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Abstract

In this paper we develop an extremely general procedure for per-

forming a wide variety of model specification tests by running artificial

Tinear regressions and then using conventional significance tests. In

particular, this procédure allows us to develop non-nested hypothesis

tests for any set of models which attempt to explain the same dependent
variable(s), even when the error specifications of the various models are
not the same. For example, it is straightforward to test linear regression
models against Toglinear ones. These procedures are illustrated by an
empikica] application, in which we éstimate and test several competing

models of personal savings behavior in Canada.




Introduction

In this paper we develop an extremely general procedure for per-
forming a wide variety of tests for model misspecification by running
artificial linear regressions and then using asymptotic t-tests or like-
1ihood ratio tests. Our basic result can be used to test for, among
other things, both heteroskedasticity and serial correlation in the context
of very general nonlinear regression models. More'important, it can be
used to develop non-nested hypothesis tests for any two (or more) models
which purport to explain the same dependent variable (or set of dependent
variables), even when the error specifications of the various models are

different. For example, it is straightforward using this procedure to

test a linear regression model against a loglinear one.

In Section 1 we derive the principal theoretical results of the paper.
In Section 2 we use them to develop the non-nested hypothesis testing pro-
cedure alluded to above. In Section 3 we apply them to some other pfob]ems
in testing model specification. Finally, in section 4, we apply some of the
,techniques we have proposed, especially the ones for non-nested'hypothesis

testing, to an empirical example.

The Principal Results

Consider the model

felyes Yis 0) = €4» €4 ~ N(0,1) (1)

where Yt is the tth observation on a dependent variable, yt is a vector of




-2 -

past values of y, 6 is a vector of r parameters to be estimated, and ft(-)

is a function which may, and usually will, depend on a vector of exogenous

variables Xt’ It is assumed that ft and its derivative with respect to Yo
1

ft’ are twice continuously differentiable with respect to 6. There are

assumed to be n > r observations.

The loglikelihood function for this model is:

L = -(n/2) Tog 21 - (1/2) ftft + 1

t

where 1t denotes the'tth component of an n-vector of ones and
ky = Tog [f.(yis yys 8)] - (3)

The notation used in (2) perhaps requires some introduction. We use the
Einstein summation convention that repeated indices are summed over, when

one is a subscript and ‘the other is a superscript. Thus ftf means 52=1 fi,

t
and both f. and £t denote ft(yt’ 9t’ 6). The notation "|...|" in (3) denotes

absolute value.

The loglikelihood function (2) is particularly simple for two reasons.
- First, we have assumed that the errors have a variance of unity (because the
parameter(s) determining the actual variance have been subsumed in 6). Secondly,

the assumption that f, depends only on current and past values of y means

t
that the Jacobian matrix of the transformation from the y's to the e¢'s is
lower triangular, so that only its diagonal elements appear in the Tikelihood
function. Nevertheless, as we shall see, (1) is general enough to include a

wide variety of econometric models as special cases.
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Each of the likelihood equations for a maximum of (2) with respect
to 6 may be written as
- t _
La = - f ft,u (4)

where the subscript o denotes differentiation with respect to the ath

component of 6. . Each element of the Hessian may be written as

_ t t ot
b =~ Fe Tt =7 fros ¥ Kiyas ~ (5)

where the subscript ap denotes differentiation with respect to both the ath

and Bth components of 6. From (3) one easily calculates that

1 ! 1 ] 2

Keag = (Frog 7 Te) = (fy o T o)/ (FL0). (6)

The first term in (6) is simply the derivative of f, . t

is ]/ft). On the other hand,

with respect to ¢

(since the derivatfve of Y with respect to €t

each of the terms in the middle sum in (5) is - ft ft " Thus (5) may be

rewritten as
1

Lt t t o, |
Lag = = g fra ™ Kp kot t [(fy g/ ft) - e Tl (7)

But the expectation of the lastterm in (7) is zero. It is an easily derived
property of the standard normal distribution that, when x is standard

normal and g is any continuously differentiable function, E(xg(x)) =

E(g (x)) if the expectations exist. In the last term in (7) ft plays the
role of x, ft,aB plays the role of g(x) and, as indicated above, (ft,as/ft)

is then equal to g'(x). Thus we conclude that

_oqet t
- E(Fg fu* kg ke o) | (8)

—E(LaB)
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Now consider the linear regression:

+ errors.

