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Abstract

This paper develops an exact maximum likelihood technique for

estimating regression equations with general p'th-order autoregressive

disturbances. The approach appears to be computationally practical

and straightforward, insures the estimated error coefficients satisfy

a priori stationarity conditions, and insures convergence of the estim-

ation procedure. Recent expression of the analytic inverse of the

covariance matrix of a stationary AR(p) process provides the basis for

the iterative algorithms, which employ a modified Gauss-Newton technique

utilizing exact first and approximate second derivatives. The relation-

ship between stationarity and the form of the objective function is

examined. Empirical estimates are then presented for regression models

with and without a lagged dependent variable.



I. Introduction

The estimation
1
 of time series regression models with auto-

correlated disturbances frequently arises in applied econometrics, and

it is often appropriate or convenient to represent such autocorrelation

by a stationary autoregressive error process. Autocorrelated distur-

bances are most often characterized in applied work by the Markov or

first-order autoregressive (AR(1)) error process, but in many cases a

higher-order process may be more appropriate. Such specifications allow

a more flexible shape to the correlogram of the error process, so that

it is not restricted to be positive with a strict geometric decline. It

has also been emphasized recently in the literature (Hendry and Trivedi

(1970), Pagan (1974), Godfrey (1978), and Newbold and Davies (1978)) that

inference and parameter estimation can be greatly affected by the error

structure assumed, and that applied work should consider a wider range

of possible error structures than just an AR(1) formulation. Moreover,

concern with the dynamics of model behaviour may lead to consideration

of a higher-order autoregressive process since autoregressive errors

can be interpreted as a special case of a general dynamic model specification

(Sargan (1964), Hendry and Mizon (1978)). Such higher-order processes

may be expected to arise particularly in work with quarterly (Thomas and

Wallis (1971) Wallis (1972)) or monthly time series.

1. We wish to emphasize at the outset that this paper is
essentially concerned with problems of estimation and not inference,
and with estimation of regression models and not time series models.



Conventional approaches to estimation of regression models

with general p'th-order autoregressive error processes have typically

been based on least squares or other approximate maximum likelihood

methods. On the one hand, (nonlinear) least squares procedures such

as employed by Fuller and Martin (1961), Pierce (1972), Wallis (1972),

Hendry (1971), or Pagan (1974) focus on a sum of squares objective

function and disregard the initial p observations as asymptotically

unimportant or as statistically not worth estimating as nuisance para-

meters. On the other hand, authors such as Kadiyala (1968), Thomas

and Wallis (1971) or Box and Jenkins (1970) incorporate the initial

observations into the exponential term of the (multivariate normal)

likelihood function and then optimize this exponential term. While

such approaches ease the optimization problems associated with such

nonlinear estimation and yield estimates which are asymptotically

equivalent to full maximum likelihood estimates, they are only approx-

imations to exact or full maximum likelihood estimates. Estimates for

small and even moderately sized samples can nonetheless differ fairly

substantially from the exact ML estimates (Beach and MacKinnon (1978),

Dent and Min (1978)) particularly if the parameter values of the error

process are close to the boundaries of the stationarity region. Indeed,

there is some evidence that the small-sample performance (for up to 100

and 200 observations) of ML estimators improves relative to alternative

estimators as the number of autoregressive parameters increases (Dent

and Min (1978)). Exact ML procedures are preferable from the point of

view of testing the structure and order of the autoregressive process

since tests are based on the correct maximized likelihood and the sample

on which the estimates are based does not change with the order of the
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process considered. In addition, optimization of the full likelihood

function can also be used to impose stationarity restrictions on the

error process so that the estimated process is well behaved, estimation

results are more readily interpretable, and conventional inference pro-

cedures can be carried out.

In an earlier paper, Beach and MacKinnon 1978) proposed an

exact ML procedure for a first-order autoregressive error model. The

present paper extends this approach to a general p'th-order autoregressive

error process. This extension makes useof recent advances in the

statistics literature giving explicit analytic expressions for the

inverse of the covariance matrices (and corresponding determinants)

which arise in exact ML procedures. We also make use of results from

numerical analysis which provide more robust algorithms, guaranteed to

converge for exact ML problems (with associated determinantal terms).

The paper thus attempts to provide economists with an exact maximum like-

lihood regression procedure for the general AR(p) error modef that reflects

recent advances in both statistical theory and computational techniques.

Exact ML estimation procedures have also been recently proposed

for the general autoregressive-moving average (ARMA) error process by

Newbold (1974), Prothero and Wallis (1976), Dent (1977), Ali (1977),

Ansley (1979), and Harvey and Phillips (1979). But the procedures in

this paper (suggested in part by Harvey and Phillips (1979)) are designed

for regression models, as opposed to simple time-series models, and make

more efficient use of the particular analytic structure of AR processes

in the iterative algorithms, which should yield greater computational

efficiency. The procedures also explicitly provide gradient algorithms
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for estimating the autoregressive parameters, and take into account

the computational implications of lagged dependent variables in

regression equations.

The next section of the paper formally sets out the problem

of exact maximum likelihood estimation in the general AR(p) regression

model. Section III then examines the relationship between stationarity

of the error process and the form of the objective function. The optim-

ization algorithms are discussed in the following Section IV. The pro-

cedures are then illustrated with two regression equation estimates (one

without and one with a lagged dependent variable) in Section V. Con-

cluding remarks are presented in the final section.

