978], in

a very influential paper, introduced a family of tests designed to answer

this second question and called them "specification tests". The basic idea of

Hausman's tests, namely that one may base a test on a "vector of contrasts"

between two sets of estimates, one of which will be consistent under weaker

conditions than the other, dates back to a relatively neglected paper by

Durbin [1954]. We shall therefore refer to all tests of this general type as

Durbin-Hausman or DH tests.

There has been a good deal of work on DH tests in recent years; see the

survey paper by Ruud [1984]. In this paper we consider several issues related

to, tests of this type. In section 2, we review a number of results on DH

tests in linear regression models. The primary function of this section is to

present results for the simplest possible case; these should then serve as an

aid to intuition. We also present some new material on the distribution of DH

test statistics when the model being tested is false, and on a simple way to

improve the power of the tests in certain cases.

In section 3 we provide a simple and intuitive exposition of results,

originally due to Ruud [1982, 1984] and Newey [1985], on the calculation of

DH tests in nonl-inear models as "score" tests by means of artificial linear

regressions. We go beyond previous work by showing that any artificial
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regression which can be used to compute LM tests can be modified so as to

compute DH tests. An immediate implication of our argument is Holly's [1982]

result on the equivalence of DH and classical tests in certain cases. They

will be equivalent whenever the number of restrictions tested by the

classical test is no greater than the number of parameters the consistency of

which is being tested by the DH test, if those parameters would be estimated

inconsistently when the restrictions were incorrect. We also show that there

are circumstances in which the DH and classical tests will be equivalent (in

finite samples) even when the parameters in question would be estimated

consistently when the restrictions are incorrect. Thus rejection of the null

by a DH test does not always indicate parameter inconsistency.

In section 4, we build on results of Davidson and MacKinnon [1987] to

show how to compute a DH version of any score-type test based on an

artificial regression, even one not designed against any explicit

alternative. We show how this procedure may be applied to tests such as the

information matrix test (White [1982], Chesher [1984]), and Newey's [1985]

conditional moment tests.

In section 5, we discuss the power of DH tests as compared with

classical tests, in the case where the two are not identical. Finally, in

section 6, we discuss the information matrix test and its DH version in the

context of binary choice models. We provide a simple way to compute both

tests based on artificial regressions. Some Monte Carlo evidence is also

presented; among other things, it suggests that the most common form of the

information matrix test can be so badly behaved in samples of even quite

large size as to be totally useless in practice.

2. The Case of Linear Regression Models

Suppose the model to be tested is

2



y = Xg + u u IID(0,m2) , (1)

where there are n observations and k regressors. When conducting

asymptotic analysis, we shall assume that plim(XTu/n) = 0 and that

plim(XTX/n) is a positive definite matrix. When conducting finite-sample

analysis, we shall further assume that X is fixed in repeated samples and

that the ut's are normally distributed.

The basic idea of the DH test is to compare the OLS estimator

Tj= (XTX)--1XTy (2)

with some other linear estimator

13 = (XTAX)_1XTAy , (3)

where A is a symmetric n x n matrix assumed for simplicity to have rank

no less than k (otherwise, not all elements of could be estimated and

we would only be able to compare the estimable part of 13 with the

corresponding subvector of 13 , as in Davidson, Godfrey and MacKinnon

[1985]). If (1) actually generated the data, these two estimates will have

the same probability limit; they will have the same expectation if X is

fixed in repeated samples or independent of u . To see the former result,

observe that

plim(13) .= [plimUXTAX/n)-1))[plim(XTAX/n)(3+plim(XTAu/n)]

which equals g provided that plim(XTAu/n) = 0 .

where

The test is based on the vector of contrasts

Mx

A - = (xTAx) ixTAy _ (x-rx) ix-ry

(xTAx) l wAy _ (xTAx)(xTx)_ixTy)

= (X AX)-1(XTA(I - X(XTX)-1XT)y)

(XTAX)-1XTAMxy , (4)

-1 .
- X(X

T 
X) X

T is the orthogonal projection onto the orthogonal

complement of the span of the columns of the matrix X . The complementary



orthogonal projection will be denoted Px , and throughout the paper the

notations P and M subscripted by a matrix expression will denote

orthogonal projections onto and off the span of the columns of that

expression.

The first factor in (4), (XTAX)-1, is simplya kxk matrix with

full rank. Its presence will obviously have no effect on any test statistic

that we might compute. Hence what we really want to do is test whether,

plim(XTAMxy/n) =0 . (5)

The vector X
T
AMxy has k elements, but even if AX has full rank, not all

those elements may be random variables, because Mx may annihilate some

columns of AX . Suppose that k* is the number of linearly independent

columns of AX which are not annihilated by Mx • Then if we let the

corresponding k* columns of X be denoted by X* , testing (5) is

equivalent to testing

plim(X*TAMxy/n) =0 (6)

Now consider the artificial regression

y = XP + AX*8 + errors . (7)

It is easily shown that the OLS estimate of 8 is

(X*TAMxAX*)-1X*TAMxy ,

and it is evident that plim() = 0 iff (6) holds.

The ordinary F statistic for 8 = 0 in (7) is

yTP
MxAX*

y/k*

Y M[X 
MxAx*iY/(n-k-k*)

If (1) actually generated the data, this statistic will certainly be valid

asymptotically, since the denominator will then consistently estimate

It will be exactly distributed as F(k*,n-k-k*) in finite samples if the

ut's in (1) are normally distributed.
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There are man possible choices for A . In the case originally studied

by Durbin [1954], 4 is an IV estimator formed by first projecting X onto

the space spanned by a matrix of instruments W , so that A = Pw . The test

is then often interpreted as a test for the exogeneity of those components of

X not in the space spanned by W ; see Wu [1973], Hausman [1978], Nakamura

and Nakamura [1981] and Fisher and Smith [1985]. This interpretation is

misleading, since what is being tested is not the exogeneity or endogeneity

of some components of X , but rather the effect of possible endogeneity on

the estimates of R .

Alternatively, j3 may be the OLS estimator for p in the model

y = xp + Z7 + u (9)

where Z is an n x 2 matrix of regressors not in the span of X , so that

A = Mz . This form of the test is thus asking whether the estimates of g

when Z is excluded from the model are consistent. This is a simple example

of the case examined, in a much more general context, by Holly [1982]. As is

now well-known, the DH test is equivalent to an ordinary F test for 7 = 0 ,

provided that k 2 and a certain matrix has full rank. This is easily seen

from regression (7), which in this case is

y= xg + MzX8 + errors (10)

= X((3+8) PzX8 + errors (11)

It is evident from (11) that whenever the matrix Z
T
X has rank 2 ,

regression (10) will have exactly the same explanatory power as regression

(9), since X and PzX = Z(ZTZ)-1ZTX will span the same space as X and

. The F test for 8 = 0 in (10) will thus be identical to the F test for

7 = 0 in (9), which is Holly's result specialized to the linear regression

case. A necessary but not sufficient condition for ZTX to have rank 2 is

that k I .

