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ABSTRACT

This paper seeks to distinguish the principles upon which testing of

statistical hypotheses may be based and the practical methods which these

principles generate. Six examples are given for the case of nested hypoth-

eses as illustrations. In particular, Seber's (1964) conclusion that the

Wald, Lagrange Multiplier and Likelihood Ratio Principles all lead to exactly

the same test statistic in the case of a linear hypothesis, is re-examined in

the light of a strict interpretation of these principles. Simple relations

between various test statistics and their distributions are outlined. The con-

cept of an artificial model is analyzed. A distinction is made between an

artificial model that is in some sense an 'unrestricted' specification and one

that is simply an algorithm. For non-nested hypotheses, an artificial model

with prior information on the parameters is regarded as conforming to the Wald

Principle. When arbitrary numerical methods are used as 'identifying' restric-

tions, the artificial model reduces to an algorithm since it cannot reasonably

be 'accepted'.

,
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PRINCIPLES AND METHODS IN THE TESTING OF ALTERNATIVE MODELS

- Gordon Fisher and Michael McAleer -

1. INTRODUCTION

There has been during the last decade a growing tendency in econometrics

to pay increasing attention to problems of inference, as distinct from problems

of estimation. This tendency is a natural outcome of more than twenty years of

research and experience on the methods of estimation appropriate to the exigencies

of economic data and econometric models. Yet the development of these methods

was, to a large degree, specialized or even ad hoc, and it took a conscious and

sustained effort to understand their essential unity under the twin principles of

maximum likelihood and least squares. There is a danger that the same sort of

tendency, namely to proliferate methods without regard for their underlying unity,

will creep into the development of methods of testing. Indeed, we already have

available a battery of different tests and algorithms to apply, or adapt, to par-

ticular problems -- with specialized names applying to each. In this light, it

is well to recognize that there are indeed only a few principles available upon

which testing may be based, and thereby to seek to emphasize the essential unity

between tests based on the same principle and the relations that obtain between

tests based on different principles. Recently, Breusch and Pagan (1980) have

taken a step in this direction, using as their basis the Lagrange Multiplier Prin-

ciple. The purpose this paper is to go a step further, by focusing on the various

principles available and how these may apply to different problems that arise.

The paper is organized as follows. In Section 2 we distinguish between

the principles and methods that may be used for testing economic hypotheses and

comments are made upon them. The purpose is to develop a general framework for
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discussion in the rest of the paper. Section 3 considers several examples in

the context of nested hypotheses to highlight the usefulness of concentrating

on a few principles of testing rather than on the numerous methods that are

available. A test for specification error is considered in Section 4, as a means

of introducing artificial regression models. The concept of an artificial model

leads on naturally to testing non-nested hypotheses, so that Section 5 is devoted

to the two principles and infinite number of methods that may be used. There

follow, in Section 6, some concluding remarks.

2. PRINCIPLES AND METHODS

A distinction is to be drawn between the principles on which hypothesis

testing is based and the practical statistical methods which these principles

generate. The term principle denotes a general rule which specifies how tests

are to be devised, while method signifies a specific statistical procedure aris-

ing from application of a principle to a particular problem. The distinction is

helpful because it is common for many methods of testing to be devised on the

basis of a single principle, but not vice-versa. The development of theory is

then more straightforward and concise in terms of principles thah in terms of

methods, since the former avoids unhelpful repetition of notation and ideas.

Moreover, knowledge that different methods have a common root in a particular

principle is a useful aid to memory.

The usefulness of this distinction may be illustrated by reference to

three .common forms of testing nested hypotheses in large samples. These are

Wald's (1943) test, Rao's (1948) test based on efficient scores, and the Lagrange-

multiplier test (Aitchison and Silvey, 1958; Silvey, 1959), each of which was

originally developed on the basis of maximum-likelihood theory. The second of

these is exactly the same as the third, by virtue of first-order conditions on
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the Lagrangean, and so the two will be considered as one. The main outcome of

the theory of these tests is that they all yield large-sample equivalents of

the likelihood-ratio test and corresponding estimators whose distributions are

almost always asymptotic normal. In consequence, any estimators that correspond

to these (i.e. which have distributions that are also asymptotic normal) may be

used to form corresponding tests. Similarly, since many standard tests arise as

a consequence of exact or approximate normality of the estimators involved, it is

to be expected that a whole range of standard methods are either straightforward

applications, or small-sample refinements, of the same tests.

Consider, for example, the estimation of a vector-valued parameter 0 from

a random sample of n observations from a given distribution; 8 is unknown, save

that it lies in p-dimensional Euclidean space Q (p n). It is desired to test

H0: 0 E w, where w represents a sub-set of points in Q which obey the r (p)

restrictions h(0) = 0. If 00 denotes maximum-likelihood estimate of 8 in Q (i.e.

unrestricted maiimum-likelihood estimation), then the Wald (W-) test for H is

given by

(2.1) W = h
T

)[ (O )1]-1 11(O ) '

a standardized quadratic form in h(0Q), where V.} denotes dispersion matrix

corresponding to (unrestricted maximum-likelihood) estimation in Q. Subject to

the usual regularity conditions, 8
Q 
and h(0) will be asymptotic normal under H0,

a 
whence W % x

2 
(r).

1 
Similarly, if 0

Q 
now refers to another asymptotic normal

1
This statement will suffice for practical purposes. To be precise, h(0) is

' consistent for h(0) and it therefore has a degenerate distribution. Accordingly,

we must consider AI (h(0 Q) - h(0)) 51 N(0, HB-1 HT), where H = n(0)/30T, B is
the information matrix corresponding to 1 observation , and both H and B

-1 
are

evaluated at the true value of 0.
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estimator of 8 in Q and D{-} denotes its dispersion matrix, then W is again

a x
2
(0 variate under H

0' 
• or if h(-) is linear and 8

Q 
is unbiased and exactly

normal, then a small-sample refinement of W based on the F-distribution may be

obtained. We will return to this below.

Notice that, whatever W-test is used, its associated estimates are invar-

iably based upon unrestricted estimation, that is, upon estimation of 8 in 0,

disregarding the restrictions h(8) = O. For this reason, we may associate the

Wald (T14-.) Principle with the notion of testing restrictions using standardized

quadratic forms of them based solely upon unrestricted estimation. In contrast,

the Lagrange-multiplier (41-) Principle is based solely upon estimation of 0 in w,

that is, upon restricted estimation, using f , the estimate of the Lagrange mul-

tiplier, (I), corresponding to h0) = 0. Of course, the large-sample test based

upon the M-principle is given by

, (2.2) M = f [D (f )
w w 03

where D
w
(-) denotes dispersion matrix corresponding to (restricted) estimation

„
in w, such that M is asymptotically distributed as x 2(r) under H0. Incidentally,

there is no need to insist on maximum-likelihood estimation: the estimated

Lagrange-multiplier fw may, for example, apply to least squares or some other

method of estimation, provided the estimates involved have well-defined normality

properties of the kind required.