II. Setting Out the Problem of Exact ML Estimation

Consider, for convenience, the linear regression model

(2.1) y = + u

with t=1,... ,T observations and K exogenous independent variables, where

the error term follows a general p'th-order autoregressive process,

(2.2)

where Et NID (0

1 
+ up ut_ p Et

t-
=

2
). Then, following Box and Jenkins (1970, p. 274),

one notes that the joint probability density of the full set of auto-

correlated errors u' = (up u
T
) can be written

2
f(ulu,G ) =

where u* = (up u ). Under the assumption of normality of the E's,

the joint density of E
p+1' 

E
T 

is

1 T 2(2
MJ
2 -(T-p)/2

.exP [ E2a t=p+1 Et]



Conditional upon the initial values, u*, then, the corresponding joint density

of u+1 " 
u
T becomesp 

2 -( -  T.,uTlu ,a,a ) = (2a2) T-p)/2 .exp[ 1 
2 E

t=p+2a
-p)]

where the Jacobian of the transformation from the E I S to the u's is unity.

If we also assume u is joint normal with zero mean and covariance matrix

a2WI-,,

h(u 
)ot,G2 (21w )-p/2...*, 2 1

im exp [ -1 u l
2a2 *

and the joint density of the full set of u's becomes

(2.3)

where

(2.4)

f(ula,a2) (271.0.2)-T/21
Im
—*11/2

exp [-1, S
2aL

a)]

*
u
* 
+ E

t=p+1 (ut-a ut-1-a u -p
)

= u* Mu * + u'P'Pu

and P is the transformation matrix corresponding to (2.2):

P
(T-p)xT

-a ... -a,

1

Alternatively, one could assume that the initial u's and c's

are related by

c* = Ru*

for R nonsingular, in which case R and M* are related simply byR'R = M.

So far R and M* are unspecified, but they are determined below by requiring

the initial error vector u* to have the same covariance structure as the rest

of the u vector, so that the entire set of u's is covariance stationary.
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The log likelihood function corresponding to 2.3),

1 (2.5) L = const - --11 Zn a2 +
2a2 

(u
*
M
*
u
* 
+ u'P'P

u
),2

serves as a basis for comparing the principal types of estimators, con-

ventionally suggested for the AR(p) model. Straightforward least-squares

procedures essentially focus on only the conditional ç) function or the

sum-of-squares term, u'PPu, as the minimand, so that resulting estimates

are interpreted as conditional upon the initial p disturbances. "Uncondit-

ional" least squares procedures such as suggested by Box and Jenkins (1970),

on the other hand, can be seen as minimizing the full exponent term S(a) =

u*M*u* + u'P'Pu. Both approaches disregard the determinantal term 1/2

knIM*I as asymptotically negligible, and both can be seen as approximations

to exact ML estimators based on the full likelihood function (2.5). Con-

sideration of the "penalty" term 1/2 ZnIM*I in (2.5), however, greatly

facilitates investigation of the structure of the autoregressive process

near the boundaries of the stationarity region.

(2.6)

Alternatively, S(a) can be written as

S(a) = u*M*u* + u'P'Pu

= u*R'Ru* + u'P'Pu

= u' + P
1
P
1 P1P21

P
2 

P P'P
2 2

u where P = [P1 : P2]

(T-Oxp (T-p)x(T-p)

(2.7) = u'Q Qu where Q =
(TxT)

and Q'Q = a
2
V(u) . Consequently, given a, S(a) may be calculated from

M* and P as in (2.6) or from Rand Pasin 2.7).
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iThe approach
2 

which s followed in this paper is to determine

M* explicitly in terms of a by imposing the condition that the full

disturbance vector u be covariance stationary, and then utilizing an

expression for the inverse of the covariance matrix of stationary auto-

regressive processes. Specifically, Galbraith and Galbraith (1974, eq. 11

show that the elements of M* = a
2
V(u*) can be expressed analytically

in terms of the a's in relatively simple fashion as

*(2.8) m =
rs J=0 ajaj+s-r

Ep+r-s- a .a forj=p+1-s j j+s-r

and mrs equal zero otherwise, with a0 ' -1.-

< < s < p

It may be informative to examine the matrix M* given by (2.8)

for several plausible autoregressive processes. A second-order process

is still relatively simple, but allows a more flexible correlogram than

an AR(1) process. On the other hand, a full AR(4) or the simpler mixed

first- and fourth-order process may be appropriate in quarterly regression

models where the errors incorporate effects from the previous quarter as

well as from the same quarter of the previous year. The corresponding

matrices for these processes are presented in Table 1 for reference.

3

2. One alternative approach to maximizing (2.6) might be to replace
M* by R'R and explicitly express the elements R,. of R in terms of the a's.-
One could follow Lempers and Kloek (1973), for example, and again require
that the covariance structure of u* 

be the same as that of u
p+1 

,...,uT

expressed in terms of the a's. But this procedure rapidly becomes burden-
some for AR processes beyond second order. Another approach suggested by
Ali (1978) involves computing the matrix Q numerically from a procedure that
requires characteristic roots of a p-by-p matrix that is substantially less
straightforward to operate on than the M* matrix used in the present paper.

3. Further results are also provided by de Gooijer (1978) and the
references he cites. It shquld perhaps be noted that M* is not the upper
left corner of the matrix a'V(u)-1.



AR(2): u
t 
=

AR(1/4): ut =

M*
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Table 1

M* Matrices for Illustrative AR Processes 

ut-1 + a
U 6
t -2 t

-T _ a22 
1+ a2)-1

, 2
l kl+a2) a2

al ut-1 a4ut-4 ct

2
4

-al

4

_al

, 2 21, -al a4

••••••

-a

2 2
'a1 a4al a4

0 -a

-a1 a4

0

-01.1

, 2
1 -a4

AR(4): u =aa
t 1 

u 
t-1 

+ 
2 

u 
t-2 -3 

u 
t 

+
-3 4 t-4 

+ E
t

M*

, 2
a4 - (al +a3a4)

2 2 2
-(ali-a3a4) 

, 
11-al-a3-a4

a 4-a2a4)

-(al-ala2+a2a3+a3a4)

--(a2+a2a4) (a1 -al a2+a2a3+a3a4)

(- a3-fa1a4) (a2+a2a4)

, 2 2 21+ _ --
al a3 a4

+0,30t 4 )

-(a +ala4)

-(ct 4a2a4)

- (al +a3a4)
2

1-a4



It is typically simpler to operate on the concentrated log-

likelihood function obtained from solving the first-order, conditions for
-2
a = S(a)/T, substituting back into (2.6), and expressing the log-likelihood

function for the regression model in terms of the full set of a and (3.

parameters based on the sample observations for y and X:

(2.9) Lc(a,f3;y,X) = const +9,n1M*1 - tn [(y-XWQ 1 Q(y-X)].