- 5 -



There is an interesting relationship between the !'exogeneity" and

omitted-variables variants of the DH test. In the former, A = Pw and PwX*

consists of all columns of PwX that do not lie in the space spanned by X ,

so that the test regression is

y = xg + PwX*8 errors . (12)

In the latter, MzX* = MzX , so long as the matrix [X Z] has full rank.

Now suppose that we expand Z so that it equals W ; i.e. it includes at

least as many variables as X , including some variables that are in the span

of X . Evidently X* will then consist of those columns of X which are

not in the span of W , so that the test regression is

y = xg + mwx*s + errors . (13)

But it is evident that (12) and (13) will have exactly the same explanatory

power, since the matrices [X PwX] and [X MwX] span the same space. This

means that the test which is interpreted as a test for exogeneity and the

test which is interpreted as a test for the consistency of parameter

estimates when certain variables have been omitted, are in fact exactly the

same test.

Although (12) and (13) yield the same test statistics, they yield

different estimates of g . As an illustration, consider the case where

X* = X . In this case

M X = PwX (14)tqwX

and

MPwXX = 
MX 
' (15)

so that the estimate of g from (13) is (X
T
PwX)

-1
X
T
Pwy , which is the IV

estimate, and the estimate of g from (12) is (X
T
MwX)

-1
X
T
Mwy , which is the

OLS estimate from the unrestricted model (9). In the more usual case where

X* * X , one or both of the equalities (14) and (15) will not hold, depending
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on whether X* * X because some columns of X are in the span of W or

because X contains fewer columns than W .

The matrix A could also be almost any sort of n x n covariance

matrix, so that (3) would then be a GLS estimator. It is a familiar result

that OLS and GLS estimators have the same probability limit if the regression

model is specified correctly, but not in general otherwise. Thus this form of

the DH test is not testing for a non-scalar covariance matrix, but rather for

misspecification of the regression model. One can use a similar procedure

when the null hypothesis involves estimation by GLS; see Boothe and MacKinnon

[1986].

Yet another example is the differencing specification test, where A is

an ingeniously chosen matrix such that is a vector of estimates based on

first-differenced data (see Plosser, Schwert and White [1982] and Davidson,

Godfrey and MacKinnon [19851). In this case there are a few minor

complications caused by the fact that XTAX does not have full rank. For

still more examples, and discussion, see Breusch and Godfrey (1986].

One of the unique and potentially valuable features of DH tests is that

they may be used when the null hypothesis is not that the data were generated

by (1), but simply that the OLS estimates ij from (1) are consistent.

However, if in fact neither (1) nor (7) represents the actual data generating

process, or DGP, the denominator of (8) will provide an overestimate of the

amount of noise in the actual DGP, so that (8) will have actual size less

than its nominal size, with consequent loss of power when the null is false.

Specifically, if the data are generated by the process

y = xgo al) + u , u 14(0,cr02I) ,

where at() may be thought of as a linear combination of omitted variables,

the F-statistic for 3 = 0 in (7) will be distributed as doubly non-central



F(k*,n-k-k*) with numerator and denominator non-centrality parameters

and

2
aoP

MxAX*a°' trr°

N 2(a0M 
mAX*1a0J/To

2 respectively. These non-centrality parameters are evidently 1/To times the

explained sum of squares and the residual sum of squares from the artificial

regression

Mao = MxAX*-ti + errors . (18)

This explained sum of squares is of course the reduction in the sum of

squared residuals in the regression

ao = Xa + AX* 7) + errors (19)

which is due to AX* . When regression (18) fits perfectly, this means that

X and AX* in (19) jointly explain all the variation in ao . The numerator

NCP (16) then simplifies to

aoMxao/cro
2

(20)

and the denominator NCP (17) is equal to zero. The test will then have as

much power as any test with k* degrees of freedom could have. However, when

(18) fits less than perfectly, the numerator NCP (16) is smaller than

(20) and the denominator NCP (17) is greater than zero, both of which cause

the test to have less power. For more on test statistics which are

distributed as doubly non-central F , see Thursby and Schmidt [1977].

In certain cases it may be possible to improve the estimate of T2

thus reducing the denominator NCP and hence increasing power. Consider again

the case where A = Mz . Whenever p(AX) E P(MzX) < p(Z) , so that the DH

test differs from the classical test for 7 = 0 in (9), regression (10) must

fit less well than regression (9), because the latter has k+2 regressors

while the former only has k+k* (= 2k in regular cases). Instead of using the
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ordinary F statistic, then, one might use the test statistic

yik*
Y 13MxMd(

yTM
(21)

The numerator of (21) is thus the same as the numerator of the ordinary F

2statistic for 8 = 0 in (10), while the denominator is the estimate of T

from (9). It is obvious that this statistic will be asymptotically valid

whenever (9) generated the data. It is also easy to see that it will actually

have the F(k*,n-k-2) distribution in finite samples whenever (9) generated

the data and the null hypothesis that E(13) = E() is true, assuming of

course that we are dealing with fixed regressors and normally distributed

ut's . This is because the quadratic forms in the numerator and denominator

of (21) are independent, which follows from the fact that MxhizX is in the

null space of [X Zi .

By itself, reducing the number of degrees of freedom in the denominator

of an F test has the effect of reducing power (see Das Gupta and Perlman

[19741). Thus if the data were generated by (10), the modified F test (21)

would have slightly less power than the ordinary F test for 8 = 0 in (10)

(unless n-k-/ is very small, in which case the loss in power may not be

slight). However, in some cases where (1) is false, (9) may fit much better

than (10), thus yielding a much lower estimate of T2 . In such cases, the

modified F test (21) will be much more powerful than the ordinary one.

These tests are easily modified so as to test the consistency of a

subvector of the parameters rather than the whole parameter vector. A

simple expression for the k-vector of contrasts was given by (4). We can

select any lc, of these by premultiplying (4) by a 1(1 x k matrix B

consisting of zeroes and ones; for example, B would consist of a kl x kl

identity matrix placed beside a 1(1 x (k-k1) matrix of zeroes if we wanted to

9



select the contrasts corresponding to the first k elements of . The

vector of contrasts we are interested in is thus

13( X
T
AX)

-1
X
T
AMxY • (22)

Evidently a test that (22) is asymptotically zero may be based in the usual

way on the artificial regression

y = Xg + AX(XT IAX 1BTp. + errors .

