
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


ISSN 0316-5078

INSTITUTE FOR ECONOMIC RESEARCH

QUEEN'S UNIVERSITY

1 1$ II FOUN
1"J Ritk,

c\)9

,A 24 1981

ON OF
ONOM

Kingston, Ontario, Canada K7L 3N6



SOME NON-NESTED HYPOTHESIS TESTS AND THE

RELATIONS AMONG THEM

Russell Davidson

and

James G. MacKinnon

Discussion Paper #409

Queen's University

Preliminary: Not to be quoted or referred to without the written
permission of the authors

November, 1980



ABSTRACT

In this paper we discuss several statistical techniques which

may be used to test the validity of a possibly nonlinear and multi-

variate regression model, using the information provided by estimating

one or more alternative models on the same set of data. The first such

techniques in econometrics were proposed by Pesaran (1974) and Pesaran

and Deaton (1978) based on the work of Cox (1961, 1962). In Davidson

and MacKinnon (1980), we recently proposed, for the univariate case,

some new techniques which are conceptually and computationally simpler.

The first major result of this paper is that the techniques we have pro-

posed can be regarded as alternative implementations of Cox's basic idea

for non-nested hypothesis testing; under the null hypothesis all of the

test statistics are asymptotically the same random variable. A second

major result is that, for the univariate linear regression case, our

tests and Pesaran's test have asymptotic relative efficiency of unity

for local alternatives. We then propose several generalizations of our

procedures to the case of multivariate regression models, and show that

one of these generalizations is asymptotically equivalent under the null

hypothesis to the test proposed by Pesaran and Deaton. Finally, we

present the results of a sampling experiment for univariate linear models

which shows that the small-sample performance of our 3-test and Pesaran's

test can be quite different.



1. Introduction

Economic theory typically suggests not one but a multiplicity of

models that might explain any given phenomenon. Only a small fraction of

these can reasonably be dealt with in any particular piece of empirical

work. It is therefore important that the applied econometrician have

available not only techniques which allow him to choose which of the

available models is the best, but also ones which can allow him to decide

whether any of the available models is satisfactory. Conventional nested

hypothesis testing is not always adequate here. •Since there must always

be some maintained hypothesis, it allows of no formal test by which even a

maintained hypothesis that is plainly wrong can be rejected. All one can

do is reject a model against a more general one, and perhaps decide that

the latter is unsatisfactory because it makes no economic •sense. In this

paper we are concerned with less conventional procedures for testing non-

nested hypotheses, which have the property that any or all of the models

in a given set may be rejected.

The first procedure of this type was introduced by Cox (1961, 1962) as

a generalization of the likelihood ratio test. Cox's idea was that one may

test the validity of a hypothesis, Ho, about how a set of data was generated,

by comparing the value, from the data, of the likelihood function for some

alternative hypothesis with an estimate of the expected value of this like-

lihood function if H
o 

were true. This idea was not implemented in econometrics

until Pesaran (1974) showed how it could be applied to linear regression

models. Subsequently, Pesaran and Deaton (1978) (hereafter PD) extended

Pesaran's technique to deal with nonlinear and multivariate regression



models. The procedure they describe will be referred to as the Cox-

Pesaran-Deaton or CPD procedure. It allows one to test whether the truth

of one model can be maintained, given the performance of an alternative

model. The roles of the two models can of course be reversed, and it is

entirely possible that both (or neither) may be rejected.

Two other tests for the univariate regression case, with the same

purpose and substantially the same properties, were recently proposed by

us in Davidson and MacKinnon (1980), hereafter DM. These tests, which

we called the J-test and the P-test, will be described in Section 2 of

the paper. They are conceptually simpler than the CPD test, and easier

to implement with existing computer software. Moreover, both the new

tests can easily be extended so that a model may be tested against several

alternatives simultaneously.

In Section 2 of the paper 4/e describe the tests proposed by DM,

and show that they may be regarded as developments of the artificial

nesting procedure of Atkinson (1970), which solve the identification

problem normally associated with such procedures. We then demonstrate

that our P-test could alternatively have been developed as a way to imple-

ment Cox's idea for non-nested hypothesis testing, and show that under the

null hypothesis all the test statistics are asymptotically the same random

variable.

In Section 3 of the paper we consider what happens when the alter-

native hypothesis is true. For the case of univariate linear models we

are able to show that, among the CPD test and our tests, any test compared

with any other has asymptotic relative efficiency of unity for local

alternatives.



In Section 4 we propose several generalizations of our procedures

to the case of multivariate regression models. One of these generalizations

turns out to be asymptotically equivalent, under the null hypothesis, to

the CPD test. Since the computational advantages of our procedure relative

to the CPD procedure are much greater in the multivariate case than in the

univariate one, the former should be very useful in applied work.

Finally, in Section 5, we present the results of a sampling exper-

iment in which we compare the small-sample performance of our J-test and

Pesaran's test for univariate linear models. It turns out that under the

null hypothesis neither test statistic is very close to 1'4(0,1) when the

sample size is very small or the variance of the error term is large. How-

ever, inferences from the J-test are much more reliable in such cases than

inferences from Pesaran's test, because the density of the latter seems to

have much thicker tails. • Except in cases of extremely small sample size

and large variance, both tests seem to have good power.

2. The P-test and the CPD Test

Throughout this section, we shall consider the alternative non-

nested and in general nonlinear univariate regression models,

H0' •

H •
1

f(X , (i) Eot

g(Z Y) Eft •

The yt (t = 1 to n) are observations on a dependent variable, and the X.

and Z are nonstochastic vectors of observations on independent variables,

assumed fixed in repeated samples. The two hypotheses are compound, with

respectively a k-vector 3 and an 2-vector y of parameters to be estimated.



If H0 ' 
is true the EUt are NID(0,a

2
); if H

1 
is true, the E

lt ' 
are NID(0 a2).0  1

The functions f and g are assumed to be twice continuously differentiable

with respect to 13 and y respectively, with first partial derivatives denoted

by F(13) and G(y), which are respectively n x k and n x matrices, with

transposes FT(13) and G
T(y). It is further assumed that, as n °°, (1/n)F

T
(13)F(13),

(1/0GT(y)G(Y) and (1/n)FTWG(i) all converge to well-defined finite limits

for all bounded 13 and y, the first two being positive definite and the third

non-zero.

The tests proposed by DM can be constructed in three separate steps.

The first of these is to nest H0 and H1 
in an artificial compound model.

