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ABSTRACT

Let there be several identical deposits of an exhaustible,

non-reproducible resource, the working of a deposit

entailing a set-up cost but no other costs. The deposits

must be extracted in strict sequence with jump discontinuities

of marginal benefit at transition points. Moreover the

average rate of increase of marginal benefit is less than

the rate of interest.
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SET-UP COSTS AND THEORY OF EXHAUSTIBLE RESOURCES

John M. HARTWICK Murray C. KEMP Ngo Van LONG

Queen's University University of New South Wales Australian National University

1. Introduction

The opening of a mine may involve once-and-for-all "set-up" costs of

exploration, clearing, tunneling, training, equipping; and its closure

once-and-for-all costs of dismantling and cleaning-up. Indeed such non-

recurrent costs may dominate the fixed and variable flow costs of resource

extraction. It is puzzling then that in the formal economic analysis of

exhaustible resources attention has been focussed on the latter to the

almost complete neglect of the former. It is our purpose in the present

note to repair this deficiency and, in particular, to set forth a generalized

form of Hotelling's "r per cent rule" for the behaviour over time of the

expected marginal current net benefit (MNB) derived from extraction Our

most important finding is that if set-up costs are present then, along an

optimal path, MNB must increase not continuously and exponentially at the

current rate of interest but in discontinuous saw-tooth fashion at an

average rate less than the rate of interest. In addition it is shown

that, in general, the optimal path of extraction cannot be reproduced by

competitive markets and that, in any case, set-up costs render the assumption

of competitive spot markets highly. implausible.' Finally it is shown that

under monopoly the rate of extraction is suboptimal, and that this is so

even when the demand for the resource is of constant elasticity (too little

being extracted).



Of course it is well known that the conditions under which Hotelling's

rule is valid are quite strict. In particular it is known that the rule

must be modified (or, at least, rephrased) if current extraction exerts

a direct influence on expected benefit or cost of extraction. Thus if

costs of extraction increase with cumulative extraction then any increase

in the current rate of extraction adds to the expected cost of any planned

future extraction; and if the resource-stock is of unknown extent then any

addition to the current rate of extraction increases the probability that

the stock will be exhausted before any assigned future point of time and

therefore reduces the expected benefit associated with extraction planned

for that time. In both sets of circumstances it is optimal for•MNB to rise

at a rate less than the current rate of interest. (For costs of extraction

which depend on cumulative, output, see Herfindahl (1967), Levhari and

Liviatan (1977), Hartwick (1978), and Kemp and Long (1980a); for stock

uncertainty, see Kemp (1976).) However in these circumstances it is

optimal for marginal benefit to increase continuously; this is so even

when the average cost of extraction jumps discontinuously from one deposit
r .

to another and even when the distribution function (defined on alternative

stock sizes) contains jump discontinuities. Moreover in these circumstances

the optimal path of extraction can be reproduced by laisser-faire competitive

markets if only there are enough of them. (See Kemp and Long (1980b).)

2. Analysis of the simplest case

We begin with the simplest case. There are n identical deposits of

some resource. Each deposit is of known initial extent R. The extracted

resource is consumable but perishable; the rates df extraction and consumption

therefore are always equal.
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There is a second perishable commodity, leisure, available in a

steady flow. Like the extracted resource, leisure may be consumed;

but, as we shall see, it has other uses too.

Associated with each deposit is a set-up cost K, expressed in

leisure. Since leisure comes as a finite'flow, it is not possible for

the community to incur finite set-up costs in a moment of time; they

must be spread over a non-degenerate interval of time. We therefore

suppose that, to prepare a deposit for extraction, leisure must be spent

at some fixed rate (not greater than the rate at which it becomes available)

over some fixed interval of time. The single number K is then the value

of the expenditure flow compounded to the end of the interval. There

are no other costs of extraction.

Social utility is a strictly concave function u of resource-consumption

and a linear function of leisure. There is a positive and constant

rate of time preference.

From the point of view of the community, if it is worth exploiting

the deposits at all then it is optimal to exploit them in strict sequence,

completely exhausting each deposit before moving on the the next; indeed,

since the rate of time preference is positive, it is suboptimal to do
otherwise. Of course it is'a matter of indifference which of the n identical
deposits is. first exploited.

