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Abstract

In this paper we develop an extremely general procedure for per-

forming a wide variety of model specification tests by running artificial

linear regressions and then using conventional significance tests. In

particular, this procedure allows us to develop non-nested hypothesis

tests for any set of models which attempt to explain the same dependent

variable(s), even when the error specifications of the various models are

not the same. For example, it is straightforward to test linear regression

models against loglinear ones. These procedures are illustrated by an

empirical application, in which we estimate and test several competing

models of personal savings behavior in Canada.

••••



Introduction

In this paper we develop an extremely general procedure for per-

forming a wide variety of tests for model misspecification by running

artificial linear regressions and then using asymptotic t-tests or like-

lihood ratio tests. Our basic result can be used to test for, among

other things, both heteroskedasticity and serial correlation in the context

of very general nonlinear regression models. More important, it can be

used to develop non-nested hypothesis tests for any two (or more) models

which purport to explain the same dependent variable (or set of dependent

variables), even when the error specifications of the various models are

different. For example, it is straightforward using this procedure to

test a linear regression model against a loglinear one.

In Section 1 we derive the principal theoretical results of the paper.

In Section 2 we use them to develop the non-nested hypothesis testing pro-

cedure alluded to above. In Section 3 we apply them to some other problems

in testing model specification. Finally, in section 4, we apply some of the

techniques we have proposed, especially the ones for non-nested hypothesis

testing, to an empirical example.

1. The Principal Results

Consider the model

t t" 6t'

where y is the t observation on a dependent variable,

1)

is a vector of

••••



past values of y, 0 is a vector of r parameters to be estimated, and

is a function which may, and usually will, depend on a vector of exogenous

variables Xt. It is assumed that ft and its derivative with respect to yt,

f
t' are twice continuously differentiable with respect to 0.

assumed to be n > r observations.

The loglikelihood function for this mode is:

- -(n/2) log 271- - (1/2) 
ft
f+ 1

t
kt

where denotes the t
th 

component of an n-vector of ones and

=log If

There are

2)

.01 . 3)

The notation used in (2) perhaps requires some introduction. We use the

Einstein summation convention that repeated indices are summed over, when

n 2one is a subscript and the other is a superscript. Thus f
t
ft means

and both ft and ft denote yyt, Y-t, 0). The notation I...I" in (3) denotes

absolute value.

The loglikelihood function (2) is particularly simple for two reasons.

First, we have assumed that the errors have a variance of unity (because the

parameter(s) determining the actual variance have been subsumed in 0). Secondly,

the assumption that ft depends only on current and past values of y means

that the Jacobian matrix of the transformation from the y's to the E's is

lower triangular, so that only its diagonal elements appear in the likelihood

function. Nevertheless, as we shall see, (I) is general enough to include a

wide variety of econometric models as special cases.
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Each of the likelihood equations for a maximum of 2 with respect

to U may be written as

=-ff +l
t
k = 0,

t,a
(4)

where the subscript a denotes differentiation with respect to the a
th

component of e. Each element of the Hessian may be written as

L =-ft 
f -f

t
f +

t 
k,13 t,a t,c3 t,a13 (5)

where the subscript a denotes differentiation with respect to both the a
th

th
and (3. components of e. From (3) one easily calculates that

kt = ( / f ) - (ft,ot t,di(f It2).,ao ,c03 t (6)

The first term in (6) is simply the derivative of ft,e with respect to ct

(since the derivative of yt with respect to Et is lift). On the other hand,

each of the terms in the middle sum in (5) is - ft ft,a(i. Thus 5) may b

rewritten as

=-f
t 

f 
t,a 

-k
t 

k
t 

+i
t 
[(f / f ) - ]. (7)513 ,a t,aCi t

But the expectation of the lastterm in (7) is zero. It is an easily derived

property of the standard normal distribution that, when x is standard

normal and g is any continuously differentiable function, E(xg(x)) =

E(g (x)) if the expectations exist. In the last term in (7) ft plays the

role of x, f plays the role of g(x) and, as indicated above, (ft,aP,
if
t
)

is then equal to g'(x). Thus we conclude that

-E(L 
) E(ft f kt k ).

c3 ,13 t,a t,a (8)



Now consider the linear regression:

-^

+ errors. (9)

This regression has 2n observations and r regressors. For the first

observations the regressand is ft and each of the regressors is minus the

derivative of ft 
with respect to one of the components of 8, both evaluated

at the maximum likelihood estimates 8. For the last n observations, the

regressand is unity and each of the regressors is the derivative of kt with

respect to the same component of 8, again evaluated at 8. It follows

immediately from the likelihood equations (4) that the OLS estimates of b

from (9) will be zero identically. Moreover, a typical element of the X X

matrix from that regression will b

^t ̂  -t -
= f + k k

cx?, 513 'Lai,13 5a.