At least three such models might seem reasonable. The simplest of them is

(1 - )f(13) + ag(Y) + 6 (2.3)

where y, f and g now denote vectors and X and Z have been suppressed for

notational convenience. A second compound model is

(1-X)ai2 + a 2 
f(0 +

-X)G1 +AGO
)

Xa 0 
2 2geY

2

Y =
(1-X)G12

+E. 2.4)

This model, which has been investigated by Atkinson (1970), among others,

has a likelihood function which is the same as an exponential combination

of the likelihood functions of H0 
and H

1' 
with weights (1-A) and A

respectively. A third compound model is

1-11)ai-i-Pao

Pa 0
)f(13) + (1-11)(51 + PG)g(Y

+ C. (2.5)

If H is expressed in the form (y - f(W/ar,u = u0, then if H were

true uo would be distributed as NID(0,1). Model (2.5) results from com-



bining Ho with H in this form with weights

then solving for Y.

and p respectively, and

It is clear that by suitable reparametrizations (2.4) and (2.5) can

both be put into the form of (2.3), so that the latter is the only compound

model we need to consider. As we shall see in Section 4, however, that

will not be true for the multivariate analogues of (2.4) and (2.5). It

should also be clear that, in general, the parameters a, 3 and y of (2.3)

will not all be identified. In order to test the truth of H0' we wish to

test the hypothesis that a = 0. That will not be possible if a is not

identified.

The second step in DM's construction of a test procedure is designed

to get around this problem.1 To ensure that a is identified, y is replaced

by its maximum likelihood estimate y. Thus one way to test the validity of

H0 is to estimate the possibly nonlinear regression

y = (1-0)f(13) + ag + E, 2.6)

where si denotes g(). This procedure was called the J-test by DM. The

test statistic is simply the ordinary t-statistic for a test of a = 0,

which DM prove is asymptotically N(0,1) under Ho.

It is clear that (2.6) would still yield a valid test statistic if

g were replaced by any vector which is asymptotically non-stochastic, such

as g(yl) where y' is some other estimate of y. In particular, following

Atkinson (1970), one might want to use an estimate of the expectation of

y under Ho. Pesaran (1980) considers this and several other choices for y

as ways of modifying the J-test for linear models. His results do not



suggest that there would be any gain from using estimates other than y,

and in Section 3 we shall verify that, by the criterion of asymptotic relative

efficiency, there is indeed no gain.

If f is linear in performing a J-test simply requires that

one estimate H
1 
and then compute a single linear regression. If f is

nonlinear, however, (2.6) will be a nonlinear regressfon. The third step

in DM's construction of a test procedure is to linearize the J-test regression

(2.6) around the point (a=0,13=S). This yields the linear regression

Y - = Fb + ot(g ) 6, (2.7)

where f = f(s), F = F(0 and b = (1 - a). As Durbin (1970) has shown, a

Wald or likelihood ratio test of the hypothesis a = 0 based on the linearized

regression (2.7) will be asymptotically equivalent to one based on the nonlin-

ear regression (2.6), under the null hypothesis and for local alternatives.

DM call the t-test of a = 0 in (2.7) the P-test. It is obvious that if f

is in fact linear, the P-test and J-test will yield identical results.

The OLS estimate of a from (2.7) is

[(g-i)TM0(Y'i)]/[(g-i)TM

where

".

(2.8)

(2.9)

It is easily shown (see DM) that the t-statistic for ap is N(0,1) asymptot-

ically if Ho is true. It is also easy to see that since (y-f) is orthogonal

^ • •to F, f 0(y-) = (y-f), and hence the numerator of ap is simply

Y-4). 2.10)



Thus the P-test (and also the J-test) really just amounts to testing whether

the residuals from Ho are significantly different from being orthogonal to

the difference between the fitted values from H and H0.

We now turn our attention to the CPD statistic, the numerator of

which is given by

- (n/2) log (a. 
1 
2
) (2.11)

where

" 2 "2 - 2
G
10 

= G0 + 
Ga (2.12)

2 2
Here a and a are the ML estimates of the regression variances for (2.1)1

and (2.2) respectively, and Ga
2
 is the ML estimate of the regression variance

for an auxiliary nonlinear regression

= g(y) + Ea. (2.13)

If H0 is true, (1/A)T0 will be of order unity and will be asymptotically

normally distributed with mean zero. Following Cox, PD obtain the following

estimate of its variance:

„ -
(T )0 0 = (;0 / 10

4 

)(f g

)T 

MO(f g)' (2.14)

where g denotes the fitted values from regression (2.13). It is then

straightforward to compute the test statistic No = To/vro.

While this is certainly a valid way to implement Cox's idea for non-

nested hypothesis testing in the context of nonlinear univariate regression

Models, it is not the only way to do so. Cox provides a series of formulae

which involve true parameters or probability limits, and :these.. must be

replaced by consistent estimates to obtain a useful test statistic. Using



different consistent estimators will produce different test statistics,

asymptotically equivalent under Ho but possibly different under H1. For

example, observe that, as n -±co, the ML estimates y will in general tend

under Ho to a well-defined limit defined implicitly by the equation

1 im 1/n) T()(f(0)

where 13ü is the

estimates y from the auxiliary regression (2.13) will also tend to under

gM) = (2.15)

true value of 3 in (2.1). It is easily seen that the

H0 but not necessarily, of course, under other hypotheses. Thus the

auxiliary regression (2.13) is unnecessary. We may replace aa
2
 in 
 (2.12)

^ ^ ^by (g - T (g - f)/n to obtain a new statistic To, and g by g in 2.14)

when computing its variance. The resulting test statistic, No, is just

as much an implementation of Cox's idea as is N0' and since both are

functions of consistent estimates they must be asymptotically identical under

0•

Eliminating the auxiliary regression can simplify the procedure

substantially in some cases. Suppose, for example, that H
1 

is

= Z y + Yt-1 Pzt-1 C
t' (2.16)

that is, a linear regression with AR(1) errors. In order to compute the auxi-

liary regression, one must replace yt in (2.16) by f but one must nott'

replace y by f. Since most computer programs for estimating regression
/.\

models with serial correlation would automatically use f lagged on the right

hand side if f were the dependent variable, computation of the auxiliary

regression might well require a good deal of additional effort on the part

of the investigator.



We now consider a statistic ' defined by

(A/2)(1 - exp(-21-10/0) (2.17)

which is simply a first-order Taylor series approximation of To/A- around

zero. Clearly S' and To/Tare asymptotically equal if Ho is true. More-

over, S' and To are numerically related in a one-to-one fashion: S' is

always less than or equal to To/VT, but will be greater in absolute value

if T bitTis negative.

It is straightforward to show that

(y_i)] / [(y_;)T (y_;)]. (2.18)

The numerator of S', except for the minus sign, is identical to the

T ^ ^ ^ ̂numerator of VTia in (2.10). Because both (y-g) (y-g)/n and (g-f) 1,16(g-f)/n

have non-stochastic non-zero probability limits under either Ho or H1, it

follows that S' and Viia yield exactly the same tests, asymptotically. Thus

the P-test may be regarded as yet another test based on Cox's basic idea.

3. Asymptotic Relative Efficiency of Alternative Tests

In this section we investigate the power of the P-test and the CPD

test. We restrict our attention to the case where both models are linear

and "close" to each other, the sample size is very large, and the alternative

H
1 

is in fact true. Despite these restrictive assumptions, the analysis is

by no means easy. We make use of the concept of asymptotic relative efficiency

(ARE) as defined by Kendall and Stuart (1967) , which seems to be the most

natural way to compare power in the asymptotic regime.
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ARE requires the existence of a sequence of alternative hypotheses,

He, which approach the null hypothesis Ho as 8 ÷ 0. Usually, 0 is a

parameter in a comprehensive model in which both H8 and H0 are nested,

so that the sequence of local alternatives is easily constructed. With a

non-nested hypothesis test, that is not the case, and the construction is

consequently somewhat harder.