It is a necessary condition of optimality that, from the moment at

which a deposit is first worked to the moment of exhaustion, MNB rise

exponentially at the rate of interest; for, otherwise, it would be possible



to increase the value, at any arbitrarily chosen point of time, of the

flow of net benefits or rents derived by the community from the deposit.

A more difficult question concerns the behaviour of MNB at the moment of

transition from one deposit to another. We proceed to show that at all

points of transition MNB drops discontinuqusly.

It suffices to consider the case n = 2. Let q(t) be the rate

of extraction from the ith deposit at time t, so that total extraction

is q(t) E q1(t) + q2(t); let ti be the moment of transition from one

deposit to the other; and let p be the rate of time preference. Then

the social problem is to find

(P.1) ma {f exp pt (t) + q ( ))dt K-exp(- pt 1)
t1, ch,q2

s. t.

q2(

i(t)dt < Ri = 1, 2

>0 if t < t , (t) = 0 if t >

0 if t > tl' q2(t) = 0 if t <

Now to solve (P.1) it is necessary to solve the subproblem

(P.2) max fexp(pt,) f: exp(- pt).u(q2(t))dt - Kl E V(ti)
t

{q2} 
l

s. . 17 cl&(t)dt <,1

q2(t) 2>--

Hence the maximand of (P.1) can be re-written as

(1) f exp(-pt).u(q/(0)dt- K K.exp(- pt V(t)e p(- pt 1)
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Throughout our further calculations it will be assumed that V(ti) is

greater than K, so that it will be optimal to exhaust the second deposit

and suboptimal to fail to do so.

•The Hamiltonian for (P.1), with the revised maximand •(I), is

11(t) = u(q1(.0) ipi(t)cli(t)

As necessary conditions of a maximum we then have

(2)
u 1(cl1(t)) - (t) <

4)1 = 1*1
(= if q1(t) > 0)

and the transversality condition associated with the choice of t1'

(3) H(tim)-exp(- pt) pK-exp(- pt) = ATEV(4)-exp(- pt)]
(See Hestenes (1966, theorem 11.1) and Long and Vousden (1977, theorem 1).)

The left side of (3) may be interpreted as the marginal gain from delaying

the exhaustion of the first deposit, and the right side may be interpreted

as the marginal cost of doing so.

Let

coJ(t1) E exp(- =f exp(- pt) (q( ))dt

Then, following Hadley and Kemp (1971, pp. 117-120),

(4) EJ(t.,
1 I

where W k 1 = u'

ti

= Eexp(- pe)u(q*(e)) - (q)exp q (4)]1 2 1

) . Hence (3) can be e-written as
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(5) u(cli(tT)) ( (t E H(ti.) + pK

= H(q) E u(q2(4)) tp2(4)q2(q)

implying that the Hamiltonian values H(t) and H(q) differ by the amount

pK. Recalling (2), we can interpret (5) as requiring that at ti the

consumers' surplus u qu° jumps up to compensate for the interest on

the new set-up cost.

With (5) in our hands, it is easy to show that q1(t)

that is, that at t the rate of extraction jumps up and, since u is

concave, MNB jumps down. Recalling (2) and substituting for IlytT)

and q)2(t ) in (5), we obtain

Eu(cii(tT))

(5')

I N1(tlin eq/(tT)] pK

= (q2( 1)) - ul(c12( 1))eq2(t1)

The required conclusion then follows from the fact that

(1)
is an increasing function of q.

q) — eq

That completes our demonstration that optimal MNB follows a saw-

tooth path with an average rate of growth less than the rate of interest.

If there is some natural upper bound on MR (stemming, for example, from

the availability of a standby technology for the production of a resource-

substitute or from the possibility of extinguishing demand at finite

prices) then the n deposits must be exhausted in finite time, as in Figure

1(a); otherwise, the last deposit to be worked will be exhausted only
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asymptotically, as in Figure 1(b). Given the rate of time preference

and the size of the deposits, the extent of the jumps at ti (i = 1, n 1)

is determined by the amount of the set-up costs K. In the extreme case

studied by Hotelling, the costs are zero and the jumps disappear.

