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ABSTRACT

‘Several procedures are proposed for testing the specification
of an econometric,mode1-in the presence of one or more other models

which purport to exp]ain the same phenomenon. These procedures are

shown to be c]oée]y related, but not identical, to the non-nested hypo-

thesis tests recently proposed by Pesaran and Deaton [7], and to have
similar asymptotic.pfoperties.’ They are remarkably simp]é both con-
ceptually and computationally, and, unlike earlier techniques, they
may be used fo fest agaihst several alternative models simultaneously.
Some empirical results are presented which suggest that the ability of
the tests to reject false‘hypotheses is 1ikely to be rather good in

practice.




Introduction

One of the major functions of econometrics is to test the validity
of models put forward by economic theory. Most techniques for hypothesis
testing in econometrics, however, simply allow one to test restrictions on
a model more general than the one being tested, conditional on the more
general model being valid. A striking exception to this generalization is
a technique recently suggested by Pesaran and Deaton [7], based on the
earlier work of Cox [2,3] and Pesaran [6]. The procedure they propose,
henceforth referred to as the Cox-Pesaran-Deaton or CPD test, allows one to
test the truth of a possibly nonlinear and multivariate regression model,
when there exists a non-nested alternative hypothesis. The latter need not
be true, and need not even be a hypothesis which the investigator would

seriously maintain.

In this paper, we propose several related procedures for doing
essentially the same thing as the CPD test. For simplicity, we consider
only univariate models. Our tests are conceptually much simpler than the
CPD test, can readily be implemented using existing computer software, and
can handle several aTternative hypotheses simultaneously. In Section 1 we
describe our test procedures; in Section 2 we present some theoretical
results on the relationships among them and between them and the CPD test;
and in Section 3 we present some empirical results on the application of

our tests to the data and models investigated by Pesaran and Deaton.

1. A Simple Test fbr Specification Error

We consider initially the case of a single-equation, possibly non-
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linear regression model, the truth of which we wish to test,

HO: yi,= fi(xi,B) + 601 (])

th

where Yi is the 7" observation on the dependent variable, Xi is a vector

of observations on exogenous variables, g is a k-vector of parameters to

be estimated, and the error term €04 is assumed to be NID (O,oé).

Suppose that economic theory suggests an alternative hypothesis,

though not one in which we need have any faith,

i 7 93 (Zp) * ey | (2)

where Zi is a vector of observations on exogenous variables, y is an

2-vector of parameters to be estimated and e,. is NID(O,o]Z) if Hy is true.

1i
We assume that H] is not nested within H0 and that HO is not nested within

H]. Thus the truth of H0 implies the falsity of H], and vice versa.

Consider the possibly nonlinear regression

Y.

i = (]’(X)f.'(x.lsB) +a 91 + 8.]9 (3)

<Zi’Y) and y is the ML estimate of y. If HO is true, then the

where 51 = 9;
true value of o is zero. Now ;i is simply a function ofvthe exogenous
variables Zi and the parameter estimates ;. The former are independent
of €; by assumption. Asymptotically, the latter are also independent of
€59 because the influence of any particu]ar error term on the estimates
tends to zero as the sample size tends to infinity. Thus, asymptotically,
51 will be independent of €5 SO that one may validly test whether o = 0

in (3) by using a conventional asymptotic t-test or, equivalently, a like-

1ihood ratio test.
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An even simpler way to test the truth of HO would be to estimate

y1 = (]‘OL) f1+OLg1 + E.i’ or y1 - f'l = 06(91 - f'l) + E.i: (4)

where ;1 fi(xi’g>' However, the t-statistic for & from (4) provides a
test the asymptotic size of which is smaller than its nominal size, as we
shall demonstrate in the next section. In order to rectify this, it is
possible to compute'an asymptotically valid standard error for & from (4)
by doing an auxiliary regression and some other simple calculations, but
that is not the simplest approach. Instead, one merely needs to estimate

~

a regression which is the linearization of (3) about B = B:

~

Y5 - fi = a(gi - fi) + Fib + €5 (5)

where Fi is a row-vector containing the derivatives of f with respect to
the parameters B for the 1th observation, evaluated at B. It is clear that

(3) and (5) will yield identical estimates of o and its standard error if

' HO is a linear regression model, since in that case Fi = Xj and fi = XB is

simply a Tinear combination of the regressors. In the nonlinear case (3)
and (5) will yield different results in small samples, but we shall show

that they yield identical results asymptotically when H0 is true.