We assume that the hypotheses Ho and H1 are both linear, so that

3
(2.1) and (2.2) may be rewritten in vector notation as

y = X3 + 6

H1: v 7_y + 6 •

( 3 .1 )

( 3 . 2 )

Since these hypotheses are compound (i.e., f3 and y are not specified), each

is completely specified by the linear span of the columns of X or Z. The

linear span of the columns of an n x k matrix X of rank k is in turn com-

pletely characterized by the orthogonal projection onto it. For X and Z

these projections are

and

E X(X X)-

E Z(Z Z)-

Thus any geometric measure of the distance between the projections M and

M can serve as a measure of the distance between H and H1 0 1'

In fact, the most suitable such measure will be the norm of the

matrix MI
M0 1 

MI 
' This matrix is evidently symmetric and non-negative definite,1 

so its norm is just its largest eigenvalue, which cannot exceed unity. Two

cases are of particular interest. If H 1 becomes nested in Ho (or becomes

equivalent to H0), then Mio-M-t = MI-, or, equivalently, MM0M = 0. On the



other hand, if 2., the number of columns in Z, exceeds k, the number of

columns in X, there must exist a linear subspace, of dimension at least

- k, of n x 1 vectors which lie in the range of both Mo and Mif. Thus,

whether or not H
0 

is nested in H
1' 

so long as k > k, there exists a vector

v such that M
0 
v = M

1 v = M1 0
M
1 = v, so that IMM0MI I ' 1.

We are now ready to construct our sequence of local alternatives.

For each sample size, n, let H
0 

and H
1 respectively define linear subspaces

() (n)in TZ by the projection matrices Mo
n
 and Mi If 2.< k, M1(n) is to be

chosen so as to satisfy the following conditions:

0 and, as n 00,

(ii) the rank of M
1 M

1' r remains constant as n -÷ co, with 0 < r < k.

In writing conditions (i) and (ii) we have suppressed the explicit depend-

ence of Mi and Mo on n to simplify notation. Here, and subsequently, M 0

denotes Mo(n), and so on. Condition (i) means that H1 approaches Ho but is

never nested in it for finite n, while condition (ii) means that the eigen-

values of Mi M
0 

i M are either nonzero or identically zero for all finite n.1 

If St, > k, M/(n) is chosen as follows. Let the range of WI-, which is

an 2.-dimensional subspace of 1Rn, be expressed as the direct sum of the space

of vectors v for which M
I
M
0 M1 

i
v = v and the orthogonal complement of that1 

I Ispace. We denote the latter by C(n) , and the restriction of M
I
M0M

1 
o C by

N
1
(n) Then as n -± co we require that IIN 1 11 -÷ 0, with the (nonzero) rank of

N
1 
remaining constant.

In order that the local alternatives actually approach the null

hypothesis, we must impose the conditions



and
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(n) ( )
Y 11 >

(n) (n)y 11 >

( ) (n)11 0 as n -÷

(3.3)

Here we have not suppressed the dependence on n because Ps, uniquely, does

not depend on n. For t = k, condition (3.3) presents no difficulty. For

9. < k, clearly M11 must be chosen in such a way that the distance between

the range of tilf and the vector X13 tends to zero for large n. For t > k, we

may without significant loss of generality require that Z y E C, since non-

zero vectors v with M1M
0 
M
1 
Iv = v must always be at a positive distance from1 

any vector like Xf3 in the range of M.

In addition, we assume for simplicity that a
2= 

a2 
= • Allowing

instead the weaker condition that a
1
2
 ao

2 
as n co would not change our

results in any way. Finally, we impose the condition that

II = p 
n1/2

(3.4)

for all n and some constant p. In view of our assumptions that (1/n)XTX

and (1/n)ZTZ tend to finite, nonzero limits as n co, this involves no

loss of generality.

The next step in the determination of the ARE of the P-test and

CPD test is to obtain the expectations and variances of the two test

statistics under the sequence of local alternatives. Let us denote the

two test statistics by Np and Nu/3 respectively. Under Ho, these are both

N(0,1) asymptotically. It is shown in DM that under the alternative H 1

(n"2 NJ 
= a-1 1/2 4. O( n '2), -1/2.and



_ E (

where

CPD

- 13 -

= (1/2)(U + V + a2)[W(U + a )]-1/2 ogl

0 (n-1/2)

U = (1/n) IIM ZYII2

V = (1/n)11M1 M0ZY112

W = (1/n)11M0y0Zy112.

It is easy to see that

U > >

Further, since Z = Z, and using (3.4),

IlmozY11
i 

Z Zy 
)1/2 < im

y 
1

+ v)/
2
a ]

(3.5)

( 3 .6 )

— ii,112 1/2111 n pa. (3.7)

It is now convenient to introduce the parameter 0 by which we shall

index our sequence of local alternatives. We choose to define 0 =

so that by (3.6)

0< 0<IIM MO 
1.11/2

-

Thus as n .... and 111'14 Mo

Next we show that, as 0

(3.8)

,0 0 through strictly positive values.

= U( + o(1)) and W = U( + o(1)), (3.9)

where o(1) denotes a quantity which tends to zero as 0. Let us denote

by el em those eigenvalues of MtMoMi (or of N, if 2, > k) which correspond

to eigenvectors in the range of Mt (or of N). Here m = min(Z,k) and clearly

all other eigenvalues are zero. Let el = 
Il Mi eill 

be the largest

eigenvalue, and let el through er be the nonzero eigenvalues.
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The n x 1 eigenvectors corresponding to el to em may be denoted by z1 to zm.

-Then we may express the vector n 1/2 Zy as ET.1 gizi. We observe from (3.7)

that the squared weights g sum to 
p2 
G
2

independent of n.

Thus,

It is now easy to see that

2e
i

.2, 2j
= E. 

ke 
e.

W = E
i 

gi
2
(e

i 
- 2e

i 
+ e.3)

(U-V)/V =

2
= ei[gi + =2

2
ei
2 
)/(Xi g

2
i

2
(e/e1)

(3.10)

.2 gi
2
(ei/e1)] < el. (3.11)

The final inequality i (3.11) can legitimately be inferred because our

assumptions exclude the possibility of either numerator or denominator

being zero. In view of (3.6) we shall have proved (3.9) when we establish

that 8 0 implies e -->- 0. If not, then there must exist a 6 > 0 and a

subsequence {nk}, k = 1,2, ... of the integers such that 8( k) 0 as k ->-

while e
1 
(nk> However, ) as k and hence n co , e

1 
0, so that only— •  

(n)

a finite number of the e
1 
(nk) can be equal to or greater than 6. But from

(3.3) we see that 0 is always strictly positive, so that no finite subse-

quence of O's can tend to zero. This contradiction finishes the proof of

(3.9).