Gathering together our findings to this point, we obtain

PROPOSITION 1: Under the assumptions of this section, deposits must be

extracted in strict sequence. Marginal net benefit follows the saw-tooth

path of Figure 1, with an average rate of increase less than the market

rate of interest. The optimal rate of extraction follows a complementary

path, generally declining but jumping up at points of transition from one

deposit to another.

3. Related cases

Nothing of any importance changes if, in addition to or instead of

set-up costs, there are set-down costs, incurred at the end of the working

life of a deposit and the same for each deposit. It remains true that

the optimal MNB follows the saw-tooth path of Figure 1, that the optimal

working life of a deposit is greater the longer its exploitation is delayed,

and that the order in which the deposits are worked is a matter of

'indifference.

Similarly the analysis changes only in minor detail if there are

constant average costs of extraction, the same for each deposit. One

need only impose the additional assumption that something will be demanded

at a price equal to the average costs of extraction, and recall that MNB

is net of extraction costs.



Our conclusions change if the deposits are of different size.

Two polar cases may be distinguished. (a) If the same set-up costs

are incurred whatever the size of a deposit then it is optimal to work

the deposits in descending order of size, for then the average delay

in incurring costs is greatest. This finding has an interesting

corollary. Suppose that the deposits are of equal size but with set-up

costs payable not just once for each deposit, but recurrently, once for

each R' (or part thereof) of resource extracted. Then each deposit

can be viewed as a collection of n' 1 subdeposits, all but one of

size R', the remaining subdeposit of size R n'R'. The initial endowment

can then be viewed as consisting of nirwsubdeposits each of size R' and n

subdeposits each of size R n'R' < R'. Applying (a), it is optimal to

extract the n'n larger subdeposits before turning to the n smaller subdeposits.

We next note the possibility that the deposits are identical in size

and set-up costs but are subject to different constant average variable

costs of extraction. It is easy to see that in this case it is optimal to

work the deposits in ascending order of average variable cost, a conclusion

which generalizes a well-known result of Herfindahl (1967) (See also

Hartwick (1978).)

Throughout this and the preceding section we have imagined that

the resource-good can be obtained only from resource-stocks. Finally,

we broaden our analysis by allowing for the possibility that there is

available a relatively high-cost standby technology for the production

of a flow substitute for the extracted resource. Specifically, we assume

that the community possess a single homogeneous resource-stock with no
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set-up costs and no variable costs of extraction; but that after

incurring set-up costs it can produce a perfect substitute for the

extracted resource at constant average variable cost of extraction V.

(In effect, the community has two deposits, one of infinite size.)

Without a space-consuming reworking of SeCtion*2 it can be accepted,

perhaps, that the optimal path of marginal benefit is as depicted in

Figure 2.(2) Depending on the size of the resource-deposit, the initial

marginal benefit may be greater or less than v. Of course the standby

technology may improve over time; in that case, marginal benefit

declines after tI'

4. Market outcomes

Having described the socially optimal path of extraction, we now

consider whether the path can be supported by a system of competitive

markets. Since the answer to that question will be NO, the argument

can proceed in terms of a counter example.

EXAMPLE Let n = 2 and let the social utility function take the special

constant-elasticity form

(6) u(q) = qU (0 < a < 1)

The solution to (P.2) is then

so that

pR
l_a exP(  ((t t1 ))_a 

1 (PR a•
1-a

's

•
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and

(7) 1-1(4) = ( )(.7!a)a

Now consider 0.1), with ma?cimand (1). If (

to (P.1) then {q(t)} must solve

1(P.3) max fo exp(- pt)u(cli(t))dt

{(111

s.t. I• qi(t)dt < R

q1(t) °

Given (6), the solution to (P.3) is

exp(V:i07)

ptt
- exp(- 1-6)

q(t)}) is the solution

(tic fixed)

