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Abstract

Intertemporal Common Property Equilibria: The Fishery

An agent adjusts its harvest in an intertemporal optimization

problem taking other agents' harvests as fixed. With stock size affecting

harvest costs, an intertemporal externality is present. Cooperative and

competitive solutions are compared given an exogenously fixed number of

agents. Then an entry-exit relation is introduced for each regime.

Multiple equilbria obtain for each regime. One cannot say that the com-

petitive solution has too many boats and too small a steady state stock

of fish relative to the cooperative regime.
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1. INTRODUCTION

No capital theoretic issues emerge explicitly in the classical

treatments of common property in the fishery in for example Gordon [1954],

and Dasgupta and Heal [1979] in spite of the obvious capital theoretic

nature of optimal planning solutions in for example Clark [1976].

Intuition suggests that under common property, there will be too much

fishing "today" because for any agent to restrict his take today in

the interest of having a larger stock "tomorrow" will be frustrated

because free entry and access by other agents will dissipate the

planned savings. In Hartwick [1980] I indicated how one could formalize

the essential capital theoretic "pathology" inherent in common property

and free access
1 
.

Here I use those ideas to explore equilibria in an industry

facing given demand conditions, a situation in which the number of

agents or fishing "boats" must be determined simultaneously with stock

size and catch per boat. In particular one is interested in the notion

that under common property there are too many boats and too small a

steady state stock relative to a socially optimal planning solution.

For plausible sufficiency conditions or frequently used functional

forms, multiple equilibria turn out to be the rule, some with equilibrium

stocks lower under optimal planning and some with more boats under opti-

mal planning. We find that we cannot rule out some equilibria by invok-

ing stability considerations. There is no obvious basis for statements

of the kind: "in a common property equilibrium, there will be too many boats

and too small a stock relative to a socially optimal solution." We also observe



-2-

that existence of any interior solution is sensitive to the relative

magnitudes of the discount rate and the maximum rate of growth of the

fish stock. We note at the end that controlled access to a stock will

not eliminate the common property problem in the sense of leading to

a first best solution. Each boat's catch must also be set if, for a

particular number of boats, the common property inefficiency is to

be eliminated.

The common property "pathology" arises in this model because

each agent is so to speak peering over his shoulder, checking on what

others are doing or will do, not because there are "too many" boats

exploiting the stock. This was the essence of Hartwick [1980] and

represents a quite different perspective than in the classical tradition

of Gordon [1974], and Dasgupta and Heal [1979]. Here under common

property, an agent can only reap the average "payoff" from foregoing

at the margin some catch today, rather his marginal 'payoff" (average

being defined over all agents or boats). In the classical tradition,

under common property each agent could only reap the average product

of his current effort of fishing rather than his marginal product. The

analysis was essentially atemporal. We in fact indicate the appropriate

tax on fish caught which for a fixed number of boats will bring about

a first best solution under common property assumptions. :This tax

involves time and the discount rate explicitly, reflecting the

intertemporal nature of the common property externality.

In Section 4, we set out the analogous atemporal model of the fish-

ery in which agents optimize only over the current period or optimize in a

myopic fashion. This approach was well developed by Smith [1968] and our

report is a concise statement of his model. From one perspective one can view

our new model as an extension of Smith's analysis to an intermporal setting.
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2. THE INTERTEUPORAL EXTERNALITY

We proceed to isolate the intertemporal externality associated

with free access to the stock or with a common property regime. We

have in the background, the familiar growth-exploitation dynamics,

now in discrete time:

where gZt

zt

N
Z 1 

-Z = (Zt 
) - E q

t+ t t
i=1

is a function indicating net births over deaths of

(1)

identical fish. (We will later specialize to our
4

familiar form aZt 1- '
 where a and K are

K

positive parameters)

is the stock of fish homogeneous members) of period

at is the catch of boat i in period t.

Under the common property regime, each boat or agent maximizes dis-

counted profit

t=0 
\iI -Fr t

= ( 1 n 1

, • •

where r is the rate of interest

is the price per unit of fish delivered at the shore

i
( 

Z qi is the cost per boat of catching q i ii fish given stock
t' t t

size Zt. 
Cl i > 0 and Ci < 0 since a larger stock
qt Zt

implies lower costs or easier catching of fish.

