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Abstract

Optimal Excise Taxes in Exhaustible Resource Exploitati
on

Public authorities are charged with raising Z dollars
, in present

value, from a competitive industry exploiting an exha
ustible resource. We

derive Ramsey-type excise tax rules for such a pro
blem. The L.C. Gray case

of a single mine is then investigated and also the c
ase of an industry ex-

periencing declining quality of minerals.
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Optimal Excise Taxes in Exhaustible Resource Exploitation

1. Introduction

Suppose a government desires to tax each ton of output from an ex-

haustible mineral stock in order to raise Z dollars in total. What is the

appropriate schedule of taxes, ton by ton? This is a Ramsey-type tax problem

involving time and exhaustibility. We investigate it in variants of a Hotel-

lingesque framework. First we solve for the appropriate tax schedules for

the case of zero extraction costs (one could have constant unit cos
ts without

altering the analysis). We consider a Hotelling [1931] situation in which the

industry price rises in the face of a stationary negatively sloped 
demand sche-

dule and then we consider the L.C. Gray [1914] case of output price
 constant

and stationary marginal costs positively sloped. We then take up the case of

costs varying over time, say indexed by stock size, as in Levh
ari and Leviatan

[1977].

Recent results on the taxation of exhaustible resources are
 reported

in Dasgupta and Heal [1979, Chapter 12] and Dasgupta, Heal and 
Stiglitz [1980].

In these investigations, the issue focussed on was how vari
ous taxes change

the time path of extraction from the competitive norm. Optimal taxation of a

Ramsey sort was not taken up. For the case of a linear demand schedule, we ob-

serve that relative to the situation with a uniform excise 
tax, the period of

exploitation of a stock is lengthened under an optimal ex
cise tax scheme.

2. Optimal Excise Taxes: The Hotelling Model of the Industry

The framework for deriving optimal excise taxes i
s essentially of the

Cournot-Nash sort. Agents are assumed to optimize in the face of taxes tr
eated
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as parameters in their decision-making and a tax or revenue authority is as-

sumed to optimize social welfare in the face of schedules of prices net of

taxes, and quantities yielded by an agent's decision. For a Hotelling model,

each agent's decision rule is the first order condition to the optimization

problem: maximize by choice of q(t)

subject to

T (11 )t
V = E   03(q(0)-T(t)q(01-Frt=0

E q(t) < So
t=0

where r is the discount or interest rate.

B(q(t)) is a benefit measure denominated in dollars (say the area

under a demand schedule or gross consumer surplus) and - /-11 = p.
dq

q(t) is the quantity of mineral mined at time t from the stock

S
0 

at t=0.

is an index of the period in time.

T(t) is the excise tax in $ per unit of mineral.

is the number of periods, endogenous to the problem, in the

optimal program.

The first order condition for an interior solution is

1 
•

P(t) - T(t) = 
/ \T-t 

[p(T)-T(T)]

where p(T) is the cut-off price or price (equalling unit cost) of the

backstop technology. Thus p(T) is exogenously given and

price p(t) rises over time to p(T) at which time the stock

is exhausted. (We gloss over the issue of "large" stocks
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and exploitation in the phase of constant prices, as did

Hotelling. See for example Gilbert [1978].)

This condition indicates that rent, p(t) - T(t), per ton rises to the terminal

rent at a rate equal to the rate of interest (the so-called r per cent rule).

Moreover, this condition represents the decision rule for each competitive mine

operator. It indicates how much to extract in each period of the program. The

(dp(t))
dq(t) 

dq(t)-dT(t)=0tax authority takes this rule as given and uses the fact that

or

dq(t) = dq(t)
dT(t) dp(t)

dq(t)
where

dp(t)
dq 

dustry ( i
dp 

s assumed to be negative).

0 < t < T.

is the slope of the demand schedule for mineral facing the in-

The tax or revenue authority is charged with raising in present value 

1 
Z dollars of revenue from this industry. Thus Z =) T(t)q(t). Its

t=u

problem is to raise this revenue by choice of T(t) while maximizing social wel-

fare. That is, maximize by choice of T(t),

subject to

T )t
W = E   {B(q(t))-T(t)q(t)}

t=0 l±r

1 
(l+r) 

t
[T(t)q(t)] = Z

t=0

where q(t) is now a function of T(t) via the decision function of each agent.