10)

which is a consistent estimate of 8 Also, the ML estimate of the variance

from (9) will be

(^tit + n)/2n

which clearly has a plim of unity. Thus the estimated covariance matrix

of b from the linear regression (9) will provide a consistent estimate of the

covariance matrix of 8, which by the standard result is asymptotically given

by the inverse of (8).



Now suppose that we evaluate the regressand and regressors in (9)

not at the ML estimates 0 but at e, which maximizes the likelihood function

(2) subject to R distinct restrictions. If those restrictions are valid,

that is, if they are satisfied by the true parameters 0 of (1), then it

can be seen (details in Appendix I) that, asymptotically, (0-0) + b, where

b denotes the OLS estimates from (9), is normally distributed with mean vector

zero and covariance matrix given by the inverse of (8) and thus consistently

estimated by the covariance matrix from the linear regression. It follows

that restrictions on e may be straightforwardly tested by asymptotic t-tests

(if R = 1 and the restriction is of the form 0 = -613 for some 0 or by

Wald or likelihood-ratio tests (if R > 1), applied to regression (9). Thus

regression (9) provides a way to test any set of restrictions on (1). One

need only estimate (1) subject to the restrictions and then estimate (9).

OUr approach is clearly similar in spirit to the "Lagrange Multiplier"

principle of Aitchison and Silvey [1,2]. Such LM tests have recently been

applied to econometrics by Breusch and Pagan [3,4], Godfrey [11,12] and

Engle [1O], among others. However, the actual test statistics we suggest

will not be LM test statistics. Instead, we are following the general

approach of Durbin's [9] "alternative procedure". Indeed, regression (9)

can be regarded as a particular implementation of that procedure. We believe

that it is usually simpler and more natural to apply Wald or LR tests to

artificial regressions than it is to work out LM test statistics explicitly.

In several of the papers mentioned above, (see especially [10] and [12])

the LM test procedure turns out to involve an artificial regression which is

a special case of (9), and a test statistic which is asymptotically equiv-

alent to the LR or Wald statistics based on (9)..
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Econometricians do not often encounter regression models in which

the error variance is known to be unity a priori. Therefore consider the

model

= ut' u
t 

N(0' (12

where a is to be estimated. This model can easily be put into the form of

(1), by defining

ft(yt,e) = ft(yt'(ps'a) = 1/a 
g V(1)) *

Then regression 9 becomes

1

-9t,y

"I

gt,y

"I

—„
g /a

^
icy

(13)

+ errors 14)

This is the basic resultibr univariate regression models.

Observe that, if g is zero for all elements y of cb, we may

replace (14) by

^
= - g bY + ut,y t

"1

(15)

it is possible to do this because when is zero, the last regressorL,y

in (14) is orthogonal to all of the other regressors as a consequence of

the likelihood equations (4). Since that last column (like all the others)

is also orthogonal to the regressand, we may drop it without affecting the

properties of (14). All the remaining regressors are zero for the last n

observations, so we may drop those observations. Finally, multiplying the

regressand and all regressors by a yields (15).
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If 15 is valid, we may write (12) as

( )= ht 
(cb) + u

tt 

for some suitable functions h and k , so that 15 becomes

t (Yt
y

^
=ii

t,y 
b + u

st 

This is familiar for the case in which k (Yt

(16)

(17)

= yt. It is reasonably

well known that regression (17) then has the properties we have claimed

for (9), and hence for (14); see in particular Durbin [9] and Davidson

and MacKinnon [6]. Using those properties of (17) one may easily develop

a variety of useful procedures. For example, all of the tests for serial

correlation in linear regression models proposed by Godfrey [11,12] may

be derived from (17), in the context of nonlinear regression models.1

Regression (17) may also be used to calculate a consistent estimate of the

covariance matrix for linear regression models with serial correlation and

lagged dependent variables; conveniently so, since most regression packages

provide an inconsistent estimate of this matrix (see Cooper [5]).