Corresponding to the W- and M-principles we have the Likelihood Ratio (L-)

Principle which makes use of both restricted and unrestricted estimation. In

view of the bases of the tests, intuition would then suggest that application of

the W-principle will, in general, reject H at least as often as application of
0

the M-principle, while application of the L-principle will lead to results that
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lie somewhere in between the two. This is because unrestricted estimation cor-

responds to the case when H is rejected, while restricted estimation corres-

ponds to its 'acceptance'. In a sense, the use of both restricted and unrestricted

estimators might be considered as an attempt to strike a 'balance' between the

one and the other.

3. SOME APPLICATIONS: NESTED HYPOTHESES

We shall now consider particular applications of the principles introduced

in Section 2 for the case of nested hypotheses.

Example 3.1: The Linear Hypothesis. Seber (1964) has investigated the testing

of linear hypotheses in small samples according to the W-, M-, •and L-principles

and has concluded that all "...lead to exactly the same test statistic" (p. 265).

While this conclusion is correct, Seber's method of establishing it does not con-

form to a strict application of the principles involved. The purpose of the

following argument is to re-establish Seber's result while remaining faithful to

the principles to be applied.

Consider the vector y which ranges over n-dimensional Euclidean space

according as N(p,I
n
a
2
). It is given that p Q,a p-dimensional sub-space, but

gn

otherwise p and a
2 
are unknown. Corresponding to the sub-space Q, the least

2squares estimates of p and a
2 
are denoted by m

Q 
and s

Q, 
respectively. It is

desired to test the linear hypothesis Ho: p f (1); WC= Q, where w is (p-r) dimen-

sional. The number r represents the number of linear restrictions on Q to define

2w. Least squares estimation under H yield
s 
m
w 

and s
w'0

The standard test-statistic for H0 is:

T
Y (1)Q-I)w)37 . pr_p_3.1.1) F= T

ry (I -P
Q 
)y

n 



where P denotes an orthogonal projection: P
Q 
is on Q along Q and P

along (1)1, orthogonal complementation'() being relative t

if w is defined by w Q nN[A 1, where A
T 
is a known

then any x E Q which obeys A
T
x = 0 must lie in w.

H
O ,11

is on w

. More explicitly,

r x n matrix of rank r

Hence another statement of

Q. Corresponding to this latter statement, it is well

known that the unique orthogonal projection on col- , namely P
u
_.-P , may be

w

P,

written as 
T
PQA) 1ATPQ,provided R[A] r) 01 comprises the origin only (Seber,

1964, p. 262). It is then easy to demonstrate that F in

W-principle since m = P y and hence

(3.1.2
Y (PQ—Pc )Y

F =
2

rsQ

(3.1.1) embodies the

(ATin) T [DQ (ATmQ) (ATmQ)

where D
Q 
(-) denotes dispersion matrix evaluated at a

2 
= s

2 
, 

the latter being
Q

2 
given by s2 = {lgn-p)}{y

T 
(ITI-;-Pdyl. Of course,

have the central F(r, n-p) distribution under Ho.

F in (3.1.1) and (3.1.2) each

Further, rF is a quadratic

form based upon the Unrestricted estimates m
Q 

and s
2 
and the given restrictions

only; upon replacing s
Q 
with a , it is seen to be a quadratic form in standard-

ized normal variates under H0. Since

a
Q

2
, the maximum-likelihood estimator

large n.

2
also s

Q 
is asymptotically equivalent to

of a
2
, it is obvious that rF

2„
X (r) for

Indeed, if s
Q
2 
is replaced by a

2
 we may write rF = W to comply with

the original definition of W in (2.1).

The corresponding small-sample test for H
0 

based upon the M-principle may

be obtained via minimization of (y-p) (y-p) subject to A
T
p = 0 for p E Q. This

requires finding a stationary point on

(3.1.3) L = (y-p)T(y-p) + 2pT4 - 2pT(I-PQ)K

for variations in p and the vector Lagrange multipliers cp. and K which minimizes

.7



(3.1.5) M =  T
y (I -P )y

n w

(37-1-1

7

(y-p) while satisfying A p=0 for some p f Q. The small-sample applica-

tion of the M-principle is based upon the estimate of (1) from (3.1.3) and the

implicit hypothesis corresponding to H
0' 

namely: (I) = 0. Note carefully that

the entire procedure is based upon least squares estimation of p in w. Writing

f
w 
for the estimate of (I) corresponding to mw, the first-order conditions from

(3.1.3) lead to the small-sample test statistic based upon the M-principle:

-1 -1

'
(3.1.4) N =f =y P A(A

T
P A)-1 PP A)-1 s2]w A P A -1ATPQyw

, 2
where s

w 
= y -P)37/(n-p-1-0 = (y- )T(y-mi )/(n_p_Fr

Seber's (1964) demonstration that both the W- and the M-principles lead

to exactly the same test statistic lies in noting that, if a
2
2 replaces s

w
2 
in

the second term in (3.1.4), the resulting expression is Inr/(n-01 times the F-

statistic of (3.1.1). Unfortunately, this step involves evaluating the 

' 

disper-

sion matrix of f namely 
(AT PQA)1 a2 

, at the unrestricted estimate a 2 . It isw 

clear this violates the M-principle as established above, since this principle

requires the use of restricted estimates only. Moreover, using a 2 in place of

2
is unnecessary to demonstrate that the two principles lead to the same F-

statistic, as the following argument reveals.

Equation (3.1.4) is readily seen to reduce to

Y (1)Qw)Y
- (n-p+r) .

Under H {M/(n-p+r)} is distributed as 11:1) exactly, since
0, 1 2' 2

(3.1.6
Y(p_p)Y Y (PQ-P)Y

yT(I
n
_p

w
)y

Y
T
(1) -P)Y Y

T
(I -Pn



and the two components in the denominator of the right-hand side of (3.1.6),

each divided by
2
, are independent chi-square variates with r and -p) degrees

of freedom, respectively.

r n-D
There is, of course, a direct correspondence between the /3 e-   2' 2

dis—

tribution and the central F(r, n-p) distribution. If, for example, v (1,

and v = u/(1 + u), then u = v/(1-v) and u % 13 (1 
22' 

L); moreover, mu/q has the
2

central F(q,m) distribution. Thus although F and M will yield different calcu-

lated numbers in a practical example, there will be no conflict in using them to

test H
0 

since they have different, though corresponding, distributions. The

relation between W = rF, of equations (3.1.1) and (3.1.2), and M, in equation

(3.1.5), may be written

(3.1.7
n-p + W n-p+r

(see e.g. Weatherburn, 1952, chapter 8; Wilks, 1962, p. 187). Moreover, if X

is the likelihood ratio corresponding to H
o' 

it must depend on the values of

the likelihoods corresponding to estimation in Q and w. Thus X is based upon

information contained in both W and M. This is readily seen from the definition

2/n 2 2
of A: = {a

Q
/a

wl 
where a

2co 
refers to maximum-likelihood estimate of a

2 
in co.