This is the objective function which will be maximized by the procedures

described in Section IV. It is useful, however, to look more closely at

the relationship between the stationarity of the autoregressive process

and the form of the log likelihood function in (2.9).

III. Covariance Stationarity and the Likelihood Function

Consider initially a first-order process in which the Jacobian

term in (2.6) is (1/2)in(1-4). Clearly, this process is stationary

and the log-likelihood function well behaved for -1 < al < 1. But as

a/ approaches a boundary of the stationarity region (-1,1),2,n(1-

and with a2 fixed the likelihood function itself approaches zero. In

other words, the likelihood is zero that the sample u was generated by

an AR(1) process for which al = ±1. This should not be surprising, as

the likelihood function was formulated on the assumption that the process

was stationary, and therefore assigns zero likelihood to the possibility

of it being nonstationary. This suggests that a similar relationship

between stationarity and behaviour of the likelihood function may also

hold for higher-order processes, and this is indeed the case.

Consider then the p'th-order autoregressive process defined in

(2.2). The process is stationary if and only if the roots of the



associated polynomial

(3.1) cp(z) = zP - ----a

- 10 -

lie inside the unit circle in the complex plane (i.e., have modulus less

than unity). For the first-order process, (1)(z)=z-a1, so that al is the

root of (p(z), and the Jacobian term (1/2)5nIM*I = (1/2)kn(1-4) clearly

involves the root of the polynomial (1)(z). In fact, for higher-order

processes, this simple result generalizes easily. Anderson and Mentz

(1977) have demonstrated that for the p'th-order process,

(3.2) IM ji - ri ir)1,3=1

where ri,...,rp are the proofs of (p(z). Thus the Jacobian term of the

likelihood function can generally be expressed in terms of the roots

of the associated polynomial of the process. Now (3.2) can be usefully

rewritten as

p ,.. 2 p(3.3) H. ki-r.)qi (1=1 j,k=1

When all the roots of (1) (z) are inside the unit circle, r < 1 and IM* >0.

2But as a root r. approaches the unit circle, 1-r. .4- 0 and IM 1-3- 0. In

addition, if the a's are chosen such that a root ri lies outside the
2riunitcirde,"1-.<0 and itil*I<0. However, it is not true that IM I 0 

if anJonly if the autoregressive process is stationary. For if an even

number of roots lie outside the unit circle, 1%i will again be positive.

Clearly, then IM*I>0 is a necessary but not sufficient condition for the

corresponding autoregressive process to be stationary.

Necessary and sufficient conditions on the coefficients of a

polynomial so that the roots of the polynomial lie within the unit circle



have been forwarded in several forms. Wise (1956) and Samuelson (1941)

derive conditions based on the Routh-Hurwitz criteria, but this approach

is not as simple and direct as an alternative approach that has more

immediate applicability in the present context. It is perhaps natural

to look at work on the stability of linear, constant coefficient, differ-

ence equations for appropriate conditions since such difference equations

are stable if and only if a certain polynomial has all its roots inside

the unit circle. Such results were first obtained by Schur, Cohn, and

Fujiwara (see Marden (1966)), and all known as the Schur-Cohn conditions.

In the present context, they may be most conveniently stated as follows:

Theorem 1: A necessary and sufficient condition for all the roots of

the polynomial (1)(z) = zP - to have modulus less than unity

is that a matrix S be positive definite, where S is the symmetric (pxp)

matrix with elements

(3.4) S = Emin( 'j) (aij k=1 i-k-j-k -p-i+kap-j+k)

where a = -1 by convention (for proof and discussion, see Kalman (1965)0

and Folsom, Boger, and Mullikin (1976)). The matrix S has therefore a

simple form and moreover its rows can be calculated in a simple recursive

fashion (Power (1970)). The Schur-Cohn criterion is therefore easily

implemented and less cumbersome than the results given by Wise.

The Schur-Cohn criterion given in (3.4) is also of importance

because of its relationship to the covariance matrix of the auto-

regressive process. In fact, on expanding the expressions in (2.6) and

(3.4) and noting the symmetry in M* and S, one can see that S is identical

to the matrix M* defined earlier. In other words, as Pagano (1973) has



- 12 -

noted, the autoregressive process is stationary if and only if the

expression for the inverse of the covariance matrix for p consecutive

observations from the process yields a positive definite matrix. One

can thus see why IM*I>0 is not sufficient to guarantee stationarity

of the process since all the principal minors of M* must be positive

and not merely the principal minor of order p. The Schur-Cohn criterion

thus provides a direct relationship with the covariance structure of

the process.

Though quite straightforward, the Schur-Cohn criterion can be

simplified further for particular applications. Jury (1962) has shown

that half the determinantal conditions involving S are redundant and

need not be considered.
4 

A relatively simply application of Jury's

simplified criterion is to a mixed first- and fourth-order AR(1/4)

process refered to earlier. The process

U = a +all E
t 1 t-1 4 t-4 t

is stationary if and only if all the roots of

(1)(z) = z4 - a1 z
3 
- a4

lie inside the unit circle. Specializing Jury's results, we have the

following stability criteria, after allowing for unnecessary restrictions:

- a 
a4 

> 0

1 a a4
21 + a

4 - a4 a
1
a > O.

