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Abstract

This paper develops an exact maximum likelihood technique for

estimating regression equations with general p'th-order autoregressive

disturbances. The approach appears to be computationally practical

and straightforward, insures the estimated error coefficients satisfy

a priori stationarity conditions, and insures convergenﬁe of the estim-
ation procedure. Recent expression of the analytic inverse of the
covariance matrix of a stationary AR(p) process provides the basis for
the iterative algorithms, which employ a modified Gauss-Newton technique
utilizing exact first and approximate second derivatives. The relation-
ship between stationarity and the form of the objective function is
examined. Empirical estimates are then presented for regression models

with and without a lagged dependent variable.




Introduction

The estimation] of time series regression models with auto-

correlated disturbances frequently arises in applied econometrics, and

it is often appropriate or convenient to represent such autocorrelation

by a stationary autoregressive error process. Autocorrelated distur-
bances are most often characterized in applied work by the Markov or
first-order autoregressive (AR(1)) error process, but in many cases a
higher-order process may be more appropriate. Such specifications allow
a more flexible shape to the correlogram of the error process, so that

it is not restricted to be positive with a strict geometric decline. It
has also been emphasized recently in the literature (Hendry and Trivedi
(1970), Pagan (1974), Godfrey (1978), and Newbold and Davies (1978)) that
inference and parameter estimation can be greatly affectéd.by the error
structure assumed, and that applied work should consider a wider range

of possible error structures than just an AR(1) formulation. Moreover,
concern with the dynamics of model behaviour may lead to consideration

of a higher-order autoregressive process since autoregressivé errors

can be interpreted as a special case of a general dynamic mode]l specification
(Sargan (1964), Hendry and Mizon (1978)). Such higher-order processes
may be expected to arise particularly in work with quarterly (Thomas and

Wallis (1971) Wallis (1972)) or monthly time series.

1. We wish to emphasize at the outset that this paper is
essentially concerned with problems of estimation and not inference,
and with estimation of regression models and not time series models.




Conventional approaches to estimation of regression models
with génera] p'th-order autoregressive error processes have typically
been based on Teast squares or other approximate maximum likelihood
methods. On the one hand, (nonlinear) least squares procedures such
as employed by Fuller and Martin (1961), Pierce (1972), Wallis (1972),
Hendry (1971), or Pagan (1974) focus on a sum of squares objective
function and disregard the initial p observations as asymptotically
unimportant or as statistically not worth estimating as nuisance para-
meters. On the other hand, authors such as Kadiyala (1968), Thomas
and Wallis (1971) or Box and Jenkins (1970) incorporate the initial
observations into the exponential term of the (multivariate normal)
Tikelihood function and then optimize this exponential term. While
such approaches ease the optimization problems associated with such
nonlinear estimation and yield estimates which are asymptotically
equivalent to full maximum likelihood estimates, they are only approx-
imations to exact or full maximum Tikelihood estimates. Estimates for

small and even moderately sized samples can nonetheless differ fairly

substantially from the exact ML estimates (Beach and MacKinnon (1978),

Dent and Min (1978)) particularly if the parameter values of the error
process are close to the boundaries of the stationarity region. Indeed,
there is some evidence that the small-sample performance (for up to 100
and 200 observations) of ML estimators improves relative to alternative
estimators as the number of autoregressive parameters increases (Dent
and Min (1978)). Exact ML procedures are preferable from the point of
view of testing the structure and order of the autoregressive process
since tests are based on the correct maximized likelihood and the sample

on which the estimates are based does not change with the order of the




process considered. In addition, optimization of the full likelihood
function can also be used to impose stationarity restrictions on the
error process so that the estimated process is well behaved, estimation
results are more keadi]y interpretable, and conventional inference pro-

cedures can be carried out.

In an earlier paper, Beach and MacKinnon (1978) proposed an

exact ML procedure for a first-order autoregressive error model. The
present paper extehds this approach to a general p;th—order autoregressive
error process. This extension makes use of recent advances in the
statistics literature giving explicit analytic expressions for the

inverse of the cdvariance matrices (and corresponding determinants)

which arise in exact ML procedures. We also make use of results from
numerical analysis which provide more robust algorithms, guaranteed to
converge for exact ML problems (with associated determinantal terms).