Thus, for large n, the relations

2 
X
2/n 

= IM/W1 = {s/s2}

hold approximately, whereas for any finite n, the following holds exactly:

(3.1.8) x2/n = M •  n-p
n-p+r

Note also that

(3.1.9) 

W = (A-2/n —1)(n—p)
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9

Hence, there can be no conflict between the small-sample tests based upon the

W- and L-principles. It follows _immediately that there can be no conflict

between the small-sample refinements of tests based upon the W-, M- and L-

principles.

With regard to the calculated values of the test statistics, it is clear

from (3.1.6), (3.1.7) and (3.1.9) that

-n
(3.1.10) W = (X 2

 
-1)(n-p) Mf(n-p)/(n-p4-01

which may be regarded as the exact small-sample relation between the three tests

corresponding to the general large-sample relation:

(3.1.11) INT{ n } {-2 log Al M{ n }
n-p

2
each of which has the X (0-distribution for large n. Relations (3.1.7) -

(3.1.9) admit of proper application of the principles involved and we see that,

while the calculated values of the W- and M.- statistics will differ, there is

no conflict between the tests since each is based upon its own distribution.

Finally, since there is a one-for-one correspondence between A and -W,,all three

principles are seen to lead to the same test statistic; for convenience, this

may be taken as the F- statistic given in (3.1.1).

Finally, notice that, in the linear case examined here, the essential

difference between a test based upon the W-principle and one based upon the M.-

principle lies in the estimate of a
2 
that should be used. In the former case,

2 2
an estimate of a

2 
in Q is required, namely a

Q 
or s in the above example; when

the M-principle is applied, it is necessary to use an estimate of a
2 . 

w.

Example 3.2: Classical Identifiability. Consider an equation, say the first,

of a standard interdependent linear system in n observations on M endogenous
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variablesy,K.exogenousvariablesx.and M jointly normal equation errors c
3

which may be written:

(3.2.1) yl - Y11 = + 6
1 1

'This equation comprises On + 1) endogenous variables, [yliy2...ym4.1]=[ylily=Y1*

and k exogenous variables [x
1
x
2
...

writing q 1:-q I, we have

] = X
1
. From the reduced form of the system,

y = y
1 
- Y11

 
= Y *f3 * = 

X1 
II
11 1 

* x
2
H
21

13
1
* + V

1
(3. *1 1 9

the Ws being appropriate matrices of reduced form coefficients
' 

V
1 

the matrix

of reduced form errors corresponding to Yl , and X2 = r
-xk+l'xk+2"..

It is

presumed that K-k > m, so the first equation is over-identifiable. The over-

identifying restrictions imply 
11101. = Y1, II211 = 0 

and V
1 

= 6
1 
. If

1  1

is presumed known, the over-identifying restrictions may be tested, using the

results in Example 3.1. Noting that Qis  the span of X = [Xl;X ] while w is the

span of X1, we have

*T *
Y1
 (P-P)y1 

n-K 

Y1 (In-PO)Y1

=

which has the central F(K-k, n-K) distribution under the null hypothesis

21 1 
= 0. The corresponding M-test is

*T(1) -P )YY1 w 1 N-
*T

yl (In-Pw)Y1

• where {14/(n-k)} has the beta type 1 distribution with parameters (K-k)/2 and

(n-K)/2 under the same null hypothesis (see Anderson and Rubin, 1949, 1950;
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Fisher, 1977). Unfortunately, the parameter (31 is not known. If (31 is estimated

by limited-information maximum-likelihood (LIML), then f31 is selected by mini-

mizing W with respect to q for given n, k and K, whence it is seen to be inde-

pendent. of the normalization on (3.
1 
. In these circumstances there are m addi-

tional restrictions placed on the data and Basmann (1960) recointuends adjusting W

by {(K-k)/(K-k-m)} and using F(K-k-m,n-K) as the approximate distribution under

the null hypothesis. The approximation is evidently very good (Basmann, 1960; and

e.g. Fisher, 1980). Notice that while a degrees-of-freedom adjustment is made for

*T * *T *the factor y
1 

(P -P )y
1 

of W, none is made for y
1 

(I
n
-P)y

1 ' 
when estimatesw 

replace q. This is because the second factor divided by n, or (n-K), or (n-K-m)

will be consistent for a11, the variance of 
61'

r large n, each divisor is dom-

inated by n and hence finite adjustment is of no consequence. On the contrary,

the matrix (P -P ), of the first factor, has finite rank for all n and hence finitew

adjustment is of greater concern. By a similar argument, we might regard {M/(n-k)}

as an approximate beta type 1 distribution under the null hypothesis with para-

meters (K-k-m)/2 and (n-K)/2 when LIML estimates replace 131 in the formula.

Clearly, there is again a correspondence between the M- and the statistics, as

in Example 3.1, except that now approximations are involved.

Example 3.3: Identifiability Tests with Two-Stage Least Squares (2SLS). If (31

is estimated by 2SLS, it is selected to minimize the numerator of M or W, in

which case Fisher (1980) has shown that W reduces to•

e
l

e /(K -k - )1/{e
T
(I 

n-Pg 
)e
l 
/(n-K)1l 

where e
1 is the 2SLS residual from (3.2.1). This result arises because P e1 = O.w 

Hence, M may be seen to reduce to le
1 
P
O
e1Me

1
e
1
/(n-k)}. These are extremely

simple statistics to calculate since they merely involve the artificial regres-
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sion-of e
1 

on the columns of X to obtain 
1
e (I -P )e from which e

l 
P
O
e
l 

may
4 Q

also be obtained. Moreover, corresponding statistics may be developed to check

lidentifiability' when applying instrumental variable estimation. Note that no

maximum-likelihood estimation is involved here. We merely make use of the asymp-

totic normality properties of 2SLS estimates. Although the F(K-k- n-K) approx-

imate distribution for W is close, nothing is known about the adequacy of the

beta distribution approximations associated with M; however, there is a natural

correspondence between the two, as before.