4. Jury's result is the analogue for the Schur-Cohn conditions
of the Lienard-Chirpart theorem concerning the Routh-Hurwitz conditions
(see Anderson and Jury (1973)).



- 13 -

The corresponding stationarity region is illustrated in Figure 1 and

shown to have nonlinear boundaries on two of its sides. In contrast

to an AR(2) process, for example, this region is not a simplex. Note

also that movement from an interior point A across two boundary lines

to a point such as B may leave M* still positive although one is

clearly in a nonstationary region.

In summary, then, it can be seen that the behaviour of the full

likelihood function reflects one of the necessary conditions for station-

arity, namely MI >O, but that this alone does not generally guarantee

stationarity unless M* is also constrained to be positive definite.

IV. Modified Gauss-Newton Optimization Procedures

IV.1 Outline of Procedure

The objective function (2.9) is clearly nonlinear in the two

sets of parameters, a and 13,, and the present section outlines the

optimization algorithms employed to maximize the concentrated log-

likelihood function. General purpose algorithms such as Davidson-

Fletcher-Powell and Gill-Murray-Pitfield described, for example, in

Wolfe (1978) could be applied directly to (2.9) if these are readily

available to the user in packaged form. However, modified Gauss-Newton

procedures are relatively straightforward to program and appear to work

quite well on the present problem, and so form the basis of the approach

of this paper. These procedures employ analytic first and approximate

second derivatives, and can be shown to have useful convergence properties.

Perhaps a natural point of departure is to employ the same type
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Figure 1

Stationarity Region for the Mixed First-

and Fourth-Order AR Process

I d4

4 0

2 3 2
a4-a4-a4+ I a4=

3.
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of iterative algorithm to find stationary points in the full AR(p) case

as was suggested by Cochrane and Orcutt (1949) for the approximate

AR(1) case, and more recently advocated by Magnus (1978) in a much more

general context. Their procedure sequentially maximizes the objective

function with respect to the ps's holding a fixed, and then with respect

to the a's holding is fixed.

The maximum likelihood estimator of given particular values

of a, is seen to be the Aitken estimator

(4.1) = (Ri5-0-15-c;

where the transformed variables 9 = Qy and R = QX. This may be obtained

by numerically computing a lower-triangular matrix R from M* such that

R'R = M* by a Cholesky decomposition algorithm (Wilkinson and Reinsch

(1971)), constructing Q from (2.7), and then running ordinary least squares

on the transformed variables. A particularly useful form of the decom-

position (Pagano (1973)) is

M* = R*DR* = R*L'LR* = R'R

where D and L are diagonal matrices and R = LR*. For a real symmetric

matrix M*, such a decomposition will yield strictly positive diagonal

elements on D (as characteristic roots of M*) if and only if M* is positive

definite. Consequently, this procedure serves the purpose of insuring

that the M* matrix discussed in Theorem 1 above is indeed positive definite,

so that the error process is stationarY.
5

5. knIMI*1 can also then be calculated in the evaluation of the
OoOlikelifloodfunctionasgkr(d.)since 1R*I = 1 (Wilkinson and
Reinsch (1971)). 1=1
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Finding exact ML estimates of the a's given particular values

for the Ws, however, involves more of a problem. The first-order

conditions for a given P. yield a set of p nonlinear equations. In the

case of a one-parameter (or "simple") AR(p) process, this equation can

be solved analytically without resort to numerical methods as presented

in Appendix 1 at the end of the paper. However, for general auto-

regressive processes of higher than first order, iterative gradiant

optimization methods are used in the form of a modified Gauss-Newton pro-

cedure. If 011 denotes the i'th iteration estimate of a (for given 0,

the procedure iterates on the formula

(4.2) a(i) = -(1-1) G(a g(a )

aL
where g(;(1-1)) = ( 91

aa 1-(-1) 
is the gradiant vector o (2.9) with

a
respect to a evaluated at the previous iteration, G is a negative definite

matrix representing the metric of the iteration, and X(i) is a variable

step size as suggested by Berndt, Hall, Hall, and Hausman (1974). If

A(i) = 1 for all i and G is the Hessian matrix of second-order derivatives

of (2.9), this reduces to the standard Newton-Raphson method (Wolfe (1978)).

In the present case, we use analytic derivatives for g(a) based on our

explicit expressions for M* and P, but an approximation to the Hessian

matrix for G(a) in order to gain a more robust iteration procedure, as

is outlined below. This approximation to the Hessian converts the procedure

to a Gauss-Newton algorithm (Bard (1974)), and the addition of a variable

step size in order to assist convergence accounts for the "modified" aspect

of the algorithm.
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IV.2 Calculating the Components of the Algorithm 

The first step in setting out the components of this algorithm

• then is to work out an expression for the gradient vector g(a) =

ayaap)'. Using the result of Sawa (1978), Lemma A.1),

one notes that

aknill*(0)1 M; p,aa.

so that now

(4.3) gi(a
f(1 tA.I.A _  1 

2 

f i (2114o
a * -

‘3."
2a

- 2 ET 
=p+1 t1 t 

- a - - a
pt

-p)}t- 1 t-1

by using (2.4) and indicating values conditional upon given 'Ps by a

tilde on the u's. This can be written alternatively for the full (pxl)

vector g(a) by letting u* = (u1, u )', u =

(u u
Ti 
) for i = 1, p, and the (T-p) x p matrix U =-

U p]. Then

9 -
g(a) = (l/e) (Lqii - U.11.U.ipt) + d

where the first component of this expression corresponds to the normal

equations for regressing the residuals -(14. on the lagged residuals •••,

while ignoring the initial terms of the likelihood function, and the_p

second component, d, with

di = ( 12) tr 102 11 _

2a
is the initial-term adjustment factor. This can be seen as adjusting

the first component for any difference between the calculated covariance

for p consecutive errors based on the assumption that the full sample
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-1is covariance stationary (a
2 
M* ) and the estimate based on the initial

p observations of the sample (ii*U*).