Assuming that an interior solution is optimal, the necessary condition for a

maximum is



dq(t) 
p(t) T(t

dp(t)
dq(t) 

- t
dp(t) 

q( 
{
T(t) 

dq(t) 
dp(t)

+ q(t

where X is the Lagrangian multiplier on the "Z constraint" and is the shadow

price of a unit of tax revenue. Since B(q(0)-T(t)q(t) is consumer surplus

(EC(0) at t and T(t)q(t)(EX(0) is total tax revenue at t, the first order

condition can be expressed as

dC(t) .
dX(t)

0< t< T

or an extra $ of taxes at time t "costs', in terms of consumer surplus 
foregone,

the same at each t. In terms of elasticities of demand, the first order con-

dition or optimal tax formula is

T(t) 
p(t) 

E(t)+1
1 

E(t) 
. 

1+X
0 < t< T

where E(t) 
dq(t) p(t) 
dp(t) 

q(t) is the elasticity of demand.

Example: Linear Demand

For the case of demand linear in price or q(t) = -ap(t), the optimal

tax formula becomes

T(t) =
- AZ(t)

[1+2A]

(

T-t

where Z(t) = [p(T)-T(T)] 4r) 
. Observe that p(T) = Va and q(T) = O. For

the case of a=1, r=.1, T(T)= , and X=1, we solved in a backward recursion.

The results are reported in Table •



Table 1*

  Tq
(11-r) (1 

l+r) {B(c1)-Tq}

10

9

8

7

6

5

4

3

2

1

0

5.000

5.1548485

5.2925895

5.4178087

5.5316442

5.6351311

5.7292101

5.8147365

5.8924877

5.9631706

6.0274279

10.000

9.700303

9.4248209

9.1743827

8.9467115

8.7397377

8.5515798

8.3805271

8.2250246

8.0836587

7.9551443

0.000

0.299697

0.5751791

0.8256173

1.0532885

1.2602623

1.4484202

1.6194729

1.7749754

1.9163413

2.0448557

12.81811

0.000

0.65518527

1.4201357

2.295375

3.2888606

4.4096238

5.667853

7.0749874

8.643819

10.388609

12.32522

0.000

0.59677673

1.1859497

1.7664516

2.34356

2.922521

3.5085977

4.1071186

4.723524

5.363419

6.0326196

56.169669 32.550538

* q=s-ap; 06=1.0, =.1, X=1.0, B(q) = 0q-.5q21.

The interesting qualitative feature of the optimal tax schedule is the dec
line

over time of tax per unit output from $6.027 to $5.000. As one moves along a

linear demand schedule toward q=0, the elasticity eventually starts risin
g

in absolute value, and one assumes, given earlier results on optimal 
excise

taxation, that taxes should fall. Indeed they do in our example but our frame-

work has the effective demand schedule shifting over time because of dis
counting

and this should also result in T declining over time. In summary, T(t) does

decline over time but we do not have a pithy explanation for this result.

For purposes of comparison, we solve for a program which, given the



same stock, yields the same revenue in present value but with a uniform tax.

Discounted welfare should be lower since the tax is not set optimally. Be-

cause time is treated discretely, it is not possible to construct a perfectly

comparable program. It turns out that we need a program of about 8.5 periods.

However we report on the appropriate comparison program in Table 2 and note

that our comparison is imprecise though qualitatively correct and of interest.

The same parameters are used in generating the results in Table 2 as were used

for producing the results in Table 1.

9

5

4

3

0

Table 2*

(it
 

1  t
\l+r) (l+r) 

{B(q)-Tq}

5.7 10.000 0.000 0.000

5.7 9.609091 0.390909 1.039463

5.7 9.2537191 0.74628091 2.1828726

5.7 8.9306537 1.0693463 3.4406232

5.7 8.6369579 1.3630421 4.8241489

5.7 8.3699617 1.6300383 6.3460271

5.7 8.127238 1.872762 8.0200924

5.7 7.90658 2.09342 9.8615653

5.7 7.7059818 2.2940182 11.887185

5.7 7.5236198 2.4763802 14.115367

13.936197

* See Table -1 for parameters.