Regression (9) may also be used to test multivariate regression

models. Consider the model

= u. ,
it it it • • • N(0,E (18)

where the dependent variables are indexed by i = 1 to m and the observations

are indexed by t = 1 to n. We assume that git may depend additionally on

exogenous variables and on lagged values of all of the endogenous variables,

but that it does not depend on yjt for j > i. The covariance matrix E is
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to be estimated. Special cases of (18) include systems of non-simultaneous

equations, such as consumer demand systems, and linear simultaneous equation

systems written in terms of the restricted reduced form. Nonlinear simultan-

eous equation systems are not special cases of (18), however, because E would

have to depend on t if the errors originally adhered to the structural rather

than reduced-form equations.

We now rewrite (18) in the form of 1 First, we define an upper-

triangular m x m matrix Pty the equation

T -1P P = 19)

and take note of the standard result that if U N(0,E) where U is a row

vector of length m, then

U P N(0,I).

Hence we may make the definition

fit Cyit'
= Pi

i jt it' •

(20)

( 21)

where Pi = 0 for If we then replace the double subscript "it" by the

single subscript s = n(i-1) t, it is evident that the model will have the

form of (1). It will be more convenient to retain the double subscript,

however. Note that the it
th Jacobian term in the loglikelihood function will

be

k
i 

=
t

og I git(Yit'(01
22)

where git denotes the derivative of git with respect to yi . In order to

write down regression (9) we need the first derivatives of fft and kit.



These are:

Df
i
.
t = Pj

aq)

Df.
it

DPjk
gjt 

if 2, =

0 otherwise

Dk
it . it,yg' 

git

Dk.
it . if i =
3 iiDP

= 0 otherwise.

=

(23)

Substituting these derivatives, evaluated at the ML estimates P. and (̂1),

into regression (9) yields the result we want. This regression, which has

2mn observations and (m+l)m/2 regressors, is rather cumbersome to write

out, so we merely describe it here. The regressand is
i 

g
jt 

for the first

mn observations, and unity for the last mn. The regressor corresponding to

the y
th
 component of (13, is - g

jt,y 
for the first mn observations, and

g /g. for the last mn. The regressor corresponding to P (a diagonal
it,y it

element of P) is -git in the itth place for all t, 1/f3ii in the (it + 
mn)th

place, and zero everywhere else. Finally, the regressor corresponding to

(an off-diagonal element of P) is -gin the it
th place, and zero everywhere

else.

2. Non-nested Hypothesis Testing

In [6] and [8] we developed techniques for non-nested hypothesis

testing in the context of univariate and multivariate models respectively.
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Like earlier authors (notably Pesaran and Deaton [13]) we restricted our

attention to models with the same error specification. In the univariate

case, we proposed that in order to test

against

H0: 
y =

( N 0, 4)' u ' uOt

H
1
: y) + u

lt 
u
1 

a12)

one can estimate the possibly nonlinear regression:

= ( - )ft() a t ut
(24)

(where E g ( and y denotes the ML estimate from H1) and test whether

a = 0. Since gt is asymptotically non-stochastic, this procedure, which we

called the J-test because one estimates a and 3 jointly, is asymptotically

valid. As an alternative to the J-test, we suggested the P-test, which

requires that one estimate:

Yt (g - 
t
) + u

t'
25)

^
where Ft is a vector of derivatives of ft(0 evaluated at the ML estimates (3.

Thus (25) is a linear approximation to (24) about the point (t,0). This

P-test procedure is simply an application of regression (17); its validity

follows immediately from the validity of the J-test and from the results in

Section 1.

We now wish to consider a somewhat more general case. The model to

be tested is-



H0: t(yt = u N(0,a
0 ' uot

and the alternative model is

(26)

H1 • (yt ,y) = u1 ' u
1 

- N(0,4). 27)* 

The notation here is the same as the notation used in Section 1. To

perform the J-test in this case one would have to estimate

-a) t () agt(Y) = ut
(28)

by nonlinear methods. This procedure will clearly be valid if under Ho
^
y tends asymptotically to some probability limit y°, since in that case

y will be asymptotically non-stochastic. Now y is what White [14] calls

a quasi-maximum likelihood estimator or QMLE; that is, the estimator one

obtains by applying maximum likelihood to a model which is false. For the

case where the random variables y are independently and identically dis-

tributed, White proves under weak regularity conditions that a QMLE does

indeed converge to some probability limit. We conjecture that this result

carries over to the independently and not identically distributed case; a

proof would be beyond the scope of this paper. For now, we merely assume

that gt and ft satisfy whatever conditions are necessary for y to be

asymptotically non-stochastic.