The test will have 1(1 degrees of freedom, unless some columns of

-
AX(X

T AX)1 BT
have to be dropped because the matrix [X AX(XTAX)-1BT] does

not have full rank. Whether this test would have more or less power for

a given DGP than a joint test of all k parameters will depend on the extent

to which the columns of AX(XTAX)-1 are collinear, just as the individual

t-tests for a set of collinear variables may or may not be more powerful than

a single F test.

3. General Nonlinear Models

Since the work of Hausman [1978], it has been well known that DH tests

may be used in the context of very general classes of models involving

maximum likelihood estimation. There are three principal theoretical results

in this literature. The first, due to Hausman, is that the (asymptotic)

covariance matrix of a vector of contrasts is equal to the difference between

the (asymptotic) covariance matrices of the two vectors of parameter

estimates, provided that one of the latter is (asymptotically) efficient

under the null hypothesis. This is essentially a corollary of the Cramer-Rao

bound.

The second principal result, due to Holly [1982], is that when the two

parameter vectors being contrasted correspond to restricted and unrestricted

ML estimates (the vectors consisting only of those parameters which are

estimated under the restrictions), the DH test will under certain

10 -



circumstances be equivalent to the three classical test statistics, Wald, LM

and LR. Whether this equivalence holds or not will depend on the number of

parameters in the restricted and unrestricted models, and on the rank of

certain matrices; as we show below, the results are completely analogous to

those on whether the DH test based on (10) is equivalent to the ordinary F

test based on (9).

The third principal result, due to Ruud [1982,1984] and Newey [1985], is

that tests asymptotically equivalent to DH tests can be computed as score

tests. This implies that various artificial regressions can be used to

compute these tests. The only artificial regression which has been explicitly

suggested for this purpose is the so-called outer-product-of-the-gradient or

OPG regression, in which a vector of ones is regressed on the matrix of

contributions from single observations to the gradient of the loglikelihood

function. This regression is widely used for calculating LM tests (see

Godfrey and Wickens [1981]), and has more recently been suggested by Newey

[1985] as an easy way to calculate his "conditional moment" tests, including

some which are DH tests. Unfortunately, the OPG regression is known to have

poor finite-sample properties (see Davidson and MacKinnon [1983, 1985] and

Bera and McKenzie [1986]). As we shall now show, any artificial regression

that can be used to compute LM tests can also be used to compute DH tests. In

view of the undesirable properties of the OPG regression (a dramatic example

of how bad these can be is presented in Section 6), this result may be

important for applied work.

There are many classes of models for which artificial linear regressions

other than the OPG regression are available. These include univariate and

multivariate nonlinear regression models (Engle [1982, 1984]), probit and

logit models (Davidson and MacKinnon [1984b]) and a rather general class of

- 11



nonlinear models, with nonlinear transformations on the dependent

variable(s), for which "double-length" artificial regressions with 2n

"observations" are appropriate (Davidson and MacKinnon [1984a]). To the

extent that evidence is available, these all appear to have better

finite-sample properties than the OPG regression.

We shall deal with the following general case. There is a sample of size

which gives rise to a loglikelihood function

2(0 ,92) = E 4(01,92) ,, (23)t=i

where 01 is a k-vector and 02 an 2-vector of parameters, the latter equal

to zero if the model is correctly specified. Maximum likelihood estimates of

= [OT 0/-21Tthe vector 0 under the restriction 02 = 0 will be denoted 0,

while unrestricted estimates will be denoted e . The scores with respect to

01 and 02 are denoted by g1(0) and

8tt,(641,132)g1(9) = L
t=i 30;

g2(0) thus

i = 1,2 .

A "^" or a "-" over any quantity indicates that it is evaluated at o or o

respectively.

The model represented by (23) is assumed to satisfy all the usual

conditions for maximum likelihood estimation and inference to be

asymptotically valid (see, for example, Amemiya [1985, Chapter 4]). In

particular, we assume that ö is interior to a compact parameter space, and

that the information matrix g E lim(VggT/n)) is a finite, non-singular

matrix. The submatrix of g corresponding to Oi will be denoted ; the

corresponding submatrix of g-1 will be denoted

61

(.q71)i •

Taking Taylor series approximations to the first-order conditions for

and (61,62) around the true parameter vector 0° , and applying a

suitable law of large numbers, we find that

n1(5 -0?) :41 g171[Ik O]n -2-g(0°)

4

- 12-



and

1 A
n2(01-0?) [Ik 2g(0°) ,

where Ik isa kxk identity matrix and 0 isa kx2 matrix of

zeroes. It follows that

n2 (ei - ie ) 1
0] — [Ik 

0].51n_ 
2g(0°)

= n
Y - 

-1 )11)- 
igi(0°) [(371)12]n-2g2(0

0
) • (24)

From (24) it is easy to show that the asympototic covariance matrix of

n2(51-61) is

(311)-1[Ik 0] 1k 01513[(311)-1[/k 0] — [1k 013]

= 9711 1 1 - 31 1 ) . (25)

The first term in (25) is the asymptotic covariance matrix of n2(61-0?) and

the second is the asymptotic covariance matrix of n2(51-0?) so that (25)

is a special case of Hausman's principal result.

Standard results on partitioned matrices tell us that

(3-1)11 = (gii - 312(322-1)321)-1

and

(3-1)12 = (311 - 312(322)321) 312322 •

Substituting these into (24) yields the following expression for n2( 1 -ô1)

a -1 a -1 -1 -4n + (311 - 312(.1
a 
22 ).121) 

 
1312Ja 

22 n -g2 - n (26)

This expression allows us to derive easily computed test statistics based on

the general notion of an artificial regression.

In the usual case of testing restrictions in the context of maximum

likelihood estimation, an artificial regression involves two things: a

regressand, say r(0) , and a matrix of regressors, say R(0) , partitioned as

[R1 R2] , which have the properties that

(i) RT(Or(0) is the gradient of the loglikelihood function at 0 ,

- 13-



- -
(ii) 

RT 
(0)R(0)/n consistently estimates the information matrix whenever

••

0 consistently estimates 0

Replacing the gradients and information sub-matrices in (26) by their

finite-sample analogues, evaluated at 5 , and ignoring factors of

yields the expression

(fiTi r- 
(Ri 

-TM2Ri- -1-T- - -T- -1-T- -
Ri M2r (R1M2131) Ri M2Mir (27)

where Ai denotes mR, . Notice that the left-hand side of (27) resembles the

expression for a restricted OLS estimator minus an unrestricted one: think of

as the regressand, 111 as the matrix of regressors for the null

hypothesis and A2 as the matrix which projects off the space spanned by the

additional regressors whose coefficients are zero under the null.

