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ABSTRACT

When coefficients of endogenous variables are known, it is demon-

strated that two-stage least squares and instrumental variable estimators

are invariant to the form in which these variables enter computations, as

raw data or estimates. Exclusion of instruments and knowledge of coeffic-

ients are related to identifiability testing, and a test presented.



AN INVARIANCE PROPERTY OF GENERALIZED

CLASSICAL LINEAR ESTIMATORS

- Gordon Fisher and Allan W. Gregory -

Consider the following illustrative specification of the demand-for-

money function:

(1) m-p = a + f3r + yy EXizi + 6

in which the variables are cast in natural logarithms, a,,y and the Xi 
are

unknown coefficients, and 6 is a zero mean spherical random error; the zi

are all predetermined while m,p,r and y may be endtgenous: in is the nominal

money stock, p is 'the' price level, r is 'the nominal rate of interest,

and y is aggregate real income. If we are interested in generalizing this

equation, to test the homogeneity postulate for example, it might be written

with dependent variable On - Op) or even more generally as:

(2) (Pm - Op - - yy = a + EXizi + E ,

in which normalization has to be decided. In the usual stock-adjustment for-

mulation, for example, (m-p) is treated as the natural logarithm of the real

money stock, r and y are treated as exogenous and there is only one zi, namely

the lagged money stock (see, for example, Goldfeld, 1973). In this formulation,

estimation amounts to a standard application of regression theory to equation

(1) .

If, on the contrary, m,r,p and y are regarded as endogenous then, subject

to knowledge of the rest of the system in which (2) is now presumed embedded,

we must first check identification and agree upon normalization before we
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proceed to estimation. If the whole system is estimated by full-information

maximum-likelihood (FIML), or the equation is estimated by limited-information

maximum-likelihood (LIML) or least variance ratio (LVR), then the estimates

are invariant to normalization. This is a convenient property since it does

not then matter whether we regard (2) as the money demand equation, for

example, or as the price determining equation implicit in (2) after normaliz-

ing on the coefficient of p (see Walters, 1965 and 1967). Thus a difference

in the causality presumed to be at work among the same set of variables does

not affect empirical estimation of corresponding coefficients; and if such

differences arise as a matter of economic theory, 'then estimation may play its

rightful role as a means to scientific resolution, since it is not prejudiced

toward any competing theory.

Notwithstanding these fundamentals, it is still very much part of cur-

rent practice to apply generalized classical linear (GCL) methods (Basmann,

1957), like two-stage least squares (2SLS) or instrumental variables (IV),

which are not invariant to normalization of the kind just described. Moreover,
a.

since such methods have intuitive appeal (while FIML, LIML and LVR are more

remote in this respect), it is often difficult for a student to appreciate why

invariance to normalization is a valuable property, or why normalization is an

issue worth discussing in simultaneous equation models (see e.g. Aigner and

Sawa, 1974). After all, normalization is not an issue in classical regression

analysis and, presumably in consequence, lack of invariance to normalization

is not usually presented as a special disadvantage of 2SLS. However, the intu-

itive appeal of a method like 2SLS, which comes directly from the algorithm

that is used for its computation, can itself be misleading. For example, when
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some of the endogenous regressors in a structural equation have known coeffic-

ients, the algorithm gives no clear-cut guide as to whether these variables

should enter as they stand or as their reduced form estimates. As an illus-

tration, suppose that the variables m,p,r and y in equation (2) are endogenous,

that we agree to normalize on (1) (=1), and that 6 is known: how then should

2SLS be applied? The regression formulation would suggest constructing the

dependent variable (m-Op) and applying 2SLS in the usual way. However, this

is not necessarily the obvious way to proceed because, when 0 is unknown, p

would enter as its corresponding unrestricted reduced form estimate p. Should,

then, the dependent variable be (m-613) or (iil-013) when 0 is known? Moreover,

if the dependent variable is changed in these ways, how might the 2SLS estimates

of the remaining coefficients be affected?

In this note it is demonstrated that when some of the coefficients of

the endogenous variables in a structural equation are known, then the 2SLS esti-

mates of the remaining coefficients are invariant to the form in which the

endogenous variables are entered, as raw data or as unrestricted reduced form

estimates. The notation of a general model is first introduced and then the

invariance property of 2SLS is developed by way of comparison with the invar-

iance-to-normalization property of LIML and LVR, using the classical identifia-

bility test statistic (Anderson and Rubin, 1949, 1950).

Let an equation, say the first, of an over-identifiable linear system,

comprising M endogenous and K predetermined variables in n co-ordinate observa-

tions, be written as:

(3) y
1 
= Y

1
P.
1 
+ X

l
y
l 
+ E

l 
.



Y
1 

comprises m, and X
1 

comprises k, linearly independent columns and ri
1
!X
1
]

has rank (m+k) < K < n; also, C1 'Xi N(0,I
n
a
11) independently of all predeter-

mined variables X = [X1;X2] in the system, X having rank K. The coefficient

vectors P.
1 

and y
1 

have m and k elements respectively. Corresponding to a

normalized version of (2), equation (3) may be re-written

* * *
(4) y

1 
= Y -Y 

=X1y1 
+c

1 1 1 1  1

*
in which Y

1 
= [y

1
:Y
1
] and P.