We have thus suggested three procedures for testing the validity of
HO' The first procedure, based on (3), will be referred'to as the J-test,
since it involves estimating o and B jointly. It 1s'extreme1y easy to use when
HO is linear. The second procedure, based on (4), will be referred to as the
C-test, since it involves estimating o conditional on %. Since the t-statistic

from (4) asymptotically has variance less than unity under H., (4) may be all

O’
that one has to estimate to reject HO' The third procedure, based on (5), will

be called the P-test, for reasons that will become clear later on. It is Tikely
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to be much easier to perform than the J-test when HO is nonlinear, because
the latter involves a nonlinear regression which may not be well-behaved.
Thus we recommend the J-test when HO is Tinear, the P-test when HO is non-
linear, and the C-test as a simple pre1iminary test when H0 is nonlinear and

A

Fi is not easy to calculate.

It is obvious that, if H] is true, the estimates of o from (3), (4)
or (5) will converge asymptotically to one. This suggests that one could
test the truth of H] without doing any more regressions. That is not quite
true. The t-statistics from (3) and (5) are conditional on the truth of HO’
not on the truth of H]. Thus, as we indicate in the next section, a t-
statistic which is valid for testing the truth of HO will not be valid for
testing the truth of H]. If one wants to test H] the simplest procedure is
simply to reverse the roles of H0 and H] and carry out the test again. When
this is done, it is conceivable that both hypotheses may be rejected, or that
neither may be rejected. It is also conceivable that one may be rejected and
the other may not be, in which case one would presumably .want to choose the
latter over the former. However, 1ike the CPD test, our procedures are really
designed for testing model specification, not for choosing among a number of

competing models. If one simply wants to choose one out of a set of competing

models, one should use some sort of information criterion (see, e.g., Sawa

[8]), rather than our procedures or the CPD test.

Unlike the CPD test, our J- and P-tests can be used to test the truth
of a hypothesis against several alternatives at once. To test HO against m

alternative models gj(Zﬂ

5i° v:) by a J-test, one would simply estimate

J
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_ m m i
'.V-i - (] - Z\j:\] aj)ﬂ'(xiﬁ B) + Zj=] ajgj'f + C'i’ (6)

and perform a likelihood ratio test of the restriction that all the aj's

are zero. For the P-test, one would estimate

~

- f, = £ (g.. - f.) + F.b + €., (7)

Y j=1 0L\j Ji i i i

1

and perform the same Tikelihood ratio test. If there are several quite
different alternative hypotheses, this seems a more natural procedure than

testing HO against each of them singly.

A different approach to testing non-nested regression models is
to form a compound model from two or more alternative hypotheses and test
the restrictions imblied by only one of them being trué. There is a close
relationship between this approach and ours, which can easily be demon-

strated for the case where both H0 and H] are linear models,

XiBy + W.B, + €0, (8)

Livy * Wiy gy o (9)

Here Xi and Zi denote vectors of regressors which are unique to H0 and H]
respectively, and wi denotes the regressors which are common to both hypo-

theses. One may form the compound model

and test whether ayy = 0 using an F test, a procedure suggested by Atkinson
[1] and discussed by Pesaran [6] as an alternative to the CPD test. Our

J-test involves estimating the compound model

Yy = (1-a) (Xiﬁ] + Wiﬁz) + a(inz + ZiY]) + €5 | (11)

which can be rewritten as
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*

yi = XBp U By v ov ) oz o e, . (12)

1
where B; = (]-a)Bj. The only real difference between (10) and (12), in

terms of parameters which are identifiable, is that in the latter, Y4 is
restricted to be proportional to ;1.2 Thus 1in cases whereythere is only
one regressor in HO that is not in H], the J-test will yié]d exactly the

same results as the compound model approach. In other cases, the two pro-

cedures will not yield the same results.