-1M* in (4.3) can be easily obtained by numerical inversion of M*

-(i-1) DMevaluated at a . The matrix of partial derivatives can also

be efficiently computed by using the result of Pagano (1973) that M* can

be expressed as

M* = KK' L

where - ap_i]

- ap-2

•••••••

and L =

ap-l - -

a _ 
a2

Consequently,

(111,) = (aK K. 4. 
Dal 

or) (31..  ,L, _ (DP)
• '3a- Da.' '3a -

and Il l (211-1) U = 2 1) 1.4. [( )K' -  )1.1]-0

. i
where a4,..,(1-1 a.

(1 
__ _ _ _ _ a

l 
1. '

. . .

1 .

(..D.K  )1(,..., a1 ap-2 - - - - 
_ 
.

_ ... _ _ al 
' 1

6 1 0 _ _ .... ..... ...... ..... ...._ ....._ _ _ _ _ _ _ _0

and

0 ______0 

p-i rows

( i rows

for i=1,...,p-1

=0 for i = p,
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0_ _
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0

_a a

.0
rows

for

p-i rows

Turning to the second-order matrix G, one notes that minus the

Hessian matrix (worked out as H11 in Appendix 2) will not always be

positive definite (i.e., the (log) likelihood function will not always

be concave) for parameter values that are not within a close neighbourhood

of the full ML estimates. Consequently, a standard Newton-Raphson algorithm

based on the full Hessian matrix for G runs the risk of breaking down if a

characteristic root of the Hessian becomes zero or negative as the computer

iterates toward a maximum of the likelihood function. A more robust pro-

cedure involves choosing a consistent approximation to the Hessian that

will be positive definite. It can be seen from the appendix that the dominant

term asymptotically corresponds to the set of inner products u - u_i for

i,j = 1, p, so that a natural choice for G is

(4.4) G =

,__ il u 
_1 - __ il

-1 
il
-p

--...1 

= - (1/a2 -1-
, .

U U
$: 

+ +'

Lu ' -_p _i _ _0_p _I
Convergence to an optimum may not be as rapid as for some procedures using

the exact Hessian matrix, but the algorithm is safeguarded against G not
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-1being negative definite.
6 

Once convergence has been obtained, -G can

also serve as the basis for a consistent estimate of the covariance

matrix of the a's, although one may wish alternatively to use the actual

Hessian matrix in Appendix 2.7

Finally, A is computed by a simple quadratic line-search

method. Start with A = 1 and check whether the (log) likelihood function

has been increased. If not, continue trying values of A = 2-j for

j = 1,2,...,J until one finds a value of j- for which the (log) likeli-

hood function has increased and then decreased. Then choose the value of

A corresponding to the maximum of a quadratic approximation over this

interval (Wolfe (1978)).

The resulting algorithm can be seen to satisfy Berndt, Hall, Hall,

and Hausman's (1974) Convergence Theorem conditional on the so that

in the limit the process is guaranteed to converge to a stationary point

which in general will be a local maximum. The convergence criterion for

the a's conditional on the is that

ci(i) 
 IEPj=1 a(i-1)

for some chosen value C1.

6. it may be noted that (4.4) is not the only possible choice for G
that safeguards against G not being negative definite. One alternative would
be to use the outer product of the gradient vectors gg' following Berndt, Hall,
Hall, and Hausman (1974), or a truncated version disregarding the initial-time
factor (g-d)(g-d)'. However, (4.4) appears to work very well in practice.

7. Its negative definiteness at the optimurci insures the second-orderconditions for a maximum obtain.

8. If the resulting values of a from (4.2) yields an M* matrixwhich is not positive definite, then a smaller value of AO) is sought byrepeating this procedure with a reduced starting value.
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Combining the conditional estimates of 13 given a from (4.1) and

of a given 13 from the procedure of (4.2), one obtains an iterative algorithm

that Oberhofer and Kmenta (1974) show will converge in the limit to a

solution of the joint first-order maximizing conditions under fairly general

conditions. The convergence criterion for the joint maximization is that

(4.5) i)
j=1

L
and ii)

a.(i) - at- (i-1)
  < 

6i0-1) 
C
2

),a(i))-Lc6(i-1),a -1))

-0-1)
Lc0 ,a )

for selected values C2 
and C

3' 
where 13 , P) and -13 

-0-1)
, a corres-

pond to successive conditional estimates of 13 given a and of a given 13.

Of course,-to check that the point of convergence is indeed a global

maximum, several different initial values for the parameters can be tried.

IV.3 Extension for Lagged Dependent Variables

In some circumstances, however, the above hemstitching approach

of Cochrane and Orcutt may be rather slow to converge if there is marked

covariance between the a's and some of the 's so that the iso-likelihood

contours in a,13.-space are very elongated. This is particularly likely to

occur in models with lagged dependent variables (Hendry(1976)). The

appropriate procedure to follow in this case is to incorporate information

on the a-(3 covariances and to replace the sequential Cochrane-Orcutt iter-

ative algorithm by one that estimates a and 13 jointly within each iteration.