This -regression has 2n observations and r regressors. For the first n’
observations the regressand is ft and each of the regressors is minus the
derivative of ft with respectvto one of the components of 6, both evaluated
at the maximum likelihood estimates 8, For the last n observations, the
regressand is unity and each of the regressors is the defivative of kt with

respect to the same component of 6, again evaluated at 6. It follows

jmmediately from the likelihood equations (4) that the OLS estimates of b

from (9) will be zero-identically. Moreover, a typical element of the XTX

matrix from that regression will be

S PR ot |
XX = Fafia ® K Keo T (10)

which is a consistent estimate of (8). Also, the ML estimate of the variance

from (9)'w111 be

(F,F° + n)/2n | )

which clearly has a plim of unity. Thus the estimated covariance matrix
of b from the Tinear regression (9) will provide a consistent estimate of the
covariance matrix of 6, which by the standard result is asymptotically given

by the inverse of (8).
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Now suppose that we evaluate the régre&mnd and regressors in (9)
not at the ML estimates 6 but at 5, which maximizes the 1ikelihood function
(2) subject to R distinct restrictions. If those restrictions are valid,
that is, if they are satisfied by the true parameters ¢ of (1), then it
can be seen (details in Appendix 1) ‘that, asymptotically, (g-e) + b, where
b denotes the OLS eStimates from (9), fs.normal]y distributed with mean vector
zero and covariance matrix given by the inverse of (8) and thus consiétently
estimated by the covariance matrix from the linear regression. It follows
that restrfctipns on g may be straightforwardly teéted by asymptotic t-tests
(if R = 1 and the restriction is of the form eB = 68 for some g) or by
Wald or Tikelihood-ratio tests (if R > 1), app]ied‘to regression (9). Thus
regreésion (9) provides a way to test any set of restrictions on (1). One

need only estimate (1) subject to the restrictions and then estimate (9).

Our appkoach is clearly similar in spirit to the "Lagrange Multiplier"
principle of Aitchison and Silvey [1,2]. Such LM tests have recently been
applied to econometrics by Breusch and Pagan [3,4]; Godfrey [11,12] and
Engle [10], among others. However, the actual test statistics we suggest
will not be LM test statistics. Instead, we are following the general
approach of Durbin's [9] "alternative procedure". Indeed, regression (9) -
can be regarded as a particular implementation of that procedure. We believe
that it is usually simpler and more natural to apply wa1d or LR tests to
artificial regressions than it is to work out LM test statistics explicitly.
In several of the papers mentioned above, (see especially [10] and [12])
the LM test procédure turns out to involve an artificial regression which is

a special case of (9), and a test statistic which is asymptotically equiv-

alent to the LR or Wald statistics based on (9)..
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Econometricians do not often encounter regression models in which
the error variance is known to be unity a priori. Therefore consider the

model

2

9 (¥ys0) = up, u, ~ N(0,07) (12)

where 02 is to be estimated. This model can easily be put into the form of
(1), by defining
Fi(ys8) = Filyys0,0) = (1/0)g,(yys0).

Then regression (9) becomes

A A

+ errors  (14)

This is the basic result for univariate regression models.

]
Observe that, if 9t Y is zero for all elements vy of ¢, we may

replace (14) by

9¢ t (15)

=—/\ 'Y N
9y, B * U

~1

It is possible to do this because when gt,Y is zero, the Tast regressor

in (14) is orthogonal to all of the other regressors as a consequence of
the likelihood equations (4). Since that last column (1ike all the others)
is also orthogonal to the regressand, we may drop it without affecting the
properties of (14). A1l the remaining regressors are zero for the last n
observations, so‘we may drop those observations. Finally, multiplying the

regressandand all regressors by o yields (15).
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If (15) is valid, we may write (12) as

(y) = h (o) +uy

for some suitable functions ht and~£t, so that (15) becomes

A ‘-/\ Y A - .A
zt(yt) - ht = ht,v b' + U . : (17)

This is familiar for thé case in which zt(yt) = Yy It is reasonably
well known that regression (17) then has the properties we have claimed
for (9), and hence for (14); see in particular Durbin [9] and Davidson
and MacKinnon [6]. Using those properties of (17) one may easily deve]op
a variety of useful procedures. For example, all of the tests for serial
correlation in linear regression models proposed by Godfrey [1];12] may
be derived'from (17), in the context of nonlinear regression models.]
Regression (17) may also be used to calculate a consistent estimate of the
covariance matrix for linear regression models with serial corre]ation‘and

lagged dependent variables; conveniently so, since most regression packages

provide an inconsistent estimate of this matrix (see Cooper [51).