0.000

0.7485129

1.5038306

2.2728195

3.0624703

3.8799619

4.7327256

5.6285147

6.575472

7.582206

61.717345 35.986514

As we noted above, the examples are not perfectly comparable because the one

in Table 2 should hold for roughly 8.5 periods. However the qualitative fea-



tures are that relative to a regime of uniform taxation, under optimal excise

taxation, the length of the program is greater, price starts higher and wel-

fare is slightly higher. (To obtain this last result, we halve the discounted

consumer surplus at period 0 in Table 2 in order to shorten the program appro-

priately, and observe then that total discounted welfare becomes 32.195411 which

is less than the 35.550538 for the optimal program.) Some experimentation with

different uniform taxes and different horizons led to the conclusion that the

above example reported in Table 2 is the correct comparison program but that

a horizon with roughly 8.5 periods is required.

3. Optimal Excise Taxes: The L.C. Gray Model of the Mine

In the classic Gray model of the mine, price of output is fixed and

the mine owner with a fixed stock adjusts his output in the face of a station-

ary extraction cost structure so that his rent rises at a rate equal to the

rate of interest. The cut-off occurs at the point at which marginal cost of

extraction currently in effect at time t equals the average cost. The mine

owner's objective function is the maximization, by choice of q(t), of

T y

7 = E 
1+r

{pq(t)-C(q(0)-T(t)q(01
t=0

subject to

E q(t) < S
= 0

t=0

and his decision function (the first order condition for the maximization

problem) is

( T-t
p-c(t)-T(t) = fp- (T)-T(T)}  

l+r) 
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where c(t) is the marginal cost of extraction c(t)EdC/dq).

T(t) is the tax per unit output.

c(T) is given by the condition c(T) = C(q(T))/q(T). The mine owner's deci-

dc(t) „
sion function yields the condition - dq(t) 

dq(t) = dT(t) or

where

dq(t) = dq(t)

dT(t) dc(t)

dc(t) _ d
2
C(q(0)

dq(t) 
dq(t)2

The tax-revenue authority selects excise taxes in order to maximize

discounted social welfareisubject to raising in present value terms Z do
llars

of revenue. It maximizes, by choice of T(t),

subject to

T t

W = E fpg(t)-c(q(0)-T(t)q(01
(-1-1T) t=0

1 
Z = 

t=0 

(l+r)t 
E T(t)q(t).

Assuming an interior solution exists, the first order condition and 
rule for

optimal excise taxes is

da
dcP dc dc dc

0< t< T

which in terms of elasticities becomes

[1 - T(t) 
n(t)

c(t)  1 
0 < t < T

1+A
11(0  P 71(t)c(t)
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= dq c(t) 
where fl(t • and fl(t) > .

dc q(t)

Example: Linear Marginal Cost

We assume C(q) = Yq +--q2. Then C-= Y-17 3-1 and c = I + 6q
2 q 2

dq 1
yielding

dc = 
For this specification the optimal taxes are

T(t) =
p-I][1+2]-XY(t) 

[1+2X]

where Y(t) E {p-e(T)-T(T)}  
l+r

and c(T) = I and q(T) = 0.

Observe that the formula for the optimal taxes has the identical structure to

that for the Hotelling model with the linear demand specification. One can

then adapt the numerical example in Tables 1 and 2 to this L.C. Gray model with

excise taxes simply by labelling variables differently.