Indeed, the modified Gauss-Newton algorithm introduced above for the

conditional estimates of the a's can be extended very simply to handle

the estimation of a and 13 jointly according to the formula
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-(i-1) (i) -(i-1)= - GO g(6 )

where now 6 = (a) represents the combined parameter vector. The first-

order (gradiant) vector becomes

7D'u -UlJa+ d
1+ + + +

g() = (1/F52)
- PR13

U u - U'U a + d11
= (1/8'2) 

+ + + + 

Xy -XX13. +di— + + + + 2

where d
1 

is the vector d defined in IV.2, d2 = X*  (y* - X*(3) is the adjustment

factor for the degree to which initial residuals and transformed X's are

not orthogonal, and

IX*

'x+

X = PX

= [R:0]X

y*
y+

= PY

y* = PiOD.

Corresponding t (4.4), the extended second-order matrix G now becomes

UX+1
G = (l/2) r u+u+ 

+ 
= -(1/a2)z.zaI .

L_ x-I-u-I- x+x+ j

where the (T-p)x(K+p) matrix Z = (U.I.:X4.). Again the matrix is robust

against singularities and also incorporates covariances between the

a's and 's in its off-diagonal blocks. X is chosen in the same way

as before, and the convergence criterion is analogous to (4.5) except

that summation is now over all K+p elements in S. Similarly, Berndt,

Hall, Hall, and Hausman's Convergence Theorem again applies for the full

6 vector.9

9. It may be worth remarking that in applying a stationary auto-
regressive transform to a dynamic equation, one is treating the regression
parameters,a, and the error parameters,, asymmetrically. One is imposing
stationarity on the error process, but not necessarily on the coefficient
structure of the lagged dependent variables. However, this may be with good
reason. The regression parameters are behavioural coefficients with known
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Initial parameter values used for the two maximization algorithms

also differ for static and dynamic regression models. In the Cochrane-

Orcutt sequential optimization procedure, initial a's were obtained simply

by in effect regressing least-squares residuals on their lagged values,

U+ and initial P.'s by running the GLS or transformed regression of

; = cly on R = QX. In the joint optimization procedure applied to dynamic

models, however, a consistent set of initial values for a were obtained

by regressing least-squares residuals on their own lagged values as well

as the full set of X regressors for the model. A corresponding set of

consistent (and asymptotically efficient) initial estimates for P. can

then be gotten by regressing the transformed y+ = Ry on the transformed

= PX as well as the full set of lagged least-squares residuals, 1.1.4.

(Hendry (1976), p. 81).

The various statistical properties of maximum likelihood estimates

as yielded by the algorithms of this paper have been well documented

elsewhere (for example, Dhrymes (1971) and Magnus (1978)). It is suffic-

ient to note that under fairly general conditions, the final .estimates

will be consistent and asymptotically efficient, and VT-('5-6) is asymptot-

ically normal with mean zero and covariance matrix given by plim [411] where

H is the Hessian matrix in Appendix 2.

economic meaning and one may very well wish to allow nonstationarity in the
y's if the data so indicate. The error structure, on the other hand, is
parameterized on the basis of relatively little knowledge and generally does
not reflect behavioural economic content, so that an assumption of stationarity
is a convenient way of making more efficient use of the data available.
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V. Some Illustrative Estimates

V.1 Weekly Earnings Equation

The procedures of Section IV are now applied to two regression

equations. The first, from Pesaran (1973) and originally from Godley

and Nordhaus (1972), is an earnings equation for male and female employees

in United Kingdom manufacturing industries using semi-annual data over

1953-69 (34 observations).

log(AWE) = + fi2T + 133log (BHR) + f34 log (A)

where AWE is average weekly earnings, T is a time trend, BHR is the basic

hourly wage rate, and the standard-hour-equivalents variable H = HS + X(H-SN)

where H denotes actual hours worked per week, HS is normal or standard hours

per week, and A is an overtime premium assumed for present convenience to

take a value of 1.5. Table 2 presents regression estimates by ordinary

least squares and by exact ML procedures for the AR(4) and AR(1) cases. The

figures in brackets in the table are "t-ratios" given by dividing the

estimated coefficient by an estimate of the asymptotic standard error of

the coefficient. As can be seen, the estimated regression coefficients are

not insensitive to the assumed error structure. The hours elasticity varies

between .95 and .80, and the intercept also varies substantially. Indeed,

the estimated hours elasticity on the OLS regression would not appear

significantly less than unity, whereas the estimates based on the full AR(4)

adjustments appear as 1.87 standard errors less than unity (statistically

significant at the 95% confidence level), rather more in keeping with ex-

pectations (Godley and Nordhaus (1973), p. 858).
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Table 2

Earnings Equation Estimates

OLS AR(4) AR (2) AR(1)

Reg Coefs

Const.

log(BHR)

log(R)

AR Coefs

a2

a3

a4
Summary
Statistics

0

0

.2087(2.017)

.0250(6.723)

.7115(9.044)

.9535(7.312)

SSR .2328x10-2

.828x10
-2

114.77

.9991

2
X (Ho:AR(0))

-.7740(1.481)

.0231(8.152)

.7475(12.05)

.8002(7.480)

.7252(4.265)

.0583(0.269)

-.2651(1.180)

-.7660(1.196)

.0231(7.018)

.7467(10.37)

.7990(6.168)

.9775(5.200)

-.3903(1.810)

-.2343(1.159) 0

.0787x10
-2

.480x10
-2

132.16

.9990

34.78

.1056x10-2

.557x10-2

127.70

.9990

25.86

.1373(1.880)

.0220(5.883)

.7724(9.767)

.8642(7.481)

.6852(5.485)