Regression (9) may also be used to test multivariate regression

models. Consider-the model

_ T -

where the dependent variables are indexed by i = 1 to m and the observations
are indexed by t = 1 to n. We assume that 95 may depend additionally on
exogenous variables and on lagged values of all of the endogenous variables,

- but that it does not depend on yjt for j > i. The covariance matrix I is
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to be estimated. Special cases of (18) include systems of non-simultaneous
equations, such as consumer demand systems, énd linear simu]tanedus equation
systems written in terms of the restricted feduced form. - Nonlinear simultan-
eous equation systems are nof special cases of (18); however, because I would
have to depend on t if the errors originally adhered to the structural rather

than reduced-form equations.

We now rewrite (18) in the form of (1). First, we define an upper-

triangular m x m hatrix P by the equation

ppl =y ' (19)

and take note of the standard result that if U ~:N(0,Z) where U is a row

vector of length m, then
UP . NO,I). o (20)
Hence we may make the definition

_pld
fit(yit’e) - P i gj (yjts¢), i ‘ ‘ (21)

where in =0 for j > i. If we then replace the double subscript "it" by the
single subscript s = n(i-1) + t, it is evident that the model will have the
form of (1). It will be more canvenient to retain the double Subscript,

th

however. Note that the it Jécobian term in the loglikelihood function will

" be
kit = 109 I Pii git(yit,¢)! - (22)

where 95t denotes the derivative of 9it with respect‘to Vit In order to

write down regression (9) we need the first derivatives of fit and kit'




These are:

0 otherwise

g

it,y

Jit

]/Pii if i
0 otherwise.

Substituting these derivatives, evaluated at the ML estimates PJi and ¢,

into regression (9) yields the result we want. This regressim,which has

2mn observations and & + (m+1)m/2 regressors, is rather cumbersome to write

A

out, so we merely describe it here. The regressand is PJi gjt for the first

mn observations, and unity for the last mn. The regressor corresponding to

the yth component of ¢ is - PJi gjt . for the first mn observations, and

~1l

g],t Y/git for the Tast mn. The regressor corresponding to Pii (a diagonal

th

element of P) is 'ait in the it™ place for all t, ]/ﬁii in the (it + mn)th

place, and zero everywhere else. Finally, the regfessor corresponding to Pij
(an off-diagonal element of P) is -th in. the itth place, and zero everywhere

else.

2. Non-nested Hypothesis Testing

In [6] and [8] we developed techniques for non-nested hypothesis

testing in the context of univariate and multivariate modé]s respectively.
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Like earlier authors (notably Pesaran and Deaton [13]) we restricted our
~attention to models with the same error specification. In the univariate
case, we proposed that in order to test

. | 2
Hot vy = FL(B) + ugys ugy ~ N(0, o)

agaihst
. | 2y
Hyo vy = 9 ly) +ugy Uy ~ N0, 0y7)

one can estimate the possibly nonlinear regression:

~

yp = (1-a)fi(B) + ag, + uy ~ (24)

(where g, = (v), and ; denotes the ML estimate from H]) and test whether

9t
o = 0. Since Qt is asymptotically non-stdchastic, this procedure, which we
called the J-test because one estimates o and g jointly, is asymptotically
valid. As an alternative to the J-test, we suggested the P-test, which

" requires that one estimate:

A A

Vi - ft = Ftb +}a(gt - ft) + Uys | B - - (25)

is a vector of derivatives of ft(s) evaluated at the ML estimates B.

where Et
Thus (25) is a linear approximation to (24) about the point (E,O). This

P-test procedure is simply an-appiication'of regression (17); its validity
follows immediately from the validity of the J-test and from the results in

Section 1.

We now wish to consider a somewhat more general case. The model to

be tested is
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Hp: ft(yt,yt;s) = Ugys

and the alternative model is
Hyt 9, (YisY,sy) = u Uy, ~ N(0,02)
10 SV T e 1t~ o
The notation here is the same as the notation used in Section 1. To

perform the J-test in this case one would have to estimate

A

(1-a) f (B) + ag (y) = ug (28)

by nonlinear methods. This procedure will clearly be valid if under HO

y tends asymptotically to some probability Timit YO, since in that case

~

vy will be asymptotically non-stochastic. Now y is what White [14] calls

a quasi-maximum Tikelihood estimator or QMLE; that is, the estimatdr.one
obtains by applying maximum likelihood to a model which is false. For the
case where the random variables y are independently and idenfica]]y dis-
tributed, White proves under weak regularity conditions that a QMLE does
‘indeed converge to some probability limit. We conjecture that this result
carries over to the independently and not identically distributed case; a
proof would be beyond the scope of this paper. For now, we merely assume

~

that g, and f, satisfy whatever conditions are necessary for y to be
t t :

asymptotically non-stochastic.