*T
1

regarded as a classical regression.

then

For known 
13.1, 

equation (4) may be

If yi is expressed in terms of the reduced form corresponding to it,

(5) y =Xy +Xy +
1 2 2 1 '

subject to the over-identifying hypothesis H: 12=0. This hypothesis may in

principle be tested using the classical F-ratio:

*T
( 

*T *T **

1 PO- Pw)Y1 n-k 11 Owil n-k
(6) F = - - •

*T * K-k *T *T * * K-k
1 n Q 1 11 nC211
y (I -P )y

in which P
Q 
denotes orthogonal projection on Q, defined as the span of X, and

P
w 
has a corresponding meaning for w, the span of Xl. Let Vai

1
) denote the

ratio of quadratic forms in P.
1 

on the right-hand side of (6). Note that

w CIS-2, the dimension of is K and the dimension of w is k. Equivalent expres-

sions for (6) under H are:

(7)

T
( --

F = V01) 
e PQ P)e* nK l w l ri:lc 11(c 

K-k 
T(I P

C 
n Q)el
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which, given the spherical normality of ci, is sufficient to demonstrate

F F(K-k,n-K) exactly, when P. is known (Anderson and Rubin, 1949, 1950).
1

With this notation and background we may state the following:

(i) LIML and LVR estimates f3.
1 

of 13 
1 

are obtained by minimizing V( 1),

and hence F, with respect to the unknown elements of (Basmann, 1960).

When this is done, H has the best 'chance' of being declared 'acceptable'

among all admissible estimates of

(ii) Re-normalization of (3) or (4) merely involves scalar multiplica-

tion of its coefficients (and the equation error). Such scalar multiplication

cannot affect the minimization of v(i
1
) which establishes the invariance-to-

normalization of LIML and LVR estimates of 3.

(iii) 2SLS estimates b
1 
of

I 
are obtained by minimization of the numer-

ator of v( unknown P. ) with respect to the unkno elements of 16 (Basmann, 1960).1 1

Since the numerator of v(
1
) is not invariant to scalar multiplication, b

1 
is

not invariant to normalization.

^*
(iv) Given the estimates IS

1 
and b

l' 
corresponding estimates for 11 are

obtained as least squares estimates from (4), replacing by an estimate.

For LIML see Koopmans and Hood (1953, pp. 167-9). For 2SLS, bl = [li-bI] where

-1 T
b1 = 

If the 2SLS estimate of yl is cl, then
1111(130-Pw)Y11 111(130-Pw)Y1.

c
1 
= (X

T
1
X
1 
)
-1
X
T
1
(y
1 
-Y
1 
b
1 
). One way of recognizing the correctness of this

formula for c
1 

is by noting that if y - Y
l
b
l 
- X

l
c
l 
= e

l' 
then P

w
e
l 
= 0

(Fisher, 1981); this implies Pto(yi-Yibi) = Xici and hence the formula for cl.

* T
(v) Since Pwel = 0, v(b1) = elPoliel(In-P0)e1 (Fisher, 1981). Basmann's

(1960) modification of F in (7) is then fv(b1)(n-K)}/(K-k-m) which is approx-

imately F(K-k-m, n-K) under H, the degrees of freedom in the numerator recogniz-

ing the extra m restrictions introduced in estimating 3.
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The invariance property of 2SLS may now be developed and distinguished

from the invariance-to-normalization property of LIML and LVR. Notice that

the formulae in (iv) above for b
1 

and c
I 

may be re-written:

N.0

(8)

1,J 

r 

rlyTfp 

i 
NE,

LO) 1 w QY1

T -1 
c
1 

T
P 
(y1 

- (X
1
X

1  1 1

since (PQ-Pial)P2 = PQ-Pw and (PQX1) = XT by virtue of wCIIQ and the properties

of orthogonal projections. More precisely, (P-P
w
) is the orthogonal projec-

tion on wl C10, i.e. P (I 
n 
-P

w 
), and clearly win Q C.O. The fact that P may

be introduced to pre-multiply yl and (yl - Y1b1) in (8), without effect on

the calculation of b
1 

and c
1, 

immediately yields the following result: if

any of the elements of 13i is known, and hence need not be estimated, then the

2SLS estimates of the unknown coefficients are invariant to the choice of depend-

ent variable between a) the known linear combination of the endogenous obser-

vations; (b) the same linear combination of their corresponding least squares

reduced form predictions; or (c) any combination of (a) and (b) consistent with

(3). 
• T• T

Specifically, if Zl = [Yi:Xl] and al 
=1:y1]' 

then the following formulae

are equivalent expressions for the 2SLS estimates of al:

-1AT
) Z1

y1 = 
(Z

T
P
Q 
Z
1 
)(P )