The procedures we have proposed are conceptually much simpler than

the CPD test, and computationally somewhat simpler, especially for nonlinear
models. Before advocating their use, however, we must investigate their pro-
perties and compare them to those of the CPD test. That is done in the next

section.

2. Asymptotic Properties of the Tests

In this section, we shall derive the asymptotic distributions of
various test statistics, on the assumption either that Ho géquation (1)) is
true, or that H, (equation (2)) is true. Completeness requires a discussion
of the case in which neither is true; unfortunately nothing specific can be
said without knowing what is true, and the possibilities here are too numerous
for any general conciusidns to follow. Here we shall simply remark that all

and H,.

the tests we consider are capable of rejecting both H0 1

We shall make the following assumptions:

Either Hy or Hy, as in (1) or (2),is true,with true parameters (Bo,og) or

2
(Y'Is 0])
The vectors Xi and Zi are non-stochastic for all i =1, ... n, and are

fixed in repeated samples.
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(A3) Let the matkices of partial derivatives with respect to 8 or vy

of the functions f. and g, be denoted by F(B) and G(y), where these

matrices are n x k and n x 23 their transposes are FT(B) and GT(y).

Then, as n + =, the matrices

LET(R)F(8), £ 6T (v)6(v), + FT(B)G(Y)

converge to well-defined finite 1imits for all bounded B and vy, the

first two being positive definite and the third non-zero.3

Now let us consider regression (3). The log-Tikelihood function
for it is

2 n

L(a,B,07) = - > log 27 - g-log 02

-y - (1-a)f(8) - ag] |2,
20

Here y, f(B) and a denote n x 1 vectors of i f.

;(X;58), and 9;(Z;5y)» and

||...]| denotes the Euclidean norm of a vector. The likelihood equations,
which are the first-order conditions for a maximum of L, are obtained by
setting to zero the following partial derivatives:

T ~

(1169 (g - £BNT(y - (1-0)F(B) - ag),

(1/9%)(1-a) FT(8) (y - (1-0)f(B) - ag),

L= (n/20%) + (1720%) || y - (1-0)#(8) - ag]|%. (13)

The ML estimates &, é and ;2 satisfy the Tikelihood equations, and consequently

their probability limits under H, satisfy the equations

0

1 3L(0,8,0%) _
0" 38,08

in obvious abbreviated notation. It is immediate from (13) that these limits

plim

are 0, BO and og respectively. Then as usual we have:

N

u Ly(0, 8, Z)

0° %
- 2
B0 o I"] 1 LB(O’ Boa 00)

/i 2
L02(03803 00)
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where I, the information matrix, is defined by
I = plimy [- (1/n) D°L(0,81, 02)]
p 0 30’ 0 9

and '~' relates quéntities whose difference has a probability limit of zero.

" We readily obtain that [, A 2 ~
y [1g - fl 9 | (15)
I=Tim L FT(3-f)
n-> no 2
0 n/2o

where F and f without subscript denote F(BO) and f(BO) respectively.

We obtain from (1), (14) and the inverse of I that
G~ V(g-F) Mgeq/ | Mo (G-F) | |2 (16)

My = T - F(FTF)TFT.

It is asymptotically correct to replace a in expression (16) by g = g(yo)

(17)

where Yo © p]imoy. This is so since Yo is defined by the equation

.1 T
Tim n G (Yo) (g(Yo) = f(Bo)) =0
(from the likelihood equations for the regression y = g(y) + €) and since a
calculation similar to that above yields

T 2

9~9-6(66+1 (g;-f;)D gi)_] 6' (g-F-e

i O).