-
.1224x10

2

10-2
.602x

125.38

.9990

21.22
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The treatment of autocorrelation also increases the log likelihood

function a good deal, and affects the sum of squared residuals and standard

error of the regression quite dramatically. Between the OLS and AR(4)

estimates, SSR and s decline by 66% and 42% respectively. Since the (log)

likelihood functions for exact ML estimation do not involve dropping initial

observation in the data, they are readily comparable for likelihood ratio

tests on the structure of the autocorrelation. Thus against the null hypo-

thesis of no autocorrelation, twice the difference in log likelihood values

is 22.22 for an AR(1) process, 25.86 for an AR(2) process, and 34.78 for

an AR(4) prcess, all highly significant on conventional standards. On a

test of Ho
: AR(2) vs. Hs:

 AR(4), the (asymptotic) x2 statistic is 8.92,

while the corresponding statistic for Ho: AR(1) vs H1: AR(4) is 13.56, both

also significant at conventional levels. With a convergence criterion

of C. = .005, the full AR(4) estimates took five iterations to converge and

0.18 seconds of central processor time on the CDC 7600 University of London

computer. In summary, then, the exact ML regression estimates appear to

be fairly straightforward to calculate and readily adaptable to inference

on the autoregressive structure of the disturbance term.

V.2 Demand for Money Equation

The second example that is considered involves a lagged dependent

variable, a larger number of regression coefficients, and more than twice

the number of observations. The example is a demand for money function from

Clinton (1973) estimated with quarterly Canadian data for the period 19561

to 1977IV (88 observations):



log(M/P)
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3
Ej=i Qj + 135 log (Y) + log (R) + log (14_1/P)+u

where M is currency plus non-government demand deposits (Clinton's MO, a

narrow definition of money), P is the implicit GNE price deflator, the Q's

are quarterly seasonal dummies (with the fourth quarter dummy omitted), Y

is a real GNE income variable, R is an opportunity cost interest rate term

related to the 90 day finance paper rate, and t4_ 1 is a lagged stock of money

term. Estimates for the equation based on OLS and on AR(4) error process

are presented in Table 3 along with the standard summary statistics (Clinton's

analysis in contrast was based solely on OLS procedures).

As can be seen, autocorrelation in this example is not particularly

severe. Consequently, the regression coefficient estimates are not greatly

different between the two procedures except for some reduction in the lag

coefficient from .888 to .859. As a result, the mean lag of adjustment is

reduced from the rather lengthy value of two years to one and a half (and

the lag distribution variance from 72 quarters to 43). The short-run or

impact elasticities on income and interest rates have been slightly increased

(in absolute value) as a result of the autocorrelation adjustment, but the

long-run or cumulative elasticities have been reduced -- from 1.056 to .8882

for Y, and from -.3540 to -.3008 for R. Thus it appears that the overall

pattern of distributed lag effects has been substantially shifted forward

in time. In addition, the long-run income elasticity of demand for money

is in accordance with the more traditional view that it is less than unity

(and indeed statistically significantly less than unity), while the OLS

estimates suggest an approximate unit elastic effect.
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Table 3

Money Demand Equation Estimates

OLS AR(4)

Reg. Coefs.

const -.5562(6.457 -.5778(6.292)

Q1 
-.0452(8.690) -.0448(10.23)

.0000(0.005) -.0004(0.107)
Q2
Q3

LR 
log(Y) .1174(3.771) 056Elas .1255(3.893) LR Elas 

1. .888

log R -.0394(5.655) -.354 -.0425(5.681) - .301

Av.Lag Av.Lag 
24

log(M_V 
.

P) .8882(16.67) 8587(15.89) 
0mths 18.2mths

AR Coefs.

al
a
2
a3

a4

Summary
Statistics

SSR

R
2

0 .1989(1.865)

0 -.1238(1.191)

0 .2991(2.877)

0 -.1618(1.521)

-
1.633x10

-2 
1.439x10

2

1.279x
10
-2

1.367x10
-2

253.17 258.56

.9944 .9944
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The autocorrelation, though not severe, is still statistically

significant at the five percent level. In a test of Ho: AR(0) against

H :AR(4), twice the difference in the log likelihood functions comes to

10.78 compared to the critical value of a x
2 

variate with four degrees

of freedom at the 95% level of confidence of 9.49, so that the null

hypothesis is just rejected. This corroborates the results of Wallis

(1972) that, with quarterly data, seasonal dummies may not be sufficient

to take account fully of autocorrelation and a fourth-order autocorrelation

adjustment may be appropriate as well. Indeed, null hypotheses of an AR(1/4)

and of a simple AR(4) process are also each rejected against the alternative

of a general AR(4) error process, so that fairly simple processes may not

be as effective as a general fourth-order AR process in adjusting for

quarterly autocorrelation. The standard error and sum of squared residuals

are again reduced by autoregressive estimation but rather more moderately

this time, and both regression fits appear to be fairly close. With the

same convergence factor as before, the full AR(4) estimates took nine

iterations to converge and 0.85 seconds of CPU time on a CDC 7600 machine.

Finally, it may be worth pointing out that both the OLS and AR(4)

regression estimates appear to be noticeably different from those obtained

by Clinton over the period 1955-1970. The income and interest rate

elasticities in Table 3 are lower (in magnitude) while the lagged adjust-

ment coefficients are higher. This suggests that there may have been some

significant structural change in the money demand function recently that

would be worth further investigation. This contrasts with one of Clinton's

principal conclusions that money, narrowly defined, has a stable demand

function for Canada, at least over the 1970's period.
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VI. Conclusions

Several conclusions may be made on the basis of the work in this

paper. First of all, exact maximum likelihood estimation of regressions

with general autoregressive error processes appears to be computationally

quite practical and readily lends itself to inference on the autoregressive

structure of the disturbances. Indeed, making inferences about the auto-

regressive error structure near the stationarity boundary is a particular

advantage of the method. Secondly, with quarterly data being heavily used

nowadays to estimate regression models, it may be appropriate to consider

more general autoregressive processes for the disturbances than a simple

one-parameter AR(4) process, even when a set of seasonal dummy variables

is used as well in the equation. It has been found, for example, that even

when regression estimates appear to be fairly robust to the treatment of

autocorrelation, distributed lag patterns may still be quite sensitive to

the appropriate treatment of autocorrelation, so that fairly careful efforts

should be made to identify jointly the appropriate error structure and

dynamics of a regression model.
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Appendix 1