(2)

An equilibrium occurs when (a) each agent is maximizing (2) and (b)

entry has continued until each boat or agent is earning zero profits.

Entry is taken up in Section 3.

Under central control, the boats are deployid by a manager

or planner so as to maximize

i (3)
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The first order conditions for problems (2) and 3 are respectively:

and

cii
qt i=1

t+1

1
-1 

_ (i+ir)

t+1

(i= ,...,N)

=0

-1,...,N).

If agents are the same (with the same costs and perceptions as

the behaviour of other (i.e. Cournot))and we are in a steady state,

equations (4) and (5) become respectively:

and

- Cii - [(cp 1+
t

1

- 
c 
Ci. - [/1 

(
) -

4)Z+1 l+r
1  )]

(5)

(6)
(i= ,...,N)

Observe that under common property, the gap between price and

marginal cost between p and Cii is not as large as it "should" be

qt
(i.e. as it is under central management). The appropriate tax per fish

caught in equilibrium for the common property regime is

(N -   _ (11+r)] Cl. With qi and Z adjusting to this tax,
L\Z-E1

the two solutions, common property with tax and centrally managed, will

be the same. By saving or foregoing some catch today in the hope of

having a larger stock tomorrow, each agent can only reap the average

PaY°fIl
l(

z+1) (l1+r) 
average being taken over the numberF  1 \ 

of agents (here,N)) rather than the marginal payoff;

[(4+1) (11+r)] CI 0' This result
2 permits us to make contact

with the familiar common property result: the average product of

the variable input equals its price rather than the marginal product



-5-

equalling the price (e.g. Weitzman [1974]).

Without searching for generality we let cp(Z) E 
aZ( 

1 -

and
3 C(Z,q) E q/Z. Our two steady state equations, (6) and 7)

become, respectively:

_ 1 .[(.  1  )
(Pz4-1

1

(8)

(9)

Since the LHS is price minus marginal cost, if an economically admissable

solution exists, then

to this below.

2Z< K (2Z> K) and

(11+r)]<
0 in (8) and (9). We return

is positive (negative) as

For Z = K, (I) = 0 and the RHS's of

(8) and (9) equal zero. The LHS's equal p - • For Z 0, the

RHS's approach +a and the LHS's approach -a The derivative with

respect to Z of the RHS of (8) is

4)2 cp_,+1
2Z )4.[(L.

( 
l+r 2Z 

1  )](  1  ) [(1) - 2]
3 Z

which is negative if 1  ) 
(l-.)](pzil 4y, is negative which we asserted

must be true if an equilibrium exists. However, (I)

so there is a region in which 
[ 

11+r >
(PZ1-1

(pz . 41 _ 721 ranges linearly between a and

- 0 at Z = K-
2

. n fact

as Z ranges

between admissable values, namely between 0 and K. For a > 1,

can equal -1 yielding 
= 

. For 0 < a < 1,

[(PZ1+1) (1+1r)1
  > 0 for -2;..< Z < K (this latter is not the complete

region of [ ] > 0, we note). Since the RHS's of equations (8)

and (9) differ only by 1/N, a constant, what we have said for the

values of one RHS with respect to changes in Z is true for the other.
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We sketch two cases in Figure 1. In Figure la, the growth parameter

a and the interest rate r are related as in 0 < r < a < 1 and

in Figure lb, we have 0 < r < a < oo with 1 < a. (Note for

(1+ 
1

r)1 > 00 < a < 1 and [(

(PZ+1

) > a, -   and an equilibrium with 
1

p > Cii does not exist.) Whether a solution exists in Figure la
q

depends on the values of the parameters as one can see. For example,

the likelihood of a solution existing is less as p becomes smaller.

Schedule ab in Figure la, is the LHS of equations (8) and (9).

Schedule cd is the RHS of equation (8), relevant to the common

property solution, and schedule ed is the RHS of equation (9),

relevant to the central management solution. If solutions exist we

have the

Proposition 1 (Lower steady state stock under common property): The

solution stock ZcP (cp for common property) is less

than that under central management, namely Zcm (cm

for central management).

