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PROPOSITIONS, PRINCIPLES AND METHODS:

THE CASE OF THE LINEAR HYPOTHESIS

ABSTRACT

This paper seeks to distinguish between the principles upon which

testing of statistical hypotheses may be based and the practical methods

which these principles generate. Seber's (1964) conclusion, that the Wald,

Lagrange Multiplier and Likelihood Ratio Principles all lead to exactly the

same test statistic in the case of a linear hypothesis, is then re-examined

and put on a proper mathematical footing. Simple relations between the test

statistics and their distributions are also outlined.

Gordon Fisher
March, 1980



PROPOSITIONS, PRINCIPLES AND METHODS:

THE CASE OF THE LINEAR HYPOTHESIS

- Gordon Fisher -

1. PREAMBLE

The testing of propositions put forward hypothetically is funda-

mental to the advancement of knowledge in science, because it permits clas-

sification of potentially fruitful lines of enquiry into those that are

worth pursuing and those that are not. Unfortunately, the outcome of a

valid testing procedure may be disputed because, inter alia, it comprises

an arbitrary element, and hence it is possible for two admissible tests of

the same kind to yield conflicting outcomes. For these reasons, testing may

well raise more questions than it answers and the way forward may not be

entirely clear. Characteristics of this kind are especially true of testing

statistical hypotheses. Consequently, it is well to have clear in our minds,

before such a test is applied, what its special characteristics might be and

how, in view of these, it might perform relative to some alternative test.

In this respect, it is helpful to distinguish the principles on which testing

is to be based from the practical statistical methods which these principles

generate. By a principle here is meant a general rule which specifies how

tests are to be devised. By a.method is. meant a specific statistical proce-

dure arising from application of a principle to a particular problem. The

distinction is helpful because it is common for many methods of testing to be

devised on the basis of a single principle, but not vice-versa. The develop-

ment of theory is then more straightforward and concise in terms of principles



2

than in terms of methods, since the former avoids unhelpful repetition of

notation and ideas. Moreover, knowledge that different methods have a common

root in a particular principle is a potent guide to intuition and a useful

aid to memory.

2. PRINCIPLES AND METHODS

The distinction to be drawn between principles and methods may be

illustrated by reference to three common forms of testing nested hypotheses

in large samples. These are Wald's (1943) test, Rao's (1948) test based on

efficient scores, and the Lagrange-multiplier test (Aitchison and Silvey,

1958; Silvey, 1959), each of which was originally developed on the basis of

maximum-likelihood theory. The second of these is exactly the same as the

third, by virtue of first-order conditions on the Lagrangean, and so the two

will be considered as one, namely, the Lagrange-multiplier test. The main

outcome of the theory of these tests is that they all yield large-sample

equivalents of the likelihood-ratio test and corresponding estimators whose

distributions are almost always asymptotic normal. In consequence, any esti-

mators that correspond to these (i.e. which have distributions that are also

asymptotic normal) may be used, after appropriate adjustments, to form cor-

responding tests. Similarly, since many standard tests arise as a consequence

of exact or approximate normality of the estimators involved, it is to be

expected that a whole range of standard methods are either straightforward

applications, or small-sample refinements, of the same tests.

Consider, for example, the estimation of a vector-valued parameter

0 from a random sample of n observations from a given distribution; 0 is

unknown, save that it lies in p-dimensional Euclidean space (p<n). It is



desired to test H0: E W where w represents a sub-set of points in Q which

obey the r restrictions h(0) = 0. If
Q 
denotes maximum-likelihood estimate

of 0 in Q (i.e. unrestricted maximum-likelihood estimation), then the Wald

(W-) test for H is

W = h

a standardized quadratic form in h(0Q), where DQ{-} denotes dispersion matrix

corresponding t (unrestricted) maximum-likelihood estimation in Q. Subject

to the usual regularity conditions, OQ and h(0Q) will be asymptotic normal

under 
H0' 

whence W k x2(r). Similarly, if 0
Q 
now refers to another asymptotic

normal estimator of 8 in Q and I)
Q
{-} again denotes dispersion matrix corres-

ponding to such estimation, then W is again a x
2
(r) variate under H • or if

0'

h(-) is linear and 0 is unbiased and exactly normal, then a small-sample

refinement of W based on the F-distribution may be obtained. We will return

to this below.

