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PROPOSITIONS, PRINCIPLES AND METHODS:
| THE CASE OF THE LINEAR HYPOTHESIS

ABSTRACT

This paper seeks to distinguish between the principles upon which

testing of statistical hypotheses may be based and the practical methods
which these principles generate. Seber's (1964) conclusion, that the Wald,
Lagrange Multiplier and Likelihood Ratio Principles all lead to exactly the
same test statistic in the case of a linear hypothesis, is then re-examined
and put on a proper mathematical footing. Simple relations between the test

statistics and their distributions are also outlined.

Gordon Fisher
March, 1980




PROPOSITIONS, PRINCIPLES AND METHODS :
THE CASE OF THE LINEAR HYPOTHESIS

- Gordon Fisher -

PREAMBLE

The testing of propositions put forward hypothetically is funda-
mental to the advancement of knowledge in science, because it permits clas-
sification of potentially fruitful lines of enquiry into those that are
worth pursuing and those that are ﬁot. Unfortunately, the outcome of a
valid testing procedure may be disputed because, inter alia, it comprises
an arbitrary element, and hence it is possible for two admissible tests of
the same kind to yield conflicting outcomes. For these reasons, testing may
well raise more questions than it answers and the way forward may not be
entirely clear. Characteristics of this kind are especially true of testing
statistical hypotheses. Consequently, it is well to have clear in our minds,
before such a test is applied, what its special characteristics might be and
how, in view of these, it might perform relative to some alternative tesf.

In this respect, it is helpful to distinguish the principles on which testing
is to be based from the practical statistical methods which thesé principles
generate. By a principle here is meant a general rule which specifies how
tests are to be devised. By a method is. meant a specific statistical proce-
dure arising from application of a principle to a particular problem. The

distinction is helpful because it is common for many methods of testing to be

devised on the basis of a single principle, but not vice-versa. The develop-

ment of theory is then more straightforward and concise in terms of principles




than in terms of methods, since the former avoids unhelpful repetition of
notation and ideas.. Moreover, knowledge that different methods have a common
root in a particular principle is a potent guide to intuition and a useful

aid to memory.

2. PRINCIPLES AND METHODS

The distinction to be drawn between principles and methods may be

illustrated by reference to three common forms of testing nested hypotheses
in large samples. These are Wald's (1943) test, Rao's (1948) test based on
efficient scores, and the Lagrange-multiplier test (Aitchison and Silvey,
1958; Silvey, 1959), each of which was originally developed on the basis of
maximum—likelihood theory. The second of these is exactly the same as the
third, by virtue of first-order conditions on the Lagrangean, and so the two
will be considered as one, namely, the Lagrange-multiplier test. The main
outcome of the theory of these tests is that they all yield large-sample
equivalents of the likelihood-ratio test and corresponding estimators whose
distributions are almost always asymptotic normal. In consequence, any esti-
mators that correspond to these (Z.e. which have distributions that are also
asymptotic normal) may be used, after appropriate adjustments, to form cor-
responding tests. Similarly, since many standard tests arise as a consequence
of exact or approximate normality of the estimators involved, it is to be
expected that a whole range of standard methods are either straightforward
applicatibns, or small-sample refinements, of the saﬁe tests.

Consider, for example, the estimation of a vecfor—valued parameter
6 from a random sample of n observations from a given distribution; 6 is

unknown, save that it lies in p-dimensional Euclidean space (p<n). It is




desired to test HO: 0 e w’where w represents a sub-set of points in © which
obey the r restrictions h(8) = 0. If SQ denotes maximum-likelihood estimate
of 6 in Q (Z.e. unrestricted maximum-likelihood estimation), then the Wald

(W-) test for HO is

W= h'6) D, (n(6 )} n(o)

a standardized quadratic form in h(eQ), where DQ{°} denotes dispersion matrix
corresponding to (unrestricted) maximum-likelihood estimation in Q. Subject:

to the usual regularity conditiomns, 6

Q and h(GQ) will be asymptotic normal

under H,, whence W g xz(r). Similarly, if 6. now refers to another asymptotic

0

normal estimator of 6 in Q and DQ{°} again denotes dispersion matrix corres-

Q

' . 3 . . 2 . .
ponding to such estimation, then W is again a x (r) variate under HO; or if

h(+) is linear and 6_ is unbiased and exactly normal, then a small-sample

Q
refinement of W based on the F-distribution may be obtained. We will return
to this below.
Notice that, whatever W-test is used, its associated estimates are
invafiably based upoh unrestricted estimation, that is, on estimation of 6 in
Q, disregarding the restrictions h(®) = 0. For this reason, we may associate
the Wald (W-) Priﬁciple with the notion of testing restrictions using standard-
v ized quadratic forms of them based solely upon wnrestricted estimation. In
contrast, the Lagrange-multiplier (M-) Principle is based solely on estimation
of 6 in w, that is, upon restricted estimation, using ¢w,‘the estimate of fhe