(D2 again denotes the Hessian and G = G(YO)). Our assumptions are sufficient
to ensure that the second term here has a probability Timit of zero. Hence

YN o is asymptotically normal with mean zero.
The estimate of the variance of Vi & from the regression (3) is

/\2 ~ ~ ~ 2
no”/|[My(8) (g - f(B))]]
and it is clear that this tends in probability to the variance of the right-

hand side of (16). We have thus proved
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Lemma 1: The t—statistic for a generated by regression (3) is asymptotically

distributed as N(0,1) if H0 is true.

This lemma deals with the J-test procedure. We now briefly consider
the C-test procedure, which is based on regression (4). The estimate of «

from (4) is
o = [(e-N)T (v-11 /7 |18-712, (18)

where f denotes f(B) and B is now the ML estimate from (1). If HO is true,

it is easy to see that f ~ f + (I - MO)EO, so that

y - f~ Moo (19)

The estimate of the variance of /ﬁuc from (4) is
/\2 A A _2 )
no “||g-f|| (20)

where 82 is the estimate of 62 from (4), which is obviously consistent under

HO' The variance estimate (20) is asymptotically biased, however. This
situation has been analysed by Durbin [4], who shows how to obtain a correct
estimate by the use of consistent estimators of the various components of the
information matrix. Using (15) and Durbin's prescription, or alternatively

by direct calculation from (18) and (19), one can easily show that a consistent
estimator of the variance of /ﬁac is any estimator which converges in probability

to

no?| [My(a-)11° 7 [[g-F]1%. | (21)

Now observe that expression (21) is smaller than the probability 1imit of (20)

under HO’ since M0 is an orthogonal projection matrix, so.that
2 2 |
[ Mg(g-F)11™ < [1g-F|]".

Thus a crude test based on (4) will be valid in the sense that the true
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(asymptotic) probability of Type I error will be no greater than the size

of the test.

One can of course compute a correct C-test statistic by using an
estimate of (21), but it is easier to make use of the P-test procedure,

which is based on regression (5). In vector notation, (5) is:

A A A

y - f=0a(g-f) + Fb + €. (22)

To show the validity of this procedure, we make use of a theorem of Lovell
[5], which can be stated as follows. The estimates of the parameters c¢ and
of their variances will be identical whether one estimates Y = Xc + Zd + u

or MzY = MZXc + u, where Y is a vector of dependent variables, X and Z are
matrices of independenf variables, u is a vector of errors, and MZ =1

- Z(ZTZ)']ZT. Identifying a-% with X and E with Z, and noting that &O(y—;)

= y-; identically, we conclude that, so far as the estimate of & is concerned,

(22) may be replaced by the equivalent regression:

A

y - f= ocMO(g - f) + €. (23)

A

The name "P-test" derives from this regression, in which the projection matrix

M0 explicitly appears.

From (23) it is obvious that the estimate of o from (22) will be

ap = (9 - F) M (v-F) / |IMy(g-D)]12, (24)

and that the OLS estimate of the variance of /n &P will be, -

no?| |y (3-%)1 172, (25)

A A A

where 02 = (1/(n-k-1))||y—f—aPM0(g—f)||2. From (19) we may conclude that,
under HO’

oy - T (g-F) Moeo/ | M (a-F) |12, BN

the variance of which is indeed the probability 1imit, under Hys of the
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estimate (25). Since op is obviously normally distributed with mean zero,

we have proved

Lemma 2: The t-statistic for o generated by regression (5) is asymptotically

distributed as N(0,1) if Hy is true.

Note that (16) and (26) are identical, so that, asymptotically under

A N

HO, 0LJ and Cp will be equal, and that both will also be perfectly correlated

with % (see (18) and (19)).