Notice that, whatever W-test is used, its associated estimates are

invariably based upon unrestricted estimation, that is, on estimation of 0 in

Q, disregarding the restrictions h(0) = 0. For this reason, we may associate

the Wald (W-) Principle with the notion of testing restrictions using standard-

ized• quadratic forms of them based solely upon unrestricted estimation. In

contrast, the Lagrange-multiplier (M-) Principle is based solely on estimation

of 0 in w, that is, upon restricted estimation, using w
, the estimate of the

Lagrange multiplier corresponding to h(0) = O. Of course, the large-sample

test based upon the M-principle is given, in an obvious notation, by

M = [D (q) )] (i)w w w w



which is again asymptotically x
2
(0 distributed under H

0. 
Notice carefully

that there is no need to insist on maximum-likelihood estimation: the esti-

mated Lagrange-multiplier (1)03 may, for example, apply to least squares or

some other method of estimation, provided the estimates involved have well-

defined normality properties of the kind required.

Corresponding to the W- and M-principles we have the Likelihood

Ratio (L-) Principle which makes use of both restricted and unrestricted

estimation. In view of the bases of the tests, intuition would then suggest

that application of the W-principle will, in general, reject Ho at least as

often as application of the M-principle, while application of the L-principle

will lead to results that lie somewhere in between the two. This is because

unrestricted estimation corresponds to the case when H
0 

is rejected, while

restricted estimation corresponds to its 'acceptance'. In a sense, the use

of both restricted and unrestricted estimators might be considered as an

attempt to strike a 'balance' between the one and the other.

3. APPLICATION

We shall now consider a particular application of the principles

introduced in Section 2. Seber (1964) has investigated the testing of linear

hypotheses in small samples according to the W-, M-, and L-principles and has

concluded that all "...lead to exactly the same test statistic" (p. 265).

While this conclusion is correct, Seber's method of establishing it leaves

something to be desired. The discussion below attempts to give the conclusion

a proper mathematical underpinning.
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Consider the vector y which ranges over n-dimensional Euclidean

space e according as N(p,I
n
a
2
). It is given that p E Q, a p-dimensional

, 2
sub-space, but otherwise p and a are unknown. Corresponding to the sub-

space Q, the least squares estimates of p and a
2 
are denoted by m and s

respectively. It is desired to test the linear hypothesis Ho: p E W; WC: Q,

where w is (p-r)-dimensional. The number r represents the number of linear

restrictions on Q to define w. Least squares estimation under H yields m

and 5
2
.

The standard test-statistic for

(PQ-P)Y n-p
F =  

y
T
(I -P )y

n

is:

where P denotes an orthogonal projection: P
Q 

is on Q along Q1 and P
w 
is on

w along wl, orthogonal complementation (1) being relative to . More explic-

itly, if w is defined by w EQ i)N[AT], where AT is a known r x n matrix of

rank r p, then any x Q which obeys A
T
x = 0 must lie in w. Hence another

statement of H
0 
is: ATP = 0, p E Q. Corresponding to this latter statement,

it is well known that the unique orthogonal projection on wl fl 52, namely PQ-Pw,

may be written as:

(2) P-P
w 

= PA(A
T
P A)

-1
A
T
P
Q

provided R[A] r)QI comprises the origin only (Seber, 1964, p. 262). It is

then easy to demonstrate that F in (1) embodies the W-principle since

(3)
Y
T
(Pcpw)Y

F=  
2

sQ

(ATmQ) T DQ (ATmQ) 1-1 (ATm0)
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where D (.) denotes dispersion matrix evaluated at a
2 
= s

2
, 

the latter being
Q

2
given by s = {1/(n-p)}{yT(In-P)yl, and mQ = Pg. Of course, F in (1) and

(3) each have the central F(r, n-p) distribution under H. Further, rF is a

2quadratic form based upon the unrestricted estimates m
Q 

and s
Q 

and the given

2restrictions only; upon replacing s
Q 
with a

2
, it is seen to be a quadratic

2• form in standardized normal variates, exactly under Ho. Since also s
Q 
is

asymptotically equivalent to the maximum-likelihood estimator of a
2
, it is

obvious that rF x
2
(0 for large n. Corresponding to earlier notation, we

may write rF = W to comply with the original definition of W.

The corresponding small-sample test for H
0 

based upon the M-principle

may be obtained via minimization of (y-p)T(y-p) subject to ATp = 0 for p E Q.