Lagrange multiplier corresponding to h(6) = 0. Of éourse, the large-sample

test based upon the M-principle is given, in an obvious notation, by

u=¢6-m 61 7%,




-4 -

which is again asymptotically xz(r) distributed under H Notice carefully

0"
that there is no need to insist on maximum-likelihood estimation: the esti-

mated Lagrange-multiplier ¢w may, for example, apply to least squares of

some other method of estimation, provided the estimates involved have well-

defined normality properties of the kind required.

Corresponding to the W- and M-principles we have the Likelihood
Ratio (L-) Principle which makes use of both restricted and unrestricted
estimation. In view of the bases of the tests, intuition would then suggest
that application of the W-principle will, in general, reject HO at least as
often as application of the M-principle, while application of the L—principle
will lead to results that lie somewhere in between the two. This is because

unrestricted estimation corresponds to the case when H, is rejected, while

0
restricted estimation corresponds to its 'acceptance'. 1In a sense, the use

of both restricted and unrestricted estimators might be considered as an

attempt to strike a 'balance' between the one and the other.

3. APPLICATION

We shall now consider a particular application of the principles
introduced in Section 2. Seber (1964) has investigated the testing of linear
hypotheses in small samples according to the W-, M-, and L-principles and has
concluded that all "...lead to exactly the same test statistic" (p. 265).
While this conclusion is correct, Seber's method of establishing it leaves
something to be desired. The discussion below attemﬁts to give the conclusion

a proper mathematical underpinning.
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Consider the vector y which ranges over n-dimensional Euclidean
2 . . . .
space é; according as N(u,Ino ). It is given that u € Q, a p-dimensional
: . 2 .
sub-space, but otherwise p and o are unknown. Corresponding to the sub-

space Q, the least squares estimates of p and 02 are denoted by m. and 8¢

respectively. It is desired to test the linear hypothesis H.: p € w; w C Q,

0’
where w is (p-r)-dimensional. The number r represents the number of linear

restrictions on Q2 to define w. Least squares estimation under H, yields m

0

and sz.
w

The standard test-statistic for HO is:

T
P -P
. . vy ( Q m)y Cnp
r

T
y (In—PQ)y

where P denotes an orthogonal projection: PQ is on & along QL and Pw is on

w along w', orthogonal complementation (+) being relative to é;. More explic-—
itly, if w is defined by w = @ F]N[AT], where AT is a known r x n matrix of
rank r £ p, then any x € Q which obeys ATx = 0 must lie in w. Hence another
statement of HO is: ATu =0, 4 ¢ 2. Corresponding to this ldtter statement,

it is well known that the unique orthogonal projection on w! M Q, namely PQ~Pw,

may be written as:
_ T -1, T
(2) 6w - PQA(A PQA) A PQ

provided R[A] M Q! comprises the origin only (Seber, 1964, p. 262). It is
_ p

then easy to demonstrate that F in (1) embodies the W-principle since

vy ) o n) 1 )

(3) F =

rsz - r
Q




- 6 -

: . . . 2 2
where DQ(') denotes dispersion matrix evaluated at ¢~ = s

Q’ the latter being

givén by sg = {l/(n—p)}{yT(In—PQ)y}, and m, = PQy. Of course, F in (1) and

Further, rF is a

(3) each have the central F(r, n-p) distribution under H

o0

quadratic form based upon. the unrestricted estimates m, and sé and the given
- 22 .

restrictions only; upon replacing sq with ¢7, it is seen to be a quadratic

. . . . 2 .
form in standardized normal variates, exactly under H Since also s is

0"

2 .
asymptotically equivalent to the maximum-likelihood estimator of ¢°, it is
obvious that rF ~ Xz(r) for large n. Corresponding to earlier notation, we
may write rF = W to comply with the original definition of W.