4. Optimal Excise Taxes and Shifting Extraction Cost Schedules

The classic case of exhaustible resource use and quality variation

is formalized by assuming that extraction costs shift up as the stock of mineral

is depleted. For this situation there are two important subproblems. First

the physical stock may be exhausted at the terminal date in the program and

second the extraction costs may rise sufficiently rapidly so that physical ex-

haustion is not reached at the terminal date but Marginal profitability becomes

negative for exploitation beyond the terminal date. Formally, there are two

distinct end-point conditions depending on the parameters of the problem in

hand. It is helpful to label the first case as one of physical exhaustion and

the second as one of economic exhaustion of the stock. Under a competitive in-

dustry, the small deposit owner's decision to produce mineral or not at time t
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is the first order condition to the following optimization problem. (This is

a discrete time formulation of that in Levhari and Leviatan [1977] with excise

taxes inserted.) Maximize by choice of q(t)

subject to

T 1 )t

l+r
V = E   {13(q(0)-C(q(t); S(t))-T(t)q(t)}

t=0

E q
t=0

t-1 0-1

where S(t) = So - E q(j) and it is understood that E q(j) = 0 and

0 j=0 t-1 j=0

E q(j) = q(0). S(t) = S
0 
- E q(j) is the stock remaining at the begin-

j=0 j=0 D
2
C 

ning of time t. It is assumed that 3C/Dq(t) > 0 and 2 
< 0 or that cur-

3 (t)

rent extraction costs are increasing and concave in current quantity extracted

and that DC/DS(t) < 0 so that larger stocks remaining in the ground imply lower

current extraction costs. This is the formalization of the idea that the qua-

lity of mineral declines as cumulative quantity extracted increases.

The first order condition, assuming physical exhaustion occurs, is
2

1  T-t 
T (l+r1 )0+1-0

P(t)T(t)q(t)= l+ r
)] [p(T)-T(T)-C (T - E   C (j+1)

j=1

where C =   and C ( ) and C (T+1) = 0. The
Dq(t) 

S(t)) 
DS(t)

interpretation of this condition is that rent per ton at time t equals the

discounted rent at the end of the program minus the sum of discounted "degrega-

tion charges" (a term for Cs(t) due to Solow and Wan [1976]) relevant beyond t.

For the case of economic exhaustion, rent at T is zero and the deposit owner's

decision rule is



T )(j+l-t)

P(t)T(t) q(t)= - E   C (j+1); 0 < t < T. (1)
l

j 
+r

=t

We assume that p(T) is given exogenously by the cost of the backstop technology

so that for the case of economic exhaustion, p(T)-T(T)-C (T)=0, or terminal ren
t

is zero.

We will complete the analysis under the assumption that economic ex-

haustion is the case in hand (the reader can readily work out the case for ph
y-

sical exhaustion). Thus equation (1) is the agent's relevant decision rule. Let

us jump ahead for a moment to consider the solution of the problem assuming
 that

the formulae for the T(t)'s are known and $Z, in present value, must be r
aised.

Since p(T) is given exogenously, q(T) is given exogenously also from the st
a-

tionary demand schedule. Given S exogenous, there will in general be a unique
0

value of T(T) which will make p(T)-T(T)-Cq(q(T);S(T)) = 0 and have $Z raised.

Alternatively, there are only T TW's which can be chosen given So, q(T), 
p(T)

and Z.

The tax-revenue authority takes the mineral extracting agents deci-

sion rule as given and perturbs it to determine the response to small changes

in the T TW's given T(T) assumed optimally chosen. That is, totally differen-

tiating the T equations in (1), yields

t-1 T-2(1 )0+1-0
dp(t) 

) - C (t)dq(t) + C
Sq
(t) E dq(i) + E  l+r 

C
Sq
0+1)dq(j+1)

dq(t) qq i=0 j=t

T

-1(1+T 

)0+1-0
- E   C

SS 
(j+1) E dq(i) = dT(t)

j=t i=0

t= ,...,T-1 (2)
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This is a system of T linear equations in dq(0),...,dq(T-1) and can b
e solved

dq(k) 
for 

dT(t) 
(k=0,...,T-1; t=0,...,T).