A

If in any of the regressions (3), (4) or (5), the estimate o is signi-
ficantly dffferent from unity, then one may conclude that H] is not sustained
by the data. Thisvfollows from an argument similar to the one used above to
prove that the estimate of the variance of & from (4) is biased upwards. Again,
the method of Durbin [4] can be used to obtain a valid vafiance estimate, but

it will generally be simpler just to invert the roles of HO and H] in one of

the reqular procedures when one wishes to test the latter.

We now turn our attention to the statistic used by Pesaran and Deaton
[7] for what we have called the CPD test. The numerator of their statistic

is
_E /\2/\2 . /\2—./\ A .
Tg =3 log (o,"/o7g)s  (with o7y = 05 + o). | (27)
Here 8% is the ML estimate from the regression y = g(y) + e, SS is the ML

estimate from the regression y = f(B) + €, and o§ is the ML estimate from an

auxiliary regression f(B) = g(y) + €y The assUmptions made by Pesaran and

Deaton are the same as ours, and their notation is only slightly different.

As the logarithm in (27) is difficult to work'with; we perform a
Taylor expansion of it around unity and retain only the term of leading order,

so as to obtain a statistic S which is asymptotically equivalent to T /V’i4

0
If we make the definition
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TO/ vyn = - (v/n/2)log(1-2S/v/n)
then we see that

T/ =S + 2S5/ + ...
so that
- 09/,
K

£-9)-(y-0) (y-0) /L% (v-0)T(y-9)1  (29)

“where g = g(y), and vy is the ML estimate of y from the auxiliary regression.
It is easy to see that §, like a, has probability limit g = g(yo), where as
before Yg = p]imo;. This implies that the auxiliary regression in the CPD
procedure is quite unnecessary, since gg cén validly be replaced by

(]/n)][g-f]lz, under Hy. Of course if Ho is not true, this replacement will

yield different results. In either case, we obtain that, under HO:
T 2 2
S ~ L/ (f-g9) Myesd / [0° + (1/n)||f-g||“]. (30)

Comparison of (30) with (16) or (26) shows that S is asymptotically perfectly

correlated with all the a's, with correlation coefficient minus one.

Pesaran and Deaton give for an estimate of the variance of TO the

expression

V(T) = (62/6% ) (F-q)

00" *0'710
and it is clear from (30) that, asymptotica]]y,"VO(TO)/n is equal to the
variance of S. This result is noteworthy because the variance of S follows
immediately from (30) from first principles, whereas Pesaran and Deaton's
derivation of VO(TO) uses a lengthy calculation based on a general and by no

means elementary result of Cox [2].

In summary, then, we have

Lemma 3: When HO is true, the No—statistic of Pesaran and Deaton, which is
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defined as To/(VO(TO))%’ is asymptotically equal to minus the J- and P-test

statistics.

We now ekamine the power of our tests and of the CPD test. The
power of a test is defined as one minus the probability of Type II error
(see, for example, Silvey [9], Chapter 6). For our purposes, a Type II error
is committed whenever a test fails to reject HO when it is false. We restrict
our attention to asymptotic results for the case where H] is true, and shall,

for the sake of brevity, consider only the P-test and the CPD test.

First, it is easy to see that the p]im] of &P (i.e., the plim under

H]) is unity, and that the p]im] of the estimate of the variance of /ﬁ&P is

nos /1] Myle-F)] |2,

where g = g(y]), By = p]im]é, f = f(Bl) and MO = MO(B1)' Then if we make
the definition

U= (]/n_)HMO(g-f)H2

and denote the P-test statistic by NP’ we conclude that
. : L
plim Np/viv = U%/g,. (31)
A somewhat lengthier calculation gives the corresponding result
for the CPD statistic, NO:
. _ 2 2 2\
- p11m] NO/V"— LU+ VvV + 01) Tog[1 + (U+V)/o]]/[w(U + c])] s (32)
where we have made the definitions:
2
V= (1/n)] My (g-) |2,
= (1/n)] Mgt (g-F) | |,
T -1 T
My = 1= Glv)IG (vp)6(vp)]7 6 (v,),

~

with Yo = p]im]y not necessarily equal to Yy
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It can readily be seen that the variances of both NP//H and
NO/Vﬁ"are of order 1/n as n » . Since the expressions (31) and (32) are
plainly of order unity, we can conclude that as the sample size tends to
infinity, both the tests reject HO against H] with probability unity when
H] is true. It does not appear to be possible to conclude that one test

will be more powerful than the other.