Substituting (7) and (8) into (5'), we obtain
pt., -a

exp(-
(5") (1-a)q!oda   

P 
= ( )(PR1-a

1 - exp( l _a)

pK

from which the optimal tl, if it exists, may be determined.. It is easy

to show that the optimal t exists and is both unique and finite. Thus,

taking logarithms in (5"), and defining X = (1-a)[pR/(1-c)], we obtain

(9)
pti

a knEl exp(- T:td] (ra)t1 g(ti; , a, K, R) = 0kn pK
) E 

(Notice that, since X/p = H(ifi )/p = V(ti) > K, X/(X - 1.) The

desired properties then follow from the easily-verified facts that g < 0

if t1 = 0, g = if t1 = .., and ag/Dti > 0.
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With the existence and uniqueness of an optimal program assured,

we can sensibly ask whether the program could be reproduced by competitive

markets. For such an outcome it is necessary that the resource sell at

a current utility- or leisure-price of u 1(q(t)). But it is also necessary

that each deposit earn the same present value of profits or rents; for,

otherwise, not all owners would be content with the optimal sequence of

exploitation of the deposits. We now show that these two requirements

may be incompatible, that if the prices us(q(t)) prevail then the two

deposits may differ in profitability; and we conclude that set-up costs

may destroy the Pareto-optimality of competitive outcomes. Thus if the

prices ul(q(0) prevail then the total profit derived from the first deposit,

referred to time tl, is

(1 0)

71(ti) E R-LO(qI(tie)) K.exp(pti)
pt, --

exp(-

'1-al
1 - exp(

1-cd_

ct-1

- K.exp(pt )

and the total profit from the second deposit, also referred to time t is

w2(ti 'N.12c(t1:1))

(11) = aR(.-T1.4-c-da-1

It follows from (10) and (11) that
a-1

( 12)
exp(- T.±t)

pti
1- exp(- -1-c)

l(ti) + K.exp(pti)

72(ti) K

Choosing K large enough to make w (t), = 0, and setting 7r(t)

(12) reduces to



12

pti
El exp(-   = 1

But this is not possible because, as we have seen, t is finite.

'Thus in general 71-1(t1) 7r2(t1). This may be found surprising.

.However it must be remembered that the future seen from time 0 is not at

all the same as the future seen from time t1' • for at time 0.there are

two deposits to explOtt, at time t1 there is just one. But, surprising

or not, the finding carries an important implication: Laisser-faire

competitive markets cannot be relied on to reproduce the optimal program

of extraction. To make this implication quite clear, let the set-up

costs be such that 71-2(t1) = 0. Then, as will be verified, Tri(t/) must

be negative, implying that, for the competitive outcome to be optimal, it

is necessary that the owner of one deposit be subsidized, with payment of

the subsidy conditional upon his extracting first. The verification is

achieved by Rtting Tr2(t1) = 0 in (12), obtaining

K-exp(py-

K-exp(pti)

-a
1

1
pti

- eXP(- 1-a, -

and then noting that, since the second square-bracketed term is greater

than one, the first must be less than one, which is possible if and only

if IT is negative.

That completes our discussion of the counter example. The outcome

of that discussion is

PROPOSITION 2: In general, the socially optimal path of extraction cannot

be reproduced by laisser-faire competitive markets.
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We now note an additional implication of the sequential nature

of optimal extraction. Suppose that there is a complete set of spot

markets and that one has calculated the set of taxes and subsidies which,

if markets were competitive, would support the optimal program of

extraction. Since that program is strictly sequential, the number of

unexhausted deposits steadily declines until, after a finite interval of

time, there remains only one. Why should the owner of the surviving

deposit not exercise his new-found monopoly power? Indeed, why should

competition not break down when only two or three deposits remain?

Whether or not owners recognize at time zero the advantages of being last,

the assumption of competition emerges as highly implausible..(3)

We are led therefore to consider markets containing elements of

monopoly. Suppose that a single monopolist controls each of two identical

deposits; and, to avail ourselves of the calculations of our Example,

suppose again that the utility function is of the constant-elasticity

-1type (6), so that the leisure-price of the resource is u'(q) = aqa and

total revenue from sales is aqa. If the monopolist seeks to maximize

the present value of revenue less the present value of set-up costs, we

obtain, indtead of (5"),

Evidently

1-a

(1-a)(PR )
1-a

••••••

pt,
exp(-

pti
1 - exp(  

exp(-
1-a

1 - exp(-

—a

a

= a(1-a)(ViEda - pK

Na _ (pK/k 

N(pR
"1-al

- pK
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Thus, if K = 0, the extraction path under monopoly is socially optimal;

otherwise, the monopolist extracts the first deposit too slowly. The

price paths under monopoly and perfect planning, with K positive, are

displayed in Figure 3. (The superscript; m and s stand for monopoly

.11c1 social optimum, respectively.)