Estimation of "Simple" AR(p) Processes

In the case of a simple (i.e., one-parameter) AR process, the

estimation procedure can be substantially simplified from that given in

Section IV of the paper in that an analytic solution for the autoregressive

parameter estimates conditional on the (i's can:now be obtained, so that

iterative numerical techniques (such as Gauss-Newton) need not be resorted

to.1

If the simple AR error process is of 'th order,

Ut = a Ut-pt

and the log-likelihood function for a given sample of the u's simplifies to

, 2 , 2 k
L(a,G ;u) = const - in G in ki2

2
-12 E(1-2) l 112-t ETp+1 (ut aut--1
2a

Maximizing the concentrated log-likelihood function with respect to a con-

ditional on the (3 regression coefficients yields the first-order condition
T

nee U2 E l u 6-1 - )]:lap  4.  1 t p+1 t-p t L-p  = 0.
2 p-'2 T - 2

(1-a2) (1-a ) E
l 

u
t 
+ E

p+1 
671
t 
- au

t-p
)

Rearrangement leads to the cubic equation

1. This result is in contrast to work by Thomas and Wallis (1971)
where approximate methods of ML estimation are employed for the simple
AR(4) model, and Pagan (1974, p. 275) where numerical optimization methods
are employed at each stage again for the simple AR(4) model.
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f(a) E a3 + ua
2 
+ ba + c = 0

T -where a = -(1/d)(T-2p) E104.1 u
t-p

= (1/d)[(T-p) l - Ep+ u
t-p 

- p u ]p+1 t

T -c = (1/0 T Ep+, ut ut_ p

and d = (T-p) ETg

This equation can be shown to have three real roots, the middle of which

always lies in the unit interval and is found by setting

g = b - a2/3 q = c = ab/3 + 2a3/27

-1 = Cos 
,427 q  1c!) 
2g)/7

and a = -2 IED: cos Ck + - .
3 3 3 3

This provides an exact solution for a, given which is computationally

much simpler than the iterative procedure of Section IV. The procedure

of Beach and MacKinnon (1978) is a special case of this corresponding

to p = 1.

An estimate of the standard error of the final estimate a once

convergence has been attained between a and fi assuming fixed X's is given

by the square root of the inverse of

-a2L
2

Da

- ^2
(1+a 1 T-p

77- 

(1-a 
kY -^2 

a2 p+1 t^ 
a,
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Appendix 2

Hessian Matrix for the Full Likelihood Function

It is useful to recall the matrix derivative results that, if

A and B are matrices whose elements are functions of the scalar x, then

and

DA
-1

Dx

Dtr (AB) = tr {(})B} + tr
Dx

- DA-
- - A 1 ()A -1

Also, let the first-order condition for G
2 

be denoted

a
2 
= q(a,fl = u'Mu/T where M = Q'Q

and where hats and tildes are omitted for convenience. Then the second-

order derivative Hessian matrix for6 = (a) may be calculated as
R

2 --
[- D L L ot.13-a2 

L c 1 J C
n 

1 j 
H
11 H121

r c . .
LD6

i
6
j 

L_ H21 
H22]

c/D131 Daj 
D2L

c 1 
/ 1S.D .

j

Turning to the upper-left submatrix, one recalls from Section

IV.2 that

BE_
c . 1  al'Mu 

2 ‘
r { L.D.1cl(.c)}aa. Da." 2a 1 

2 Da.
1 1 

_ 1 
r {M-1:1 )} - 

2a 
1 

(DM
—*-) u

- Da. *
1 1

- 2 E
T

t
-a u

t-1
- a u )}t=p+1 • t-p
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2
L 1 Dtr rm 

" 
_  1  fu (BM*  

' 
u

(H11 Da.3a. 2 Da. 111* aDoH2 `kt.act. *
1 1

+ 2 E . 
1
u
t 
. }

--j

1  B 1  Bu'Mu 
2 2 2 Ba .i Da

DG

1 • -
- tr { (a

2
- 2

- U*U*

1  (Du'Mu 

2T(G2)2ai

2
(B9 M*aiDai

(g_1*) and (Du l Mu) =u*(1_I*)u
* 

_
9ai Ba. Da. 

- NN} - 1/cy
J 1

(u+ +a).

The only new expression introduced here that will not have already been
2

computed for the first-order condition is (M*kt
 ). Using the result of
Da..

1

Pagano (1973) referred to in the text, one can obtain a fairly simple

expression for this. Let k = max(i,j), k = min(i,j),s = min(i,p-i), and

q = 11-31 . Then, if i=j,

2
  ) = Diag (0,...,0; ,...,d; 0,...,0)

i j p=2i

where d = -2 if p > 2i

d = 0 if p = 2i

and d = 2 if p < 2i.

If i j and p =

2

aM ° p
1 J



- 35 -

13-(i4-j)

{ 

00 0
If i and p > i+j,

0 0

(Da.L 1.
1 j 2,

0 0

If i j and p < i+j,

2 
JO 

-1D

(LML )
i j

1

p-k (1+j)-p p-k

p-k 
1 0

-1
0

(i+k)
_p

p-I4 0 0

Much simpler to compute, on the other hand, is the submatrix

2
=  

L
c _

DD13 (12-) TcR = X'MX.

Similarly,
D
2
Lc -1 am -

H = = (----r-v ' --AI and H
12 

= H21'21 Dina Daa
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