T
y1 1 

= (Z
T
P
Q 
Z
1 
) (P

Q
Z
1
)T 
P
O
y
l '1 

Z
1 

being Z
1 

with Y
1 

replaced by its reduced form estimate. Moreover, if Y
1 

and

13
I 

are conformally partitioned as

= [Y
11

:Y
12

:Y
13
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comprising blocks of ml, m2 and m3 variables (m1 + m2 + m3 = m), and 
ll 

and

13
21 

are known while
3l 

is not, then

-1 T
b
31 =13 

)Y 
Y1 ( Pw)(371-Y101 ) •2 w

Since, as already noted, (P2-Pw)P2 = P -P, it is obvious that it makes no

difference to 2SLS estimation of 
3l

whether y Y
11 

and Y
12 

or their corres-_

ponding least squares reduced from predictions are used; or indeed any proper

combination of the two, like y., 
Yll, Y12. 

Thus, in the example of equations

(1) and (2), all of the possibilities suggested lead to the same 2SLS estimates

of the unknown coefficients.

Moreover, the same property holds for IV estimation. Suppose a subset

of K < K of the exogenous variables, including X
1, 

replaces X as a set of

instrumental variables. If the span of these variables is denoted by A, then

w cl A CO, and consequently (PA7P
w
)P

A = 
(PA7P

w
). Thus the same invariance

property holds for IV estimation as holds for 2SLS estimation, so long as

K -k m where m is the number of unknown coefficients of endogenous variables.

This result makes clear the fact that, if the equation to be estimated is under-

identifiable, then knowledge of the values of enough coefficients will justify

estimation taking place. In effect, the known coefficients are a form of

a priori information and these play the role of non-exclusion restrictions for

purposes of estimation. The condition (K
*
-k) m simply ensures that there

are sufficient 'extra' exogenous variables available to estimate the unknown

coefficients of endogenous variables.

Exclusion of exogenous variables from the instrumental set when in truth

the excluded variables are really part of the model, represents a loss of infor-
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mation. In these circumstances, it is important to check that the exclusions

are statistically justifiable, as an approximation. In this regard, the ident-

ifiability test-statistic noted in (v) above may be applied, using the resi-

duals e
1 
from the IV regression and the orthogonal projection PA:

F =

*T *
e
l 
P
A
e
l •  n-K 

e
*T
(I -P )e

* 
K
*-
k-m

*

1 n A 1
•

This statistic may be used to test whether, given knowledge of some coefficients

in an equation, the total number of exclusions may be regarded as satisfactory.

Such exclusions relate only to the exogenous variables, of course, and may arise

either from the theoretical structure of the model or as a matter of approxim-

mation in defining a convenient instrumental set.
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ABSTRACT

This paper discusses the traditional specification problem from a

geometric viewpoint. While the traditional emphasis is on the properties

of estimators, the geometric approach also allows an easy development of

corresponding results for inference. Errors arising from artificial inclu-

sion or exclusion of variables are considered in terms of augmentations or

restrictions on a given maintained hypothesis, and this allows a corres-

ponding interpretation of tests based upon the Wald and Lagrange Multiplier

Principles. It is demonstrated that biases arising from incorrect exclu-

sion of variables do not invalidate the traditional F-test.



THE GEOMETRY OF SPECIFICATION ERROR

- Gordon Fisher and Michael McAleer -

1. Introduction

For over two decades the approach pioneered by Theil (1957) has been

the traditional framework for examining specification error involving arti-

ficial inclusion or exclusion of variables in a linear regression Of course,

since incorrectly excluding variables may be regarded as imposing restrictions

on the 'true' model, and since the 'true' model corresponding to incorrect

inclusion of variables may itself be regarded as the result of imposing restric-

tions on the false model, it is obviously possible to re-cast the specification

problem in terms of restricted least squares. Evidently, this was first noted

by Stewart (1976, pp. 96-100), and the more formal analysis of Riddell and Buse

(1980) demonstrates some of the interesting didactical features that are often

passed over in the traditional discussion. Nevertheless, one of the great draw-

backs of examining the problem from the traditional or the restricted least

squares viewpoints is that attention is concentrated on estimation because infer-

ential matters get pushed into the background. Part of the reason for this is

that, while the distributional aspects of regression are defined on observation

space, the discussion of specification error is cast in terms of parameter space.

Though this is the traditional way of tackling the problem, it does involve an

awkward switch from the one space to the other, and this tends to direct atten-

tion toward bias and efficiency alone without giving natural vent to considera-

tions of inference. Yet when the same problem is cast in terms of observation

space, there emerges not only a direct link with the general problem of formulat-

ing and analyzing a linear hypothesis, but also an obvious route along which

results on bias and efficiency may be developed concisely. Indeed, such an
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approach has the distinct merit of emphasizing the natural interplay between

estimation and testing in respect of specification error and other general

problems that arise in connection with a linear hypothesis.