Clearly, if solutions exist for the case illustrated in Figure lb,

our proposition 1 remains valid for neighboring values of Zcm and

ZcP. However, the region in which (-4T7-)- l
,1 

r
> 0 is now

[' '11 i- 

the central portion between 0 and K, namely for values of

such that -1 < cpz < r. Mulitple solutions cannot be ruled out by

economically plausible sufficiency conditions. We also observe

that for neighboring solutions, namely Zcm and Z 
cp

Proposition 2 (Greater surplus per unit under central 'management):

)zcm







We turn now to analyze industry equilibria with entry and

exit of agents or boats. This is a key aspect of common property,

namely free entry of competitors when profits are positive4.

. ENTRY, EXIT AND INDUSTRY EQUILIBRIA

Above, the number of agent or boats was fixed exogenously.

A central feature of the common property model in that agents enter

freely until net profit or rent per agent is zero. This gives us an additional

equation with which to solve for N, the number of agents. The

equation is

p(Q)q' C ,q1) =
N .

where Q E q1 and p(Q) is the inverted industry demand schedule
i=1

is the opportunity cost of a boat for a period and

is treated as a constant. being constant captures

the notion that the resources flowing into the fishing

industry are small relative to the size of the economy.

We will assume all boats are identical so that Cl(-) = Vi and j

i 
and w = w

j i and j. The superscript

p(Q)q1 - C(Z,q1) =

can be omitted now, giving us

Note that this equation holds at a steady state solution. We shall-

> risel
argue below, however that if p(Q)qi - C(Z,q

i ) < w, N will {ffall 

or entry and exit will occur. Steady state versions of equations (1),.

and (6) and (10), constitute the three equations comprising a common

property equilibrium for the industry. They can be solved for boat

catch q
i
, stock Z and number of boats N if a solution exits with

q , Z, and N positive. p is assumed to be endogenous in equation

(6) now.

(10)
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The planner will regulate entry in order to maximize the present

value of net surplus or discounted current welfare. We put this calcula-

tion in a two stage framework. For any N , we can calculate the optimal

stock size Z and catch per boat q . These are the steady state values

if an interior solution exists. With entry, we require that among these

solutions, optimal for a given N , there is one that is optimal with

respect to variation in N . In the first stage, a planner will optimize

with respect to stock size, given N , and in the second stage, the

optimal value of N will be chosen. Using equations (1) and (7), we have

a steady state equation for Z given N . This permits us to compute the

welfare value given N in

cx

( 1 )
\1+rt=0

- E -
i=1 t t

Assuming that N can be treated as a continuous variable it is really

dQ
discrete), we have 31.= 0 yielding

(11 
pq - C(Z,q + qC +{[p - C] z - NC z} dZdN

Z or pq - C(Z,q)- w =-[(p - C z) (1)- - NC-
L
] d r 

dN

which differs from the entry condition under free entry or common property

by the terms on the RHS being non-zero in general. dZ/dN is derived

from (5), the equation characterizing a steady state, given fixed N

under a planning regime. The interpretation of (11) is as follows: In

5
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adding an extra boat at the margin, the gain directly is the marginal net

surplus per boat, namely pq - C - w , plus indirectly, the cost saving

of catching the same harvest with an extra boat (each boat catching margin-

ally less (qCq)); the indirect loss results from marginally lowering the

stock size and thus inflating each boat's cost of catch, all in the neigh-

borhood of the original steady state values. A socially optimal or plann-

ing equilibrium for the industry is defined by the steady state values of

q , Z , and N (if they exist) of equations (1), (7), and (11), where

it is understood that p above is endogenously determined.

Since multiple solutions are anticipated, it is necessary that

second order conditions be satisfied in order to rule out local minima.

Thus the derivative of (11) with respect to N must be negative.

We proceed to specialize to our particular functional forms

already introduced above. We have C(Z,qi) = qi/Z and (1)(Z) = aZ(1-(Z/K)).