The same conclusion emerges if, following the final paragraph

of Section 3, it is supposed that the second deposit is infinite. (A

proof may be found in the Appendix.) Thus we have

PROPOSITION 3: In general, the extraction path under monopoly is suboptimal.

This is so even if the utility function is of constant elasticity; in that.

case, with :K positive, the rate of extraction is too slow. However if

K = 0 and if the utility function is of constant elasticity then the

extraction path under monopoly is optimal.

Appendix

Let there be two deposits, the first finite and the second infinite.

For the first deposit there are neither set-up nor variable costs of

extraction, and for the second deposit there is a set-up cost K and a constant

average variable cost of extraction v. The utility function is of constant-

elasticity: u(q) = qa, If exploitation of the second deposit begins at

t society solves the problem

max 47 exp(- p(t t1)) (q2 vq2)dt E V(t1)
{q2} 6.1

The first-order condition
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yields

(13)

whence

= 
(v/a)1/(.04-1)

V(ti) = 1-a (ci)a

(It is assumed, of course, that V(ti) > K.) On the other hand, (8)

continues to yield the optimal value of 0:11(t) for t < t1. 
Hence

(14) H(t) = u(qi(tT))

uNi(tp) - us(cil(tT))qi(tT)

=

and

(15) H(4) = u(q) - vq

= )(q)

The transversality condition at t is

(16) H(t) = H - pK

Substituting from 8) and (13) into (14) and 15 and thence into (10,

we obtain

(17) )(pR
1-a 1 - exp(- pt1/(1-a))

a rxp(- pti/(1-a))

which can be solved uniquely for

a

(1-a)(q)a pK

- pK

Let the solution be
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Consider now the monopolist's problem. If exploitation of the

second deposit begins at tl, the monopolist solves the problem

max 4' exp(- P(t 11))(aq - vq )dt E V(t1)

1*(12) 1

The first-order condition

yields

whence

(v/a2)1/(a-1)

1
) .a(1-a) (q)c1

On the other hand, the monopolist's allocation of the first deposit, over

the interval [O, t1], is again given by (8). Hence

H(t) = a(1-a)(Wpa

and

H(q) = (1-a)(q)

Substituting into the transversality condition (16), we obtain

(18) (i-c)(-740-da
exp(- pt1/(1-a)) - et

1 - exp(- pt1/(1-a)) = (1-a)(q) - PK/a

which can be solved uniquely for t Let the solution bet.Now, if

K > 0, the right-hand side of (17) is greater than that of (18); for

(v/a2)  (v/a)a/(a-1).2/(1-a) < (vic)a/(a4)
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m s and - gia < pK. Hence t1 > t i1 f K > 0; that is, if there are set-up

costs, the monopolist works the first deposit at a slower rate and therefore

switches to the second deposit at a later date than is socially desirable.

Indeed it is possible that the monopolist will choose to withhold the

second deposit for ever; for

V5(t) = 1-p (•q)0 > Vm(e),1

implying that

V5(t) 
> K > Vm(11)

Is possible. This generalizes a finding of Dasgupta and Stiglitz 1979)

who assumed that K = 0.
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FOOTNOTES

) Kemp and Long (1980d) have studied the bearing of (flow)

fixed costs of extraction on the optimal path of extraction

and have found that if two deposits are alike in all respects

but fixed cost then (a) it is optimal to work one deposit at

a time, with MNB increasing at the rate of time preference while

any particular deposit is being worked and (b) at points of

transition the rate of extraction jumps up or down according

as the new deposit is associated with a higher or lower fixed

cost. By interpreting the interest on earlier set-up*

expenditures as the fixed cost of current extraction, it can

be seen that our present result is glosely related to that of

Kemp and Long.

It may be noted that equation (5) can be re-derived by

introducing cumulative discounted set-up costs as a state variable

subject to jumps and then applying the results of Vind (1967).