Now consider the artificial regression

= R1b1 + KI2r31132 + errors , (28)

where the n x le matrix nT consists of as many columns of 1711  as

possible subject to the condition that the matrix

rank. The explained sum of squares from this regression is

-T
r p

[R 
-T

1 2 11 1411"12fIlir

have full

-T-
since Rir = 0 by the first-order conditions. Under suitable regularity

conditions it is easily shown that this statistic is asymptotically

distributed as x
2
(k*) under the null hypothesis that 02 = 0 . This result

also extends to any situation where the data are generated by a sequence of

local DGP's with 92.721 '0 which tends to 02 = 0 , provided that .721 has

full rank, we discuss this important proviso below.

Notice that (28) may be rewritten as

=T- -1-T-
rii (b1+b2) - fi2(ti2R2) R2R1b2 + errors

Thus, as with the linear case, it makes no difference whether we use (28) or

r- = Fl1c1 + 152ii-Tc2 + errors (29)

- 14-



for the purpose of computing a test.

The classical LM test can of course be computed as the explained sum of

squares from the artificial regression

n2b2 4- errors . (30)

The equivalence result of Holly [1982] is now obvious. Suppose that

SO that there are fewer restrictions than. parameters under the null

hypothesis, and that gni has rank 2 . Then it must be the case that ki

and i52ri1 = ft(nT2k2)-inT2R1 span the same space as ki and 112 , so that

(30) and (29) will have exactly the same explanatory power. The LM and

DH tests will then be numerically identical. Provided that

'721 = has full rank 2 , the asymptotic equivalence of all

forms of classical and DH tests, which is Holly's result, then follows

immediately from the numerical equality of these two tests.

When .7 21 does not have full rank, some elements (or linear

combinations of elements) of 01 will be estimated consistently by 51 even

when the restrictions are false, and regardless of the actual values of 02

In this situation, the results of the DH test may easily be misinterpreted.

The appropriate thing to do when g21

many columns of 021i,

does not have full rank is to drop as

as necessary, and reduce the degrees of freedom for

the test test accordingly. In practice, however, R2131 may well have full rank

even though Y2 does not, so that the investigator may not realize there is

a problem. As a result, he may well reject the null hypothesis of consistency

even when 51 is in fact consistent. The key to understanding this is to

recognize that, even though the null hypothesis of the DH version of a

classical test is 023.21 = 0 rather than 02 = 0 , the test is still testing

a hypothesis about and not a hypothesis about .72 . When the test is

done by an artificial regression, the latter is simply estimated by ,

- 15-



and if g21 does not have full rank, the estimate will almost never reveal

that fact.

To see this clearly, consider the following very simple case. Suppose

that the restricted model is

y = xg + u (31)

and the unrestricted one is

y = xg + Tz + u , (32)

with the n x k random matrix X and the n x 1 random vectors z and u

being distributed in such a way that plim(XTz/n) = 0 and plim(XTu/n) = 0

Under these circumstances it is clear that OLS estimation of (31) will yield

consistent estimates of g . Now consider the DH test, which may be based on

the regression

Y = Xg Z(ZTZI1ZTX*8 U I (33)

where X* may be any column of X . Unless Z
T
X* happens to be exactly

equal to zero, in which case the test cannot be computed, a t-test for 5 = 0

in (33) will be numerically identical to a t-test for 7 = 0 in (32). Thus

if 7 * 0 and the sample is large enough, the DH test will reject the null

hypothesis with probability one, even though 13# is in fact consistent.

The reason for this apparently puzzling result is that in a finite

sample we have computed a DH test which it would have been impossible to

compute asymptotically . Unfortunately, it is often possible to do this. In

such circumstances, the finite-sample test results will not mean what they

ordinarily mean. This is true of all forms of the DH test, and not simply the

score form. In cases where the information matrix is block-diagonal between

the parameters which are estimated under the null and the parameters which

are restricted, the former will always be estimated consistently even when

the restrictions are false. This implies that the covariance matrix of the
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vector of contrasts, expression (25), must be a zero matrix. But the

finite-sample analogue of (25) will almost never be a zero matrix, and it is

usually computed in such a way as to ensure that it is positive

semi-definite. As a result, it will be just as possible to compute, and

misinterpret, the DH statistic in its original form as in its score form.

4. DH Tests in Other Directions 

In Davidson and MacKinnon [19871, we showed that the Holly result is

perfectly general when the null hypothesis is estimated by maximum

likelihood. The reason for this is that when one set of estimates is

asymptotically efficient if the model is correctly specified, the other set

is always asymptotically equivalent (locally) to ML estimates with some set

of restrictions removed; Holly's result then shows that, when the number of

restrictions removed is no greater than the number of parameters estimated

under the null, and the information matrix satisfies certain conditions, a DH

test is equivalent to a classical test of those restrictions.

As a corollary of this result, we can start with any score-type test and

derive a DH variant of it, similar to the test based on regression (28).

Consider an artificial regression analogous to (30) , but with

by an n x m matrix 2 a Z(6) :

= Aict + 2c2 + errors .

R2 replaced

(34)

The matrix 2 must satisfy certain conditions, which essentially give it the

same properties as 112 ; these are discussed below. Provided it does so, and

assuming that the matrix (111 2] has full rank, the explained sum of squares

from this regression will be asymptotically distributed as x
2
(n) when the

DGP is (23) with 02 = 0 .

The variety of tests covered by (34) is very great. In addition to LM

tests based on all known artificial regressions, tests of this form include
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Newey's [1985] conditional moment tests, all the score-type DR tests

discussed in sections 2 and 3 above, White's [1982] information matrix test

in the OPG form suggested by Lancaster [1984], and Ramsey's [1969] RESET

test.

We now briefly indicate how to prove the above proposition. The proof is

similar to standard proofs for LM tests based on artificial regressions, and

the details are therefore omitted. As noted above, it is necessary that 2

satisfy certain conditions, so that it essentially has the same properties as

--A2 . First, we require that plim(
T

r Z/n) = 0 under the null hypothesis; if

this condition were not satisfied, we obviously could not expect

to be zero. Second, we require that

plim(ZIWT2/n) = plim(ZT2/n)

in (34)

(35)
and

=piim(21-niin) (36)

which are similar to the condition that

plim(kizrni/n) (37)

(37) does not have to be assumed because it is a consequence of property (ii)

and the consistency of 0 . Finally, we require that a central limit theorem

be applicable to the vector

-
n 2Z Mir , (38)

and that laws of large numbers be applicable to the quantities whose

probability limits appear on the right-hand sides of (35), (36) and (37).