We may now use this result to rewrite the equations 3.5 in the form

(n "2 N) = 0 4. 
0(n-1/2)
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-I/
2 

NCPD ) = 8[ + o()]+0( -1/2 (3.12)

where E0(..) denotes an expectation calculated under the hypothesis in

the sequence of alternatives which is indexed by O.

For 8 = 0 we know that Var(Np) = Var(Nup) = 1 + 0(n 112).Because

6 is a positively linearly homogeneous function of the components of the

vector ZY, and both Np and Nu/3 depend differentiably on ZY, we may conclude

that in a neighbourhood of 0 = 0, Vare (Np) and Vare(Nup) can be expressed

as

Var
6 
( ) = 1 + 0(8) 4.0( -1/2

i (3.13)

where N denotes either N or 
NCPD* 

This differentiable dependence also

ensures that the terms 0(n 112), here and in equations (3.11), are

uniform in 6.

These remarks are sufficient to establish the regularity conditions

of Kendall and Stuart, namely

and

lim [-Tg- i)] / E
04'0

Var
0 
(N.)

1 im 
04.o var (N

0=0

Following Kendall and Stuart, we find that the ARE of the CPD test compared with the

P-test is

E (N )/Var (N )1
38 CPD 8 CPD 0=0

E (N )/Var (N)IHOP OP .0 =

1/(S

where the exponent (S is defined by the asymptotic relation

,E (N )/Var (N)I 96 i 8 0=0 
K n
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K being a constant. From equations (3.12) and (3.13), we see that K = 1

and 6 = 1/2 for both the statistics, so that the ARE is just unity. There

is thus no reason to believe, from this analysis, that the P-test is more

or less powerful than the CPD test.

Pesaran (1980) has pointed out that the J-test could be modified by

using some other estimator for y rather than y, and has suggested several

such modified J-tests for the case of linear models. It is straightforward

to compare these modified J-tests to the original J-test (P-test) according

to the criterion of ARE, using the same techniques used above. It turns

out that for two of the tests the ARE is unity, and for one of them it is

less than unity. Thus this analysis suggests that there is nothing to gain

by using a more complicated estimator than y.

We conclude .that asymptotic analysis of power, at least according

to the ARE criterion, provides no basis for believing that the CPD test is

more or less useful than the P-test, or indeed any of Pesaran's 'modified

J-tests. If we are to choose between the tests on grounds of their statistical

properties, we shall have to learn more about their performance in small

samples. This problem is tackled in section 5, below, where we report the

results of some sampling experiments.

4. Testing Multivariate Models

In this section we propose three different generalizations of the P-

test for the case of multivariate models; these emerge from three different

artificial compound models. Each of these tests merely requires one GLS

regression, so that they are far more straightforward than the multivariate
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CPD test. We then show that one of these P-tests is asymptotically equiva-

lent to the CPD test under the null hypothesis.

We shall be concerned with two non-nested multivariate models, which

may be either a set of (in general nonlinear) seemingly unrelated equations,

or the restricted reduced form of a simultaneous equations model. The two

models may be written as:

HA:

Yit

it = g1(Zy) + 'it

(4.1)

(4.2)

where i (=1 to m) is the index of the equation and t =1 to n) is the index

of the observation. For given t, the Eft (whose 0 or 1 subscripts have been

dropped for convenience) are assumed to be multivariate normal with covar-

iance matrix 00 or Q1, and serially independent. The notation for the

independent variables and parameters is unchanged from the univariate case.

It is convenient at this point to introduce further notation which

we shall use throughout this section. In order to simplify as much as

possible the algebra that is inevitable in multivariate analysis, we make

use of the Einstein summation convention for indices. With this convention,

any index repeated in a term is to be summed over, provided that one occurr-

ence is a subscript and another is a superscript. In this way it is possible

to represent operations involving vectors and matrices easily, without, for

example, needing to resort to Kronecker product notation. Indices from a

through k will refer to equations and will be summed from 1 to m; indices

from p through v will refer to observations and will be summed from 1 to n;

and Greek indices will be used to index the parameters of models (that is,

the elements of or y, as indicated by context). If w denotes an
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abelement of some covariance matrix Q and w denotes the same element of Q-1

we can write

ab a
wbc c'

where 6 is the Kronecker delta, equal to unity if its indices are the same,

and zero otherwise. In order to effect summations over observations, we shall

make no distinction between subscripts and superscripts from p through v.

The first step in the construction of a P-test is to nest Ho and

H
1 

in an artificial compound model. As in the univariate case, at least

three such models seem reasonable, but in the multivariate case they are not

equivalent. The simplest compound model, analogous to (2.3), is:

Yit = (1-a) ( ) a it(Y) ult.
( 4 .3)

A more complicated model, analogous to (2.4), arises if we combine

the likelihood functions for H
0 

and H
1 
exponentially with weights (1-A) and

A respectively. Pesaran (1980) shows that this yields the following com-

pound model:

Yit -X ..(A)
kt Aw..(A)wik ( )IJ gkO, u -

Here w
ij
(A) is an element of the covariance matrix of the

defined by

1(1-A)w ij ij 'o Aw

( 4 .4 )

's and is

where coV and wlj are elements of Q0 and 01 1 respectively. Thus the covariance
matrix of the uit's is the inverse of a convex combination of the -Inverse co-
variance matrices under H0 and H1'

A third model, analogous to (2.5), arises if we first transform Ho and
H
1 
so that their error terms are distributed as N(0,1), then take a convex
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combinations with weights (1-11) and p respectively, and finally
solve for yit. If we follow this procedure we obtain

Yi = ( -P)Qij fkt(0 PQii(P
Pjk g (y) + u1 kt it 4.5)

where Pij and Pli are the j-th elements of triangular matrices P and1

P1 such that P0TP0 = 010 and Pi Pi = Ql 5

P(P) = (1-p) Po PPl'

and Q(p) = P(p) . The covariance matrix of the u in 4.5 is then

Q(P) E Q(P) Q(P)T.

In order to construct P-tests based on (4.3), (4.4) and (4.5), we

must first replace y and Q. by y and Q1 to yield identified J-test

regressions. Linearizing these about 13 = 13, Q0 = Q0 and a = 0, A = 0

or p = 0, as the case may be, yields the P-test regressions. For the

simplest case, (4.3), this is seen to be

Yit fi by + a(g. (4.6)

Here fi and git denote the fitted values f. (Xt,0 and git(Zt,y) based

on FIML estimates of Ho and H1 respectively, and f v denotes the partial

derivative of fit with respect to the v-th parameter of 13, so that fit,v

is this derivative evaluated at 13. Note that, under Ho, the uit are

distributed as N(0,00), so that (4.6) must be estimated by GLS using an

assumed covariance matrix proportional to Q. We call the t-test of

0 from this GLS regression the Po-test.

Applying this same procedure t (4.4) and (4.5), we obtain

f. =
it ,N)

"0 (-
+ w.

w1 'gkt ) + uit 4.7)



and

Yit = f.
,v +11

k (^
1 'gk (4.8)

where 
Qis an element of Q = P Both of these regressions are0 •

to be estimated by GLS using Q0 as the assumed covariance matrix. We

shall refer to the tests based on (4.7) and (4.8) as the 131-test and the

P2-test respectively.