There remain a great many interesting questions're1ated to the
small-sample behavior of the various tests, which we intend to examine in a
future paper. For now, we merely remark that the pefformance of all the tests
appears to be quite similar in small samples, and that the ability of the tests
to reject false hypotheses, even when testing against other false hypotheses,
appears to be rather good. These remarks are illustrated by the empirical

results of the next section.

3. Empirical Results

In this section we apply the test procedures wé have proposed to
the data and models investigated by Pesaran and Deaton. They considered five
simple models of the relationship between real consumption and real personal
disposable income, denoted by H1 to H5, using U.S. quarterly seasonally ad-
justed data for 1954-2 to 1974-3. According to H], consumption depends
Tinearly on current income and a measure of wealth; according to H2, it
depends linearly on current income and consumption ]agged one period; accord-
ing to H3, it depends multiplicatively on current income and lagged consumption,
but with an additive error term; according to H4, it depends on current income
and on all past income with geometrically declining weights; and according to

H5 it depends on current income and on incomes for the past 21 quarters with

weights lying on a second degree polynomial. More detailed discussions of
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these five hypotheses, together with estimates of all of them, are provided
in [7]. Since none of the hypotheses is of much economic interest, because
they were deliberately kept very simple for purposes of illustration , we

do not reproduce that material here.5

Tab]e 1 presents the results of pairwise tests of each model, H]
through H5, against each of the other models. Each group of four rows relates

to a particular hypothesis being tested. The first element in each off-

diagonal entry is the value of the CPD N0~statistic, from Table II of [7].6

The second element is a test statistic for the J-test. Where the hypothesis
being tested is ]1neér (H], H2 and H5), this is simply the t-statistic associated
with the estimate of o from (4). Where the hypothesis being tested is nonlinear

(H3 and H4), this 'is the square root of twice the difference between the log-

likelihood function for equation (4) evaluated at the maximum and evaluated

at (O,é), a quantity which is asymptotically distributed as N(0,1) if the
hypothesis under test is true. We present this test statistic rather than an
estimated asymptotic t-statistic because we sometimes had difficulty numerically
evaluating the latter. The third element in each off-diagonal entry is the
value of the t-statistic from (4), as computed by the regression package, and
the fourth element is the P-test statistic. This fourth element is omitted

when the hypothesis being tested is linear, since the P-test is identical to

the J-test in that case.

Several features of Table 1 are worthy of note. First of all, as
the fact that their asymptotic correlation is unity suggests, the J- and P-
test statistics tend to be very similar. Secondly, inferences from the J-
and P-tests are basically the same as inferences from the CPD test. Since we
are applying asymptotic tests to estimates based on only 82 observations,

let us, conservatively, take 2.5 as a critical value. Then the CPD test
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in 13 cases,

rejects H, in 12 cases out of 20, the P- and J-tests Eeject H

0 0
and all three tests reject H0 in 11 cases. In two of the three cases where
our tests and the CPD test yield different inferences, the actual values
of the test statistics are not that far apart, so that there is serious
conflict in only one case out of 20. Another interesting feature of Table 1

is that the ordinary t-statistic from (4), although not as likely to reject

hypotheses as the J- or P-tests, is nevertheless quite useful. It rejects

HO in nine of the thirteen cases where botﬁ the other tests do so.

As one would expect from Lemma 3, a positiVe value of the CPD
NO-statistig is d5ua11y, but not invariably, associated with negative values
of the J- and P-test statistics, and vice versa. Remember that the lemma
holds only asymptotically and only if HO is in fact true; Thus these results
emphasize the fact that, despite their perfect negative asymptotic correlation
when HO is true, the CPD test and the J- and P-tests are different procedures,

which can yield different inferences.