term

Since the likelihood function for 28 will include the Jacobian

t
logI (1-a) fit(0 + agt(;)I ,

performing the J-test will typically be a nontrivial undertaking beyond the
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capability of most regression packages. As an alternative to the J-test,

we therefore suggest what we shall call the L-test, which uses (14) to

construct a linear regression to test for a = 0. Straightforward application

of (14) yields a regression which is unnecessarily complicated, but which can

be simplified to:

_ f
t, 13

0
f
t 0

1
t

+ errors 29)

In deriving (29) we have made use of the facts that adding a constant multiple

of any regressor to any other regressor, or multiplying any regressor by a

constant, have no effect on the fit of the regression. In this case, because

all the other regressors are orthogonal to the regressand by construction,

the t-test for a = 0 is also not affected by these operations.2

As one very simple and concrete example of (29), suppose that the two

models are, in matrix notation,

uo0'y = +

H1: y* = ZY + u (30)

where y* is a vector of the natural logarithms of y. Then regression 29),

again in matrix notation, is simply:

X

-a

^
ZY-y*

•••••••

ba
+ errors (31)

-1
where y means the vector whose t

th 
element is 11t• Thus it is absolutely
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straightforward to test a linear model against a loglinear one; so,

course, is it to test a loglinear model against a linear one.

There is no reason at all why a hypothesis should be tested against

only one alternative hypothesis at a time. When there are several alter-

natives, regression (29) will have several regressors like the last one,

each corresponding to a different alternative. In this case, one appro-

priate test is a likelihood ratio test. The value of the loglikelihood

function under the null can easily be computed by regressing the dependent

variable from (29) on any one or more of the regressors (except for the

last one), since all are orthogonal to the regressand by construction.

At this point it is perhaps worthwhile to inject a word of caution.

Although it is very easy to run regression (29) with a good modern regression

package, there is always the possibility that one or more of the regressors

may be constructed wrongly. For example, (29) does not include a constant

term, and some programs may automatically include one unless told not to.

If this happens, it is quite likely that the t-statistic on a may be extremely

large, and entirely invalid. To guard against this, we would suggest that

one run (29) without the column corresponding to a first, to make sure that

all the b's are in fact zero, and that one then take great care to ensure

that the last column is constructed correctly.

In [8] we provided two different generalizations of the P-test to

the case of multivariate models. The simpler of these we called the Po-test.

Suppose that the model to be tested is

0 0 0 T
Yit 
. uit, ult 

u N(0,0)
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and that we wish to test it against

Yit = g. (Y) 
1 (ult . 1 

u 
T

.• • )mt 1

To perform the Po-test, one merely has to compute the regression

^
Pi •(y. -=Pj

i 
f
 + aPi - f. ) + E. (32)

it jt jt jt it

where .
1 
. is the ji

th 
element of an upper triangular matrix P such that

3
_1

P P = E This is easily seen to be a straightforward generalization0

of the univariate P-test, regression (25

We now consider the more general case in which regressions like

(32) are no longer valid. The model to be tested is

H0: 
it• (Y- ) = uit 

(u
0 0

it 
..

and the alternative model is

• • ) N(0,E ) (33)

1 1 1
H1'• lt g. (v. ) = uit, (uit umt) N(0,E1). 34)

These models are assumed to have the same characteristics as the multivariate

models discussed in section 1. One way to perform a 3-test in this case

would be to estimate

(1 - a)fit( +agit = u
it

(35)

by highly nonlinear methods. As in the univariate case, such a procedure

will be valid as long as y tends to some probability limit yo, and we assume
•••

that this is the case.

The Jacobian term in the loglikelihood function for 35) is
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it1 log I ii [(1-a) fi (13) + cogi ]I . (36)

It is now straightforward to derive an L-test as an application of the

multivariate regression described in Section 1. The L-test regression

will be identical to that regression, with g replaced by f everywhere, and

with one additional regressor. That regressor, which corresponds to a,

will have Pi
i
(i
jt

g
jt
) in the first mn observations and (g /f. - 1) in

it it
^,

the last mn observations. It is evident that, in the case where f
it 

= 0
,13

\I ", I

for all elements of (3, and git E fit, this L-test regression may validly be

replaced by the Po-test regression (32). Thus we call this L-test the Lo-test.