Consider the vector (38). Asymptotically, it has mean zero under the

null hypothesis, and its asymptotic covariance matrix is

plim(2T 1 i=17-744- 12/n)

which is equal to

pliM - Z[ 
TT--T- -T--T- r-T-rr Z - Z rr RiiR1R1n

-1-T- -T- r- -
Ri Z Z IR R

-1-T--T-
Rirr Z
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]

+ 2TR (fiT) -11EiTi.:‘F-Tfii(§Ti llii) -lii-T2)) . (39)

Rewriting (39) so that each term is a product of probability limits which

are 0(1), using (35), (36) and (37), and simplifying, we find that

This plus the asymptotic normality of (38) implies that the statistic
_1r -- - - -(n 

T 

-2-r-i;112)Lplim(Z
T

Zinn
1 
(n 2Z Mir) (40)

is asymptotically distributed as x2(m) . But since our assumptions imply

T-- -that a law of large numbers can be applied to Z MiZ/n , the explained sum of

squares from regression (34), which is

-f-T-
r MiZiZ MiZ) Z ,

will asymptotically be the same random variable as (40).

It is obvious how to construct a DH version of this test, and it is now

obvious that such a test will be asymptotically valid. We obtain the DH

version by simply replacing 2 in (34) with kill or Pzirii . It is evident

that if 2 satisfies the conditions imposed on it above, then so will

Pfil , because it is simply the projection of 111 onto the space spanned by

2 . As usual, the number of degrees of freedom of the test will in regular
cases be m if m k , in which case the DH and ordinary score test

statistics will be numerically identical. When m > k , however, the DH test

will have fewer degrees of freedom than the ordinary score test (i.e., at

most k ).

The DH versions of score tests may be particularly useful when m is

large. Consider White's [1982] information matrix (IM) test. As Lancaster

[1984] has shown, this can easily be computed via the OPG regression, which

is a special case of regression (34). In this case, r is an n-vector of

ones, 111 is the matrix Gi , the tith element of which is a&(e)/a0 ,

evaluated at and 2 is a matrix of which a typical element is
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a24(e) 1att(Ol13tt(e)1
*moo; ae, JL aei = 1,••• ,•••,i (41)

evaluated at The number of columns in 2 is k
2
+k , although in

practice some columns often have to be dropped if [61

rank.

has less-than-full
•

Except when k is very small, the IM test is likely to involve a very

large number of degrees of freedom. Various ways to reduce this have been

suggested, one could, for example, simply restrict attention to the diagonal

elements of the information matrix, setting j = i in (41). But this seems

arbitrary. Moreover, as Chesher [1984] has shown, the implicit alternative of

the IM test is a form of random parameter variation which will not

necessarily be of much economic interest. People frequently employ the test

not to check for this type of parameter variation, but because it is thought

to have power against a wide range of types of model misspecificat ion. Model

misspecification is often of little concern if it does not affect parameter

estimates. An attractive way to reduce the number of degrees of freedom of

the IM test, then, is to use a DH version of it. This can easily be

accomplished by replacing 2 in the artificial regression by 15z-di .

In many circumstances, we believe, the DH version of the IM test will be

more useful than the original. Instead of asking whether there is evidence

that the gradient outer product and Hessian estimates of the information

matrix differ, the test asks whether there is evidence that they differ for a

reason which affects the parameter estimates. One would expect the DH version

of the test to have more power in many cases, since it will have at most k

degrees of freedom, instead of 1(k2+k)2 for the usual IM test, see Section

5. Note, however, that it will still be impossible to compute the test when

n < 1(k2+k)2 since 15zOi would then equal ol . Even in its DH version,

then, the IM test remains a procedure to be used only when the sample size is
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reasonably large.

Of course, it only makes sense to do a DH version of the IM test when

the latter is testing in directions which affect parameter consistency. This

is not so in the case of linear regression models, where it is easy to see

that the IM test is implicitly testing for certain , forms of

heteroskedasticity, skewness and kurtosis (see Hall [1987]). For a linear

regression model with normal errors, the contribution to the loglikelihood

function from the tth observation is

tt = ilog(27r) log(T) 
_ ((yt _ xt(3)2)/(20.,2) 

(42)

where g is a p-vector so that k = p+1 . The contributions to the gradient

for g, and T respectively are

Gti = (Yt - Xtg)XTti/ 2 , (43)

Gt k = -1/T + (yt X(3)2/T3 , (44)

and the second derivatives of (42) are

and

2a tt.
ao-aa.- 1/T2 3(yt Xt13)2/0:1

2a tt 3
-2(yt Xt13)XtiAr ,ao-ag,

2a 4 - • 2
agiagj 

At j/Cr

The OPG regression consists of p regressors oti , which correspond to the

and one regressor Gt,k which corresponds to T , plus the test

regressors 2 The first two of these are expressions (43) and (44)

respectively, evaluated at OLS estimates I§ and (the latter using n

rather n-p in the denominator). The test regressor corresponding to any

pair of parameters is the sum of the second derivative of tt with respect

to those parameters and the product of the corresponding first derivatives,

again evaluated at -0 and T . We simplify all these expressions by using
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the fact that, since the test statistic is an explained sum of squares,

multiplying any regressor by a constant will have no effect on it, and by

defining et as .

The regressors for the OPG version of the IM test are thus seen to be:

for gi: etXti

for a.: et
2 
- 1

(45)

(46)

(et 1)XtiXtifor f3,13: 2 (47)

for gi , m: (et3 3et)Xt1 (48)

for T,m: et
4 
- 5et

2 
+ 2 (49)

When the original regression contains a constant term, (47) will be perfectly

collinear with (46) when i and j both refer to the constant term, so that

one of them will have to be dropped and the degrees of freedom for the test

reduced by one to i(p2+3p) .

It is evident that the (Pi ,(3i) regressors are testing in directions

which correspond to heteroskedasticity of the type that White's [1980] test

is designed to detect (namely heteroskedasticity that affects the consistency

of the OLS covariance matrix estimator) and that the (gi,T) regressors are

testing in directions that correspond to skewness interacting with the

Xti's . If we subtract (46) from (49), the result is et
4 
- 6et

2 
+ 3 , from

which We see that the linearly independent part of the (T,m) regressor is

testing in the kurtosis direction. The IM test is thus seen to be testing for

heteroskedasticity, skewness and kurtosis, none of which prevent ij from

being consistent. Hence it would make no sense to compute a DH variant of the

IM test in this case, and indeed it would be impossible to do so

asymptotically. If one did do such a test in practice, one would run into

precisely the problem discussed in the previous section: the test might well

reject if the model suffered from heteroskedasticity, skewness or kurtosis,
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but the rejection would not say anything about the consistency of j.