The concern of this paper is to develop an approach to specification

error which emphasizes geometric aspects of the problem. This has the virtue

of obtaining the standard results succinctly while drawing attention to import-

ant features which might otherwise be missed. Moreover, certain of the geo-

metric properties we shall develop form a natural basis for discussing infer-

ences about specification, and also allow us to draw a distinction between these

sorts of inferences and inferences that might otherwise be made were the specifi-

cation problem itself to be passed over unnoticed. In this and several other

respects, a number of new results are developed. Errors committed by including

or excluding variables incorrectly are analyzed in terms of augmentations or

restrictions of a given maintained hypothesis, and this permits us to exploit

the relations between tests based on the Wald and Lagrange Multiplier Principles.

For example, while it is well known that biases are introduced by excluding var-

iables incorrectly, it turns out that the appropriate F-test, though based upon

biased estimates, is nevertheless valid.

The plan of the paper is as follows. There is first a general discussion

of the linear hypothesis from the geometric viewpoint. This is justified not

only because of its unfamiliarity, but also because it forms the basis of the

analysis in the rest of the paper. There is then an illustration with a familiar

example in Section 3. In Section 4, the same analysis is applied to specification

error, and in Section 5 extensions of the results are discussed.

2. The Linear Hypothesis

It should be emphasized at the outset that mistakes made in formulating a

linear hypothesis, whether by inclusion or exclusion of variables, are in prin-



ciple testable using standard methods. For this reason, it is helpful to

begin with a general method of formulating and testing a linear hypothesis.

The approach to be adopted is due to Kruskal (1961), with important extensions

by Seber (1964a, 1964b, 1964c and 1966) and Kruskal (1968).

Consider the vector y which ranges over n-dimensional Euclidean space,

e, on which the inner product (.,•) is given. The distribution of y is multi-

variate normal and its moments may be defined in terms of the given inner pro-

duct. Thus for fixed x and z in e, the unique vector expectation of y, say p,

is defined by the linear functional E{(x,y)} = (x,p) while E0, the unique lin-

ear transformation on e called the dispersion (or covariance) operator of y,

is defined by interpreting Df(x,y),(z,y)} as (x,E -07* a proper inner product,

except possibly non-negative definite. Without loss of generality, it is assumed

that E = I
n
a
2 

whence y N(p,I
n
a
2 
) and there is no confusion in writing0

E(y) = p, D(y) = Ina2. Notice that while vector expectation does not depend on

the given inner product, the definition of dispersion does. Thus for some idem-

potent linear transformation G, for example, if (.,G.) E <.,.> defines a new

inner product, E{<x,y>} = <x,p> but D{<x,y>, <z,y>} = <x,E0GTz>, not

This is helpful in understanding the discussion of components of specification

error later on.

It is given that pEQ, a p-dimensional sub-space, but otherwide p and a
2

are unknown. It is then desired to test the linear hypothesis H: poic Q, W being

(p-r)-dimensional. Thus r is the number of linear restrictions on Q to define w.

The following notation will be adopted. Least squares estimators of

parameters in Greek letters will be denoted by corresponding Roman letters,

indexed according to the associated sub-space of estimation. For example, cor-

responding to Q, the least squares estimates of p and G
2 
are m

Q 
and s respec-
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tively. Also, P will denote perpendicular projection, i.e. orthogonal projec-

tion relative to (.,.), and this will be indexed according to the sub-space on

which projection takes place; corresponding projection on the ortho-complement

ineisdenotedbYQ,withthesameindexing.Forexample,Pis on w and

nu) 
is on wl, and so on. Dimension is denoted by d(*) and length

relative to (-,.) by 11.11. With this notation, m2 = P2y, % = fiNyil /cwc-)J,

2
m
w 
= P y and s

w = {llvII 2/d(w1)}. Of course, d(21) = n-p and d(w1) = n-p+r. To
w

complete preliminaries: (P2-P) =P
2
QCA) =PWinSe • 

symmetry ensures Pcpw = QwPc2;

and under H, E(Pw,r)g) = Pw,n21.1 = 0 since pfw.

The standard test statistic for H is:

11(PQ-Pw)3TH 2/d(wir)Q)
F -  

11%-237112 /d(Q)

Y
T
(1) w)Y/r

Y
T
42Y/(n-p)

(1)

There are various expressions corresponding to equation (1), but the right-hand

side of this equation is fundamental in the sense it comprises components of y

in sub-spaces arising from estimation, and the dimensions of these sub-spaces.

Given the ratio of dimensions, the formula has a natural geometric interpreta-

tion, namely, the square of the tangent of the angle of inclination of Q y to

Qff(tan
2

(f) = {BC/CD}
2 
in Diagram 1), which clearly varies according as the dis-

tance MITIT mwII(BC in Diagram 1). The same point is made explicitly in the follow-

ing alternative expression:

buff' m I 2
F -  

2
rs
Q

(2)



11/8111.11/1
1 4011.111111111,

 011.1111100
 11111111111110

 11111111111.
 MOM

Key:

013 Pwy

F y

A-13- (P —F to )Yto

1Th Q y

= (I —F )Yn

OD= y

Cu

DIAGRAM 1
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Usually, in a practical problem, H is expressed in the form of r restrict-

ing relations (ai,p) = 0 (i = 1,2,...,r) or as ATli= 0, pEO where A is n x r of

rankrpofknowncolumnsa..In this case, which is quite general,

w = c n N[A
T
] where NEAT] = fx: ATA = 0, XER 1. Corresponding to this formula-

tion, the unique perpendicular projection on winO may be written PA(A
T
P
Q
A)
-1

A
T
P

provided the span of A and Q1- intersect only at the origin (Seber, 1964a, p. 262).