^ ^
One word of warning is in order. If f and g are very different

it it
/\ I "I

in magnitude, truncation error in the calculation of g. - f.
it 

and f.
it  it

may be severe, and may cause almost perfect collinearity. It is therefore

important to scale f and g similarly. This is less of a problem in the

univariate case, because it was there possible to simplify the regression so

that terms like f g did not appear.
t t

3. Some Nested Hypothesis Tests

The results of Section 1 can be used to derive a large number of

tests for model specification which do not rely on the presence of non-

nested alternative models. Here we illustrate a few of these.

git

First of all, it is evident that all of Godfrey's [11,12] tests

for AR, MA and ARMA errors in the context of linear regression models, and of

course Durbin's [9] "alternative" procedure for testing for AR(1) errors,

are applications of regression (17). Similar tests can be derived from

regression (14) for models which have a non-zero Jacobian term in the log-
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likelihood function. We illustrate this for the case where the null

hypothesis has no serial correlation, and the alternative hypothesis is

that the errors follow an AR(1) process. We write the null hypothesis as

O
: = ut N(0,02). (37)H 

, ) ,

The alternative hypothesis is that

ut = put_ i + et, N(O, 02e).

This implies that the general model can be written as

H,: -p 'Y 1 (Y1

(y - = e
t' 

t=2 (38)

Unlike most authors, we do not drop the initial observation at this stage,

and we do explicitly assume that the error process is stable. As we shall

see, these assumptions are inconsequential.

We now calculate the derivatives of (38) and of the log of its

Jacobian with respect to tB and p, and evaluate them at 13 = 13, p = 0 and

a = a. The testing regression can then be derived immediately from (14).

^After we multiply all variables by a or a
2
 to simplify things slightly, we

obtain the following regression:

1.•

t-
+ errors (39)

^
where f

0 
is defined to be zero. It is interesting to observe that, although

we did not explicitly ignore the first observation, it turns out to play. no
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role at all, because for observation 1 the derivative of (38) with

respect to p, evaluated at p = 0, is zero.

The results of Section 1 are particularly useful for deriving

tests for heteroskedasticity. Suppose that the null hypothesis is

H0:

and the alternative is

) + u
t
, u

t 
N(0,a

2)

N(0,at

a
t = h(Zt

,a)

(40)

(41)

where a is a vector of parameters which can be partitioned into ao

(a scalar) and a
1 

to a
m
. Under the null hypothesis, a = a

m 
= 0,

so that a = h(a
0 
) =

t •
This formulation is similar to that of Breusch

and Pagan [3], but they assume that h(Zt, ) can be written as h(ao aiZti )

which is much more restrictive.

In this case the testing regression turns out to be

Glt

ht,a
( -f

t
)

^ ̂
-a h

t,a
•••••••••-•

+ errors. 42)

One then uses a likelihood ratio or Wald test for the hypothesis that

1
a through am (but of course not a()) are zero.

Another alternative hypothesis which it might be interesting to

investigate is that



= G

18 -

( ) (43)

since this includes both homoskedastic errors and errors whose variance

is proportional to the square of the dependent variable as special cases.

The testing regression for this alternative is

alt
•••••••••

f
^
-f
t

act

+ errors 44)

These procedures merely illustrate a few of the situations in which

(14) can fruitfully be applied. The reader should have no trouble develop-

ing new tests based on (14) for a variety of other problems.

The results of Section 1 may also be used to derive a battery of

tests for multivariate models. However, it is difficult to develop inter-

esting and useful tests in this context without specifying a lot more about

the structure of the model than we have done so far, and it seems best to

derive such tests in the context of practical applications.

An Application

In this section we provide an illustration of how some of the

procedures developed above, in particular the L-test for non-nested models

with different error specifications, may fruitfully be used in applied

econometrics. The objective is to estimate a single-equation model of

aggregate personal savings in Canada using quarterly time series data, not

seasonally adjusted, for 1954 to 1978. The data used are described in

Appendix 2. -One of the models we estimate has previously been estimated by

us in [7], using American as well as Canadian data, but in that paper it
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was tested only against models with the same error specification.

We initially estimate a rather naive model, which asserts that the

level of real savings, St, should depend linearly on real personal dis-

posable income, Yt, the rate of inflation, Tr,, and lagged savings, 5
t...1.