5. The Power of DH and Classical Tests 

When the DH version of a classical test differs from the original, the

former may or may not be more powerful than the latter. Although this fact

and the reasons for it are reasonably well-known, it seems worthwhile to

include a brief discussion which, we hope, makes the issues clear. We shall

deal with the general case of section 3, and will rely heavily on results in

Davidson and MacKinnon [1987].

Suppose the data are generated by a sequence of local DGP's which tends

to the point 0(). a (07,0) . The direction in which the null is incorrect can

always be represented by a vector

M1 (R2W2 R3W3

where M1 a M1(0°) , R2 a R2 ( 0°) and R3 is a matrix with the same

properties as R1 and R2 , which represents directions other than those

contained in the alternative hypothesis. The vectors w2 and w3 indicate

the weights to be given to the various directions; one can think of W2 as

being proportional to 02 . Following Davidson and MacKinnon [1987], it is

possible to show that under such a sequence any of the classical test

statistics for the hypothesis 02 = 0 will be asymptotically distributed as

noncentral X
2
(2) with noncentrality parameter (or NCP)

[1.
( 

T
R
T TnTiu fnTui n / 1nTu rn- W2 2 + W3r13 J 111 r12) [P1 n21711 r12/ nj) plim[-n2ril Ln2W2 R3w3 . (50)

This NCP is the probability limit of 1/n times the explained sum of squares

from the artificial regression

M1(R2w2 R3w3) = M1R2b + errors (51)

When the DGP belongs to the alternative hypothesis, so that w3 = 0 , this

regression fits perfectly and (50) simplifies to
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. T
pi 1M ---W

n
2n2riin2W2 ,

which is equivalent to expressions for noncentrality parameters found in

standard references such as Engle [1984].

Similarly, the noncentrality parameter for the DH variant of the

classical test against 02 = 0 will be the probability limit of 1/n times

the explained sum of squares from the artificial regression

(R2w2 R3w3) = M1P2R1b* + errors . (52)

If we make the definition

C a (R12-R2)1RT2R1

regression (52) can be rewritten as

M1 ( R2W2 R3W3 M1 R2Cb* errors (53)

From (51) and (53) it is clear that the DH and classical tests will have the

same NCP in two circumstances. The first of these is when 2 = k and the

matrix C has full rank, which is the familiar case where the classical and

DH tests are equivalent. The second is when

R2w2 = R2Cw* , (54)

where w* is a k-vector. In both these cases regressions (51) and (53) will

have the same explained sum of squares.

When the DH test is not equivalent to the classical tests and condition

(54) does not hold, it must have a smaller NCP than the classical tests. This

will be true whether or not w3 = 0 , since R2C can never have more

explanatory power than R2 . Whether the DH test will have more or less power

than the classical test then depends on whether its reduced number of degrees

of freedom more than offsets its smaller NCP.

6. Binary Choice Models: An Example

In this section we consider a simple example where a DH variant of the
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IM test does make sense. Failures of distributional assumptions, of the sort

which do not affect the consistency of least squares estimates, do render ML

estimates of binary choice models inconsistent. It is therefore both

important to test for these and interesting to see if they are affecting the

parameter estimates.

We shall be concerned with the simplest type of binary choice model, in

which the dependent variable yt may be either zero or one and

Pr(yt = 1) = F(Xt(3) , (55)

where F(x) is a thrice continuously differentiable function which maps from

the real line to the 0-1 interval, is weakly increasing in x , and has the

properties

F(x) 0 ; F(-co) = 0 ; F(m) = 1 F(-x) = 1 - F(x) . (56)

Two examples are the probit model, where F(x) is the cumulative standard

normal distribution function, and the logit model, where F(x) is the

logistic function. The contribution to the loglikelihood of the

observation is

mg) . ytlog(F(Xtf3)) + (1-yt)log(F(-X(3)) .

The contributions to the gradient for

and

f(Xt13)Xt1/F(Xt(3)

-f(-Xt(3)Xt1/F(--Xt13)

Yt= 1

tth

and yt = 0 are respectively

where f(x) is the first derivative of F(x) . Thus the corresponding

elements of the matrix G
T 
G are

(f(Xtg)/F(Xtg))2XtiXtj

and

(f(-Xt(3)/FC-Xtft))2XtiXti .

The second derivatives of mg) for

respectively

(57)

(58)

Yt = 1 and yt = 0 are
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and

(fi(xtg)F(x (3) - f2(xt.g.nxtixtAFtxtg)2)

(-±" (Xt13)F(-Xt13) - f2(-XtgliXtiXti/(FC-Xt13)2)

(59)

(60)

where f' (x) denotes the derivative of f(x) and we have used the symmetry

property of (56) which implies that r(x) = -f'(x) . The sum of (57) and

(59) is

(61)r ti(Xtg)XXtj/F(Xtg)

and the sum of (58) and (60) is

-V(Xti3)XtiXti/F(-xtg) .

The expectation of the random variable whose two possible realizations are

(61) and (62) should be zero if the model is correctly specified, and this is

what the IM test would be testing. This expectation is

F(Xtg)(fi(xtg)xt1xti/F(x0)) F(-xt(3)(-f•cxtg)xtix
= fi(Xtf3)XtiXti - fi(Xt13)Xt1Xti = 0 .

The IM test may be based on the OPG regression, as usual, or it may be

based on the artificial regression proposed by Engle [1984] and Davidson and

MacKinnon [1984b] specifically for binary choice models, which we shall refer

to as the PL (for probit/logit) regression. Computing the IM test by means of

an artificial regression other than the OPG regression may be attractive

because of the poor finite-sample properties of the latter (see below!).

Unless one counts White's [1980] heteroskedasticity test for regression

models as an IM test, this does not seem to have been suggested previously.