We should note at this point that in one important respect the

validity of these tests has not yet been established. If g and Qi were

known quantities rather than estimates, the fact that the t-statistics

for a, A and p in (4.6), (4.7) and (4.8) are asymptotically N(0,1)

under H0 would follow immediately from standard results; see Durbin (1970).

We have to verify that,as DM proved for the univariate case, the use of

ML estimates rather than known quantities does not affect this asymptotic

distribution. This task is relegated to the Appendix.

Let us now briefly set down the steps needed to perform any P-test

in the multivariate case:

/.\

1. Estimate the models H0 and H1 
to obtain f. , g.t, Q and ft. Differ-

entiate fit with respect to the parameters of Ho so as to obtain the

quantities 
it

f. ; this may be done numerically.,v

2. Compute m x m triangular matrices P0 and P

and P
1 
P
1 
=

1 •

3. For the P0-test, form hit as ,(git - For the P1-test, premultiply

the m x n matrix whose typical element is (gjt - fit) by the m x m

^ -1matrix Qoal to form hit. For the P2-test, premultiply (gjt - fit) by

-1-P P to form hit'0 1

^ TAsuch that P P0 0
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PerformaaSregressionof(yit-ft)orlf-arld 
hit. That is,

Premultiply the regressand and all of the regressors, considered as

m x n matrices, by Po and then run an OLS regression. The t-.

statistic on h
it is the P-test statistic. Incidentally, if this

last regressor is omitted, all of the coefficients should b

identically zero, which is an easy way to check most of the

computations.

We now turn our attention to the multivariate CPD test, as

exposited by PD. The numerator of the test statistic is

n/2) log (1121 1/1 1

where Qis an estimate of the probability limit under

(4.9)

of the estimate

of Q
1' 

As in the univariate case, Q is 
10 computed as Q + Q 

a where Qa 0 

is the estimated covariance matrix from an auxiliary multivariate regression

analogous to (2.13), that is, H1 re-estimated using fit as the dependent

variable. The symbol I •denotes a determinant. Following the

instructions given by PD, one may compute an estimate of the variance of TO'

and thus computethe test statistic.

At first glance, there is no apparent resemblance between (4.9)

and any sort of P-test. The former involves a logarithm, two determinants

and an auxiliary regression, none of which would play any part in the latter.

Nevertheless, it turns out that the 131-test is asymptotically equivalent

under the null hypothesis to the CPD test, a proposition which we now

set out to prove. Many of the technical details have been relegated to

an appendix, but a certain amount of algebra is unavoidable.
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The first difference between the CPD test and the P1-test is the

former's use of an auxiliary nonlinear regression to compute Q*As

in the univariate case, this is unnecessary. Let us denote elements

-10 ^0 ^I
of a10, Q0 and Qi respectively by w. w. and w. . Then PD compute Q10

using

ij git)( j
w. w. (1/n)(fit - - 

gt ), (4.10)

where, as before, the 1g are fitted values based on estimates y from theit

auxiliary regression. It is straightforward to show that under H0

plim y = plim y = 7, so that g may validly be used in (4.10) rather than

g. For details, see the appendix.

If we replace g by g and then use the same Taylor series approx-

imation (2.17) as in the univariate case, we obtain

S' = (/2)[1q 
it 

t)/n1/1(701.11.

11 I I 13"

The numerator determinant in this expression can be rewritten as

^1
lw! -0 1+ 

w..ij 
- w..

lj it

kcifo,nj 

f
kgit

/.\ ^ t ^ t
) (9 - )/n

j

(yjt

4.11)

(4.12)

Consider now a determinant 1Xii + Oij i where the quantities 8 are an order

of magnitude smaller than the quantities X. The Taylor expansion of the

determinant to first order is

IX..1 ( + xii 8.
lj lj (4.13)

where the superscripts again denote the inverse matrix. This formula

may validly be applied to (4.12), because the first term, (̂11j, is of
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order unity as n 00, while the second is of order n

k.701j1 [1 (2/n)wp (

Substitution of this into 4.11) yields

^iS' (-1/A) (git it'

4 The result is

(4.14)

).(4.15)

The expression on the right-hand side of (4.15) is of order unity,

as it should be, and is analogous to (2.18). We must now show that it

is equal to the numerator of the P1-test statistic. Consider first the

simple GLS linear regression:

'js"O 
= 

(^
js t jk W1 °32,s fts)f. )  XN. (4.16)

where RI is the oblique projection defined by a GLS regression on the f
jt,y

with covariance matrix Q0; for further details, see the appendix. It is

easily proved that the estimate of X and of its t-statistic from (4.16)

will be identical to those from (4.7), except for any degrees of freedom

correction in computing the variance. This is a consequence of a well-

known result which may be expressed as follows: the estimates of the para—

meters c and of their variances will be identical whether one estimates

by GLS the regression Y = Xc + Zd + u with u assumed N(0,), or the

regression NY = NzXc + u, where Y is a vector of dependent variables,

X and Z are matrices of independent variables, and Nz is the oblique

projection defined by

- Z(ZT Q 1 Z)- •

Since N in 4.16) is the oblique projection corresponding to a regression
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on the f. with covariance matrix , the required result follows

immediately.

Now observe that

t (Yjs fjs it -

This result corresponds to the result that M(y f) = y - f in the

univariate case, and is proved similarly from the likelihood equations

4.17)

for Ho which define 13 and 00 (see the Appendix). Thus to perform the GLS

regression (4.16), we may run the OLS regression

^al
it = PO

0 la (1, -
t wjk wl x's

a
Zs) E

The numerator of the estimate of A from this regression is

) ̂ib jt ^0 ^kk ( s
(Yit w0 b s wjk wl

(4.18)

). (4.19)

It follows directly from a result in the Appendix that

jt ^0
wo "b s wjk k s '

and this along with (4.17) allows us to simplify 4.19) to

^kj (:js
if )t 1 " 4.20)

This is clearly identical to the right-hand side of (4.15), except for

the factor (-1/VF). Expression (4-20) is the numerator of the t-statistic

from the P
1
-test regression. Since the denominator will have a non-stochastic,

non-zero probability limit, it follows that S' and the P1-test yield exactly

the same tests, asymptotically.
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We have thus proved that, in the multivariate case as well as in

the univariate one, there exists a P-test which implements Cox's basic

idea. There also exist (at least) two other P-tests which are not

asymptotically Cox tests, and it would be interesting to compare the

power of the three tests. We have not yet obtained any analytical results

on this matter. Limited experience with empirical applications of the

tests suggests that the P1-test and P2-test yield very similar inferences,

and are more prone to reject (presumably false) null hypotheses than the

P0-test

It should perhaps be noted that P-tests can be applied to simul-

taneous equations models without explicitly deriving their reduced forms.