We obtain

Model 1

St = -1352 + .2721 Y + 2840 Trt+ .2174 St1 + others

( 329) (.0503) (3197) (.0932)

log L = -640.862 R2 = .9664 ARI = 0.33 AR4 = 0.06

Standard errors are in parentheses. The numbers reported as AR1 and AR4

are test statistics for AR(1) and simple AR(4) errors, obtained by re-

estimating the model with residuals lagged one or four periods as additional

regressors and taking the t-statistics on those additional regressors. These

tests are elementary applications of (17) above; see also Durbin [9]. The

notation "+ others" indicates that Model 1 includes additional regressors,

the coefficients of which are not reported. In fact, there are nine seasonal

dummy variables (three straight dummies, three dummies multiplied by an

annually-increasing linear time trend and three dummies multiplied by an

annually-increasing quadratic trend, each set of dummies being constrained

to sum to zero over the year), and two trend terms (linear and quadratic,

increasing quarterly). The seasonal dummies were necessary to eliminate

evidence of seasonal variation in the residuals
,3 

and the trends were included

to pick up the effects of long-term changes in demographic structure and tax

incentives to save (which have been important in Canada, but are difficult to

model explicitly). All of the models we consider include these eleven
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additional explanatory variables.

On the surface, Model 1 may seem quite satisfactory. The adjusted

R
2 i

s high, there is no evidence of serial correlation, all coefficients

have the right signs, and only the coefficient on 7t is insignificantly

different from zero (which would not be disturbing to many investigators

because the role of inflation in savings functions is not yet well established).

Nevertheless, further investigation will reveal that Model 1 is thoroughly

false.

First of all, it seems a little unreasonable that errors which

adhere to the level •of real savings should have a constant variance. There

are at least two plausible alternatives to the assumption that at = a. One

is that =a+aY and the other is that a
t 
=a+af where f denotes

t' t' t

the fitted value of S
t 
from Model 1 . The procedures developed in Section 3

above may be used to test against either of these alternatives; the test

statistics are 3.00 and 3.85 respectively. The Lagrange Multiplier test of

Breusch and Pagan [ 3] may also be used to test against the former alternative;

the square root of their x2 test statistic (which should be N(0,1) under the

null hypothesis) is 3.09. Hence we may certainly conclude that the error

specification of Model 1 is wrong.

One alternative to Model 1 is an equally naive model in which the

dependent variable is the savings rate, s = S /Y 
' 

so that Y
t 

does not
t t t 

appear on the right hand side at all. We obtain:

Model 2

= .03213 .7409 7 .3246 
5t-1 

+ others

(.00901) (.2373) .0924)

log L = -635.990 R2 = .9286 AR1 = -2.66 AR4 = 1.16
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According to the likelihood function, Model 2 fits rather better than

Model 1 (the likelihood for Model 2 is of course computed for S rather

than s as the dependent variable; this involves subtracting E log Yt =

938.800 from the ordinary IOglikelihood value printed by the regression

package). However, there is now evidence of first-order serial correlation,

so that the error specification of Model 2 is also apparently wrong.

Models 1 and 2 may be tested against each other by means of the L-

test. The test statistics are 4.56 and 2.60 when Models 1 and 2 are tested

in turn. Thus both models are clearly false, with Model 1 being rather

more soundly rejected, as one would expect on the basis of its lower likeli-

hood.

A somewhat different approach would be to make consumption rather

than savings the dependent variable. Since it is just as implausible that

homoskedastic errors should adhere to the level of consumption as to the

level of savings, it seems natural to specify the model in logarithms. A

very traditional consumption function, which ignores inflation effects

entirely, is:

Model 3

log C. - 1.5843 + .6729 log Yt + .1378 log Ct_l + others

(.4834) (.0582) (.0670)

-
log L = -634.526 R 

2 
= .9987 AR1 = 2.11 AR4 =0.27

This model fits slightly better than Models 1 or 2, according to the like-

lihood function (which once again is computed in terms of $ rather than C;

in this case the Jacobian term is -E log Ct= -932.340). However, it appears

to suffer from first-order serial correlation.
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Model 3 may be tested against Models 1 and 2 by means of the L-test;

the test statistics are 2.11 and 3.20 respectively, so that Model 3 is

surely false. When the tests are reversed, Models 1 and 2 are in turn

rejected by Model 3; the test statistics are 4.46 and 3.56. Because the

Jacobian of the transformation from St or st to log C. = log (Yt - St) is

negative, the column corresponding to a in the test regression (29) was

multiplied by minus one for all of these L-tests. Otherwise, the test

statistics would have been negative, giving the (probably) erroneous impress-

ion for all of these tests that the truth lies away from the direction of

the alternative model, rather than towards it.