• Example 3.4: 2SLS Significance Tests. If the null hypothesis is 'accepted' in

the previous example, it may still be the case that further zero identification

restrictions are in order; or it may be desirable to test whether certain parameter

estimates deviate significantly from the values theory prescribes for them. In

the case of significance tests of this kind, two routes are open: either the F-

tests proposed by Dhrymes (1968), or their x
2
-(or asymptotic normal) equivalents.

Morgan and Vandaele (1974) produce evidence in favour of the latter. Be this as

it may, the only difference between the F- and the x2- statistics lies in the esti-

mate of a
11 

that is used: the former uses {e
1 
Pe

1
/(K-k-m)} whereas the latter

uses e
T
e
1 
/n. Both statistics are based upon the unrestricted regression"(3.2.1)

1 

since, having established (over-) identifiability, the test is designed to con-

sider further restrictions on the parameters 131 and/or yl. Thus, both are based

upon the W-principle. Note, however, that the estimate of a
11 

arising from the

M-test of Example 3.3 is 4e1/(n-k), or eT ei/(n-k-m), both of which are asymptot-

ically equivalent to 4e1/n. Thus, the distinction between the F- and
2
-statis-

tics is not one of principle, but rather one of practice: which estimate of a
11

to use? Given this choice, there is also the implication regarding approximate

distribution. • Which choice to make is essentially an empirical issue. If
1

•
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denotes estimate of 
all' 

whichever is used, and we consider only restrictions

on y then the formulae for the tests is based upon the ratio

*T * *
Y1 • (Pw-Pr)Y  . 1 

y
1 
*T
(I 
n
-P 
r
)y
l 

- y
1
*T
(I
n
-P

a a
11 11

where P
r 

represents projection on the restricted regression space, which must

be a sub-space of w. If the corresponding restricted sum of squared residuals

is e 
' 

e the last ratio becomes (e 
r 
T
e
r 
- e

1 
T
e1 )/a11' so that, if the M-principler r 

is applied,
1 
must be based upon e 

T
e rather than on e

1 
e
1.r r

Example 3.5: 'Identifiability and the Reduced Form. The unrestricted reduced.

form of a standard linear system may be estimated efficiently by single-equation

least squares. Suppose the coefficients are represented by the vector Tr, then

the over-identifying restrictions imply generally non-linear relations between

the coefficients of different equations. These may be written h(ir) = 0, h('rr)

being vector-valued with as many components as there are 'extra' restrictions.

If ;' represents the unrestricted least squares estimates of Tr, then an appropriate

identifiability test statistic is

W = 13)R1(')d (xTx)-11 ()]- h('rr)

A A A
where H6) is 3h(70/Tr

T
] evaluated at Tr=ir and E=[Ci I, a being the mean of

cross-products of residuals from equations i and j. This is a straightforward

example of linear estimates being used to test non-linear constraints. W is a

Wald statistic in the usual-large-sample sense, and hence is distributed as .

2„
where r is the total number of restrictions in excess of the minimum re-

quired for identifiability.
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Example 3.6: Structural Change. Consider a regression which is subject to

structural change. Various tests are available, including the analysis of co-

variance for the non-singular case, the prediction interval test for the cor-

responding singular case (see e.g. •Chow, 1960), and the cusum of squares test

using recursive residuals (Brown et al, 1975). The purpose here is to consider

the Chow and cusum of squares tests, and the relations between them, in the

light of the discussion in Sections 2 and 3.1.

If yt is the dependent variable at time t and
t 
is the zero mean regres-

sion error at t, each being independently distributed normal variates over time

with common variance a
2
, then

y = x
t t 

e
t

t-1,2,...,p,p+1,..,n

there being p components in the vectors x and f3.
t
, the latter being unknown. It

is presumed that the x
t 
are fixed in repeated samples. Let X denote the matrix

of rows x
t
T
' 

t=1,2,...,q, and consider testing P.
p+1 

= 
"p+2

=

we shall need orthogonal projections on the span of

• q = p+1, p+2, . , n

n-q

• = fin. For this,

of rank (p+n-q), which is denoted by P. The prediction interval test is based

on the W-principle and, for p+1 q n, uses the statistic

T - -
y (P -P )y

q n  • q-I) W = 
y
T
(I
n
-P 
-
q
)y n-q

W represents the Chow test, which may be repeated until a signifidant sum of

squares is obtained for q = p+1, p+2, n. Under the null hypothesis, W has

the central F(n-q, q-p) distribution. Now consider the cusum of squares test
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= 

YT(Inq)Y

T -
y (In-Fn)y

which is very simply related to a corresponding test statistic based on the M-

principle (c.f. Fisher, 1978):

1- Q

T
Y (1)qn)Y

yT(Inn)y n-p

Thus, the Chow test statistic is based on the W-principle and the cusum of

squares statistic On the M-principle. Of course, the two correspond, which

perhaps explains the assertion in Breusch and Pagan (1980, p. 251) that the

Chow test is an M-statistic. The relation between the Chow and the cusum of

squares statistics is given by

111:_a=WQ • Q •
q_p

• Since there can be no conflict in the outcomes of these tests, choice between

them is a matter of convenience. However, in applications of the TIMVAR pro-

gramme (Brown et al, 1975), it should be noted that the exact distribution of

Q is not used. Hence, there may be conflict between the results emerging from

TIMVAR calculations and corresponding calculations using the exact distribution

,of Q or W.

4. CONSTRUCTION OF AN ARTIFICIAL MODEL

The principles outlined in Section 2 may be applied to other problems

that arise in econometrics. In this section we outline a large-sample test of

mis-specification as a means of introducing artificial regression equations.
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Consider the standard linear regression equation, y = Xf3 + . An important

assumption is that E(c/X) = 0 or, in large samples, that plim {(1/n)XTc}=0.

Situations in which the assumption may not reasonably be maintained are when

X is subject to measurement error, when X contains a lagged dependent variable

in the presence of serially correlated errors, or when X contains endogenous

variables.

We may formulate the problem of mis-specification by setting 13 = + 6,

where 13* is the true value of 13 and 6 is the specification bias. Under the null

hypotheses 6=0, whereas 6760 under the alternative. Denote by '.() and Al the OLS

and instrumental variable (IV) estimators of f3, respectively. Then 1130 is con-

sistent and asymptotically efficient under H
0 

but inconsistent under H
1, 

while

1 
is consistent under both hypotheses. A test of mis-specification consists of

A A A A
examining how large 6 = - is in relation to its variance, V(6)=V(131)-V(130).1 0

Under the null hypothesis, the statistic

(4.1) (Inc)T { (In 16)}-1 (In
a2

) X (r)

where r is the number of unknown elements of fi (see Durbin, 1954). In practice,

A , - - - -1
V6) is consistently estimated by V(6)- = al

2 
(X

T 
P
z
X) 

1 
- ao

2 
(X

T 
X)- , where Pz is

the orthogonal projection on the span of Z, the matrix of observations on the

2 2
set of instrumental variables, and a and a

1 
are the OLS and IV estimates of0

2 
the error variance. Under the null hypothesis, a may be substituted for a

I
2 
'0

and vice-versa, since any consistent estimate of a
2 

may be used to calculate

(4.1).