dq(k) ,
s, andThe tax-revenue authority now takes these responses, dT(t)

computes the T optimal TW's as solutions to the constrained welfare
 optimiza-

tion problem: maximize by choice of TW's,

subject to

W =
T (l+r1 )t
E   {B(q(0)-T(t)q(t)-C(q(t),S(t))}

t=0

E (14.1) T(t)q(t) = z
t=0

where now q(t) is a function of T(0), .,T(T) for t=0,.. .,T-1 and the deriva-

tives 
dT(t) 

are given from the solution to (2). The first order condition

yields the optimal excise tax formulae

T-1 ( { t-1
„ dq(t)  dq(1)} 

-q(k 
1 )

pkt) - TM   C  + C E

t=0 
1+T dT(k) dT(k) q dT(k) i=1 

dT(k) (-Er

T-1 (( )t
  T(t)

dq(t)} 1
k
q(k)

l+r dT(k) l+r
t=0 -

(k=0,.. .,T)

where X is the Lagrangian multiplier corresponding t
o the "Z constraint" and

is the shadow price of a dollar of tax revenue. Clearly the formulae for the

optimal TW's is complicated since the problem does not decompose
 into

parts such ,that the calculation of the tax for one period
 can be determined

relatively independently of the calculation for another perio
d. Now there is

an essential simultaneity in the computation of optimal 
taxes in general since

"stock effects" are present.3
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Two closing remarks. One can redevelop the L.C. Gray "theory of the

mine" problem with "stock effects" or indices of mineral quality varia
tion in a

way analogous to our redevelopment of the Hotelling analysis. Clearly the op-

timal tax formulae will be very complex since again an essential simultane
ity

of the tax equations will be present. The procedure for deriving such tax

formulae is the same as the one we set out for deriving formulae for t
he Hotel-

ling problem with mineral quality variation. Secondly, we note that though as

Dasgupta, Heal and Stiglitz observe, any time path of depletion can be obtained

with appropriate taxes, we have isolated a second best socially optimal time

path - one that maximizes social welfare subject to the distortion of raisi
ng

Z dollars of revenue by excise taxes.
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FOOTNOTES

1. The L.C. Gray "theory of the mine' deals with a profit maximizing, pr
ice-

taking firm. The industry is left aside. Thus when we speak of the

tax-revenue authority maximizing social welfare subject to a revenue con
-

straint, we are dealing with a restrictive notion of social welfare.

Consumers' surplus is neglected.

2. This is equation 7 in Levhari and Leviatan with a term inserted fo
r the

excise tax.

3. Dasgupta, Heal and Stiglitz elected not to take up mineral taxat
ion for

cases involving "stock effects". Clearly elegant expressions are diffi-

cult to come by.
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Abstract

The Intertemporal Externality in the Dynamic Common Property Renewable Resource

Problem

We develop a model in which agent i's "catch" in time t affects his

and all other agents' "catches" in time t+1. There is no static externality

in this dynamic model of the common property, only an intertemporal externa-

lity. We demonstrate that common property regimes correspond to lower steady

state stocks and lower welfare as compared to the competitive solution with no

externalities.
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The Intertemporal Externality in the Dynamic Common Property Renewable Resource

Problem

Dasgupta and Heal [1979; pp. 55-73] have recently provided some

micro-foundations for the notion of common property developed by Gordon [1954],

Weitzman [1974] and others. Their analysis like the earlier ones treats com-

mon property as market failure in a static context.
1 

E
s
sentially, firm i

realizes that its current "catch" is influenced by the quantities taken by

all other agents exploiting a common property renewable resource like the

fishery. It is the explicit cost interdependencies which represent the ex-

ternality caused by the institution of common property ownership in the tra-

ditional view. But this approach seems to miss the basic intuition of the

externality in fishing under a common property regime. That intuition is:

each agent acts under the assumption that there is no use foregoing some "catch"

today in the interests of having a reasonably sized stock tomorrow because

what he does not catch today will be caught by another agent - entry is "free".

This intuition can be embodied readily in a formal model of the fishery under

free access or common property - an explicitly dynamic model - and the tradi-

tional steady state free access equilibrium with zero rent can be obtained.

We will observe that free access leads to over-exploitation of the stock rela-

tive to a private ownership regime.
2 

In this formulation, market failure occurs

with free entry because agent i in foregoing some "catch" today (practising

saving with respect to the stock of fish) can expect to reap in the future

the discounted average payoff of such "investment" rather than his discounted

marginal payoff (average being defined over the number of agents in a steady

state). The course to overcome the market failure is to have the appropriate



2

tax on fish caught. The formula for the correct tax will involve time and

the discount rate explicitly.