One merely requires, in order to obtain the fitted values, covariance

matrix and derivatives of a model, that one be able to estimate the model

and solve it for the values of the dependent variables conditional on the

predetermined variables; the derivatives can, of course, be computed

numerically. There would, however, appear to be a problem if the model

being tested were non-linear, so that the covariance matrix of the errors

adhering to the reduced form would not be constant over time. At the

moment it is not clear how any of these procedures could validly be adapted

to deal with such a case.

It should also be noted that P-tests can straightforwardly be used

to test a model against several other models simultaneously. In that

case the test regression will include several regressors like hit, and

the appropriate test statistic will be a Wald or pseudo-likelihood-ratio

statistic.
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5. A Sampling Experiment

In Section •2 above we showed that the univariate CPD test statistic

and the P-test statistic are asymptotically the same random variable under

H
0' and in Section 3 we shOwed that for linear models the asymptotic

relative efficiency of the two tests is unity for local alternatives.

Thus according to the large-sample -theory, there is no reason to prefer

one test over the other. The next step, obviously, is to investigate the

performance of the tests in small samples. However., a full analysisof

this matter would be far beyond the scope of this paper. Instead, we

report the results of a sampling experiment in which the performance of

the two tests is compared for Univariate linear models. This is compu-

tationally the easiest case to deal with, and surely the most common in

practice. Note that in this case the CPD test reduces to -Pesaran's

(1974) test, and that the J-test and the P-test are identical.'

A number of regressors were generated according to simple ARIMA

models, with specifications similar to those characterizing actual quarter-

ly economic time series. These specifications were adapted from some of

those reported by Nelson (1973, Chapter 8). To ensure that related

series (for example, two different price or interest rate series) were

indeed related, the error terms in the ARIMA models were chosen to be

correlated with each other. The following regressors were generated in

this way: Y, designed to resemble the log of current dollar GNP; U,

designed to resemble the unemployment rate; UR = log(U/(100 - U)); PC,

designed to resemble the rate of change of the Consumer Price Index; PY,

designed to resemble the rate of change of the GNP deflator; RS, designed

to resemble the log of a short-term interest rate; and RL, designed to
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resemble the log of a long-term interest rate. For each of these regress-

ors we generated 25 observations. For sample sizes longer than 25 these

same observations were then repeated, so as to ensure that the X matrices

did not change systematically as the sample size was increased.

The dependent variable, which is not intended to have any particular

economic interpretation, will be referred to as D. Three linear models to

explain D were postulated. They are:

H 1: D = ao + al Y + a2U + a3PY + a RL + c

D =b0 +b1Y+b2UR +b3PC +b4RS + c

H • D = co + cl Y + c2U + c3PC + c4RL + c5 S +

The data were actually generated by H 1, with the following parameter values:

a0 = .5, al = .8, a2 .02, a3 = -.02, a4 = .2 . Thus H2 and H3 were always

false models. Note that H2 has only one regressor, Y, in common with H1,

and has the same number of parameters. On the other hand, H3 has three

regressors, Y, U and RL, in common with H1, and has one more parameter.

Thus it seems likely that H3 will fit better than H2, so that a test of

H
1 
against H3 is more likely to result in rejection of the true model

than a test of H 1 against H2.

Six different experiments were performed. In each case the number

of replications was 500, which is sufficiently large for trustworthy

statistical inferences. The sample size was either 25 or 100, which are

roughly the extremes for time series work with quarterly data. The variance

was .0001, .0004 or .0016. Since the data are in logarithms, these corres-

pond to standard errors of one, two and four percent. Standard errors of

one and two percent seem quite realistic, but a standard error of four
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percent seems rather large for time series regressions. Thus the worst

case considered (sample size 25, variance .0016) is surely as unfavorable

a situation for estimation and inference as one is likely to encounter.

We first consider what happens when the model being tested is the

true model, H1. Asymptotically, both the test statistics should be N(0,1)

in this case. Whether the observed distributions are consistent with this

may be tested by means of a Kolmogorov-Smirnov test. In Table 1, the

numbers reported under KSP are the probabilities, on a two-tail test, of

observing a KS statistic as large as or larger than the one actually

observed, given that the true distribution is N(0,1).

In Table I we also report the means and standard deviations of the

P-test and CPD test statistics under "Mean" and. "S.D." respectively, to-

gether with test statistics for the hypotheses that the true mean is zero

and the true variance is unity. The latter, which should both be N(0,1)

under the null, are reported under "Test Wi and "Test a2". The first

of these is simply pi(aV500) and the second, which is based on a large-

sample approximation, is (a
2 
- 1)/(a4/250).

What we are really interested in, of course, is how many times the

two non-nested hypothesis tests will lead us falsely to reject H1. We

therefore report the proportion of times that the two test statistics are

greater than 1.96 and 2.50 in absolute value (under "R1.96" and "R2.50").

The former number is of course the .05 critical value for the normal

distribution. The latter corresponds to a .0124 critical level, but, more

important, it is a convenient number to remember, which one might reason-

ably use as a conservative critical value in applied work if one suspected



-29 -

TABLE 1

Tests of H1 Against Two Alternative Models

Sample Alternative
Size Variance Model KSP Mean Test p S.D. Test a R1.96 R2.50

25 .0001 H2

25 .0004

25 .0016

100 .0001

100 .0004

100 .0016

.0042 .1249 2.93

.0074 -.2144 -4.25

.0000 .3233 7.24

.0000 -.3965 -7.09

.9540 -1.56 .038 .014
1.1268 3.36 .090* .036*

.9992 -0.03 .076* .022
1.2500 5.69 .118* .064*

.0000 .2515 5.67 .9915 -0.27 .056 .016

.0000 -.3606 -6.20 1.3004 6.46 .120* .072*

.0000 .7805 18.64 .9364 -2.22 .104* .036*

.0000 -1.0380 -8.22 2.8250 13.83 .208* .134*

.0000 .5480 12.47 .9822 -0.58 .070 .024*

.0000 -.6511 -9.58 1.5192 8.96 .150* .090*

.0000 1.0947 28.99 .8444 -6.36 .156* .052*

.0000 -4.1969 -4.77 19.6844 15.77 .384* .312*

.4258 .0558 1.28 .9776 -0.73 .036 .008

.3302 -.0981 -2.14 1.0250 0.76 .040 .018

.0082 .1800 3.97 1.0133 0.41 .050 .014

.0138 -.1963 -4.09 1.0738 2.10 .074* .022

.4357 .0538 1.20 1.0049 0.15 .048 .016

.2308 -.1037 -2.15 1.0768 2.17 .064 .024*

.0000 .3254 7.40 .9829 -0.56 .060 .018

.0058 -.3000 -5.98 1.1225 3.26 .084* .046*

.0000 .2217 5.20 .9530 -1.60 .050 .012

.0104 -.2204 -4.65 1.0600 1.74 .082* .038*

.0000 .7204 18.60 .8662 -5.26 .076* .024*

.0000 -.7059 -12.58 1.2547 5.77 .148* .094*

Note: The first number of each pair refers to the P-test (and J-test) statistic, and
the second refers to the CPD (Pesaran) statistic.
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that the asymptotic regime did not strictly apply. If the proportion of

rejections is significantly greater than .05 or .0124, according to a

normal approximation to the binomial distribution this is indicated by

an asterisk.