An alternative test of mis-specification arises by considering the com-

ponents of )(13 in the span of Z and its orthogonal complement, and recognizing

that OLS will yield consistent estimates of 13* for the former and 13 for the

latter, under the alternative hypothesis, and 13* for both under the null. This
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way of looking at the problem is due to Hausman (1978) and leads to consider-

ation of the artificial regression equation

(4.2) y = + PzX6 + •

Under the null hypothesis 6=0, the test from (4.2) is asymptotically equivalent

to the test given by (4.1). Since the columns of X must first be regressed on

the columns of Z to obtain P
z
X, the test implicit in (4.2) is not necessarily

easier, to compute than is (4.1). The artificial model (4.2) is of interest as

an algorithm for testing 6=0; is simply a method for calculating a test stat-

istic which is asymptotically equivalent to (4.1). Although y = X + c is con-

sistent with 6=0, the artificial specification given by (4.2) is not necessarily

the only one consistent with 60.

While artificial models constructed for the express purpose of calculat-

ing a test statistic may be regarded as conforming to the W-principle, in that

they are indeed 'unrestricted' forms, the artifact itself is not the subject of

interest. Nevertheless, the distinction between the W- and M.-principles does

enable various methods of testing to be developed. The concept of an artificial

model is of particular interest because it is linked with various procedures

available for testing non-nested hypotheses, to which we now turn.

5. NON-NESTED HYPOTHESES

We may think of two hypotheses as being non-nested when the specification

of one cannot be obtained from the other by the imposition of appropriate restric-

tions, or be obtained as a limiting form of a suitable approximation. The test-

ing of non-nested hypotheses has become increasingly popular following the adapt-

ation of the ideas of Cox (1961, 1962) to econometrics by Pesaran (1974) and
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Pesaran and Deaton (1978). For an interpretation of these tests, particularly

Whether the tests should be one- or two-sided, see Fisher and McAleer (1980a).

While (1980) provides the general regularity conditions which ensure that the

•
Cox-statistic is asymptotic normal with zero mean and unit variance. Davidson

and MacKinnon (1980) have developed several algorithms for testing non-nested

hypotheses and have related these to the Cox-test. Fisher and McAleer (1980b)

derived variations of both the Cox-test and Davidson and MacKinnon's J-test,

using an idea implicit in Cox (1961) and exploited by Atkinson (1970), and

demonstrated that the Atkinson variation always provides a consistent test

(c.f. Pereira, 1977). In this section we examine two principles for testing

non-nested hypotheses, namely the Modified Likelihood Ratio (MLR) Principle of

Cox and the Principle of Artificial Nesting (AN) (see e.g. Hoel, 1947), and

the various methods that may be used in each case. We also briefly outline a

method of choosing between non-nested regression models which will lead to the

selection of the correct model, 'on average', as long as one of the models

being considered is 'true' (see e.g. Theil, 1961).

We shall restrict ourselves to the class of non-linear, unilateral

causal dependancies and follow closely, but not completely, the notation of

Pesaran and Deaton (1978). For simplicity we consider only single-equation

models; extensions to systems of non-linear equations of the same type are

straightforward. Suppose there are two competing economic theories to explain

the behaviour of .an endogenous variable y, and these are written:

and

(5.1) Ho

(5.2)

= f(0 0;X) + uo,

= g(01;Z) + u

uo % N(0,I a02)

ul % 
N(0,I a 2

n 1 )
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vthere y is an n-vector of co-ordinates yi, and f(00 ;X) and g(01;Z) denote n-

vectorsof c0...ordinates f(0.
0'
x.)andg(0-z

i
),respectively,x.and z

i 
being

the i'th rows of matrices of exogenous observations X and Z. The functions

f(.) and g(.) are continuous and at least twice differentiable with respect to

all their arguments. It is assumed that the vector-valued parameters 0
0 

and

0
1 

are identifiable under H and H
l' 
respectively. We shall write f(00; X) var-

iously, according to convenience, as f(00) or simply f; similarly. for g(01;Z).

T T T 2 T 2
Let us write a and a for the parameter sets '(00 

a ) and (0
1 ' 

a
1 
)
'0 . 1 0

respectively. The likelihood functions under H
0 

and H
1 

are:

and

(5.3) Lo E

(5.4) E- 
1 

L 
1

Cot)

2 -n/2
(2Tra

0 
). exp

2 - 2
  (Y-g2Tra

1 
exp 

2
2a1

1
2 Y-f)

T
(y-01

1
y—g) 1.

Given the nature of the distributions under H and H
1, 

it is natural to consider
0

an exponential weighting scheme (c.f. Quandt, 1974, where a linear combination

of the likelihood functions is analyzed). The exponential combination of

L
0 

and L involving the nesting parameter A, is given by:

-
(5.5) L E L(L ,L ; ) = K L 

1 X 
L 

X

where K, the factor of proportionality, is given by {.0" L0 
1- 

L1 dy}-l. The
-4" 

weighted likelihood function given by (5.5) is important for two reasons.

(i) The first-order maximizing condition with respect to X leads to the

numerator of the Cox-statistic (Atkinson, 1970, p. 334; see also Breusch and

Pagan, 1980, p. 248). Equivalently, a Lagrange multiplier may be introduced

explicitly. In this sense, the Cox test is seen to be based upon the M-

principle. Hence this and, the MLR-principle are seen to yield the same test
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in this case. However, the nesting parameter A is not estimated under the MLR-

principle, since the Cox statistic is evaluated under H or 
H1, 

whereupon A is
0 

set a priori to zero or unity.

(ii) According to the AN-principle, on the contrary, A may itself be ele-

'crated to the position of test statistic and its estimation must be attempted. As

the introduction of A involves an 'unrestricted' artificial model, tests based on

the AN-principle would also seem to be based on the W-principle. Unfortunately, A is

not identifiable, in general, and may be made identifiable only under specialized

circumstances. Since there are numerous ways of imposing 'identifying' restric-

tions, the principle on which a particular method is based will vary with the

information actually used. We return to this below.