It is then straightforward to demonstrate that F in (1) embodies the Wald (1943)

Principle of testing restrictions using only unrestricted estimates, since:

Y
T
(I)-1)w)YF =

2
rs

6 •

(ATV [Dc2 A
T
mcd1

-1
(A

T
mcd

(3)

where D(-) denotes estimate of dispersion corresponding to the space Q, i.e.

2
evaluated at a

2 
= s

Q.
 (While D(.) generally denotes dispersion, when D is

indexed by a sub-space it denotes estimate of dispersion corresponding to esti-

mation in that sub-space.)

Of course, IF in (1), and hence in (2) and (3), has the central F(r,n-p)

distribution under H. Further rf is a quadratic form based upon the unrestricted

2
estimates m

Q 
and s

2 
and the given restrictions only; upon replacing 

sO 
with G

2

2
it is seen to be a quadratic form in normal variates under H. Since also s

Q 
is

2
asymptotically equivalent to a

Q, 
the corresponding maximum-likelihood estimator

iof a2, it , t s obvious that rF % X2(r) approximately for large n. This is the

standard large-sample Wald test (see Seber, 1964a).

It is worth remarking that, contrary to Seber (1964a), neither (1) nor

(2) may be construed as test-statistics based strictly upon the Lagrange Multi-

plier Principle (Silvey, 1959). The test-statistic corresponding to the Lagrange

Multiplier Principle is:



Y (Pc Po) Y

YQL037

T
- P)37

Y
T
(1) P)37 +YQY

9 (4)

which is exactly distributed as 
2

13,), since the two components in the
1 2 

denominator of the expression in (4), each divided by a
2
, are independent chi-

square variates with r and (n-p) degrees of freedom, respectively. However,

this PI-distribution is in one-for-one correspondence with the F(r,n-p) distri-

bution. Hence there is no conflict in testing H via equations (1), (2) or (3)

using the F(r,n-p) distribution or via (4) using the PA, 91) distribution

(Fisher, 1978, 1980; Fisher and McAleer, 1980). Notice that in Diagram 1,

M = sin
2

(1) = cos
2
T.

3. An Example

In a practical regression problem, y is a vector of n co-ordinate obser-

vations and Q is the span of an n x p matrix, say W, of rank p. Thus p may be

written p=Wa for some afIR and y as Wa + c with c N(0,I
n
a
2
). If as above,

P

ATP = 0,p4[W] under H, where&*1 denotes span, then there must also exist an

A* = P A which satisfies the same condition since Q =,E[W] and hence

T 
A* p = A

T 
P
Q
p = ATP = 0. In view of this, there must also exist a matrix B of

order p x r with its r columns in the span of W
T 
since obviously

w(wTw -1wTA w(wTw)-1
B, in which B = W A, and hence

-1 T
0 = ATP = A

T
Wa = 

T
Wa = A

T 
W(W

T 
W) W Wa = B

T
a .

Thus for every set of admissible restrictions ATP = 0, P = Wa, there corres-

ponds a B such that B
T
a = 0; moreover, if B

T
a = 0, then 0 = B

T
(W

T
W)
-1
W
T
Wa

A* Wa = A
T
P
Q
Wa = ATP. Generally, then, there are many A's to a given B, but

corresponding to the A's there is a unique A*, given pfQ .=„31W]. Moreover,
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there is no need, from a theoretical viewpoint, to consider non-homogeneous

restrictions of the kind BTa = p or ATP = K, since this case may readily be

adjusted to the original one. Any solutions a* or p* yield B
T
a* = p and

T
p* = K, whence B

T
(a-a*) = 0 and A

TA 
(p-p*) = 0. Hence, consideration of the

regression y - p* = W(a-a*) + c accounts for the non-homogeneity without damage

to the generality of the homogenous case as stated (see e.g. Seber, 1964a, 1966).
To help fix ideas still further, consider the above regression when

W = [X;Z]: X has (p-r) columns, Z has r columns, B
T 
has r rows and B

T 
=

If a
T 
= 

T
:y
T 
] is conformably partitioned:

y = Wa + c = X13 + Zy +

then B
T
(W

T
W)
-1
W
T
Wa = A*

T
p = 0 and w = ,ed[W] fl N[A*T] = Ri[w] nAzd[

(5)

w = ,EY[X]. In these circumstances, equation (5) under H becomes:

y = -I- 6 (6)

and hence equation (1) specializes to:

F =
y
T
(
w
(
wT
w) 
-1

w
T 
- x(x

T
x) 
-1 T

(n-p) 
(7)

y
T
(I
n 
- W(W

T 
W) w )y

A useful alternative formula for equation (7) may be developed as follows.