We now estimate a model which may not be false. In [7 ] we argued

that, in the absence of inflation, a reasonable model of savings behavior

is:

St 
=b0 Y

t 
+ b

1 (5t-1 
Y
t-1
) + u

t
(45)

where the standard deviation of ut is proportional to Yt. This model emerges

if one postulates that savings are proportional to income in the long run,

that the flow of consumption is subject to a first-order partial adjustment

process, and that errors adhere to the savings rate. In times of inflation,

however, measured income and measured savings overstate the true amounts

perceived by consumers because of the loss of real value of financial assets

due to inflation. Thus real income and savings should be adjusted downwards

to take account of this. We estimate the perceived loss on financial assets

due to inflation as a weighted average on current and past inflation rates

times an estimate -of the real value of financial assets, and call this

variable Z; for details, see Appendix 2, and also [7]. Since not all

financial assets lose value in terms of inflation (e.g., many common stocks),
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and since not everyone may correctly perceive how inflation affects the

income from these assets, we allow the amount by which savings and income

are reduced to depend on a parameter a which is expected to lie between

zero and one. Thus (45) becomes

+ (1 - )a Zt + bl(St_i Yt-1) 
ut (46)

Dividing all regressors by Yt to eliminate heteroskedasticity, we obtain

Model 4

= .2243 + .3893 Z
t
/Y + .1884 (S

t1 
- 

t
Y ) Y + others

- 

(.0461) (.0585)

log L = -619.231 R2 = .9489 AR1 = -0.84 AR4 = 0.82

(.0481)

Model 4 evidently fits much better than any of the first three models.

It is thus inevitable that when they are tested against it, all are rejected;

the test statistics for Models 1, 2 and 3 are 6.73, 5.84 and 5.77 respectively

(the first and last of these are L-tests, the second, a P-test, since the

error specifications of Models 2 and 4 are the same). On the other hand, none

of the three earlier models rejects Model 4; the test statistics are 1.43,

-0.32 and 0.32 respectively. Model 4 also displays no evidence of serial

correlation or of any obvious form of heteroskedasticity. For example, when

the hypothesis that at = a is tested against the alternative that at =a + aft
,

where f denotes the fitted value of s
t 
from Model 4, the test statistic is

-0.35.

Of course, Model 4 is not the only model which works well. Alter-

natively, one could start from Model 2 and modify it to take account of the

overmeasurement of income due to inflation. That would mean replacing log
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by log (Yt - aZt). Nonlinear estimation can be avoided by noting that

a first-order Taylor series approximation to log (Yt - aZ
t
) around a = 0

is log Y. - aZt/Yt, which is surely a valid approximation since Zt is much

smaller than Y. We thus obtain:t 

Model 5

log C. = .1235 + .8052 log Yt - .4023 Z / + .1762 1

(.5055) .0567) (.0765) .0590)

log L = -620.439 R 
2 
= .9990 AR1 = -0.53 AR4 = 0.38

g t_ + others

When Model 5 is tested against Model 4 by an L-test the test statistic is

1.82, and when Model 4 is tested against Model 5 it is -0.39. Thus neither

of these models can reasonably be rejected, although there would seem to be

slightly more evidence in favour of Model 4.

S.o far we have only used the L-test to test models against a single

alternative at a time. Let us now see what happens when we test the two

best models, numbers 4 and 5, against the other three models of the set

{l, 2, 4, 5}; Model 3 is excluded because it is just a special case of Model 5.

The test statistics for Models 4 and 5 respectively are 7.39 and 10.02; these

are simply likelihood ratio test statistics, which should be asymptotically

distributed as Chi-squared with three degrees of freedom under the null hypo-

thesis. Since the .05 critical value is 7.81, we conclude that Model 4 cannot

be rejected, but that Model 5 should be. These results illustrate the

possibility, which we have stressed in [6], that non-nested hypothesis tests

against several different alternatives at once may prove more powerful than

several tests against the same alternativessingly.
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Conclusion