5.1 The Modified Likelihood Ratio

The Cox-test under H
0 

is given by N
0 
= T
00 

(T
0 
)1-
' 

where N
0 
is

asymptotically distributed as N(0,1) under Ho (see Cox, 1961, 1962; for the gen-

eral regularity conditions, see White, 1980). The first-order maximizing condi-

tion with respect to A in the weighted likelihood function (5.5) leads to the

numerator of the Cox-statistic (Atkinson, 1970, p. 334; see also Breusch and

Pagan, 1980, p. 248); hence, To is given by:

(5.1.1) To = log (a1216'1°2)
2 2 2 2 2 2

10 1
where a =a+a aand 6 are the maximum likelihood estimates of a

0 - a ' 0 0

and 
a1
2
' 

respectively, and a
a
2 
= Wi-g(0

10 
))Ta-g6

10 
Wrilis the estimated error

•••

variance from the auxiliary regression of f E f( 0) on the model under H1 (see

Pesaran and Deaton, 1978, for details). In calculating To, 81 has been used

for 0•This is an arbitrary substitution since, when H
0 

is under test, the

maximized value of Lo is independent of the value assigned to el. Therefore,

under H0, Atkinson (1970) advocates replacing 01 with 610, a consistent estimate
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of the asymptotic expectation of 6
1 

under H rather than with 6
l' 

the estimate
0'

of 0
1 

under H
1. 

This is an attractive way of looking at the problem, not only

because it entails evaluating the entire statistic under 
H, 

but also because it
0 

leans more heavily in the direction of H
0 

than if 1 is used. It should be noted,

however, that the latter statement holds only when H is performing better than
0

expected. Should H then be rejected by H1, this would seem to provide stronger

evidence against H than if 0
1 

had been used. Fisher and McAleer (1980b) have
0

demonstrated that this is indeed the case, and have derived two variations of the

Cox-statistic that are asymptotically equivalent to To under Ho. The relation

between them is TA
0 TL0 

T
0' 

where TA
0 

and TL
0 

are given by
- 

and

(5.1.2) TL
0 
= 1140 2/a 2
2 1 1

(5.1.3) TAo = TL0 + 
1  .1( 

Y g‘ 
( 

"‘
6 \NT,. 

Y 
1 

" 
6 \N e 

1 
Te 1}.

2 10 10 
2 alo

As 
el

T
el 

is the minimized sum of squares under H
1, 

the second term in (5.1.3)

will be positive unless the model under Ho fits perfectly (i.e. g(610) = g(01)). 
Althoughthe choice of the asymptotic variance of TA

0 
and TL

0 
is arbitrary,

it will be convenient tci use the estimate of V
0 
(T
0 
) given by Pesaran and Deaton

(1978,, p. 687). Dividing TA TL and T by {V (T )}- leads to NA • NL N0.

It 

0 0 0 0 0 0 - 0.

It is obvious that when the alternative, 
H1, 

is fitting much better (worse) than

it ought, relying solely on No(NA ) will more likely lead to rejection of Ho

than would otherwise be the case. The linearized Cox-statistic, NL
() 
, is there-

fore more conservative with respect to rejecting the model under test than is

when the alternative is fitting much better (worse) than might be ex-

pected. It may prove useful to compute all three test statistics since differ-

ences in their numerical values, even for moderately large samples, has served
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to guide the interpretation underlying the rejection of the tested hypothesis

(see Fisher and McAleer, 1980b).

The three statistics should converge in probability under H to a negative

value, since, each should have a negative mean when H
1 

is at work. For a test to

be consistent, the probability of rejecting Ho, when any member of the class of

alternatives H
1 

holds, must tend to one as the sample size increases indefinitely.

Pereira (1977) has shown that the numerator of the Cox-test will always converge

in probability to a negative value under H
l' 

whereas the modification suggested

by Atkinson (1970) may converge to a positive value. In this way, the Cox test

is always consistent; but the Atkinson variation of it derived above may lead to

an inconsistent test. This result serves to illustrate the fact that, while two

statistics may be asymptotically equivalent under the null hypothesis, they need

not be under the alternative. For the case of non-nested, non-linear regression

models, Fisher and McAleer (1980b) have demonstrated that the Atkinson variation

of the Cox test always provides a consistent test. However, since the variances

of the Cox statistics are not equal under the alternative hypothesis, it does not

seem possible to show which of the three statistics has greatest power.

It was stated above that the Cox test was based upon the M-principle.

However, the very notion of modifying a likelihood ratio suggests that the MLR-

principle is an adjunct to the Likelihood Ratio (L-) principle. The original Cox

test of Pesaran and Deaton (1978) uses estimates from both H
0 

and H
1
, and is in

accordance with the L-principle. On the other hand, the Atkinson variation eval-

uates the entire statistic under H
0 

and, from this point of view, adopts the M.-

principle. As in the case of nested hypotheses, the two principles lead to test

statistics that are asymptotically equivalent under the tested hypothesis.
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5.2 Artificial Nesting

The following artificial regression model is implicit in (5.5):

(5.2.1) y

2
{ (l-X)a,

2
Aa
0 

2 2}f { 2 2}g
(1-X)a +Aa

o 
(1-2)a

1 
+Aa

0

where the variance of u is given by a
2 
= {a

0 
2
a
1 
2

}/{(1-X)a1 
2 
+ Aa

o
2
}. Note that

A must be restricted to ensure that a
2
 is positive; this condition is certainly

satisfied when A c [0,1]. The artificial model is a linear combination of the

models under H
0 

and H
1 

with weights depending explicitly on the nesting para-

meter
2

and the error variances a and a
1
2

0
This has been examined for the linear

case by Atkinson (1970) and Quandt (1974), while Pesaran (1979) and Fisher and

McAleer (1980b) considered the non-linear case. It is important to realize that

A, the parameter of greatest interest in (5.2.1), is not, in general, identifi-

able. Seen in this light, Ho and HI cannot be tested without the imposition of

appropriate identifying restrictions. In the event that no such restrictions

are forthcoming, we would simply be left with the 'unrestricted' model (5.2.1).

Pesaran (1979) has considered making A identifiable by assuming the parameters

of H
1 

are available. We will briefly outline below different 'identifying'

restrictions that will enable H and H to be tested.
0 1

(i) A Priori Identification

If both a and a
l' 

and hence f and g, are known in (5.2.1), we can test0

0 
and H

1 
by testing A against zero and unity, respectively. But since (5.2.1)

is non-linear in A, numerical optimization would be necessary to estimate it.