The regressand for the FL artificial regression is

[F(-Xtll [F(Xt(̂j) 11rt = Yt (Yt-i)
F(-Xt-0)

(62)

(63)

and the regressors corresponding to the gi's are

Rti = (F(xtrO)F(-xt#0))-1 f(xtij)xti • (64)
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We want to construct the test regressors so that the ijth test regressor

times (63) yields (61) when yt = 1 and (62) when

easily seen that the ijth test regressor must be

2toi = (F(Xt13-)F(-Xtr3.)) 2 f (XtR) Xti Xtj •

Yt = 0 . It is thus

(65)

In the probit case, this artificial regression has a very interesting

interpretation. Since f(Xi) is the standard normal density,

f (Xt(3) = -(2/r) 2e p -1(Xt(3)
2 
)Xtg = --xtg f(xtg),

_

so that (65) becomes

-(F(Xti3-)F(-Xt13'))-1 f(xtr3) xti§ xtixt; • (66)

This is identical to the test regressor one would get if one did an LM test

of the model (55) against the alternative

Pr(Yt = 1) =F 

(Xt[ 

1.... i
g)/exp[2.; E xtixt.J7i J)i=1 J =1

which can be derived from the latent variable model

k i

y = Xtg ut lit N 0,exp[2 E E XtiXtffii)Z
i=1 j=1

(67)

(68)
yt = 1 if yr > 0 ; yt = 0 otherwise .

The model (68) is thus a special case of a model which incorporates a natural

form of heteroskedasticity. The general model was considered by Davidson and

MacKinnon [1984b], who derived the appropriate LM test. This model is special

because the variance of ut depends exclusively on the cross-products of the

Xti 's . It is clear that the implicit alternative of the IM test is precisely

this heteroskedastic model. Moreover, just as for ordinary regression models

it is only heteroskedasticity related to the cross-products of the regressors

which affects the consistency of the covariance matrix estimates, so for

probit models it is only heteroskedasticity of this type which (locally)

prevents the information matrix equality from holding and which thus renders

ML probit estimates inconsistent. This is purely a local result, of course;
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if a DGP involving any form of heteroskedasticity were some fixed distance

from the probit model, one could not expect ML estimates based on

homoskedasticity to be consistent.

Notice that if one of the X's , say Xtj is a constant term, the

2
test regressor (66) which corresponds to Xtj is

-(F(Xti31)FC-Xtr3))-1 f(X) Xt73' ,

which is a linear combination of the regressors (64) that correspond to the

. This test regressor must therefore be dropped, and the degrees of

freedom of the test reduced to k(k+1) - 1

Newey [1985] recognized that the IM test implicitly tests against

heteroskedasticity in the case of probit models, and suggested that this test

may be particularly attractive for such models. We now report the results of

a small Monte Carlo experiment designed to shed light on this conjecture.

There are two main results. First, we find that the OPG form of the IM test

for probit models rejects the null far too often in samples of moderate or

even rather large size, while the PL. form of the IM test proposed above

performs much better. Second, we find that in some realistic cases the DH

version of the IM test may have significantly more power than the ordinary

version.

In all our experiments the matrix X consisted of a constant term and

one or more other regressors, which were normally distributed and

equi-correlated with correlation one half. Only one set of realizations of

these variables was generated, and only for 100 observations. For larger

sample sizes this set of observations was replicated as many times as

necessary. This scheme reduced the costs of the simulation, made it easy to

calculate NCP's (which for a given test depend only on X and on the

parameters of the DGP), and ensured that any changes as n was increased
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were not due to changes in the pattern of the exogenous variables.

We first investigated the performance under the null of the ordinary IM

test and its DH version, calculated by both the OPG and PL regressions, for

samples of size 100, 200, 400, 800 and 1600. We let the number of parameters

under the null hypothesis, k , vary from 2 to 4 , so that the number of

degrees of freedom for the ordinary IM test was 2, 5 or 9, and for the DH

version 2, 3 or 4. The DH and ordinary IM test are thus identical when

k = 2 .

Results for samples of size 100, 400 and 1600 are shown in Table 1. The

most striking result is the extreme tendency to over-reject of the OPG tests,

which worsens rapidly as k increases, and diminishes only slowly as the

sample size increases. For k = 4 , the OPG IM test rejects over 98% of the

time at the nominal 5% level when n = 100 , and over 50% of the time even

when n = 1600 ! It is clear that the sample would have to be enormous for

this test's true size to be anywhere close to its nominal one. The DH version

of the OPG test is slightly better behaved than the original, but the

improvement is marginal. Previous results on the finite-sample performance of

the OPG test have generally not been favorable to it, but the present results

are far worse than those reported previously. Since most applications are

likely to involve many more than four parameters, it seems doubtful that the

OPG form of the IM test for probit models can ever yield even approximately

reliable results in samples of the size that are typically used by

econometric ians.

The tests based on the PL regression are far better behaved than the OPG

tests, but are still a long way from their asymptotic distribution even in

samples of 1600. They have roughly the right mean, but their standard

deviations are too high because very large values occur much more often than
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they should by chance. As a result, they tend to under-reject at the 10%

level and over-reject at the 1% level, while being fairly close to their

nominal size at 5% . Curiously, the problem of too many outliers appears

initially to get worse as n increases; for k= 4 (the worst case), the

standard deviation for both the ordinary and DH versions is largest for

n = 400, as is the rejection frequency at the nominal 1% level.

Since the OPG test rejects so often as to be completely useless, there

is apparently no choice but to use the PL version; however, these results

suggest that even it should be regarded with considerable suspicion,

especially if there are more than a very few parameters and the sample size

is not very large indeed.

Our second set of experiments was designed to investigate power when the

data were generated by (67). Calculation of NCP's, using the artificial

regression (51), showed that for a wide range of ni's chosen so that all

cross-products contributed very roughly the same amount to the variance, the

NCP for the DR version was only slightly smaller than the NCP for the

ordinary IM test. In more extreme cases, such as when only one ?fii was

non-zero, the NCP for the DH version could be less than half as large. In the

former case, the DR version should be more powerful asymptotically, since a

slight reduction in the NCP is more than offset by what can be a substantial

reduction in degrees of freedom, but in the latter the ordinary IM test would

be more powerful.

The object of the Monte Carlo experiments was to see how

accurately the asymptotic analysis of Section 5 predicted finite-sample

power. We considered a single "plausible" pattern for the ',i's, and

then scaled the latter to the sample size so that the tests would have power

somewhere around 50% at the nominal 5% level. The resulting NCP's, which are
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of course invariant to the sample size, were 5.15 for k = 2 , 6.18 and

5.97 (DH version) for k = 3 , and 9.16 and 8.57 (DH version) for k = 4

Results for the PL tests only are shown in Table 2; results for the OPG

tests are not shown because, as one would expect from the results in Table 1,

they always rejected far more often than asymptotic theory predicted. The

table also shows, in rows labelled "Asymp", the values that would be expected

if the test statistics actually had their asymptotic non-central chi-squared

distributions.