(2) The special case in which u(q) is of constant elasticity is

examined in the Appendix.

(3) Of course the foregoing argument is inapplicable if there is a

complete set of futures markets, so that all contracts are

concluded at time zero.
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A Note on Set-up Costs Facing Consumers

In a recent paper (Hartwick, Kemp, and Long [1980]) there is the

seeming anomaly: with identical exhaustible resource deposits with

identical set-up costs, for an optimal program, each deposit "receives"

a different net rent in, present value. This is reminiscent of another

seeming anoma1y
1 
reported in Mirrlees [19721: in a socially optimal town

identical households at different distances from the center "received"

different utility levels, ex post. In this note, I indicate that the

natural statement of the problem of allocation in the optimal town •is in

terms of set-up costs for consumption by consumers. Each consumer has a

particular non-convexity in his budget set "caused by" the set-up costs and

this non-convexity, investigated in some detail by Brown and Heal [1980] in

the context of two part tariffs, "accounts for" the seeming anomaly of

"equals being treated unequally" in the optimal town. In each case --

exploitation of many deposits of an exhaustible resource with set-up costs,

and the allocation of commodities to households in the optimal town - the

set-up costs turn out to be treated essentially differently for different

deposits or households by the planner. For the exhaustible resource model,

the present values of two set-up costs must be different because they are

incurred at different points in time and for the optimal town model, the

ex post value of the set-up costs are different for any two households

located at a different distance from the center. With Brown and Heal's

-1-

•

•
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analysis of two part tariffs in the background we reexamine allocation in

the optimal town.

The following figure is found  in Brown and Heal 11980].

e, A

rkri- .f ble_t Set-

u iL 1

For our statement of the model of the optimal town, set-up costs are incur-

red if a positive amount of good 2, is consumed. In Figure 1, the set-up

costs ab will increase as a household is situated further from the center.

The slope of bd is the implicit price ratio of commodity , land and

the other commodity c ; this ratio will vary with distance from the cen-

ter in the optimal town.

For a utilitarian social welfare function, an optimal town is the

outcome of maximizing by choice of y and 2,



Subject to
0
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2ffx 
u(y-tx,k(x)) dx

Z(x)

2ffx 
dx = N

k (x)

2ffx 
k(x) dx = C

where u(c,k) is the utility of a household consuming land k and c=y-tx

of a composite commodity,

is the radius of the boundary of the circular town,

is the cost of moving a unit of radial distance to the

center and back.

is the exogenously given number of household

is the exogenously given aggregate endowment of the compo-

site commodity.

We can make our two points concerning set-up costs and consumption by mov-

ing to a numerical example involving a linear geography, two households,

and Cobb-Douglas utility functions. Our first point is to illustrate the

Mirrlees outcome -- ex post each identical household ends up with a differ-

ent utility level in a socially optimal solution and secondly the set-up

costs can lead to socially optimal outcomes involving only a single house-

hold receiving a non-zero utility.

Consider the example.
2
 There are two individuals, labelled 1 and 2.

There is a linear space, a line of length x = 2/3, to be allocated to the two

individuals. There is the endowment C = 4/3 to also be divided among the two

4 4 a

individuals. The individual utility function is (y-Lx'") (i=1,2) and 0<a<1/2.
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The utility function can be viewed as Cobb-Douglas with equal coefficients a on

y
i 

and c
i
. For a=.5, we have the utility function homogeneous of degree 1.

1 1 1 2 1 1 —1 2 —1y = c -.5x , y = C-c -x -.5(x-x ), x = x-x Each individual travels from

point 0 at one end of the line to the center of his space at cost in terms of

C of $1 per unit distance. For concreteness individual 1 is assumed to be

located closest to 0. It turns out that maximizing u
1 , 

subject to u
2 
=

. 2yields the result [1+(u
2

2 
/u
2

2 
)] = (u

1 
1
/u
1 
1
) and in turn (x

1 
) -x

1 
+(c

1 
/3) = 0.

x y x y

In Table 1, we report of values of u
1 

u
2 
and Eu

i 
for different values of a,

a measure of the concavity of the utility function.