If we take the view that the hypotheses under test relate only to the expected

value of y, we may quite reasonably impose a1 2
 
= a

2 
= a2. Equation (5.2.1)

then simplifies to:
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5.2.2) y-f = A(g-f) + u

Since A is identifiable in (5.2.2), it is both the nesting and the testing para-

meter. An alternative method of tackling the problem is to make a distinction

between the nesting and the testing parameters. After appropriate reparametriza-

tion, (5.2.1) may be written as:

(5.2.3) y-f = A(g-f) + u

where A = {AG
0
2 
}/{(1-X)G

1
2 
+ 

AG0 

2
} The testing parameter is now denoted by A,

and this is to be distinguished from the nesting parameter A. In order to test

the two hypotheses in (5.2.3), prior information is required only for 6
0 

and 6

since the variances are subsumed in A. In respect of (5.2.2), least squares

estimation of A yields a t-ratio with (n-1) degrees of freedom upon which the

test may be based (see Hoel, 1947; Fisher and McAleer, 1980a)

Insofar as A is non-zero, different values of A have different interpreta-

tions with regard to movement toward, or away from, the alternative hypothesis.

Thus, in respect of Ho, A as a positive fraction is interpreted as a movement

from H
0 

toward H
1, 

and a value greater than unity is interpreted as a value

'beyond' HI. On the contrary, a negative value of A is a movement away from

both H
0 

and H Corresponding interpretations may be given for H
1 

when A differs• 1.

in value from unity. It is entirely possible that one model is better than

another, although a linear combination of the two formulae may be better still.

This arises when there are significant departures from each model toward the

other, corresponding to 0 < A < 1. It must be recognized that an exponential

weighting of the likelihood functions Of two non-nested models inextricably

creates an artificial model which may be 'acceptable' 'to the data when the

sample is consistent with neither H
0
 nor H

1. 
Application of the AN-principle
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therefore has the distinguishing feature that the artificial model may be

accepted', so that an artificial model with prior information on the para-

meters conforms to the W-principle. As for application of the MLR-principle,

there is no artificial model as such, so the question of its 'acceptance'

never arises.

A priori information on the parameters of the competing models will not

generally be available for applying the Hoel-test. However, given the applic-

ability of independent observations, a forecasting formula may be "...obtained

from a combination of theoretical considerations and past observations..."

(Hoel, 1947, p. 605). As a device for acquiring information, we may use 'prior'

in the intertemporal sense by partitioning the n independently normally distri-

buted random variables into two (not necessarily equal) regimes, using the

observations from one regime to obtain two calculated forecasting formulae, and

then testing the formulae thus obtained on the observations of the second regime.

The process may be reversed, in which case the formulae obtained from the second

regime may be tested on the first. If the predictive performance of a model or

formula is of primary concern, we may simply construct the formula using the

data from the first regime, and test the ability of the formula to provide good

predictions with the data of the second regime. In this sense, the Hoel-test is

analogous to the sequentially-repeated F-test for structural change (see,

Chow, 1960), and tests in the tradition of data analysis as put forward by, for

example, Brown et ca (1975) (see Section 3.6 above).

The useof sample information from one regime is extraneous with respect

to the other regime and, although there is a degree of arbitrariness involved in

the selection of the observations for the two regimes, this is of no particular
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consequence if the observations are independent, as is presumed. Of course, in

many cases in econometrics this presumption is unwarranted. However, having com-

pleted a limited number of Monte Carlo experiments, it is satisfying to find, in

comparing a 'true' linear model against fitted polynomials, that when the 'true'

model fits well, it is rejected about the same number of times as it should be

according to the chosen level of significance; and even when it does not fit well,

the number of rejections of the 'true' hypothesis is only of the order of 25-30%

in excess of the number that should be rejected. Insofar as these results are

generally applicable, it would seem that this version of the Hoel-test is a use-

ful device for the purposes of data analysis.

(ii) Numerical Methods of Identification

When the variances are equal but 8
0 

and 8
1 
are unknown, A is not identifi-

able in the comprehensive model (5.2.2). A practical way around the lack of

identifiability of A in the comprehensive model is to use a consistent estimate

of at least one of 
80 01

and under their respective hypotheses. This procedure

is not, of course, equivalent to imposing identifying restrictions in the usual

sense, but it does enable calculation of an estimate of A. The estimate of A

obtained has no meaning in the comprehensive model simply because it is not ident-

ifiable in that model.- Therefore, when arbitrary numerical methods are used as

'identifying' restrictions, the 'unrestricted' model reduces to an algorithm,

since it cannot reasonably be 'accepted' However, the t-ratio for 5t' turns out

to be a valid statistic for testing Ho, and is asymptotically distributed as

N(0,1) under Ho.

Davidson and MacKinnon (1980) have developed several tests of the kind

just described for both linear and non-linear models. Consider the linear case,

where equation (5.2.2) is rewritten:
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(1-A)X80 + AZ&
1 
+ u

and it is clear that A is not identifiable. It is assumed that the columns of

X and Z are linearly independent but not orthogonal. Replace 81 in (5.2.4) by

its least squares estimator under H leading t

(5,.2.5) (1—x)xe + AP y U
0 Z

A
and use the t-ratio for A, called the J-statistic, to test Ho. Equation (5.2.5)

is noteworthy since its non-linear equivalent is the starting point for the anal-

ysis of Davidson and MacKinnon (1980). Thus, for these authors, the artificial

model (5.2.5) is simply an algorithm and does not arise by virtue of nesting of

the component likelihood functions. A more helpful way of looking at (5.2.5),

rather than by way of definition, is to regard it as a linear combination of the

linear counterparts of (5.1) and (5.2) with weights 1-20 and A, respectively,

A
where u = AZ(8

1
-8
1
) + (1-A) u

0 
+ Au 1.

The process of replacing 81 in (5.2.4) by 61 is arbitrary, since 01 may

be replaced by any estimate that is asymptotically uncorrelated with the distur-

bance under Ho. The suggestion of Atkinson (1970) may also be applied to the J-

test. For practical purposes, replace Z81 with the estimate of the expected

value of P
z
y under H namely P P y. Equation (5.2.5) becomesz x

(5.2.6) y = (1-2)X80 + AP P y + u
z x

Assuming that (1/n)X X, (1/n)ZTZ and (1/n)X Z converge to well-defined finite

matrices, the first two positive-definite and the third non-zero, it is straight-

-forward to show that, under Ho, the t-ratio for A of (5.2.6) is asymptotically

equivalent to the J- statistic from (5.2.5). Since there are, in principle, an



-28 -

infinite number of linear estimators, there must be an infinite number of t-

ratios that are appropriate for testing Ho. Notice carefully that the estimate

of A is of no interest in itself for testing Ho, just as the estimate of 6 was

of no interest in (4.2). Since Z0
1 
in (5.2.4) is replaced by an arbitrary con-

sistent estimate, is itself arbitrary. In practical applications of the AN-

principle, it is obvious that an infinite number of methods exist. While the

arbitrariness of the substitution may be inconsequential in large samples (see

.
McAleer, 1980a), a more relevant question is whether the route ma 0

1 
is the

'best' way to proceed.