Finally, it is interesting to»obsefve that large values of the J-
and P-test statistics tend to be associated with extremely large values of the
CPD statistic. This phenomenon has been observed in several other sets of
data as well. It is presumably related to the.possibi1ity that expression
(32) may be very much larger than (31) when U is large and W is small relative
to U. This may be.a disadvantage of the CPD procedure, because it may
condition investigators to expect enormous values whenever a hypothesis is

false, and to be skeptica] of values between say, 2.5 and 3.5.

As noted:ear1ier? our procedures allow one to test a hypothesis
against several alternative hypotheses simultaneously, by estimating equation
(6) or (7) and testing whether all of the aj's are zero. We employ a standard
likelihood-ratio test. When each of H] through H5'is tested against
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the other four hypotheses jointly, the test statistic would be asymptotically
distributed as chi-squared with four degrees of freedom if the hypothesis

under test were true. These test statistics are: for H], 69.236; for H

2’
30.840; for H3, 18.798 (J) and 15.884 (P); for H4, 44.795 (J) and 59.240 (P)s

and for H5, 83.080. Since the .005 critical value for x2(4) is 14.86, it is
clear that all five hypotheses must be rejected, most at an extremely high

level of significance.
Conclusion

In this paper we have proposed several new procedures for testing
the validity of regression models, provided there exist non-nested alter-
native hypotheses. These tests behave very much 1ike the existing CPD test,
except that they less often produce enormous test statistics. They are re-
markably simple to compute. When H0 is linear, one merely has to run one
extra linear regression to test it. When H0 is nonlinear, one either has
to run one extra noh]inear regression (for the J-test), or calculate the
derivatives of the model evaluated at é and run one extra linear regression
(for the P-test). Since the tests are trivially easy to implement, and
since finding alternative models is rarely difficult, there would appear to

be no barrier to.their widespread use in applied econometric work.




TABLE 1

Pairwise Tests for H, through H

1 5

Alternative Hypothesis:

Tested hypothesis: H] -47.08 -29.
6.84
6.96

.09
.22
. .38
.34 .51

.04 .66 3
. .72 .96 .63
.25 11 .33 .44

Entries on the diagonal are log L. The first element in each off-
diagonal entry is the value of the CPD statistic, the second is the
J-test statistic, the third is the ordinary t-statistic from (4) and
the fourth is the P-test statistic, for H3 and H4 only.
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Footnotes

We would like to thank Angus Deaton, Gordon Fisher, Bentley Macleod,

Michael McAleer and Christopher Sims for helpful comments on earlier

drafts. Versions of this paper have been presented in seminars at
Queen's University, the University of British Columbia, Stanford
University and the University of California at Berkeley. If any errors
survive, we are responsible for them. This research was supported, in
part, by a grant from the Social Sciences and Humanities Research

Council of Canada.

It was pointed out to us by a referee that Atkinson's compound model
procedure suffers from the difficulty that o and Yq cannot be separately
identified. Our procedurescircumvent this difficulty by estimating o

A

conditional on Yq-

These technical requirements are imposed to avoid difficulties assqciated
with unidentified models or with statistics that have infinite variances.
Strictly speaking, we must also exclude the following possibility: the
span of the columns of F and G have an interesection, V, of positive
dimension, and the orthogonal complements of V in the respective spans

of the columns of F and G are themselves orthogonal. We are indebted to

W. Bent]éy Macleod for this point.
Under HO’ it is TO//ﬁ'which is of order unity in probability.

We are grateful to Professor Angus Deaton for supplying us with the data
used by Pesaran and Deaton, which differ from the data published with that
article because they have one more significant digit. Using the former,
we were able essentially to reproduce the estimates reported by Pesaran

and Deaton.
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6. Actually, the No—statistics reported in the last column of Table 1

differ from those reported by Pesaran and Deaton because the latter

were apparently computed incorrectly.
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