Our inverted demand function will be p = AQ-n where n is one divided

by the constant elasticity of demand. In a steady state scp = Q and

. Using these results permits us to ignore equation (1) from

here on when dealing with steady states. Using our functional forms, we

observe that (I) (p - C i) in (6) and (7) is the same as pq - C(Z,q

for our functional forms, this latter equalling w in a steady state

under common property. This permits us to write for a common property

equilibrium, equation 8), multiplied by (p/N as

=w • ( 1 2 )
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The other steady relation for a common property equilibrum is

p(Q)q
1cl

C(Z,qi) = w 13)

We can eliminate q and Q since Qi - qIN and Q = to have two

equations in N and Z • Even with our particular functional forms, a

wide variety of solutions is possible. We turn to a "well-behaved"

numerical example, below.

For the socially optimal case, we use Q = Nq from (1) and

obtain upon substituting in (9) and (11) two equationsjin N and Z .

Taking q = (1)(Z)/N in (9) we obtain dZ/dN = 0 which when substituted in

(11) yields

p (Q)q - w = 0 14)

The solutions of equations (9) and (14) characterize an equilibrium (or

possibly equilibria) for the socially optimal fishery. We turn now to

examining the equilibria under common property and optimal planning for a

particular numerical example. (We observe that for our particular func-

tional forms, there is a variety of equilibria and the analysis has not

been extended to cases involving fairly general functions.

Example:

We treat demand as constant elasticity so that p = AQ-E . Two

cases are considered, the "normal" case of demand elastic (A = 1, E = 1/2

giving the elasticity a value of 2) and demand inelastic (A = 40, E = 3/2

giving an elasticity of 2/3).
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We have also w = r = 0.1

(1) = 5Z(1 - (Z/100

C = q/Z

In Table 1 we have the case of elastic demand. The values of

in column (2) satisfy equation (12) given the corresponding values of

in column (1); the values of N in column (3) satisfy equations (1) and

(9); the values of N in column (4) satisfy equation (13); and the

values of N in column (5) satisfy equations (1) and (14).

In Table 2, we have the corresponding values for the case of

inelastic demand.
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(1) (2)

NcP

0 13.623732

10 11.989853

20 10.269106

40 6.0677987

50 -56.818188*

60 co**

70 6.5539717

80 3.753786

90 1.7624019

100 0.0

TABLE 1

Demand Elastic (c =

(3)

N5°

18.0 73.0

18.0 73.0

18.0 73.0

18.0 73.0

18.0 73.0

18.0 73.0

18.0 73.0

18.0 73.0

18.0 73.0

18.0 73.0

98  ) _* At = 49, (pz = 5 - (1
100 -

N P = 0.0.

. (f,, 120)
** At Z = 60, (pz = 100 

.

(4) (5)

NcP

-50.0

22.082039

49.442719

79.54451

86.8034

89.54451

87.46951

79.442719

62.082039

0.0

which equals r and

and 1/(c5z + 1)

Ns

0.0

67.082039

89.442719

109.54451

111.8034

109.54451

102.46951

89.442719

67.082039

0.0
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TABLE 2

Demand Inelastic (E = 3/2 ; A = 40)

(2) (3) (4)

Nc 
so 

Nc

0 13.623732

10 11.989853

20 10.269106

40 6.0677987

50 -56.818188*

60 .**

70 6.5539717

80 3.753786

90 1.7624019

100 0.0

* *

19.0 75.0

19.0 75.0

19.0 75.0

19.0 75.0

19.0 75.0

19.0 75.0

19.0 75.0

19.0 75.0

19.0 75.0

19.0 75.0

See the footnote

See the footnote * *

to Table 1.

to Table 1.

00

14.62848

4.7213595

6.5148377

10.777087

16.514838

24.036002

34.72136

54.62848

(5)
Nso

59.628479

44.72136

36.514837

35.777088

36.514837

39.036003

44.72136

59.628479

00 CO





I

(A:

ip.minisuommarmalim.

C

-1 7-

EE.

3 c G C C.
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The schedules corresponding to the common property and socially optimal

regimes under an elastic demand specification are set out in Figures 2 and

3 respectively. There are two interior solutions for each regime. (N

should range over only integer values but we gloss over this complexity

and assume that it can be treated as a continuous variable in the entry-

exit analysis. Our results are thus approximate, given this caveat.)