It is clear from Table 1 that the small sample distributions of the

test statistics depend on the sample size, the variance, and the charact-

eristics of the alternative model. When the sample size is 25, the KS

test always rejects the hypothesis that the true distribution is N(0,1).

When the sample size is 100 and the variance is .0001 or .0004, that

hypothesis cannot be rejected when the alternative model is H2, but can

be rejected when it is H3. This is true for both tests.

Both test statistics tend to have non-zero means, of roughly the

same magnitude. The mean for the P-test is always positive, and the mean

for the CPD test is always negative. This is perhaps an unfortunate char-

acteristic, since those are the signs one would expect the test statistics

to have if the alternative model were true.

The major difference between the two test statistics is that the

standard deviation of the CPD statistic is always greater than unity, usually

significantly so, while that of the P-test statistic is usually less than

unity and never significantly greater. In the most extreme case (sample

size 25, variance .0016, alternative H3), the standard deviation of the CPD

test is almost twenty, reflecting the influence of some extreme outliers.

The large variance of the CPD test means that it always rejects

the null hypothesis more often than the P-test, and usually rejects it
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more often than it should. The P-test also rejects the null too often

in some cases, but this is much less marked. Moreover, the distribution

of the P-test statistic apparently has much thinner tails than that of the

CPD statistic. Using 2.5 as the critical value never yields a rejection

rate of more than 5.2% for the P-test, but yields one as high as 31.2%

for the CPD test. This suggests that even in cases where the small sample

distribution is far from N(0,1), one may be able to guard against Type I

error for the P-test by using a somewhat conservative critical value, but

that this will not be possible for the CPD test.

These results also suggest that it will be relatively easy to modify

the P-test to make it approximately valid in small samples, because one would

simply have to subtract an estimate of the mean of the test statistic. In

contrast, any attempt to make the CPD test more useful in small samples would

have to deal with the variance as well as the mean. These matters are the

subject of ongoing research.

In Table 2, we present results for the case where the model under

test is false. We present the proportion of the time that the model under

test is rejected using critical values of 1.96 and 2.50, and the mean,

median and standard deviation of the test statistics. In the left-hand

side of the table H2 and H3 are tested against the true model, H1, and

in the right-hand side they are tested against each other.

It has often been observed in practice that when •the P-test

statistic is large (say, greater than four), the CPD test statistic is

even larger. This observation is confirmed in Table 2. Most of the

time the mean of the latter is indeed larger in absolute value than the
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TABLE 2

Tests of False Models

Model False
Tested R1.96 R2.50 Mean Median S.D. Alt. R1.96 R2.50 Mean Median S.D.

Case 1: Sample Size = 25, Variance = .0001

1.000 1.000 7.14 6.92 1.73H2 1.000 1.000 -14.75 -14.39 3.72

1.000 .998 6.19 6.01 1.63H
3 1.000 1.000 -20.97 -19.61 9.37

.642 .208 2.14 2.12 0.50

.930 .846 -3.91 -3.67 1.50

.056 .008 -0.95 -0.95 0.62

.054 .002 1.01 1.05 0.62

Case 2: Sample Size = 25, Variance = .0004

.924 .820 3.60 3.54 1.21 .328 .114 1.68 1.69 0.71H2 .976 .960 -7.84 -7.44 3.71 H3.710 .604 -3.62 -3.08 2.71

.832 .678 3.06 2.97 1.20 .068 .018 -0.75 0.75 0.82H
3 .970 .950 -16.15 -10.02 22.71 2 .070 .004 0.78 0.85 0.84

Case 3: Sample Size = 25, Variance = .0016

.430 .232 1.83 1.78 1.06 .124 .036 1.18 1.17 0.74H2 .658 .580 -3.94 -3.02 3.54 .572 .490 -4.03 -2.41 6.79

.308 .160 1.55 1.48 1.02 .074 .028 -0.35 -0.32 1.01H
3 .710 .640 -28.59 -4.18 339.75 2 .074 .022 0.33 0.35 1.06

Case : Sample Size = 100, Variance = .0001

1.000 1.000 13.76 13.71 1.41H2 1.000 1.000 -26.73 -26.64 3.23

1.000 1.000 11.98 12.02 1.32H
3 1.000 1.000 -34.91 -34.41 5.92

Case 5: Sample Size = 100, Variance = .0004

1.000 1.000 6.92 6.89 1.13H
2 1.000 1.000 -13.65 -13.43 3.29

H
3 1.000 1.000 -25.21 -18.52 122.69

1.000 .996 6.01 5.99 1.10

Case : Sample Size = 100, Variance = .0016

.948 .842 3.48 3.43 0.99H2 

.970 .952 -6.83 -6.35 3.17

.852 .704 2.99 2.96 0.99 HH
3 .970 .952 -36.91 -9.29 425.64

2

1.000 1.000 4.40 4.38 0.51
1.000 1.000 -7.16 -7.10 1.44

.572 .268 -2.10 -2.09 0.67

.558 .230 2.03 2.03 0.60

.932 .798 3.07 3.10 0.70

.962 .920 -5.19 -4.89 2.17

.254 .106 -1.39 -1.46 0.91

.246 .094 1.37 1.45 0.87

.448 .190 1.85 1.87 0.78

.716 .604 -3.58 -2.98 2.67

.112 .044 -0.80 -0.82 0.99

.100 .032 0.79 0.83 0.98

Note: The first number of each pair refers to the P-test statistic, the second
to the CPD test statistic.
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mean of the former. In such cases the standard deviation of the latter

is also always much larger. By itself, the larger mean would give the

CPD test greater power, while the larger variance would give it less

power.

In fact, it is evident that both tests have ample power against

the truth in cases 1, 4 and 5, and reasonably high power in cases 2 and 6.

Only when the sample size is 25 and the variance is .0016 do the tests

seriously lack power. It also appears that, except when testing H3

against H2, the CPD test has higher power than the P-test. This result,

however, is probably spurious, since we know from Table 1 that the sizes

of the two tests are not equal. How we can meaningfully compare power

when these sizes are unknown is far from clear. All we can say with any

confidence is that the CPD test is more likely to lead to rejection

than the P-test, irrespective of whether the model being tested is true.

The foregoing experimental results suggest the following conclusions:

1. When the sample size is reasonably large and the variance is reasonably

small, both the tests perform in a satisfactory manner. This will

depend on the characteristics of the models being tested, of course.

2. As the sample size decreases and/or the variance increases, the per-

formance of both tests deteriorates. The CPD test becomes much more

likely than the P-test to reject the model being tested, whether or

not it is true. The P-test may still be used safely in unfavourable

conditions by adopting a somewhat conservative critical value, such

as 2.5 or 3.0, but the CPD test acquires a very large variance under

the null in such conditions and becomes completely unreliable.
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3. Further theoretical work to develop tests which can validly be used

in small samples is clearly called for.
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Appendix

In this technical appendix we demonstrate that both y and y tend

to the same probability limit 7, under Ho, so that an auxiliary regression like

(2.13) is indeed unnecessary. Using this result, we then show that the

t-statistics from all of the P-test regressions (4.6) (4-7) and (4.8) are

asymptotically N(0,1) under Ho.