Since the Tikelihood function for (28) will include the Jacobian

1 A

1tlog | (1-a) f;lc(B) + ocgt(Y_)I >

performing the J-test will typically be a nontrivial undertaking beyond the
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capébi]ity of most regression packages. As an alternative to the J-test,

we therefore suggest what we shall call the L-test, which uses (14) to
cdnstruct a linear regression to test for o = 0. Straightforward application
of (14) yie]dé a regression which is unnecessafi]y complicated, but which can

be simplified to:

A

B ft,e

o 2 &
b gt

+ errors  (29)

A AL A

/T4

A At A1
1
%t/ Tt ) A, 909t
In deriving (29) we have made use of the facts that adding a constant multiple
of any regressor to any other regressor, or multiplying any regressor by a
constant, have no effect on the fit of the regression. In this case, because

all the other regressors are orthogonal to the regressand by construction,

the t-test for o = 0 is also not affected by these operations.2

As one very simple and concrete example of (29), suppose that the two

models are, in matrix notation,

R Xg + Ug

H]: y* = 7y + U : (30)

where y* is a vector of the natural logarithms of y. Then regression (29),

again in matrix notation, is simply:
v - XB X | b y - Xg| b | zv-y*p”
: + + errors (31)
A - A A _'I
oyt - 0 fool : _éoy

: ~ where y_] means the vector whose £t element is 1/yt. Thus it is absolutely
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' straightforward to test a linear model against a loglinear one; so, of

course, is it to test a loglinear model against a linear one.

There is no reason at all why a hypothesis should be iested against
| only one alternative hypothesis at a time. When there are several alter-
natives, regression (29) will have several regressors like the last one,

_ each corresponding to a different alternative. In this case, one appro-
priate test is a Tikelihood ratio test. The value of the 1og11ke11hood.
function under the null can easily be computed byrregressing the debendent
variable from (29) on any one or more of the regressors (except for the

last one), since all are orthogonal to the regressand by construction.

At this point if is perhaps worthwhile to inject a word of caution.
Although it is very easy to run regression (29) with a good modern regression
package; there is always the possibility that one or more of the regressors
may be constructed wrongly. For example, (29) does not include a conétant
term, and some programs may automatically include one unless told not to.

If this happens, it is quite Tikely that the t-statistié on & may be extremely
large, and entirely invalid. To guard against this, we would suggest that

one run (29) without the column corresponding to o first, to make sure that
all the b's aré in fact zero, and that one then take great care to ensure

that the Tast column is constructed correctly.

In [8] we provided two different generalizations of the P-test to

the case of mu]tivariate'modé1s. The simpler of these we called the'PO—test.

Suppose that the model to be tested is

. _ o ,0 0 .\T

~.N(0,zo)
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and that we wish to test it against

1 (u 1 )T

Hiso vig = 9400 * v 1g oo U)o~ N(Os Bp)

To perform the Po-test, one merely has to compute the régression .

I
PRilyge = Fie) =P Fieg

A

B J 2
b™ + aP? (g5 - Fip) + gy

(32)
where Pji is the jith element of an upper triangular matrix P such that

T_ 2-1
PP = ZO .

of the univariate P-test, regression (25).

This is easily seen to be a straightforward gehera]ization

We now consider the more general case in which regressions like

(32) are no longer valid. The model to be tested is

(33)

e _ 0. 0
Mot FiglyyeeB) = ujes (v

s o
; . umt) . N(O,ZO)

and the alternative model is

. _o 1 ,
_H]f git(yit’Y) - uit’ (uit ceee um ) ~ N(O,E]). (34)
These models are aséumed to have the same characteristics as the multivariate
models discussed in section 1. One way to perform a J-test in this case
would be to estimate | |

(] = a)fit(B) + dait ; uit (35)'

by highly nonlinear methods. As in the univariate case, such a procedure

will be valid as Tong as y tends to some probability Timit Yoo and we assume

that this is the case.

The Jacobian term in the Tloglikelihood function for (35) is
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109 | P [(1-0) £.,(8) +ag. ]| . ©(36)

It is now straightforward to derive an L-test as an application of the
multivariate regression described in Section 1. The L-test regression
will be identical to that regression, with.g replaced by f everywhere, and
‘with one additional regressor. That regressor, which corresponds to o,

A

will have PJi(f in the first mn observations and (5’ /%1t - 1) in

it~ 95t)
the last mn observations. It is evident that, in the case where f it.e =0
for all elements of B, and git = fit’ this L-test regression may validly be

replaced by the P.-test regression (32). Thus we call this L-test fhe Lo-test:

0

One word of warning is in order. If % it and g t are very different
in magnitude, truncation error in the calculation of g it %;t and f §1t
may be severe, and may cause almost perfect collinearity. It is therefore
important to scale f and g similarly. This is less of a problem in the

univariate case, because it was there possible to simplify the regression so

that terms like ft - gtdkinot appear.

