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pktimal Tolls with High-Peak Travel Demand*

I. Introduction

Corresponding to any level of stationary-state traffic flow are

two velocities. Zero flow, for instance, corresponds to travel both on

an empty road and in a stationary traffic jam. We refer to travel at the

lower velocity associated with a given flow as hyper-congestion, and

periods during which hyper-congestion is possible as being characterized

by high-peak travel demand. Our aim is to determine optimal congestion

tolls with high-peak demand. Our note builds on Vickrey's discussion of

this problem.'

Before proceeding with the analysis, we must clarify our terminology.

The technology of stationary-state travel is given by a function which

relates stationary-state traffic flow to each vehicle's travel time. The

seminal papers on optimal congestion tolls, Walters [1961] and Vickrey

[1963, 1969], framed the analysis in terms of average and marginal cost.

To facilitate comparison between their analyses and ours, we treat travel

cost as functionally related to travel time; the technology of stationary-

state travel may then be characterized by a function relating stationary-

state traffic flow to each driver's time cost of travel, which is termed

either average social cost or marginal private cost. This relationship

is shown in Figure 1. We define the flat portion of this curve, on which

travel is so light that a few extra cars on the road do not increase a driver's

travel costs, as the region of uncongested travel;
2 
the upward-sloping

portion as the region of congested travel; and the downward-sloping portion

as the region of hyper-congested travel. Stationary-state travel in the
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Figure : The technology of road travel

region of hyper-congestion is demonstrably inefficient, since corresponding

to any point in this region there is another point with the same flow and

lower travel costs, which may lie in either the region of congested or

that of uncongested travel.

Previous published analyses of the determination of optimal conges-

tion tolls have treated marginal private cost as a uni-valued function of

flow. However, when hyper-congestion is possible there are two marginal pri-

vate costs associated with each level of flow, one corresponding to a point in



costs from a unit increase in flow as

the region of hyper-congested travel and another to a point in one of

the other two regions. To circumvent this difficulty, we treat flow as

a function of marginal private cost,3 and denote this function as

f = g(MPC).

In a stationary state, total travel costs per unit time equal each

driver's travel costs times flow. We define the increase in total travel

marginal social cost.
4 

From

f = g(MPC), one can calculate the relationship between marginal social cost

and flow, which is denoted f = h(MSC). This function is• plotted in Figure

1 for congested and uncongested, but not for hyper-congested, travel.
5

We now characterize the demand side of the travel "market". The

number of cars entering the road per unit time depends on the cost to

the driver of travelling on the road. This cost comprises the monetized value

of travel time, MPC, plus the congestion toll,

demand for travel function as d - d(MPC + )•

We denote the stationary

We say that there is

high-peak demand if the demand curve intersects the hyper-congested region

of g(MPC),d = d2(MPC + T) in Figure 2; low-peak demand if the demand

curve intersects the congested, but not the hyper-congested, region of

g(MPC),d = dI(MPC + T) in Figure 2; and off-peak demand if the demand

curve cuts neither the congested nor hyper-congested regions of

g(MPC),d = AMPC + T) in Figure 2.. In our terminology, un-

congested, congested, and hyper-congested refer to the characteristics

of traffic flow, while high-peak, low-peak, and off-peak refer



Figure 2: Levels of demand

to the characteristic of travel demand.

We define stationary-state equilibrium to obtain whenever a driver's

travel costs inclusive of the toll are such that the flow of the road equals

the number of cars wanting to enter the road per unit time. Thus, equil-

ibria are characterized by the points of intersection of g(MPC) and

d(MPC T). Exploiting the analogy between market and traffic flow equil-

ibrium, we see that g(MPC) can be interpreted as a traffic supply curve.

II. Low-Peak Demand

We now review the economics of optimal congestion tolls with low-peak

demand, using our terminology.

Figure 3 depicts a low-peak demand situation. In the absence of a a,

congestion toll, equilibrium occurs at J, the point of intersection of the
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supply and demand curves.

It is well-known that, without a toll, equilibrium traffic flow

in congested traffic is inefficient because there is an uninternalized

congestion externality. In deciding whether or not to travel on the

road, a driver considers only his own travel costs and ignores that

his travelling on the road slows other drivers down.