The schedules corresponding to the common property and socially

optimal regimes under inelastic demand specification are set out in

Figures 4 and 5 respectively. There are three interior solutions for the

common property regime and two for the socially optimal regime.

exogenously fixed, there will be dynamics in Z , and q
2

•For N =

in a three

dimensional phase space. Since agents are optimizing one assumes that the

solution is a type of saddle point in three dimensions and that there

exists a stable arm or plane which will be followed by non-myopic agents.

We proceed in any case to ask that if the system is at a  steady state will,

(a) under common property, profits turn negative by the entry of an add-

itional boat and, (b) the entry condition define a local maximum with

respect to N under a socially optimal regime?

The socially optimal case is easy in our example since dZ/dN = 0

That is, the entry condition (14) was p(5(z)X(0) - w = 0 and

d(-)/dN < 0 implying that each equilibrum is stable with respect to entry

or exit under the socially optimal regime. (This approach to the analysis

of stability of the model ignores the issue of whether in chainging N

our steady state may be disturbed in such a fashion that no new steady
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Thus we cannot eliminate any equilibrium for

the socially optimal regime in our example by the criterion of it being

unstable.

Stability for the common property regime involves determining

whether, at a steady state, profits in (10) "turn" negative as N is per-
1-E

d d (*)turbed. Equation (10) for our example is A
NZ 0 and dN 

1-6
Ng) (I) 

N
2 ' 

N
2
Z

-E)A N
Z. (I) dZ
NZ z2 dN (15)

where dZ/dN is obtained from equation (8) and is negative as one observes in

Figures 2 and 4. Direct computation of terms in brackets indicates that

(15) has a negative sign for all common property equilibria except the one

with (Z = 12 ; N = 11.5) in Figure 4.5 We conjecture that since fish have

ready substitutes the elastic specification of demand makes most sense from

an empirical standpoint. For this elastic case, the common property regime 

is stable and we cannot rule out one of the equilibria as being unimportant

because it is not stable.

In general, multiple equilibria are the rule •in this model of the

fishery and in all cases, at least two equilibria are stable with respect

to entry. We thus are unable to say that under common property there will

be too many boats and too small a stock relative to the socially optimal

equilibrium. There is no obvious pair of equilibria to compare. For the

socially optimal case, one assumes that of the pairs of local optima, one

is an optimum optimorum for the different specifications of demand. This

could provide one point for comparison but we still have multiple equili-

bria under the common property solution.
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We have labelled the condition forthe equilibrium entry-exit as

schedule EE in each figure.

Existence of solutions is sensitive to the parameter A in the

inverted demand schedule p = AQ- The value of 1/A •gives an

indication of the "size" or "strength" of demand as a reflection of

say the population of the demanders or the average incOme of. the

demanders. A smaller value of A in this demand function lowers

the EE schedule in each of Figures 2a and 2b with some change in

its "peakedness". For each demand situation, a small value of A >

can result in some solutions with N and Z positive being

eliminated. Thus "large" demand cases can result in only unstable

solutions being observed. For the case of an elastic demand, our

plausible case, the only equilibria could occur for stock sizes above

that corresponding to the maximum sustainable yield (i.e. Z = 50).

Above, we discussed the implications of different relative

values of the "natural growth rate of fish", namely a and the interest

rate, r. Those considerations are of course relevant for oui. industry

equilibria. For 1 < a and 0 < r < a, values of a closer to r

correspond to points analogous to N = 0, Z = 49 and 7 = 60 in Figure 4

moving apart. Thus the existence of solutions is sensitive to the

relative values of the growth rate and the interest rate. We note,

again, that for r > a > 0 and a < 1 there will be no equilibrium

with p - C > 0. Economically meaningful solutions cease to exist

6
for this latter case.
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4. THE FISHERY WITH MYOPIC AGENTS

The classic statement of the fishery under common property and

socially optimal regimes is Smith [1968] who developed his analysis from

the fundamental ideas in Gordon [1954]. Smith exploited the notion that

the stock acts like a public input into the process of catching fish and

observed that this public input would be evaluated differently under a

socially optimal solution relative to a common property solution. Our

analysis above also turned on the "publicness" of the fish stock in the pro-

cess of harvesting fish. However under the myopic specification of the

problem, each agent decides to change his level of fishing as current 

profits are positive or negative rather than on the basis of whether dis-

counted future returns are positive or negative. There is a distinctly

atemporal quality to the specification with myopic agents.