•



x
l a

4/3 2/3

3/4* 1/2

2/3 1/3

 **
1-1/1/3

1/2
2

1/3 
1-1/5/9

2

1-47/9
1 6

2

1/24 
1-V17/18

0

* For values

2

1/2
.475
1/4
1/8

.1/2

.475
3/4
1/8

1/2
.475
1/4
1/8

1/2
.475
1/4
1/8

1/2
.475
1/4
1/8

1/2
.475
1/4
1/8

1/2
.475
1/4
1/8

1/2
.475
1/4
1/8

of c
1 

between

Table 1

u
l

.81649658

.82481519

.903602

.95057982

.500000

.51763246

.70710678

.84089642

.40824829

.42695112

.6389431

.79933917

.28867513

.30717715

.53728496

.73299724

.18529766

.20159346

.43046215

.65609614

.08998497

.10149893

.29997495

.54769969

.02208497

.02672342

.14861013

.38549984

2

0
0
0
0

0
0
0
0

.23570226

.25336438

.48549177

.6967724

.42374329

.44233132

.65095567

.80681824

.57028755

.5865286

.75517385
:8690074

.69886843

.71150i23

.83598351

.91432134

.78790353

.79735073

.8876393

.94214611

.81649658

.82481519

.903602

.95057982

Eu.
1

.81649658

.82481519

.903602

.95057982

.500000

.51763246

.70710678

.84089642

.64395055

.6803155
1.1244349
1.4961116

.71241842

.74950847
1.1882406
1.5398155

.75558521

.78812206
1.185636
1.5251035

.7888534

.81300016
1.1359585
1.462021

.8099885

.82407415
1.0362494
1.327646

.81649658

.82481519

.903602

.95057982

3/4 and 4/3, individual 2 has insufficient c
2 

to

travel to his site. Hence individual 1 can attain any value between max

u
1 
in which he receives all the endowment and the value of u

1 
at which

u
2 
first attains .a positive utility level. A non-convexity occurs in the

utility possibility schedule as one observes in Figure 1.

** The larger root for x
1 

results in a lower sum of utilities than is the

case for the smaller root. Corresponding to values of c
1 

less than 1/2,

the larger root results in negative values for individual 2's amount of

space.
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We plot the u
1
-u
2 
frontier for the four values of the marginal uti-

lity of "income" in Figure 2. A Benthamite social welfare function would

have iso-value contours as straight lines with negative slopes in u
1
-
u2

space, at 45° to the u axis. Thus corner solutions occur for values of a

equal to .5 and .475. Only one household should have positive utility at

the social maximum because of the presence of set-up costs (here travel

costs to the center). The optimal solution is interior for cases in which

the value of a=.25 or .125. Set-up costs do not "loom as large" in the

social allocation in these latter cases.
3

We have then indicated how set-up costs in consumption can arise

naturally in contexts other than those associated with two part tariffs

and how in the context of the optimal town lead to seemingly anomalous out-

comes. We also note that this is apparently the first occasion in which

the optimal town problem has been examined explicitly from the point of

view of set-up costs in consumption. The classic instance of set-up costs

is transaction costs and the cost of overcoming geographical distance is

an explicit type of transaction cost. Another type of set-up cost in con-

sumer choice is the cost of shopping or searching -- that is the cost of

acquiring information about price and quality.
4



FOOTNOTES

1. Another anomaly associated with equilibria with set-up costs is that

free entry or the competitive outcome in an industry will in general

be associated with the socially suboptimal number of firms. See

Stern [1972] for an analysis in the context of a LOschian, geographic

setting and Meade [1974] and Spence [1976] for analyses in the area of

monopolistic competition and product differentiation.

2. This example was set out in Arnot and Riley [1977] but no detailed

investigation of its properties was reported.

3. For social welfare functions strictly quasi-concave in and u
2 
,

the iso-value contours will appear as level curves convex to the origin

in Figure 2. In the extreme case of a Rawlsian social welfare function,

utilities will be equal ex post and the iso-value social welfare con-

tours will be L-shaped.

4. See "Set-up costs in production of information" ,(p.423-25) in Dasgupta

and Heal [1979]. Their analysis Is based on Radner and Stiglitz [1975].
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