There are two necessary conditions for efficient stationary-state

utilization of the road. First, hyper-congestion may not occur. Second,

the social cost of increasing traffic flow by one unit must equal the

social benefit; i.e., the efficient flow level corresponds to the point

of intersection of h(MSC) and d(MPC). These two conditions together imply

that efficient travel occurs at the point K on g(MPC) in Figure 3.



We have already established that equilibria occur at the points

of intersection of g(MPC) and d(MPC + T). In Figure 3, for the

equilibrium to coincide with the optimum it is necessary to charge a toll

of such a magnitude that d(MPC + T) intersects g(MPC) at K. The

efficient size of the toll is therefore the vertical distance between

H and K, which equals marginal social cost minus marginal private cost at

optimal flow.

In the absence of the congestion toll, social benefit from

travel on the road equals OGJN, the area under d(MPC) up to equilibrium

flow, since the demand curve is also the marginal social benefit curve.

Social cost can be measured as flow multiplied by time costs per driver,

OCJN. Thus, social surplus equals CGJ. With the optimal congestion

toll, social surplus is BGHK. The excess burden from not imposing

a congestion toll therefore equals BGHK - CGJ = BCLK - HLJ.6 And

the toll revenue collected is BFHK. Toll revenue less excess burden

therefore equals BFHK - (BCLK - HLJ) = FHJC > 0. Thus, with low-peak

demand, if demand is less than infinitely elastic,toll revenue from an

optimal toll always exceeds the excess burden from not imposing the toll.

III. High-Peak Demand

The analysis of high-peak demand is similar to that for low-peak,

but there are some complications. First, there may be multiple equilibria,

as is shown in Figure 2. Which of these equilibria are stable? To answer

this question completely satisfactorily requires an explicit treatment of



the dynamics of non-stationary-state traffic flow, which is beyond the

scope of this paper.7 We can, however, provide a casual quasi-dynamic

analysis using the tools employed in the paper. We may reasonably assume

that when demand exceeds (falls short of) supply, travel time increases

(decreases). Out of stationary state, one may interpret demand as the flow

rate onto the road and supply as the average flow along the road. The

assumption is therefore that with increasing (decreasing) flow onto the

road, travel time increases (decreases). It follows that in Figure 2, E

and E are stable equilibria, while E2 is unstable.

Why, with equilibrium at El, is it not possible to have a

sudden switch to Q, with the same flow rate on the lower part of

g(MPC). The fundamental identity of traffic flow is flow E velocity x

density. A sudden switch from E
1 

to Q, holding flow constant,

requires a sudden fall in density which is not possible. This line

of argument establishes that which of El or E3 is the stationary-state

equilibrium depends on the path of adjustment to the stationary state.

If the demand curve were initially above d2 and intersected g(MPC) only

once, above E
I' 

and then shifted down smoothly towards d2, E
1 would be

the stationary-state equilibrium; otherwise, there would have to be a

discontinuous decrease in traffic density which is not possible. Similarly

if the demand curve were initially below d2 and intersected g(MPC) only

once,below E3, and then shifted smoothly upwards, E3 would be the stationary-

state equilibrium.



There are two high-peak demand configurations to treat. The first

and the easier to analyze is shown in Figure 4. The second, to be treated

later, is shown in Figure 5.

Following the procedure used to derive the optimal toll with low-peak

demand, we find the optimal toll to be T*, the vertical distance between

F
a.
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Figure : High-peak demand - simple case

the point of intersection of d(MPC) and h(MSC)„ and the point with the

same flow rate on the congested portion of g(MPC), K.

If the initial equilibrium were at E3 in Figure 4, the social

surplus from the road would be CGE3; and if it were at El, social surplus

would be 
PGE1* After the imposition of the optimal toll, social surplus

is BGHK. The excess burden from not imposing an optimal congestion toll

is therefore BGHK - CGE3 with initial equilibrium E3, and BPEOK with

initial equilibrium El. Toll revenues are BFHK. Now, BGHK - CGE
3 
-

•
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BFHK = FGH - CGE3= -CFHE3 < 0 while, BPEOK - BFHK = FPE1 H > 0.

Thus, with initial equilibrium E3, toll revenues exceed the efficiency

gain that results from imposing the optimal congestion toll. But

with initial equilibrium El, toll revenues are less than the efficiency

gain.