3. Some Nested Hypothesis Tests

The results of Section 1 can be used to derive a large number of
tests for model specification which do not rely on the presence of non-

nested alternative models. Here we illustrate a few of these.

First of all, it is evident that all of Godfrey's [11,12] tests
for AR, MA and ARMA errors in the contexf of Tlinear regression models, and of
course Durbin's [9] "alternative" procedure for testing for AR(1) errors,

are applications of regression (17). Similar tests can be derived from

regression (14) for models which>have a non-zero ‘Jacobian term in the log-
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likelihood function. We illustrate this for the case where the null
hypothesis has no serial correlation, and the alternative hypothesis is

that the errors follow an AR(1) process. We write the null hypothesis as

. y _ 2
. HO- ft(yt’ytas) - uta ut ~ N(O:O )- (37)

The alternative hypothesis is that

+e,,

- 2
Up = pUy_, : e, ~ N(O, ce).

This implies that the general model can be written as

L

2,72 = _
(]"Q ) f] (Y]sY]sB) = e]

ft(yt!yt’s) - p t_](.yt_]’.yt_" 38) = et, t=2 DRI (38)

Unlike most authors, we do not drop the initial observation at this stage,
and we do explicitly assume that the error process is stable. As we shall

see, these assumptions are inconsequential.

We now ca]cu]ate.the derivatives of (38) -and of the log of its

Jacobian with respect to B and p, and evaluate them at 8 = B, p = 0 and

A

= g. The testing regression can then be derived immediately from (14).
After we multiply all variables by 8 or 02 to simplify things slightly, we
~obtain the following regression:

A

"~ Tie
+ errors  (39)

Where fo is defined to be zero. It is interesting to observe that, a]though

we did not explicitly ignore the first observatfon, it turns out to play no
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role at all, because for observation 1 the derivative of (38) with

respect to p, evaluated at p ='0, is zero.

The résu]ts of Section 1 are particularly useful for deriving

tests for heteroskedasticity. Suppose that the null hypothesis is

. = YT I
HO' yt - ft(B) + uts ut ~ N(OsO ) (40) |

and the alternative is
- ft(B) + ut’
= h(Zt,a) : _ (41)

~where o is a vector of parameters which can be partitioned into o

(a scalar) and o, to o Under the null hypothesis, a, = ...

1 1.

SO that_ot = ‘.o. This formu]atidn is similar to that of Breusch

and Pagan [3], but they assume that h(Zt,a) can be written as h(a0 + Ztia1)’

which is much more restrictive.

In this case the testing kegression turns out to be

g -
b hy (v F) | a

o

+ errors.  (42)
One then uses a likelihood ratio or Wald test for the hypothesis that
a] through am (but of course not ao) are zero.

- Another alternative hypothesis which it might be interesting to

investigate is that




o, =0+ aft(B) (43)

since this includes both homoskedastic errors and errors whose variance
is proportional to the square of the dependent variable as special cases.

The testing regression for this alternative is

Vi - ft t.8 b Y - ft b ft(yt—f )1 a

~ _ + + errors (44)
oty -0ty

These procedures merely illustrate a few of the situations in which
(14) can fruitfully be applied. The reader should have no trouble develop-

ing new tests based on (14) for a variety of other problems.

The”results of Section 1 may a]so.be uﬁed to derive a battéry of
-tests for multivariate models. However, it is difficult to develop inter-
esting and usefuT tests in this context without specifying a lot more about
the structure of the model than we have done so far, and it seems best to

derive such tests in the context of practical applications.

An Application

“In this section we provide an illustration of how some of the
procedures deve]oped above, -in particular the L-téSt for non-nested models
with different error specifications, may fruitfully be used in applied
econometrics. The objective is to estimate a single-equation model of
aggregate peréona] savings in Canada using QUarter1y time series data, not
seasona]]} adjusted,.for 1954 to 1978. The data used are described in

Appendix 2. - One of the models we estimate has previously been estimated by

us in [7], using American as well as Canadian data, but in that paper it
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was tested'op1y against models with the same error specification.