Let E denote ,k4Z]; since the matrices W, X and Z each have linearly independent

columns, it is clear that Q = wCo. Let F denote an oblique projection rela-

tive to (-,-): F
w 
will denote the oblique projection on w relative to (.,-)

which is the orthogonal projection relative to (-,Q -); F is, similarly,
E

oblique on E relative to (-,-) and orthogonal relative to (., Qw-). In terms

of matrices: Fw = X(X
T-1

X
T 

and F = Z(Z
T
QwZ)

-1
Z
T
Qw, which are, of course,
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idempotent but not symmetric. It follows immediately that P
O 
= F

w 
+ F andc

hence:

Q
w
P
Q 
= (P-P

w
) = Q

w
F
w 
+ Q

uJ
F 
'

which, since QwFw = 0, reduces to:

P -P =QF =QZ(Z
T
QwZ)

-1
Z
T
Qw .

Ow (A) w

In view of this, equation (7) reduces to the familiar expression:

y Q Z(Z
T
Q Z)

-1
Z
T
Q y

W W W F =
y
T
(I

n
-WN

T
W)
-1

W
T
)y

(8)

(9)

(10)

The discussion thus far has concentrated on testing a set of restric-

tions on a given maintained hypothesis, using estimates under that maintained

hypothesis. We may characterize this way of looking at matters as testing the

movement from a given maintained hypothesis toward an hypothesis H which is

restricted in some specified way; or, more precisely, testing the movement

from a given maintained hypothesis, call it HQ, toward a restricted version

of HQ, denoted by H
w
, which will be termed 'the restricted hypothesis' It is

quite natural to base this test upon estimation under H (i.e. in 0) simply

because this is the hypothesis (i.e. space) from which movement is to be con-

sidered. This is precisely what the Wald Principle tells us to do. However,

as equation (4) makes clear, a test may be formulated as if movement were the

other way round, i.e. from estimation under H
w 

toward estimation under H.

Such a test is based upon the Lagrange Multiplier Principle.

For the purpose of analyzing specification error, it is useful to con-

sider not just two principles of testing thg same hypothesis, but rather two

classes of hypotheses. Hypotheses of the first kind are essentially concerned
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with restrictions on a given maintained hypothesis and these have already

been considered. Hypotheses of the second kind are concerned with augmenta-

tions of a given maintained hypothesis, and tests of them may be described

as testing a movement from a given maintained toward a specified augmented

(or modified) hypothesis. In terms of linear hypotheses, if the maintained

is H
Q
: pEO as before, this may be augmented to become 

HA: 
pfQ 0 v E A, where

v is a sub-space in en of dimension q such that d(A) = p+q = k n. Thus v

might be 4[U] where U is an n x q matrix of linearly independent columns

such that MU] has rank k. Returning to specification error, incorrect inclu-

sion of variables will be seen to correspond to an augmentation of the given

maintained hypothesis, while incorrect exclusion of variables corresponds to

a restriction of the maintained hypothesis.

Turning back to an hypothesis of the first kind and considering a move-

ment from H to H
w' 

the form of the test is to demonstrate whether the squared

distance between efficient estimates of p in Q and w is significantly different

from zero; if it is, H is rejected; if not, H
w 
is not rejected. Since the

hypothesis of departure is H
Q' 

it is natural to base significance testing upon

estimation of a
2 
in Q (the Wald Principle), but the Lagrange Multiplier Prin-

ciple may also be applied, whence a
2 
is estimated in w. In the case of hypotheses

of the second kind, a movement from H
Q 

toward H
A 
is considered; but now

d(Q) < d(A), and movement is from the space of smaller to the space of larger

dimension, not vice-versa. Again the test seeks to determine whether the

squared distance from an efficient estimate of p in A to the corresponding esti-

mate in Q, is, or is not, significantly different from zero: but this time if

it is, HA is not rejected, whereas if it is not significantly different, HA is

rejected. Moreover, H is again the hypothesis of departure and hence Q is the

natural space for estimation of a
2
; but since Q is now the space of smaller
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dimension, the natural procedure to apply is the Lagrange Multiplier Principle,

not the Wald Principle, and hence to base significance testing on estimation of

a
2 
in Q. In short, in considering a movement from a maintained to a restricted

hypothesis, the natural principle to apply is that of Wald; but in considering

a movement from a maintained to an augmented hypothesis, the natural principle

to apply is the Lagrange Multiplier Principle. However, the other principle

may be applied in each case, subject to re-definition of the test-statistic and

application of the appropriate distribution.

4. Specification Error

It is assumed that H. • pfQ applies throughout. In ignorance of thisQ

fact, p is presumed to lie in A, that is, in k-dimensional rather than p-dimen-

sional space, where p < k. Since A = Q eV, it is natural to consider the

decomposition:

A
Py=F

Q
y+ Fvy , 

where F is orthogonal on Q relative to (.,Q 
y 
.), and F is orthogonal on v rela-

tive to (•,QQ*). Immediately we have:

(i) PAy is unbiased for p, since E(PAy) = PAp = p, because pfOc A.