The myopic model has a growth-exploitation dynamics of the form

= (1)(Z) Nq(Z)

where q(Z) is catch per boat and N is the number of boats and an entry-

exit dynamics for a common property solution of the form

N=k[p((Z))-q - w]

where p((Z)) is the inverted industry demand curve

k is a positive constant

w is the opportunity cost of a boat for a "period".

Under this common property regime, an entrant is ignoring the cost

he imposes on himself and others of depleting Z and making q(Z) smaller,

boat for boat, under the assumption of unchanged effort (implicitly defined)



dZ  
dN 

-
dq

N 
ZdZ

-24-

in fishing. Under a socially optimal regime, there will be a tax on entry

and the dynamics will be

N = k[p-q T -

where the tax per boat T = pN 1-31•g and dZ derives from the steadydN dN

state relation (p(Z) = Nq(Z) (the derivatives are evaluated at steady state

values making T a parameter to the agents considering entry).

The steady state under a common property regime is defined by

and Z satisfying

and

(1)(Z) - Nq(Z) =

p(qh) • q(Z) - w = 0

The steady state under a socially optimal regime is defined by

and Z satisfying

and

qh(Z) Nq(Z) = 0

q(z) PN (A) w
Using the fact that qh(Z) = q(Z) • N in a steady state, we obtain

dq
pNq

so that T -  dq . Note that q(Z) is the average

4)Z-14a7

product of the N boats engaged in fishing and q(Z)
dq dZ .
dZ dN 

is the

marginal product of a boat in the industry. Thus in the common property

regime current average product equals w , the opportunity cost of a boat,

whereas under the socially optimal. regime, current marginal product equals
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This is the basic insight that Gordon [1954] arrived at.

For q(Z) linear in Z with q(0) = 0 and q(Z) the logistic

growth function, we can solve for N and Z under the alternate regimes

as in Figure 6.

- (2

Note that (1) must be positive in the common property solution so that

ZcP < (K/2). In Figure 6, we have illustrated the basic result: the

steady state stock will in general be smaller under a common property

regime relative to its value under a socially optimal regime. We cannot

say whether there will be more or less boats under one regime or the other.

The depiction of equilibria under alternate regimes is obviously much

7simpler under the myopic specification of agents' behavior.
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5. CONCLUDING REMARKS

We have reconstructed the model of the fishery under the assumption

that agents optimize into the indefinite future and perform their calcula-

tions at time 0 under Cournot-Nash assumptions concerning the behavior of

their rivals. Two sources of market failure emerge under a free-entry

common property regime. Given a fixed number of competitors, an agent

adjusts his catch until current marginal costs equal the current discounted

average payoff from reducing catch rather than the current discounted mar-

ginal payoff. Secondly entrants undervalue the effect that their catch has

on the cost of catch by others. Stock size behaves as a public input into

production. This latter market failure was analyzed by Smith [1968] but the

first failure is new (sketched in Hartwick [1980]). Multiple equilibria are

the rule under both common property and socially optimal regimes given our

specification of intertemporal optimization by agents. It is difficult to

decide, if our model captures the essential features of the fishery as an

aggregate, which equilibrium represents a real world situation.

The new externality which emerges in the explicitly intertemporal

model implies that regulating common property cannot be managed solely by

regulating entry to the fishery. Once the socially optimal number of boats

has been allowed in, taxes must be imposed in order to assure that the

socially optimal amount of fish is harvested by each agent. A second best

approach would be to use only entry controls to approximate a socially

optimal solution. This may be the policy option which is practicable but

which has not been analyzed in a full-blown model as far as I know.
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FOOTNOTES

*An earlier version of this paper was presented at a workshop at the

University of Michigan, October 1980, organized by Ted. Bergstrom.

1. Levhari and Mirman [1980] have considered what are essentially

dynamic oligopoly models of renewable resource exploitation

in a slightly different setting. Khalatbari [1977] and Kemp

and Long [1980] have considered common property problems

associated with seepage of oil from under one extractors well

to below a rival's well. Khalatbari [1977] develops an "over

exploitation" argument for a decentralized or quasi common

property regime and Kemp and Long [1980] explore aspects of

the demand specification in such exhaustible resource oligopoly

problems.