We initially estimate a rather naive model, which asserts that the
level of real savings, St’ should depend Tinearly on real personal dis-
posable income, Yt’ the rate of inflation, T and lagged savings, St-1'

We obtain

Mode] 1

= -1352 + .2721 Yt + 2840 m + 2174 St- + others

t
( 329) (.0503) (3197)  (.0932)

log L = -640.862 R% = .9664 ARl = 0.33 AR4 = 0.06

t 1

Standard errors are in parentheses. The.numbers reported as AR1 and AR4
are tést statistics for AR(1) and simple AR(4) errors, obtained by re-

- estimating thé model with residuals lagged dhé or four periods as additiona]A
regressors and taking the t-statistics on those additional regressors. These
tests are elementary applications of (17) above; see also Durbin [9]. The
notation "+ others" indicates that Model 1 includes additional regressors,

| the coefficients of which are.not reported. In fact, there are nine seasonal
dummy variables (thfee straight dummiés, three dUmmies multiplied by an
annually-increasing linear time trend and three dummies multiplied by an
annually-increasing quadratic trend, each set of dummies being cqnstrained
to sum to zero over.the year), and two trend terms (linear and quadratic,

- increasing quarterly). The seasoﬁa] dummies were necessary to eliminate
evidence of seasonal variation in the residua]s,3 and the trends were included
to pick up the effects of Tong-term changes in demographic structure and tax
incentives to save (which have been important in Canada, but are diffiéu]t to

model explicitly). A1l of the models we consider include these e]evén
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additional explanatory variables.

On the surface, Model 1 may seem quite satisfactofy. The adjusted

Rz'is high, there is no evidence of serial correlation, all coefficients

¢ is insignificantly -

different from zero (which would not be disturbing to many 1nvestigators

have the right signs, and only the coefficient on =

because the role of inflation in savings functions is not yet well established).
Nevertheless, further investigation will reveal that Model 1 is thoroughly

false.

First of all, it seems a little unreasonable that errors which
adhere to the level of real savings should have a constant variance. There
are at least two plausible alternatives to the assumption that Oy =g. One

is that Gt =0+ a Yt’ and the other is that Ot =0 +a ft, where ft denotes

the fitted value of St from Model 1. The pro;edures developed ih Section 3
above may be used to test against either of these alternatives; the test
statistics are 3.00 and 3.85 respectively. The Lagrange Multiplier test of
Breusch and Pagan [ 3] may also be used to test against the fdrmer a]ternafive;
the square root of their x2 test statistic (which should be N(0,1) under the

null hypothesis) is 3.09. Hence we may certainly conclude that the error

specification of Model 1 is wrong.

One alternative to Model 1 is an equally naive model in which the

dependent variable is the savings rate, s, = St/Yt’ so that Yt does not

t
appear on the right hand side at all. We obtain:

Model 2

£ .03213 + .7409 ﬂt+ .3246 St-] + others

(.00901) (.2373 (.0924)
2

)
Tog L = -635.990 R” = .9286 AR1 = -2.66 AR4 = 1.16
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According to the likelihood function, Model 2 fits rather better than

Mode] 1 (the likelihood for Model 2 is of coﬁrse computed for S rather
than s as the dependent variable; this involves subtracting I log Yt =
938.800 from the ordinary 1églike11hoodvva1ue printed by the regression

package). However, there is now evidence of first-order serial correlation,

so that the error specification of Model 2 is also apparently wrong.

| Models 1 and 2 may be tested against each other by means of the L-
test. The test statistics are 4.56 and 2.60 when Models 1 and 2 are tested
in turn. Thus both models are clearly false, with Modé] 1 being rather
more soundly rejected, as one would expect on the basis of its lower likeli-

hood.

A somewhat different approach would be. to make consumption rather

than savings the dependent variab1e. Since it is just as imp]ausib]e'that
homoskedastic errors should adhere to the Tlevel of consumption as to fhe
level of savings, it seems natural to specify the hode] in logarithms. A
- very traditional consumption function,'which ignores inflation effects

entirely, is:

Model -3

+ 11378 log C + others

log Ct 1.5843 + .6729 Tlog Yt -1

(.4834) (.0582) (.0670)

log 'L -634.526 §2 = .9987 ART = 2.11 AR4 = 0.27

This model fits slightly better than Models 1 or 2, according to the like-
1ihood function (which once again is computed in terms of S rather than C;
in this case the Jacobian term is -I log Ct= -932.340). However, it appears

to suffer from first-order serial correlation.
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Model 3 may be tested against Models 1 and 2 by means of the L-test;
thevtest statistics are 2.11 and 3.20 respectively, so that Model 3 is
surely false. When the tests are reversed, Models 1 and 2 are in turn
rejected by Model 3; the test statistics are 4.46 and 3.56. Because the
Jacobian of the transformation from S

or s, to log Ct = Tog (Yt - St) is

t t
negative, the column corresponding to o in the test regression (29) was
multiplied by minus one for all of these L-tests. Otherwise, the test
statistics would have been negative, giving the (probably) erroneous impress-

ion for all of these tests that the truth lies away from the direction of

the a1ternative model, rather than towards it.

