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Optimal Tolls with High-Peak Travel Demand*

Introduction

Corresponding to any level of stationary-state traffic flow are
two velocities. Zero flow, for instance, corresponds to travel both on
an empty road and in a stationary traffic jam. We refer to travel at the
Tower velocity associated with a given flow as hyper-congestion, and
periods during which hyper—congestfon is possible as being characterized
by high-peak travel demand. Our aim is to determine optimal congestion
tolls with high-peak demand. Our note builds on Vickrey's discussion of

this prob]em.]

Before proceeding with the analysis, we must clarify our terminology.
The technology of stationary-state travel is given by a function which
relates stationary-state traffic flow to each vehicle's travel time. The
seminal papers on optimal congestion tolls, Walters [1961] and Vickrey
[1963, 1969], framed the analysis in terms of average and marginal cost.
To facilitate comparison between their analyses and ours, we treat travel
cost as functionally related to travel time; the technology of stationary-
state travel may then be characterized by a function relating stationary-
state traffic flow to each drivér's time cost of travel, which is termed

either average social cost or marginal private cost. This relationship

is shown in Figure 1. We define the flat portion of this curve, on which

travel is so light that a few extra cars on the road do not increase a driver's

travel costs, as the region of uncongested travel;2 the upward-sloping

portion as the region of congested travel; and the downward-sloping portion

as the region of hyper-congested travel. Stationary-state travel in the




f=g(MPC) ] £=h (MS C)

HYPER-CONGESTED
TRAVEL

UNCONGESTED / ~ ) “conagE
ONGEST STED TRAVEL

) |
\ | | CAPACITY OR
| MAXIMUM FLOW
|
|

P

FLOW, f

MARGINAL PRIVATE COST (MPC)

o

)
%
=
-
0
O
O
J
<
O
o
%
4
=
=
©
e
<
=

Figure 1: The technology of road travel

region of hyper-congestion is demonstrably inefficient, since corresponding
to any point in this region there is another point with the same flow and

Tower travel costs, which may Tie in either the region of congested or

that of uncongested travel.

Previous published analyses of the determination of optimal conges-
tion tolls have treated marginal private cost as a uni-valued function of

flow. However, when hyper-congestion is possible there are two marginal pri-

vate costs associated with each Tevel of flow, one corresponding to a point in
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the region of hyper-congested travel and another to a point in one of
the other two regions. To circumvent this difficulty, we treat flow as
a function of marginal private cost,3 and denote this function as

f = g(MPC).

In a stationary state, total travel costs per unit time equal each

driver's travel costs times flow. We define the increase in total travel

s . ; . 4
costs from a unit increase in flow as marginal social cost.  From

f = g(MPC), one can calculate the relationship between marginal social cost
and flow, which is denoted f = h(MSC). This function is plotted in Figure

5
1 for congested and uncongested, but not for hyper-congested, travel.

We now characterize the demand side of the travel "market". The
number of cars entering the road per unit time depends on the cost to
the driver of travelling on the road. This cost comprises the monetized value
of travel time, MPC, plus the congestion toll, t. We denote the stationary
demand for travel function as d = d(MPC + 7). We say that there is
high-peak demand if the demand curve intersects the hyper-congested region

2

of g(MPC),d = d°(MPC + t) in Figure 2; low-peak demand if the demand

curve intersects the congested, but not the hyper-congested, region of

g(MPC), d = d](MPC + 1) in Figure 2; and off-peak demand if the demand

curve cuts neither the congestéd nor hyper-congested regions of
g(MPC), d = dO(MPC + 1) in Figure 2.. 1In our terminology, un-
congested, congested, and hyper-congested refer to the characteristics

of traffic flow, while high-peak, low-peak, and off-peak refer
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Figure 2: Levels of demand

to the characteristic of travel demand.

We define stationary-state equilibrium to obtain whenever a driver's
travel costs inclusive of the toll are such that the flow of the road equals
the number of cars wanting to enter the road per unit time. Thus, equil-
ibria are characterized by the points of intersection of g(MPC) and
d(MPC + t). Exploiting the analogy'between market and traffic flow edui]-

ibrium, we see that g(MPC) can be interpreted as a traffic supply curve.

II. Low-Peak Demand

We now review the economics of optimal congestion tolls with low-peak

demand, using our terminology.

Figure 3 depicts a low-peak demand situation. In the absence of a

congestion toll, equilibrium occurs at J, the point of intersection of the
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Figure 3: Low-peak demand
supply and demand curves.