2. Note that if extraction of exploitation costs per boat only

depend on the current amount caught and not on the density

of fish or the stock size, then there is no difference between

outcomes under our so-called common property and centrally

managed regimes. This is.the essence of Kemp and Long's [1980]

critique ofKhalatbari [1977]. This same point appears in a

different guise in Hartwick [1980] where I noted that in a

many person Ramsey savings-growth model, each agent with an

infinite horizon, there is no difference between the centrally

managed plan and the plan emerging from optimization by indi-

vidual agents, provided the static social welfare function was

of the Benthamite additive sort. In our renewable resource

problem, the act of saving by an agent or boat, foregoing some

qt at the margin not only affects the stock size next period

directly but affects the cost of catch also. It is this affect
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of "saving" on next period's cost of catch which gives this

model is distinctive quality, i.e. leads to the emergence of

a difference between the centrally managed solution and the

solution emerging under common property.

3. This cost function has average equal to marginal cost equal to

1/Z for each boat. 1/Z is taken as parametric to each agent.

To avoid indeterminacy, we take the number of boats as given

exogenously at this point, and "fit" the boats and catch per

boat to the stock of fish which is bounded above by k. Below

we make the number of boats endogenous by introducing an entry-

exit relation for boats. Some "stickiness" is also introduced

then by postulating an exogenously given and fixed opportunity

cost per boat per period. (In Hartwick [1980], each boat was

assumed to have an exploitation cost function of the form

(qi)2/Z which made a cost per fish function, qi/Z.) The

general problem below is dividing a market among small but not

infinitesimal firms. Some small fixed cost is required to avoid

the presence of an infinity of firms. (Difficulties associated,

with an infinite number of competitors is a general matter in

industrial organization, broadly defined, and is not peculiar

to our renewable resource situation.) Thus an agent and his

"boat" are defined by the cost function C(Z,q
i
) and one cannot

have half a boat although one can have any sized catch, q.

Also once a boat is launched, it must remain for the period

incurring a minimum opportunity cost of w per boat per period

even if no fish are caught. Periods are of fixed length a priori.

These assumptions rule out situations such as each boat catching
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one fish in a huge rush of boats and having the stock fall

to zero. There are some crucial indivisibilit es built into

the model a priori.

4. The model above was cast in discrete time. It is straightforward

to set it up in continuous time as colleagues have done. In

either case, one can perform stability analyses around the

steady state values. One treats the N agents in terms of

a representative agent, defined by its characteristics at the

steady state. We leave this for a reader to pursue if he is

inclined. The interesting dynamic analysis involves N 1

simultaneous equations, one equation for each agent, "away

from" the steady state solution. We have not analyzed this

dynamic system. Finally we note that when we let the number

of agents be endogenous below the non-steady state behavior

of the system becomes most difficult to analyze since the non- .

steady state behavior of an agent "in" the model must take

account of potential entrants "outside" the model. In

Smith [1968] and Hartwick [1981], the non-steady state behavior

of an individual agent was neglected and the system was viewed

in terms of two dynamic relations, industry size and biological-

exploitation dynamics.

5. We did not calculate d for this last equilibrium owing to the com-

plexity of the expression and the approximate nature of the numerical

values. We conjecture that this equilibrium is unstable since the

two schedules intersect at quite different angles compared with the

other equilibria.
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6. A result of this kind is well-known for the single-boat planning

solution in which there are no stock effects on demand or

exploitation costs. The key necessary condition there is

(pz = r. We have a non-existence result in a quite different

*framework; in particular with essential stock effects. Clark

[1976; p. 471 made the result 4) unable to equal
'Z

the basis

of a discussion of extinction for the case of the model without

stock effects. r > a implies that largest value which the

gross marginal product of the fish stock can assume (i.e. sbz

can at most equal a) is less than the marginal product of

other capital goods yielding a prevailing rate of return r.

Thus from an economic standpoint there is no point in maintaining

the stock intact.

7. In Hartwick [1981] some dynamics of the above myopic version of the

common property fishery were reported. See also Smith [1968]. Under

plausible assumptions on demand elasticities (i.e. elastic specifica-

tion) and catch elasticities, the equilibrium is stable (both eigen

values negative).
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