(ii) F y has expectation zero, since F is orthogonal on v relative to

(.,QQ.) and VI = 0, pEQ. Hence,

(iii) E(Fy) = E(PAy) = p; or directly, E(Fc2y) = Fp = p, since F
Q 
is on Q.

Moreover,

(iv) D(P
A
y) = P

A
2
' 

whereas the minimum variance linear unbiased estimator

has dispersion Pa
2
. Since the difference between the two estimators

is (PA-Pp and (PA-PQ) is itself a perpendicular projection, the dis-

persion arising from this difference is precisely the difference of the
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individual dispersions, namely (P
A 
-P 

)a• 
This may be regarded as a

representation of the total loss of efficiency due to specification

error.

(V) (P -P )y may be decomposed into (F0 - 
-P )y F y and these represent com-

ponents of (PA-IWy attributable to the spaces Q and v, respectively.

(vi) The dispersion corresponding to this decomposition is:

D{(x,(PA-P2)y),(z,(PA-PQ)y)} = (x,(PA-P)z)a2

= (x,[(F2-P0)(F-PQ) + FvF\T) + (Foi\r) + Fv )]z)
2

G ,

for fixed x and z in g , since P F
T 
= 0. Thus the total dispersion

0 v
2

(P
A
-P)a may be interpreted as arising from dispersion: (a) within 0,

(F -P )(F
T
-P
0 
)a
2 
' 

(b) within v, F F
T
(5
2

-
' 

and (c) between the two spaces,
0 v v 

i.e. as a result of correlation between the components of y in the two

spaces, 
(FQ 

F
T 
+ F F

T
)a
2
. Thus:

v vc2

(vii) within 0, there can never be a gain in efficiency from presuming pEA,

rather than 1.160, since (FQ-PQ)(F-PQ) is non-negative definite.

(viii) However, when 01v, F=P
Q 

and so the loss of efficiency from within

0 is zero; part passu, F
Q
F
v 
= F F

T 
= 0. Nevertheless, under the same

v

condition, F FT = P
v 
since F =P and so the total loss of efficiency may

v v v v
2

be represented as (P
A
-P)a

2 
= P

v
a which again is non-negative definite.

More directly, when Q --1-v the oblique projections become perpendicular

and so P = P
O 
+ P whence (P

A
-P)a

2 
= P G

2 
as before. Thus there

A

can never be an advantage, from the point of view of efficient estima-

tion, of estimating p in A rather than p in Q, even though there may be

no loss within Q.

(ix) It is perhaps worth remarking that while (F -PQ) is non-null, its square

is null. This is because both F
Q 

and P
Q 

are on 0, whence F ( 
0
-P) =

P = P
Q 
(F 

Q
-P ), a result which implies (F Q_ - 

P0 
)
2 
= 0.

S-2 
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(x) In view of (i), E(sA
2
) = EfilQAy11

2 
/d(A1-)1 = a2, so that estimates of

both p and a2 are unbiased.

(xi) Of course, if the possibility of specification error is in mind,

test for the exclusion of the improperly included variables is pos-

sible. This naturally involves considering a movement from H
A
: pEA

to H
0 

when we have available only estimates of p and a
2 
in A. Since

Q CIA, the problem might be treated like the testing of a restricted

hypothesis by applying the Wald Principle in the form:

F = 
Y (PA-PQ)Y n-k .•

QAY

The test is valid despite the fact it presumes HA holds, which is

invalid. This is because (i) and (x) apply. Moreover, had we proceeded

from a valid hypothesis, namely pEQ, then we would have been forced to

apply the Lagrange Multiplier Principle using:

Y (PA-130)Y
(12)

and thus treating the problem as one of significance testing of an aug-

mented hypothesis. However, in practice this makes no difference what-

soever so long as it is recognized that (12) is -distributed; conven-

ience then dictates that (11) be used. Finally,

(xii) notice that central to the points (i)-(xi) above is the difference

between the two regressions (P-P)y: this is distributed on e as

N(0,(PA-PQ)a
2
) and has squared length which forms the numerator of valid

test statistics; its distribution is spherical on its own sub-space

since, for x and z in Q1 Cl A, D{(x,(PA-PQ)y),(z,(PA-PQ)y)} = (x,(PA-P2)z)a2

(x,z)a2.
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Turning now to the obverse case where again H
Q 
applies but p is presumed

to lie in wC=Q, d(w) = (p-r); i.e. the model is estimated as if Hw: pfw is at

work. Since 2 = w 0 C, PQ = Fw + F. Let pw be the component of p in w and

pc be the component of p in E: pw + pc = p. Then,

F
w
y is unbiased for p

w
: E(F y) =F(p + p_) =Fp =p. However, P

w w w w w

the least squares estimator of p under H
w
, is biased for p

w
, save when

w and c are orthogonal: E(Pwy) = Pp = pw + Pwly if w I Ppc = 0

and E(Pwy) = pw. It follows from these results that:

(xiv) P
w
y is biased for p, even when wic, but except when p E w or H

w

actually applies; both of these conditions are ruled out by hypothesis

(but see Section 5).