We now estimate a model which may not be false. In [7 ] we argued
that, in the absence of inflation, a reasonable model of savings behavior
is:

Sy = by Yy * by (45)

where the standard deviation of u. is proportional to Yt' This model emerges

t
if one postulates that savings are proportional to income in the Tong run,
that the flow of consumption is subject to a first-order partial adjustment
process, and that errors adhere to the savings rate. In times of inflation,
however, measured income and measured savings overstate the true amounts
perceived by consumers because of the loss of real value of financial assets
due to inflation. Thus real income and Savings should be adjusted downwards
to take account of this. We estimate the perceived loss on financial assets

- due to inflation as a weighted average on current and past inflation rates

times an estimate-of the real vé]ue‘of financial assets, and call this

variable Z; for detai1s, see Appendix 2, and also [7]. Since not all

financial assets lose value in terms of inflation (e.g., many common stocks),
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and since not everyone may correctly perceive how inflation affects the
income from these assets, we allow the amount by which savings and income
are reduced to depend on a parameter o which is expected to 1ie between

zero and one. Thus (45) becomes

S, =b Yt + (1 - bo)oc Zt + b](St_] - Yt-1) +u

t = 0 - (86)

t

Dividing all regressors by Y, to eliminate heteroskedasticity, we obtain

t

Model 4

£ .2243 + .3893 Zt/Yt + .1884 (St-1 - Yt-l)/Yt + others

(.0461) (.0585) (.0481)

log L = -619.231 R° = .0489 ARl = -0.84 AR4 = 0.82

Model 4 evidently fits much better than any of the first three models.
It is thus inevitable that when they are tested against it, all are rejected;
the test statistics for Models 1, 2 and 3 are 6.73, 5.84 énd 5.77 respectively
(the first and last of these are L-tests, the second, a P-test, since the
error specifications of Models 2 and 4 are the same). On the other hand, none
of the three earlier models rejects Model 4; the test statistics are 1.43,
-0.32 and 0.32 respectively. Model 4 also displays no evidence of serial
correlation or of any obvioué form of heteroskedasticity. For example, when

the hypothesis that o, = o is tested against the alternative that gp =0 + afts

t

where ft denotes the fitted value of s, from Model 4, the test statistic is

t
-0.35.

-0f course, Model 4 is not the only model which works well. -Alter-
natively, one could staft from Model 2 and modify it to take account of the

overmeasurement of income due to inflation. That would mean replacing Tog
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Yt by Tlog (Yt - uZt). Nonlinear estimation can be avoided by noting that
a first-order Taylor series approximation to Tog (Yt - aZt) around o = 0
is log Yt - aZt/Yt, which is surely a valid approximation since Zt is much

smaller than Yt' We thus obtain:

Model 5

]og'Ct = .1235 + .8052 1log Yt - .4023 zt/Yt + .1762 log Cf-l + others
(.5055) (.0567) (.0765) (.0590)

Tog L = -620.439 R% = .9990 ARl = -0.53 AR4 = 0.38

‘When Model 5 is tested against Model 4 by an L-test the test statistic is
- 1.82, and when Model 4 is tested against Model 5 it is -0.39. Thus neither
of these models can reasonably be rejected, although there would seem to be

sTlightly more evidence in favour of Model 4.

So far we have only used the L-test to test models against a single
alternative at a time. Let us now see what happens when we test the two
best models, numbers 4 and 5, against the other three mode]syof the sét
{1, 2, 4, 5}; Model 3 is excluded because it is just a special case of Model 5.
The test statistics for Models 4 and 5 respectively are 7.39 and 10.02; these
are sihp]y likelihood ratio test statistics, which should be asymptotically
distributed as Chi-squared with three degrees of freedom under the,n&]] hypo-
thesis. Since the .05 critical value is 7.81, we conclude that Model 4 cannot

be rejected, but that Model 5 should be. These results illustrate the

possibility, which we have stressed in [6], that non-nested hypothesis tests

against several different alternatives at once may prove more powerful than

several tests against the same alternativessingly.