It is well-known that, without a toll, equilibrium traffic flow
in congested traffic is inefficient because there is an uninternalized
congestion externality. 1In deciding whether or not to travel on the
road, a driver considers only his own travel costs and ignores that

his travelling on the road slows other drivers down.

There are_two necessary conditions for efficient stationary-state
utilization of the road. First, hyper-congestion may not occur. Second,
the social cost of increasing traffic flow by one unit must equal the
social benefit; i.e., the efficient flow level corresponds to the point
of intersection of h(MSC) and d(MPC). These two conditions together imply

that efficient travel occurs at the point K on g(MPC) in Figure 3.
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We have already established that equilibria occur at the points
of intersection of g(MPC) and d(MPC + 7). In Figure 3, for the
equilibrium to coincide with the optimum it is necessary to charge a toll
of such a magnitude that d(MPC + t) intersects g¢(MPC) "at K. The
efficient size of the toll is therefore <t*, the vertical distance between
H and K, which equals marginal social cost minus marginal private cost at

optimal flow.

In the absence of the congestion toll, social benefit from
travel on the road equals OGJN, the area under d(MPC) wup to equilibrium
flow, since the demand curve is also the marginal social benefit curve.
Social cost can be measured as flow multiplied by time costs per driver,
OCJN. Thus, social surplus equals CGJ. With‘the optimal congestion
toll, social surplus is BGHK. The excess burden from not imposing
a congestion toll therefore equals BGHK - CGJ = BCLK 4'HLJ.6 And
the toll revenue collected is BFHK. Toll revenue less excess burden
therefore equals BFHK - (BCLK - HLJ) = FHJC > 0. Thus, with low-peak
demand, if demand is less than infinitely elastic, toll revenue from an

optimal toll always exceeds the excess burden from not imposing the toll.

III. High-Peak Demand

The analysis of high-peak demand is similar to that for low-peak,

but there are some complications. First, there may be multiple equilibria,

as is shown in Figure 2. Which of these equilibria are stable? To answer

this question completely satisfactorily requires an explicit treatment of
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the dynamics of non-stationary-state traffic flow, which is beyond the

7 We can, however, provide a casual quasi-dynamic

scope of this paper.
analysis using the tools employed in the paper. We may reasonably assume
that when demand exceeds (falls short of) supply, travel time increases
(decreases). Out of stationary state, one may interpret demand as the flow
rate onto the road and supply as the average flow along the road. The
assumption is therefore that with increasing (decreasing) flow onto the

road, travel time increases (decreases). It follows that in Figure 2, E

and E3 are stable equilibria, while E2 is unstable.

Why, with equilibrium at E], is it not possible to have a
sudden switch to @, with the same flow rate on the Tower part of
g(MPC)? The fundamental identity of traffic flow is flow = velocity x
density. A sudden switch from E] to @, holding flow constant,
requires a sudden fall in density which is not possible. This line

of argument establishes that which of E] or E3 is the stationary-state

equilibrium depends on the path of adjustment to the stationary state.

If the demand curve were initially above d2 and intersected g(MPC) only
once, above E], and then shifted down smoothly towards d2, E] would be
the stationary-state equilibrium; otherwise, there would have to be a

discontinuous decrease in traffic density which is not possible. Similarly

if the demand curve were initially below d2 and intersected g(MPC) only

once, below E3, and then shifted smoothly upwards, E3 would be the stationary-

state equilibrium.
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There are two high-peak demand configurations to treat. The first
and the easier to analyze 1is shown in Figure 4. The second, to be treated

later, is shown in Figure 5.

Following the procedure used to derive the optimal toll with Tow-peak

demand, we find the optimal toll to be t*, the vertical distance between
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Figure 4: High-peak demand - simple case

the point of intersection of d(MPC) and h(MSC), H, and the point with the

same flow rate on the congested poftﬁon of g(MPC), K.

If the initial equilibrium were at E3 in Figure 4, the social
surplus from the road would be CGE3; and if it were at E], social surplus
would be PGE1. After the imposition of the optimal toll, social surplus
is BGHK. The excess burden from not imposing an optimal congestion toll
is therefore BGHK - CGE3 with initial equilibrium E3, and BPE,HK with

1

initial equilibrium E]. Toll revenues are BFHK. Now, BGHK - CGE3 -
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BFHK = FGH - CGE3= —CFHE3

Thus, with initial equilibrium E3, tol11 revenues exceed the efficiency

< 0 while, BPE]HK - BFHK = FPE]H > 0.

gain that results from imposing the optimal congestion toll. But
with initial equilibrium E], tol1l revenues are less than the efficiency

gain.