The likelihood equations for model H which define the estimates

y and Q
1 
are as follows:

(131 . (1/n) at - atab

,11

(:),() iJ  (yjt gjt(:;())

t(1))
(A.1)

• (A.2)

In order to discuss the convergence in probability under H of y and Q

we define the functions Wab and G:

0w (y,O,r ) = - +
a ab a 

w 
rab

+ lim (1/n)
n-*00

G(y,Q,s ) = §

gat
(y)) t()_ g t y))

„ !lim (1/n)gkyi W k j
n4-00

(130) - gj y)).

0
Here wab and denote the true values of these 0 parameters, and and ab

s denote as yet unspecified arguments. So that the functions W and G are
P

well-defined, we must make a few assumptions, some of which were made already

in sections 2 and 4:

(i) As n ...., the limits of (1/n 
)fat( 0 )fbt( 0)' (1/n)gat(Y)fbtN)

and (1/n)g (y)g 
t
(y) exist and are finite. Convergence is uniform withat b
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respect to y in any compact subset of 1R'', so that the limits are continuous

functions of y. In fact, uniform convergence of enough derivatives is assumed

so that the limits here are twice continuously differentiable.

(ii) As n co, the limits of (1/n)fit,p(130)fjt,v(130),

(1/n)git,p(y)git(y) and (1/n)git,p(y)fit( 0) exist and are finite. Again,

convergence is uniform in compact sets.

(iii) There exists a finite solution Ci-,-ff) f the equations

a
y,Q,0) = 0 and G (y,Q,0) = 0 which corresponds to a global maximum of

1-1

2 L
1(i'Q)

og1Q1 - lim (
n -->co t(c30) -

(iv) The Hessian of L
1 
at (77,TO is positive definite. Of course,

as an argument of L1 is restricted to the set of symmetric matrices.

Assumptions (iii) and

HO•

v) ensure that H
1 
is asymptotically identified under

We now wish to show that as n co, plim y = plim y =T. The

equations given by PD for y and the matrix they call 010 are as follows:

-10 0
wab = wab 1/n a gat(Y

))(ft
b (1) g t(-())

t t

If. (0170 
.... gj (y))

git,11"1 10 ""

(A.3)

(A.4)

Assumptions (i) and (ii) ensure that if H is true the usual maximum likeli-

hood results hold:

na- )

(n

(A.5)

(A.6)
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Consequently, both equations (A.1) and (A.2) for y and Q1 and equations

(A.3) and (A.4) for y and 1 
can be expressed in the form

(Y, ,r (I,Q, )) =

G (y,Q,s (y,Q,n)) = 0,
P P

(A.7)

(A.8)

if rab(-) and s (-) are defined appropriately. For equations (A.1) and (A.2),

for example,

since

s (y,Q,n) l/n

(1/n)git,p

- lim (1/n)
n4,00

g' 
lj tU) E.

y) ij (0(13 ) ,.t

( 0)

1

Clearly the random functions rab and s

uniformly in compact sets.

I))

) _ g t y)),

• are all o (1) as n

A.9)

Assumptions (iii) and (iv) are precisely what is needed to apply

the implicit function theorem to the equations

Wab (y 'rab

G (y,Q,s ) = 0•

(A.10)

(A.11)

We conclude that in the neighbourhood of Ci-X) and for small enough
ab 

and

s , unique solutions to these equations exist and are differentiable in the

parameters rab and s . But for any realization of the random functions

r
ab
(-) and s() equations equations (A.7) and (A.8) will have, for large enough n,
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a unique solution in the neighbourhood of FX). Since at this solution

rab and s take on values which are o (1), it follows from the remark

following (A.11) that this solution is distant from (X) by an amount

which is o (1) as n ... Thus both plim y and plim y exist and equal y.

We now wish to derive an explicit expression for fa ( . Using

standard results on maximum likelihood estimators, we obtain

^

at W = at + (1/n)fat,p 
pv w

bo
c -1c 0 (

cs,v b 
+

where at denotes f ) at 0' and so on. Here Fln) is an element of the

inverse of the matrix with typical element F defined by
Pv

= (1/n) wo ab fbpv

(A.12)

It is convenient here to introduce the oblique projection associated

with GLS regression on the fat,p with covariance matrix 00. This is the

projection conventionally expressed as

-- z(zTo0-1 )-1 Tc20 1

in textbooks. In our notation it takes the form:

s
- (1/n)f.lt,p

s kj

One can easily check that N is idempotent, so that

N.jsmkr_
t "j s

k r

and one can verify the useful result that

wY mlj "k t
.sts 0

t wtk'

(A.13)

(A.14)

(A.15)

tsNote that an expression like N
i t 

corresponds to the transpose of Ni
t
t
s
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It follows directly from A.12 and A.9 that

- t at = Na
b
t
s

bs (A.16)

Notice further that if one evaluates all the functions of unknown parameters

in (A.13) at the maximum likelihood estimates so as to define N, then it

follows from the likelihood equation

that

(70ij ^
it, 0 

( t ft) 
= 0

st
. 
)= i yt

-
js •

As in equation (4.16), we may write the various P-test regressions

(4.6), (4.7) and (4.8) in the form

o
t jk I ks f s it (A.17)

^06where w denotes the 0-th element of the inverse of Q or QQT for

the P -0 ' Pi- and P2-tests respectively, and al stands for a, A or p. If

a denotes the GLS estimator of a from A.17), then

A aI I

and the GLS estimator of the variance of a
I 
is 1/n V

I 
, where

-1/2 ̂ ij f^ tn wi kgi -

(1/66it

) r t„ 
kr 

_
kr

"ij ̂ 0w
I 

w
ka

a s 
t 

^10, ^N. w ( - 
ts)*

Since Q1, N, git and fit have non-stochastic probability limits, we conclude

from (A.14), (A.15) and (A.16) that the t-statistic for al from (A.17) will be

asymptotically distributed as N(0,1).
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FOOTNOTES

1. As a matter of historical fact, the J-test was not developed as

a way to get around the problem of identification in artificial

nesting procedures, but perhaps it should have been.

2. Strictly speaking, we do not require that (2.15) have a solution

y which is locally unique. Even if the parameters of HI are

not identified under H0' 
our subsequent results will hold under

the weaker assumption that there exists a plim of g(;) under

H0' 
• if so, g() will have the same plim.

3. Our previous assumptions imply that X and Z are respectively

n x k and n x matrices, each of full column rank, and such

that the dimension of the intersection of the linear spans of their

columns is strictly less than min(z,k).

4. Because the yit, fit and git are bounded, expressions like

-t
yity/n and y. fin will be assumed to have well-defined

finite limits as n -. On the other hand, expressions like

-1
yitcjin have zero mean and variance of order n ; the expressions

themselves are therefore of order n .
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