Conclusion

In this paper we have proposed a very general way of linearizing
nonlinear regressions about given specifications of the parameters. This
allows us to develop a wide variety of test procedures, all based on Tinear
regressions and standard test statistics produced by cohventiona] regression
packages. These procedures yield easily implemented tests of model specif-
ication in a great many cases of econometric interest. In particular, it

is possible to test non-nested hypotheses against each other even when the

error specifications are different, as in the case of linear versus

logarithmic models. The empirica1 application of Section 4 shows that these
non-nested tests have substantial ability to reject false hypotheses; and
that they can yield a good deal of information with comparatively 1itt1e
effort. These tests should prove extremely useful in many areas of app]ied

econometrics.
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Appendix 1

We have to establish the result that when (1)Ais estimated subject
to R distinct restrictions to yield parameter estimates 5, then asymptotically
(5 - 8) + b is normally distributed with mean vector 0 and covariance matrix
[-E(LaB)]-]' (b denotes the OLS estimates from‘(9)). First, we notice that we
mayﬂreparametrfse the model éo that the restrictions take the form 6% = 0
fora =1, ... R, and for convenience let the true values of the other
r-R parameters also be zero. We shall use Latin indices to denote the R
restricted parameters and Greek indices for the others, so that the

summation convention will yield restricted sums when these are needed.
The estimates 6 are defined by the r-R equations:
9) =
L, (0, 8) =0,
so that, asymptotically,

o _ - OB Ly : (A1)

where the (r-R) x (r-R) matrix H*® is the inverse of the block LdB of the

Hessian of L. Both H*® and LB are evaluated here at (0,0). Now the OLS
estimates from (9) cah, in view of the'properties of (9) established in the

text, be written asymptotically as
ac -
- L Lc(o,e)

N R N N
N o BC '

oc -
’L , LC (0,6)

oc _ B ac
L LC 0 LCB L“
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Here Taylor expansions have been used, and LQB, Laa,'LaC denote e]ements

of the inverse of the full Hessian of L. Use of (A1) ahd'(AZ) gives

~

(0%, 6%) + (b%, b%)

(- 1%, - WY L, Lgg)s - K8 L - 1% - HY L L))

BC B Y CB

It is easy'to establish the following two results:

By ca _
H LBc L= = -

By co _
H LB L

whence

(0%, 6*) + (b%, b%)

)

R T TP L% |

B

C o

or, expressed in conventional matrix and vector notation,
~ 2 1-1
(6-6) + b ~ - (D°L) ° (DL) (A3)

where D2L is the Hessian and DL the gradient of L. Our assertion follows

immediately from (A3) by standard arguments.
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Appendix 2

In this Appendix we describe the'data used in this study. A1l
data were not seasonally adjusted, and weféftaken from the‘CANSIM database,
as of November 1979. |
CN = persbna] consumptiqn expenditure in cdkreht do11ars; CANSIM # D 40043.
CR = personal consumption expenditure in constant 1971 dollars, CANSIM # D 40562.
P = CN/CR. |

YN = personal disposable income in current dollars, CANSIM # D 40057.

Y = YN/P.
SN = personal saQings‘éxc1uding change in farm inventories, CANSIM # D 40055.
S SN/P.
interest, dividends and miscellaneous investment income, CANSIM # D 40036.
IN/P. | o |
quarterly averages of the McLeod, Young, Weir 40 bond yield average,
CANSIM # B 14031 (monthly), divided by 400.
lTog Py - Tog Py ;.
= .27 + .31

+ ,37 + .21

t t-2 t-3°

= m*I/r.

t-1

TREND = 1 in 1950-1, increasing by 1 each quarter.
‘Sample Period: 1954-1 to 1978-4.
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Footnotes:

The regressionsGodfrey proposes are precisely those one would derive
from (]7),’Where ht is the regression model transformed to eliminate
serial correlation (and ignoring the initial observations), which is
then evaluated at the ML estimates conditional on seriai cofre]ation
being absent. The test statistic Godfrey suggests is n times the R2
from this regression. Since the R2 would be 2ero if the restrictions

were precisely true, one can easily show that nR2 is asymptotically

‘equiva1ent to the usual Tikelihood ratio test statistic.

Regression (28) 1is not the only plausible way to formulate a J-test
in this case. Another alternative would be to estimate

(1-a) fi (B)/oO + ocgt(%/c?] = e,

However; it turns out that this formulation also leads to (29) as the

L-test regression.

An alternative approach to modelling seasonality would be to assume

that the error terms follow an AR or ARMA process in powers of.four.
Several experiments with‘this approach produced models which fit rather
badly. For ekample, when the six trénding seasonal dummies in Model 4
below were dropped, and a sfmp]e AR(4) error process was introduced
“instead (using pre-sample data to obtain lagged errors for the first
four observations), the value of the loglikelihood function fell by
approximately 20 points. This was so despite the fact that the estimates
looked quite sat1§factory (the estimate of the AR(4) parameter waé 0;49.
with a t—Stafistic of 5.82), and that there was no:evidence at all of

further fourthéprder serial correlation. In view of these unsatisfactory




- 30 -

results, including a large number of seasonal dummy variables would

seem to be a preferable approach to modelling seasonality, at least for

this problem.
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