The corresponding small-sample test for H_. based upon the,M—principlé

0
may be obtained via minimization of (y—u)T(y—u) subject to ATu = 0 for p € Q.

This requires finding a stationary point on

@ L= -0 G-+ 2t - @)«
for variations in u and the vector Lagrange multipliers ¢ and k in order that
(y—u)T(y—p) is minimized, while satisfying ATu=O for some py € Q. ‘The small-
sample'application of the M-principle is based upon the estimate of ¢ from (4)
and the implicit hypothesis corresponding to HO’ namely: ¢ = 0. Note care-
fully that the entire procedure is based upon least sqﬁares estimation of u

in w. Writing fw for the estimate of ¢ corresponding to m , the first-order
. w

conditions from (4) lead to:




This yields:
T -1,T T -1
In—PQA(A PQA) A PQ PQA(A PQA) PQy

£ (ATPQA)"IATP

T -1
" -(A PQA)

Q

: : _ T -1,T _ _ T, ,\-1,T
in partlcular,.fw = (A PQA) A PQy and m = PQy PQA(A PQA) A PQy.

Corresponding to these estimates

T T
-P - -
_ y I -Poy _ (Gmm) (y-m )
n—p+r n-p+r

(7)

. 2 .
is an ‘unbiased estimate of ¢~ under HO. The small-sample test statistic

based upon the M-principle uses only estimates corresponding to estimation of

¥ in w. If the statistic is M, then

-1
T
fu) [Dw (tw)] fm

-1
T T -1 T -1 2 T T
=y PQA(A PQA) [}A PQA) Sw] (A PQA)A PQy

The last expression is readily seen to reduce to

yT(PQ—Pw)y
(8) M= " (n-p+r)
y (In-Pw)y

upon application of (2). Under H {M/(n-pt+r)} is distributed as B L 5%}5

0° 1'\2°

exactly, since
T T
y (PP )y vy (By~P )y

(9) - =
yT(In—Pm)yv yT(PQ—Pw)y + yT(In—PQ)y
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and the two components in the denominator of the right-hand side of (9), each
divided by 02, are independent chi-square variates with r and (n-p) dégrees of

freedom, respectively.

g . . r n-
There is, of course, a direct correspondence between the B_(=, _EEQ

1
distribution and the central F(r, n-p) distribution. If, for example,

m

v v 81(33 %) and v = u/(1 + u), then u = v/(1-v) and u ~ 82(%3 5

) ; moreover,
mu/q has the central F(q,m) distribution. Thus although F and M will yield
different calculated numbers‘in a practical example, there will be no conflict
in using them to test HO since they have different, though corresponding, dis-

tributions. The relation between W = rF, of equations (1) and (3), and M, in

equation (8), may be written

W - M
n-p + W - n-ptr

(10)

(see e.g. Weatherburn, 1952, chap. VIII; Wilks, 1962, p. 187). Moreover, if
A is the likelihood ratio corresponding to HO’ it must depend on the values of
the likelihoods corresponding to estimation in  and w. Thus A is based upon

information contained in both W and M. This is readily seen from the definition

2

n

of A: A = {og/oi} where 02 and ci refer to maximum-likelihood estimates of

Q
.02 in Q and w,‘respectively. Thus, for large n,

2

AP /Wy = {sé/si}

holds approximately, whereas for any finite n, the following holds exactly:

(11)




Note also that

2
(12) Ww=O0"-1(-p).

Hence, there can be no conflict between the small-sample tests based upon the
W- and L-principles. It follows immediately that there can be no conflict
between the small-sample tests based upon the W-, M~ and L-principles.
With regard to the calculated values of the test statistics, it is
clear from (9), (10) and (12) that
2
(13 W= (" -1)(na-p) = M{(n-p)/(n-ptr)}
which may be regarded as the exact small-sample relation between the three

tests corresponding to the general large-sample relation:

(14) W{—=-} 2 {-2 log A} 2 M{—2—} ,
. n-p n-p+r

each of which has the Xz(r)—distribution for large n. Relations (10) - (12)
admit of proper application of the principles involved and we see that, while
the calculated values of the W- and M- statistics will differ, there is no
~conflict between the tests since each is based upon its own d%stribution.
Finally, since there is a one-for-one correspondence between X and W, all
three principles are seen to lead to the same test statistic; for convenience,

this may be taken as the F- statistic given in (1).
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