When demand is less than infinitely elastic, the relationship
between toll revenues and the efficiency gain from imposing the optimal

toll 1is that: if imposition of the optimal congestion toll causes traffic

flow to fall (rise), the excess burden associated with not imposing the

tol1 is less than (is more than) toll revenue collected. When demand is

infinitely elastic, toll revenues equal the efficiency gain. These propositions

can be demonstrated by simple geometric argument and imply that if the imposi-

tion of the optimal congestion toll causes traffic flow to increase, or

if demand is infinitely elastic, then if toll revenues more than cover

collection costs, the toll should be imposed (according to the conventional

cost-benefit criterion).

The above line of reasoning indicates that the excess burden from
not imposing a congestion toll when travel is hyper-congested may be very
large, and may even exceed the benefits from the use of the road in the

absence of the toll.

The high-peak travel demand configuration in Figure 5 illustrates
an additional complication that has to be considered. The optimal

stationary-state toll, computed as in the previous case, is t*. However,

if the pre-toll equilibrium is at E?, then application of this toll

during the period of adjustment to the new stationary state results

in the post-toll equi]ibrium being E? and not 6.8 Imposition of a toll
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Figure 5: High-peak demand - comp]iéation

of magnitude at Teast T in the period of adjustment, so that d(MPC + 7)
does not intersect the hyper-congested portion of g(MPC), circumvents this
problem. After some period of time with the toll =t hyper-congestion

ends, and then the tol1l can be reduced to t*.

IV. Conc]uding‘Comments

The standard analysis in urban economics of traffic congestion is
strictly correct only in stationary state and ignores hyper-congestion. We
have extended this analysis in examining the economics of congestion to]Ts,

taking hyper-congested travel into account.

Several interesting results have been obtained. First, under
high-peak demand conditions;multiple stable hyper-congested stationary-state
equilibria are possible. Which of these possible equilibria occurs depends

on the pattern of demand prior to establishment of the stationary state.
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Second, with high-peak demand, the efficiency gain from imposing the

optimal toll may exceed both toll revenues and the benefits from road usage
in the absence of the toll. Finally, in moving from an initial hyper-
congested equilibrium to efficient utilization of the road, it may be
necessary to impose a temporarily larger toll to eliminate hyper-congestion,

after which the tol1 may be lowered to the efficient stationary-state

lTevel.

Actual traffic flow is inherently non-stationary-state. Over some

sections of the road during some periods of the rush hour, there is hyper-
congestion; over other sections of the road and during other periods of

the rush hour, there is not. The existing’1iterature makes the assumption
that, for most purposes, nothing essential is Tost by treating traffic

flow as uniform over the rush hour. On the basis of our analysis here we
have doubts concerning the validity of this assumption. Whether our doubts
are well-founded will have to await an explicitly non-stationary-state

analysis of the economics of traffic f]ow.
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FOOTNOTES

We would Tike to thank David Pines for helpful comments on an earlier

draft.

William Vickrey has presented several seminars on this'topic. This
note both commits his important contribution to paper and extends

it.

Marginal private cost may actually decrease with flow at very Tow
levels. For instance, a driver will be alerted to stop signs by
cars ahead of him slowing down and stopping. Thus, he may safely
travel at a slightly higher speed if there are a few rather than

no other cars on the road. To simplify the discussion, however, we

treat the region of uncongested travel as being horizontal.

That is, we work in terms of the inverse of the conventional function.
Note that flow is a set-valued function of marginal private cost
with uncongested travel. This is a notational inconvenience, but
does not concern us since we are interested in the other regions

of the curve.

What happens if the hour]y flow onto the entrance of the road

exceeds capacity flow by one car per hour? If capacity flow on the
road still occurs, then a queue develops which increases in length
by one car per hour. The cost of adding an extra car to the queue
is the time taken to move up in the queue by one car, times the

number of cars which enter the queue after the car in question,
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which is infinite with stationary demand. But this is a non-
stationaO'ndt a stationary state. Hence, marginal social cost is

undefined at capacity flow.

We do not use that portion of the function f = h(MSC)

corresponding to hyper-congestion.

The more usual measure of the excess burden from not imposing a
congestion toll is HIJ, the amount by which the social cost
associated with the excess flow, MN, exceeds the private cost.

We measure excess burden in the way we do to facilitate comparing

it with toll revenues and treating hyper-congestion.

Arnott, Robin Lindsey, and Kenneth Small are engaged in research

on the economics of non-stationary-state traffic flow.

Otherwise, there would have to be a physically impossible dis-

continuous change in density.
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