The behavior of the PL tests when the null is false is broadly

consistent with their behavior when it is true. In particular, they reject

much too often at the 1% level, and have means which are often far too large,

because there are many more extremely large values than asymptotic theory

predicts. However, they do not consistently under-reject at the 10% level,

and the pattern as n increases is not always monotonic. For the case

considered here, asymptotic analysis predicts that the DH version will have a

modest power advantage. This is usually the case in the experimental results

as well, although the ordinary IM test is sometimes more powerful when n is

small, especially at the 1% level.

Based on these results, we find it difficult to endorse Newey's [1985]

recommendation of the IM test for probit models. The conventional OPG form of

the test should clearly not be used. Among the tests we studied, the DH

version computed via the PL regression generally performs the best, both

under the null and under the alternatives we studied, but even it generates

far too 'many realizations in the right-hand tail. It might well be more

productive to test for particular, relatively simple forms of hetero-

skedasticity which do not involve many degrees of freedom, especially those
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which seem plausible for the model at hand, rather than to calculate any form

of the IM test.

7. Conclusion

This paper has dealt with several aspects of Durbin-Hausman tests of

parameter consistency. Its main contribution has been to show that tests of

parameter consistency may be based on any artificial regression that can be

used to compute score-type tests, and that any test based on such a

regression can be converted into a test of parameter consistency. In

particular, we have shown that this is true for the information matrix test,

and we have also shown that, for the case of binary choice models, the IM

test may be computed by means of more than one artificial regression. The

latter is a valuable result, because our Monte Carlo work suggests that the

usual OPG form of this test has appallingly bad finite-sample properties when

applied to probit models, even when the sample size is quite large.
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Table 1 Performance of Alternative Tests Under the Null

Rejection Frequencies at Nominal Levels
k Obs. Test Mean Std. Dev. 10% 5% 1% 
2 100 OPG 6.94** 7.36** 46.5" 40.1" 28.2"

PL 1.81* 2.67** 7.8* 5.2 2.3**
400 OPG 4.11** 5.45** 28.0" 21.4** 12.4**

PL 1.91 . 2.04 8.2* 4.1 1.2

1600 OPG 2.74** 3.60** 17.3** 11.0" 4.9"
PL 1.96 1.95 9.3 4.3 1.0

3 100 OPG 21.71** 11.27** 84.5** 79.5** 67.6**
PL 4.14** 5.87** 6.6** 4.9 2.7**
OPG-DH 15.79" 11.07** 76.7** 70.1** 57.5"
PL-DH 2.44** 4.69** 6.0" 4.4 2.3**

400 OPG 13.40** 10.82** 55.7** 47.5** 32.2**
PL 4.79 4.87" 9.8 6.4* 3.1**
OPG-DH 9.31** 9.09" 51.2" 44.0** 30.3"
PL-DH 2.81* 3.51** 8.8 5.7 2.4**

1600 OPG 8.53" 6.94** 33.6** 25.3** 14.2**
PL 4.91 4.04** 9.7 6.2* 2.9"
OPG-DH 5.55** 5.81** 29.3" 22.9** 12.7**
PL-DH 2.95 3.21** 9.6 5.8 2.4**

4 100 OPG 35.37** 8.70** 99.4** 98.3** 94.2**
PL 6.64** 5.72** 6.2** 4.5 2.6**
OPG-DH 22.09** 10.01** 92.0** 88.7** 79.4**
PL-DH 2.60** 3.19** 4.8** 3.0** 1.6*

400 OPG 37.48" 21.15** 88.9" 84.4** 75.2**
PL 8.22** 7.92** 9.•1 6.6* 3.7**
OPG-DH 24.72** 19.82** 82.0** 75.8** 65.4**
PL-DH 3.57** 5.17** 8.0* 5.6 2.8**

1600 OPG 21.94" 15.81** 62.5" 53.1** 38.5"
PL 8.78 5.51** 9.9 6.0* 2.6**
OPG-DH 12.92** 13.35" 55.7" 47.3** 33.3"
PL-DH 3.76* 3.63" 8.9 5.8 2.2"

Notes: All results are based on 2000 replications.

* and " indicate that a quantity differs from what it should be
asymptotically at the .05 and .001 levels respectively.

Degrees of freedom for the ordinary IM tests are 2 for k = 2 , 5
for k = 3 and 9 for k = 4 .

The standard deviations of x2 random variables with 2, 3, 4, 5 and 9
degrees of freedom are respectively 2, 2.45, 2.83, 3.16 and 4.24.
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Table 2 Power of Alternative Tests

Obs. Test Mean 
Rejection Frequencies at Nominal Levels

10% 5%

Asymp. PL 7.15 

1%

64.0

100 PL 7.40 47.4*

200 PL 7.49* 53.6**

400 PL 7.77**

800 PL 7.90** 62.1

1600 PL 7.76** 65.4

51.6

40.3**

44.0**

48.9*

51.0

53.2

28.3

27.1*

27.7

30.0

30.1

31.4*

3 Asymp. PL 11.18 57.4
PL-DH 8.97 

44.5 22.6
64.0 51.5 28.5

100 PL 35.19** 55.1* 52.1** 46.8**
PL-DH 31.43** 57.2** 51.5 44.9**

400 PL 30.76 61.3** 564**
PL-DH 26.62** 

48.9**
64.9 57.5** 47.2**

200 PL 37.29** 63.2** 58.4** 51.6
PL-DH 33.02** 

**
65.5 58.8** 49.0**

1600 PL 17.84** 64.6*
PL-DH 14.47** 

56.5** 42.0**
67.1* 58.1** 43.1**

800 PL 23.22** 65.2** 47.8
PL-DH 19.27** 

**58.5**
67.2* 60.4** 46.3**

4 Asymp. PL 18.16 64.5 51.9
PL-DH 12.57 

28.6
75.0 63.9 40.1

100 PL 114.08** 50.8** 48.9*
PL-DH 114.18** 

45.9**
51.7** 50.1** 47.3**

1600 PL 33.78** 60.0** 53.4
PL-DH 27.15** 

40.5**
68.5** 60.6* 48.6**

800 PL 69.29** 66.0 61.2** 51.4**
PL-DH 60.12** 72.6* 67.2* 56.9**

200 PL 159.94** 67.0* 64.3**

69.8**PL-DH 141.66** 

400 

66.2* 61.0**

PL 120.85** 68.7** 64.1**
PL-DH 107.29** 73.0* 68.8** 61.1**

Notes: All results are based on 2000 replications.

* and ** indicate that a quantity differs from what it should be

asymptotically at the .05 and .001 levels respectively.

Degrees of freedom for the ordinary IM tests are 2 for k = 2 , 5
for k = 3 and 9 for k = 4 .
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