We proceed to make formal our intuitions concerning common property with

two agents. We will compare the free access or common property outcome with

two agents to the planning solution for the problem. (The N>2 agent problem

is discussed below.) Each agent under the common property regime maximizes

discounted profits from fishing in

CO

{p-c(St,qt)}clit (i=1,2)1 

t=0

where 'TF is the present value of profit for agent i

is the interest or discount rate

p is the price of a unit of fish caught

S
t 

is the stock of fish exploited at time t

q
i 

is the quantity of fish caught by agent i at time t

c(.,-) is the cost per unit of fish caught. It depends on the stock

(a proxy for the "density" of fish in the fishing ground) and 
on

the current quantity caught. We explicitly omit the familiar

interdependency of current costs of i on current catches of i

and j emphasized by for example Dasgupta and Heal. We are at-

tempting to focus attention on the intertemporal interdependen
-

cies. It is assumed that   < 0, 
Dc  

= c . < 0.
3q
i 1=S

t

The exploitation-biological growth dynamics are represen
ted by

•••

12
s
t+1

—s
t 
=

t t t
(t=0,..
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where cb(St is the natural growth of the stock indicating net births over

deaths of fish. We will appeal to the familiar logistic form

below: “St) E aS (1-(St/K)) where a>0 and K>0 is the "carry-

ing capacity" of the fishing growth. Note that cb(0)=4,(K)=0

d(1) 
and 

dS 
= (1)

S < 
as S

t > 
(K/2).

t 

The interdependency leading to an intertemporal externality in the

above model is that agent i's costs in period t+1 are affected adverse
ly by

agent j's catch in period t. The effects are reciprocal and we assume here

that the size of the agents and their costs are the same.

The first order conditions for profit maximization yield the simul-

taneous recursive equations

1+(Pc
"t+1
l+r

t-. [P S+1qt+1 
, qt+1l c = p-c(S ,q )-qtc _

t  iq
t+1 

t
4t

+
( 1) 

q
i 

c
l+r t+1

(i=1,2) (1)

We move to consider steady state solutions, now. Let q be the steady output
A

^ (p(S)
for one agent and S be the steady state stock. Now q 

_  
2 . The basic equa-

tion characterizing our common property steady state is then, from (1),

Fc6 (P)-qc = [76,I)-qc,1 +   qc,
'2 ^ l+r

(2)

One can by the same procedure above obtain the basic equation for the soc
ial

optimum steady state (one treats the problem as if there is just one firm
 maxi-

mizing profits). It is
3

t+1



4

S)-c9] = (3)

Existence of interior solutions requires additional assumpti
ons on the proper-

ties of qh(S) and c(S,q). We proceed to specialize without searching for genera-

lity at this point. We let (P(S) be the logistic set out above and c(S,q)Eq/S

or VS in a steady under optimal planning. This form for costs is used exten-

sively in Clark [1976]. Our steady state equations (2) and (3) become

and

11[ 
[ PI+r

rPS..] [13

2s1

[p —
[s

2q)

(l (1) 

1-71- )(2)

2
(4)

(5)

respectively, where (P, = 1-(2S/K)] and /S=a[1-(S/K)].

Note that (/S)=0 for S=K and (/S )= 5=a for S=0. We manipulate (4) and (5)

[P (-41 - (1 

\2

1+r) VS)
  fth 

to obtain the same RHS, namely , plotted as schedule

1+.(Ps

hb in Figure 1. It increases in S. The new LHS of (4) is 1+1. p - 's1

- k 1 
- (1. ;)()

2 
I plotted as schedule ef in Figure 1. The LHS of (5) is

(1+(p)
I\ 
l+r 

b [)— —I] plotted as schedule gf in Figure 1. Routine calculation re-

veals each schedule to be concave i
n 

S.
4 

hb reaches a value of p as S=K. gf

I- 

1- __ 
> 

_
u

and ef reach a value of 
(ai,) 

+r
a 

p for S=K at f and clearly F 
for

l+r l 

0<a<1 and p>0, which we assume. If p-I+a<0, then gf and ef will be increasing

in S provided g and e are negative at S=0. Now g corresponds to a negative
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value provided p-2a<0 which we assume. Point e corresponds to a value less

1 r 2a-p 
than g if r>-4 

a. Finally point e lies above point h if • 
(These

a 3a-p 

conditions are satisfied, for example if r=.7, a=.8, =.1). We have in light

of Figure 1,
so

Proposition 1 (Over exploitation of the stock under common property): 
S 
cp 
 < S

cp 
where S and S

so
 are the stocks in steady state under common property

and social optimality respectively.