When demand is less than infinitely elastic, the relationship

between toll revenues and the efficiency gain from imposing the optimal

toll is that: if imposition of the optimal con9estion toll causes traffic

flow to fall (rise), the excess burden associated with not imposing the 

toll is less than (is more than) toll revenue collected. When demand is

infinitely elastic, toll revenues equal the efficiency gain. These propositions

can be demonstrated by simple geometric argument and imply that if the imposi-

tion of the optimal congestion toll causes traffic flow to increase, or

if demand is infinitely elastic, then if toll revenues more than cover

collection costs, the toll should be imposed according to the conventional

cost-benefit criterion).

The above line of reasoning indicates that the excess burden from

not imposing a congestion toll when travel is hyper-congested may be very

large, and may even exceed the benefits from the use of the road in the

absence of the toll.

The high-peak travel demand configuration in Figure 5 illustrates

an additional complication that has to be considered. The optimal

stationary-state toll, computed as in the previous case, is However,

if the pre-toll equilibrium is at Eb' then 
application of this toll1 

during the period of adjustment to the new stationary state results

in the post-toll equilibrium being El and not e.8 Imposition of a toll
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Figure : High-peak demand - complication

of magnitude at least T in the period of adjustment, so that d(MPC +

does not intersect the hyper-congested portion of g(MPC), circumvents this

problem. After some period of time with the toll T hyper-congestion

ends, and then the toll can be reduced t

IV. Concluding Comments 

The standard analysis in urban economics of traffic congestion is

strictly correct only in stationary state and ignores hyper-congestion. We

have extended this analysis in examining the economics of congestion tolls,

taking hyper-congested travel into account.

Several interesting results have been obtained. First, under

high-peak demand conditions,multiple stable hyper-congested stationary-state

equilibria are possible. Which of these possible equilibria occurs depends

on the pattern of demand prior to establishment of the stationary state.

e



Second, with high-peak demand, the efficiency gain from imposing the

optimal toll may exceed both toll revenues and the benefits from road usage

in the absence of the toll. Finally, in moving from an initial hyper-

congested equilibrium to efficient utilization of the road, it may be

necessary to impose a temporarily larger toll to eliminate hyper-congestion,

after which the toll may be lowered to the efficient stationary-state

level.

Actual traffic flow is inherently non-stationary-state. 
Over some

sections of the road during some periods of the rush hour, there
 is hyper-

congestion; over other sections of the road and during other periods 
of

the rush hour, there is not. The existing literature makes the assumption

that, for most purposes, nothing essential is lost by treat
ing traffic

flow as uniform over the rush hour. On the basis of our analysis here we

have doubts concerning the validity of this assumption. 
Whether our doubts

are well-founded will have to await an explicitly non-stati
onary-state

analysis of the economics of traffic flow.
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FOOTNOTES

We would like to thank David Pines for helpful comments on an earlier

draft.

1. William Vickrey has presented several seminars on this topic. This

note both commits his important contribution to paper and extends

.t.

2. Marginal private cost may actually decrease with flow at very low

levels. For instance, a driver will be alerted to stop signs by

cars ahead of him slowing down and stopping. Thus, he may safely

travel at a slightly higher speed if there are a few rather than

no other cars on the road. To simplify the discussion, however, we

treat the region of uncongested travel as being horizontal.

3. That is, we work in terms of the inverse of the conventional function.

Note that flow is a set-valued function of marginal private cost

with uncongested travel. This is a notational inconvenience, but

does not concern us since we are interested in the other regions

of the curve.

4. What happens if the hourly flow onto the entrance of the road

exceeds capacity flow by one car per hour? If capacity flow on the

road still occurs, then a queue develops which increases in length

by one car per hour. The cost of adding an extra car to the queue

is the time taken to move up in the queue by one car, times the

number of cars which enter the queue after the car in question,
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which is infinite with stationary demand. But this is a non-

stationary not a stationary state. Hence, marginal social cost is

undefined at capacity flow.

5. We do not use that portion of the function f = h(MSC)

corresponding to hyper-congestion.

6. The more usual measure of the excess burden from not imposing a

congestion toll is HIJ, the amount by which the social cost

associated with the excess flow, MN, exceeds the private cost.

We measure excess burden in the way we do to facilitate comparing

it with toll revenues and treating hyper-congestion.

7. Arnott, Robin Lindsey, and Kenneth Small are engaged in research

on the economics of non-stationary-state traffic flow.

8. Otherwise, there would have to be a physically impossible dis-

continuous change in density.
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