(ow) D(Pwy) = P
w
a
2 
whereas the dispersion of the minimum variance linear

unbiased estimator of p, PQ.y, is Pe- 
2
. Since D{(P-P)y} = (PQ-Pw)a2

is non-negative definite, it follows that P
w
y will never be less effic-

ient than PQy, where efficiency is defined in respect of dispersion only

and thereby permits comparison between biased and unbiased estimators.

It is also the case that:

(xvi) Pa
2 
= iF F

T
 +FFT + (F F

T 
+ F F

T
)10

.2
. Hence, so far as estimation

w w F, E w C w
of p

w 
is concerned, P

w
y is never less efficient (in the same sense as

(xv) above) than the minimum variance linear unbiased estimator, since

(F 
w
F
T 
- P )a

2 
= (F -P )(F

T
-P )a

2 
is also non-negative definite (c.f. (vi)

w w w w w w

above). However, (F -P ) = 0 when w Ic.w w

(xvii) Notice the double danger inherent in (xiV), (xV) and (xvi) as a result

of presuming p to lie in w: (a) Pwy is generally biased forpw and for

p; and (b) its distribution generally has less 'spread' around the biased

mean than the most efficient linear unbiased estimator, in each case.
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(rviii) In view of (xiii) and (xiv), E(sw
2
) = En! Q

w
y11

2 
/d(w1)} = G

2 
+

{11%11012 /d(w1)}, and so sw
2 
is biased upward for a2, even when

w J.. (but see Section 5).

(xix) With regard to testing for specification error, the natural test

would be based upon the Lagrange Multiplier Principle, since esti-

mates of p and a2 in W are available. To be sure, W does not contain

so that biases are present under H
w' 

but this does not render the

test invalid. By considering a movement from HQ to H
w
, it is readily

seen that the Wald Principle will lead to a valid test, and this it-

self renders valid the corresponding small-sample specialization of

the Lagrange Multiplier test. This situation is in contrast to the

one examined in (xi) above, where A contains Q and hence no biases

are involved under H
A
.

5. Discussion

It is of interest to enquire about the matrix differences P
A
s
A
2
-Ps

Q
2
)

and (Ps
2
-P

w
sw
2
) corresponding to the two cases of specification error examined

above, since these are sample estimates of population measures of efficiency.

, 2
The first estimate may be rewritten {PA(sA

2
/so

2
)-PQ1s0 and the second as

2 2IP
Q 
-P (s . 

2
/s 

2
)}s 

2 
Since (s

A 
is ) may be less than unity and (s 

2
/s 

2
)

ww00 w

greater than unity, it should be clear that the non-negative definiteness of

(P
A
-P)a

2 
and (P-P

w
)a
2 
may not be preserved when a2 is estimated in the various

spaces. This result may hold even when orthogonality is present. However, since

1 when the extra variables are not significant, it is likely that

(P
A
s
A
2 
- P

O
s
Q
2
) will be non-negative definite in this case. In the case of

(sw
2
is 

2 
, since the excluded variables ought to be included, the ratio may be
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markedly greater than unity. Hence, it may not then be possible to say

whether (P
O
s
Q
2 
- 

2 
P s ) will be non-negative definite.w w

It is well known that when variables are inadvertently excluded and

these are orthogonal to the included ones, then p ill and Pp = 0 but
w

E(si
w
2) = 

2a 1. on ,
P 

11 2/d(w1)1 = a2 m1E112 „
id(w-,)1 G2, except whenE II

= 0 (i.e. H
w 
is valid). There are two points worth mentioning here. First,

if Ec w (i.e. the two sub-spaces are linearly dependent with E the sub-space

of smaller dimension), then Q
w
p
E 
= 0 and E(s

w
2
) = a

2
. In this case, the esti-

mated error variance is unbiased for a
2 

and so is P
w
y for p, since

p
w 
+ P

w 
= p

w 
+ p

E 
= p, but it is not possible to identify p

w 
and p, separ-

ately. Of course, the likelihood is that will not lie in w but simply be

'close' to it; that is, there will be a high correlation between any column of

Z and some or all of the columns of X. More generally, as the maintained

hypothesis is augmented, so the chances of co-linearity between the explanatory

variables are increased. This contrasts with restricting the maintained hypoth-

esis, in which case the number of explanatory variables is decreased.

The second point concerns the presumption that the matrices X and Z

(which define the sub-spaces w and respectively) are such that the span of

each has dimension precisely equal to the number of its columns. Suppose, how-

ever, that the rank of Z is smaller than the number of its columns. Then

,g[Z] = E has dimension less than r and N[Z] is, in consequence, non-null.

Hence, there will exist vectors y 0 in N[Z] and for these zy = O. Clearly,

no bias in estimating p with Pwy can then arise, but y 0 and hence HQ still

applies. This possibility seems to have gone unnoticed in the econometric lit-

erature since the assumption of full column rank eliminates it. However, it

should be stressed that the rank assumption is made to ensure coefficients are

estimable, while the case just examined is concerned with their existence.
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