This requires finding a stationary point on

(4) L =(y-p)
T
(y-p) + 2p

T 
- 2p

T
(I-P

for variations in p and the vector Lagrange multipliers cp, and K in order that

(y-p)
T
(y-p) is minimized, while satisfying A

T
p=0 for some 11 E Q. The small-

sample application of the M-principle is based upon the estimate of cp from (4)

and the implicit hypothesis corresponding to 
H, 

namely: cl) = O. Note care-

fully that the entire procedure is based upon least squares estimation of p

in w. Writing fw for the estimate of cp corresponding to mw, the first-order

conditions from (4) lead to:

I
n

(5)

[f
w

0

mw P y
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This yields:

(6)

m
w

f
w
[ 

-
I
n
-P

Q
A(ATP A) 

1T 
PQ

T -1 T
(A P A) A P

QQ

(ATP A

.1iTp A)-1

in particular, fw = (AP?) 1ATP2y and mw = PQy PA(A
T
P

Corresponding to these estimates

2 Y an-PdY = (Y-m ) (Y-m
(7) s

w 
-  

n-p+r n-p+r

-1

T
PQy.

is an unbiased estimate of a under Ho. The small-sample test statistic

based upon the M-principle uses only estimates corresponding to estimation of

p in w. If the statistic is M, then

Tr 1-1
M = D t 

fWLW (ii

= Y P
T -1 [ T -1 211
A P

Q
A) (A P

Q
A)s

w 
AP A P

Q
y

The last expression is readily seen to reduce to

Y (132-PdY
(8) M =   • (n-p+r)

y
T
(I -P )y

upon application of (2). Under Ho, {M/(n-p+r)}.is distributed as (i (1- n -P)
1 2' 2

exactly, since

(9)
Y (PQ-P)• Yy (PQ-P)Y

Y (In-P)• Y. Y
T
(PQ-PdY Y an-PdY



and the two components in the denominator of the right-hand side of (9), each

divided by a
2
, are independent chi-square variates with r and (n-p) degrees of

freedom, respectively.

r -
There is, of course, a direct correspondence between the 

(
1 2' 

np)
 2

distribution and the central F(r, n-p) distribution. If, for example,

v ru 
13,1' 

-I-11) and v = u/(1 + u),then u = /(1-v) and u % f3 
2 2' 

 moreover,
2 2 2 '

mu/q has the central F(q,m) distribution. Thus although F and M will yield

different calculated numbers in a practical example, there will be no conflict

in using them to test Ho since they have different, though corresponding, dis-

tributions. The relation between W = rF, of equations (1) and (3), and M, in

equation (8), may be written

(10)
n-p + n-p+r

(see e.g. Weatherburn, 1952, 'chap. VIII; Wilks, 1962, p. 187). Moreover, if

A is the likelihood ratio corresponding to H
o' 

it must depend on the values of

the likelihoods corresponding to estimation in Q and w. Thus A is based upon

information contained in both W and M. This is readily seen from the definition

2

of A: An = {02/a2}
2
Q
/a
2
w
1 where G

Q 
and a

2 
refer to maximum-likelihood estimates of

.a
2 
in Q and w, respectively. Thus, for large n,

2

A
n {M/w} = {s2/s2}

w

holds approximately, whereas for any finite n, the following holds exactly:

2

An M n-p 
(11) A = — •

W n-p+r

•



Note also that

_2

12) W = ( -1)(n-p).

Hence, there can be no conflict between the small-sample tests based upon the

W- and L-principles. It follows immediately that there can be no conflict

between the small-sample tests based upon the W-, M- and L-principles.

With regard to the calculated values of the test statistics, it is

clear from (9), (10) and (12) that

_2

13) W = (A -1)(n-p) Mi(n-P)/(n-P+01

which may be regarded as the exact small-sample relation between the three

tests corresponding to the general large-sample relation:

(14) 141 n
{-2 log A}

n-p 
M{
n-p+r

}

each of which has the x2(r)-distribution for large n. Relations (10) - (12)

admit of proper application of the principles involved and we see that, while

the calculated values of the W- and M- statistics will differ, there is no

conflict between the tests since each is based upon its own distribution.

Finally, since there is a one-for-one correspondence between A and W, all

three principles are seen to lead to the same test statistic; for convenience,

this may be taken as the F- statistic given in (1).
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