In this paper we have proposed a very general way of linearizing

nonlinear regressions about given specifications of the parameters. This

allows us to develop a wide variety of test procedures, all based on linear

regressions and standard test statistics produced by conventional regression

packages. These procedures yield easily implemented tests of model specif-

ication in a great many cases of econometric interest. In particular, it

is possible to test non-nested hypotheses against each other even when the

error specifications are different, as in the case of linear versus

logarithmic models. The empirical application of Section 4 shows that these

non-nested tests have substantial ability to reject false hypotheses, and

that they can yield a good deal of information with comparatively little

effort. These tests should prove extremely useful in many areas of applied

econometrics.
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Appendix 1

We have to establish the result that when (1) is estimated subject

to R distinct restrictions to yield parameter estimates 0, then asymptotically

- 0) b is normally distributed with mean vector 0 and covariance matrix

[-E(La )]-1 . (b denotes the OLS estimates from (9)). First, we notice that we

may_reparametrise the model so that the restrictions take the form Oa = 0

for a = 1, . R, and for convenience let the true values of the other

r-R parameters also be zero. We shall use Latin indices to denote the R

restricted parameters and Greek indices for the others, so that the

summation convention will yield restricted sums when these are needed.

The estimates 0 are defined by the r-R equations:

L
a 
(0, 0) = 0,

so that, asymptotically,

(Al

where the (r-R') x (r-R) matrix Ha is the inverse of the block Lo•t of the

Hessian of L. Both H" and L are evaluated here at (0,0). Now the OLS

estimates from (9) can, in view of the properties of (9) established in the

text, be written asymptotically as

_ Lac

- Lac

and

(0,0)

_ ;13 ac
Bc

(0,0

-0Lac (A2).
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Here Taylor expansions have been used, and La 
Laa a

5 5 denote elements

of the inverse of the full Hessian of L. Use of (Al) and (A2) gives

(Oa +

Lac fty(Lc - L
y Pc)5 - 

- La (L
c 
- H L

1 
) ) .

(3. 

It is easy to establish the following two results:

whence

Hk3.y L
ca 

=

7 (Lac

ca 
= Hla - L

5

Ya

+ L
aa 

La, L
ac

L + L ),

or, expressed in conventional matrix and vector notation,

(0-0) + b - (D CL)' (DL) (A3)

where D
2 
L is the Hessian and DL the gradient of L. Our assertion follows

immediately, from (A3) by standard arguments.



-28 -

Appendix 2

In this Appendix we describe the data used in this study. All

data were not seasonally adjusted, and were taken from the CANSIM database,

as of November 1979.

CN = personal consumption expenditure in current dollars, CANSIM # D 40043.

CR = personal consumption expenditure in constant 1971 dollars, CANSIM # D 40562.

P = CN/CR.

YN = personal disposable income in current dollars, CANSIM # D 40057.

Y = YN/P.

SN = personal savings excluding change in farm inventories, CANSIM # D 40055.

S = SN/P.

IN = interest, dividends and miscellaneous investment income, CANSIM # D 40036.

I = IN/P.

r = quarterly averages of the McLeod, Young, Weir 40 bond yield average,

CANSIM # B 14031 (monthly), divided by 400.

71- = log Pt - log 
Pt-1*

Tr* = .211- + .37 + .3 + .
t t- t-2 t-3*

Z = TrIcI/r.

TREND = 1 in 1950-1, increasing by 1 each quarter.

Sample Period: 1954-1 to 1978-4.



- 29 -

Footnotes:

• The regressionsGodfrey proposes are precisely those one would derive

from (17), where h
t 

is the regression model transformed to eliminate

serial correlation (and ignoring the initial observations), which is

then evaluated at the ML estimates conditional on serial correlation

being absent. The test statistic Godfrey suggests is n times the R
2

from this regression. Since the R
2
 would be zero if the restrictions

were precisely true, one can easily show that nR
2 

is asymptotically

equivalent to the usual likelihood ratio test statistic.

2. Regression (28) is not the only plausible way to formulate a 3-test

in this case. Another alternative would be to estimate

(1-a) f
t 
()/a0

 
+ ag

t 
(y)/a

l 
= Et.

However, it turns out that this formulation also leads to (29) as the

L-test regression.

3. An alternative approach to modelling seasonality would be to assume

that the error terms follow an AR or ARMA process in powers of four.

Several experiments with this approach produced models which fit rather

badly. For example, when the six trending seasonal dummies in Model 4

below were dropped, and a simple AR(4) error process was introduced

instead (using pre-sample data to obtain lagged errors for the first

four observations), the value of the loglikelihood function fell by

approximately 20 points. This was so despite the fact that the estimates

looked quite satisfactory (the estimate of the AR(4) parameter was 0.49

with a t-statistic of 5.82), and that there was no evidence at all of

further fourth-order serial correlation. In view of these unsatisfactory
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results, including a large number of seasonal dummy variables would

seem to be a preferable approach to modelling seasonality, at least for

this problem.
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