Figure I Figure 2

In a free access/common property equilibrium 
(steady state), agents,

assumed identical, will enter until p-c S, . = 0 where Nis the number of

[

agents. One can work out the equilibrium for any N>2 
by replacing (P(S)/2 above

- by (S)/N. The welfare result is of course that consumer
 and producer surplus

is higher under a socially optimal plan than 
under free access/common property.

(I) 
We can demonstrate this result for N=2 and 

=0 in Figure 2. Existence

of O<S<K for 
P-)

- =0, given our form for91above, requires 0 < a-213 < 1;

2S
a
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then S =  K.
a 

We insert the linear schedule kb in Figure 2 corres-

ponding to [)--(2S • 
In Figure 2 we assume that the steady state under corn-

mon property has entry "complete" at 2 agents so that ScP satisfies

Linear schedule mb corresponds to Scrutiny of Figure 2 yields

Proposition 2 (Welfare Cost of Common Property Equilibrium): If S
cp
 corres-

ponds to a situation zero profit for an agent (i.e. p-(b) =0) then
2S

S0
S corresponds to a situation of positive producer and consumer

surplus (i. (p- 1> 0).

We have then reworked the notion of a common property renew
able resource equi-

librium under exploitation and derived notions of over-exploita
tion and wel-

fare costs in an explicitly dynamic model with no externalities
 of the tradi-

tional static kind. One could obviously rework the analysis with the familiar

static common property externalities inserted. One could have current catch

of agent i affected by the current catch of agents other than i and/or th
e

current catch of agent i affected by the number of agents currently exp
loiting

the resource. Then there would be two sourcesof market failure under common

property - a static externality and our intertemporal externality.

We note, as a post script, that foregoing fishing is a form of saving

and of investment in the stock for future use. However our model differs essen-

tially from a general many person consumption-savings analysis involving the

pooling of savings. In our model the stock enters directly into each element in

the sum in the objective function and the pooling of savings affects the magnitude

of the stock. There are no such direct "stock effects" in a many person Ramsey-

type model of accumulation and over-consumption does not occur in these models.

•



FOOTNOTES

1. Exceptions are those studies which view an interior solution as non-

existent or dynamically unstable. See for example Smith [1975],

Clark [1976], and Hartwick [1979].

2. Khalatbari [1977] has a dynamic common property model dealing with 
two

exploiters of an exhaustible pool of oil. The model and the context are

quite different from ours for the fishery but Khalatbari also obser
ves

that the presence of a common property setting leads to over-exp
loitation

of the stock - in this latter case, overly rapid exploitation relat
ive

to that under a socially optimal plan. See Dasgupta and Heal [1970,

pp. 372-375]. We note also that Clark [1976; p. 43] points out that for

some models the common property equilibrium can be viewed as the 
socially

optimal outcome in which the discount rate tends to infinity. Our model

is an attempt to provide micro-foundations for why common propert
y regimes

display a "bias" to the present (high discount rates) relative t
o the

future.

3. This of course can be made into the familiar steady state inte
rtemporal

arbitrage rule if r is placed on the RHS.

2a 
4. The slopes of schedule hb is (14.01( [1+r+a- 1 ;K 

of schedule ef is

r 11) 2a aS
2a  [9a + 1-p + 

( aS] .
2 

and of schedule gf is
(1+0K 4 4 K j (1+01( [3a+1-13- 

4 
K ] ;

all linear in S. Thus, given our other assumptions on parameter values,

no two schedules can intersect more than once. Also as S--->K, the positive

slope of ef must exceed the positive slope of gf. Given point g above

point e by assumption, schedules gf and ef cannot intersect.
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