5.3 The Minimum Error Variance Criterion

A study of the principles and methods available for testing non-nested

hypotheses would be incomplete without mentioning the Minimum Error Variance

(MEV) criterion. Suppose there are two competing non-nested, (possibly) non-

linear regression models, one of which

(5.3.1)

is 'true', the other

5.3.2)

= f ;X) + uo

Y = g(61 ;Z) + u
11 

2 N(0, I a )
n 
02

being false. The way in which H
1 
is false is not specified; in particular, no

assumption is made concerning ul. A model selection criterion examined by Theil

(1961, p. 213) for the linear case says that if one of the models being considered

is 'true', in the above sense, then

-1
(5.3.3) E

0
(s
1
2
) = E

0 (s0 
2
) + 0

0
'X' (I-P )X0

0 
E
0
(s
0
2 
)

2
where E denotes expected value under H

0' 
s
0
2 
and s1 are the standard least

-r
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squares estimates of the error variances under H and H
l' 

respectively, and
0

E
0 (s0 

2
) = a02. Since the expected value of the estimated error variance under

the 'true' model will never be larger than under the false model, Theil sug-

gests that choosing the model with the minimum estimated error variance will

lead to the selection of the correct model, 'on average'. Kloek (1975) has

.shown that, under fairly general conditions and in large samples, the NEV criter-

ion will choose the 'true' model with probability arbitrarily close to unity.

The basis MEV criterion applies to non-nested linear regression models

with non-stochastic regressors, when one of the models considered is 'true'.

This result has been extended by Schmidt (1974) to allow for autocorrelated dis-

turbances, and by Giles and Smith (1977) to the case of linear restrictions.

The former also noted that the rule holds asymptotically under ordinary least

squares estimation if the regressors are stochastic. McAleer (1980b) has

extended Theil's MEV rule by providing an asymptotic justification for choosing

between non-nested, non-linear regression models.

The device of selecting the model with minimum estimated error variance

certainly has a practical appeal. However, its viability depends upon the

requirement that one of the models being considered is 'true'. From an econo-

metric viewpoint, an important criticism of the MEV approach is that the term

model 'selection', by its very nature, ensures that one model will inevitably

be chosen. It is not possible, then, for both models to be either rejected or

accepted' by the data. The problem of model selection might more reasonably

be viewed as one of model testing (see Sections 5.1 and 5.2 above), but the

decision to use one approach or the other naturally depends upon the specific

interests of the researcher. Be that as it may, the MEV rule is a useful pro-

cedure when it is intended to choose between alternative non-nested regression
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• models. For the MEV criterion, a method is certainly involved but there is

neither an artificial model nor the use of a modified likelihood ratio. The

decision to choose a particular model on the basis of minimum estimated error

variance is an arbitrary rule, so that no principle of testing is involved here.

6. CONCLUDING REMARKS AND RESEARCH PERSPECTIVES

In this paper we have attempted to synthesize the principles on which

testing is to be based and the practical statistical methods which they gener-

ate. We illustrated the general rules which specify the distinction in the

case of nested hypotheses with several examples. The concept of an artificial

model was examined in testing for misspecification. Two principles were out-

lined for testing non-nested hypotheses. The Principle of Artificial Nesting

was shown to accommodate artificial models that were of interest in their own

right, in that they could be 'acceptable' to the data, and artificial models

that were mere algorithms. In the former case, a test based upon the artificial

model may be regarded as conforming to the W-principle in that it permits 'accept-

ing' an 'unrestricted' form, whereas in the latter no 'unrestricted' form is

tolerated. It is then more natural to appeal to the M.-principle as a basis for

testing.

Although the exponential weighting of likelihood functions considered in

Section 5 is naturally appealing, there are certainly other methods available

for nesting alternative models within a more general framework. This raises

the interesting question of whether the concept of non-nested hypotheses is

itself more than a thoroughly practical artifact. It could be argued, for

example, that reasonable competing hypotheses are just special cases of some

more general system, special components of which are the individual hypotheses

H
0 

and H

-
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A more general method of combining two models, given equality of their

respective variances, is to form the weighted mean of order p. Pesaran (1979)

suggested nesting two likelihood functions using this approach but did not derive

the implicit artificial regression model. Another procedure is to construct the

weighted mean of order p of the deterministic components of the two hypotheses.

Recalling that x. and z
i 

are the i'th rows of X and Z, respectively; and

P y = Ze
1
, the non-linear- nesting scheme for the i'th observation is defined as

6.1 = 10.—xxx.e
0 
)P + x(z.

1
6 )P11/P u i=1,2,...,n

where it is assumed that x.e 6, zile and z.6 are positive for all i and
0' 

i0 
 il

that u. % NID (0, a
2
). Equation (6.1) simplifies to the i'th equation of (5.2.5)

upon setting p=1, and to

= ( )
1-

X (z.6 )(6.2) 
1 

+ u.

upon letting p -->- 0. A possible advantage of (6.1) over both (5.2.5) and (6.2)

is that there is.a nesting parameter p, as well as a testing paramater A. These

may in principle be estimated separately, thereby enabling a test of the form of

nesting as well as a test of the non-nested hypotheses themselves. This should

be distinguished from (5.2.3), where the testing parameter is identifiable but

the nesting parameter is not, and from (5.2.2), where the nesting and the testing

parameters are identical. But note carefully that (6.1) does not arise by virtue

of combining the likelihood functions of the two models as expressed in equations

(5.1) and (5.2). Rather, we arbitrarily define the general model (6.1) which,

upon restriction of A at zero, yields Ho; and similarly for Hl when the roles are

reversed. For a comprehensive discussion of the various forms of nesting and

their consequences, see McAleer (1980a). Consideration of the form of nesting may

turn out to be as important as the actual testing procedures themselves.
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In respect of prior information, the analysis could reasonably be con-

ducted in 'terms of small samples. When we rely on numerical methods instead,

an infinite number of estimators, and hence an infinite number of asymptotic

test statistics, become available. For example, it was shown to be easy to

apply Atkinson' (1970) modification of the Cox (1961, 1962) procedure to a

test of Davidson and MacKinnon (1980). In view of the plethora of large-sample

tests that are available, an analysis of their small-sample properties is ob-

viously an important avenue for future research.

•r-
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