The paper thus attempts to provide economists with an exact maximum 1ike-
Tihood regression procedure for the general AR(p) error model that reflects

recent advances in both statistical theory and computational techniques.

Exact ML estimation procedures have also beenvfécently proposed
for the general autoregressive-moving average (ARMA) error process by
Newbold (1974), Prothero and Wallis (1976), Dent (1977), Al1i (1977),
Ansley (1979), and Harvey and Phillips (1979). But the procedures ‘in
this paper (suggested in part by Harvey and Phillips (1979)) are designed
for regression models, as opposed to simple time-serieé models, and make
more efficient use of the particular analytic structure of AR processes
in the iterative algorithms, which shQUId yield greater computational

efficiency. The procedures also explicitly provide gradient algorithms




for estimating the autoregressive parameters, and take into account
the comphtationa] implications of lagged dependent variables in

regression equations.

The next section of the paper formally sets out the problem
of exact maximum 1ikelihood estimation in the general AR(p) regression
model. Section III then examines the relationship between stationarity
of the error process and the form of the objective function. The optim-
ization algorithms are discussed in the following Section IV. The pro-
cedures are then illustrated with two regression equation estimates (one
without and one with a lagged dependent variable) in Section V. Con-

cluding remarks are presented in the final section.

II. Setting Out the Problem of Exact ML Estimation

Consider, for convenience, the lTinear regression model
(2.1) y=X8 +u

with t=1,...,T observations and K exogenous independent variables, where

the error term follows a general p'th-order autoregreSsiVe process,

(2.2) Uy =‘a] Ug gt oon t t-p t ey t = ptl,...,T,

2).  Then, following Box and Jenkins (1970, p. 274),

where € ~ NID (0,0
one notes that the joint probability density of the full set of auto-

correlated errors u' = (u], cees uT) can be written

2 2 2
f(Ul(x,O' ) = g(up+]"°"uTIu*’O"O )'h(U*IOL,O )

where u, = (u], cees up). Under the assumption of normality of the ¢'s,

the joint density of €p+1’ cees Ep is

2 -(T- )/2 1 T 2
2ng ) exp [ E—Z- t=p+] et]
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Conditional upon the initial values, u,, then, the corresponding joint density

of u cees Up becomes

p+1’

: -2 o 2v=(T=-p)/2 =1 T
g(up+],...,uT]u*,a,0 ) = (2m07) (T-p)/ -exp[g—ﬁ-z
o

gept1 (UgoqUp e o ()]

where the Jacobian of the transformation from the €'s to the u's is unity.

If we also assume u, is joint normal with zero mean and covariance matrix
2,1 |
oM,

‘ 2 2~ - !
h(u,|a,0%)=(2m0%) p/le*lL5 exp [——%-u* My u.l,
20 ,
and the joint density of the full set of u's becomes

(2.3) flula,o?) = (2n02) /2 )M, | exp (=15 5(a)]
20

where

T (up-aqu, 4-

t=p+1] t 17°t-1 0

(2.4) S(a) = u, Myu, + I

= uy Meu, + u'P'Pu
and P is the transformation matrix corresponding to (2.2):

— —

P =
(T-p)xT

_a] \-_J
Alternatively, one could assume that the initial u's and €'s

are related by

£, = Ru,
for R nonsingular, in which case R and M, are related simply by R'R = M,.
So far R and M, are unspecified, but they are determined below by requiring

the initial error vector u, to have the same covariance structure as the rest

of the u vector, so that the entire set of u's is covariance stationary.




The Tog likelihood function corresponding to (2.3),

(2.5) L = const - %~2n o + %-anM*| - é—ﬁ-(u*M*u* tu'P'P),
o

serves as a basis for comparing the principal types of estimators, con-
véntiona]]y suggested for the AR(p) model. .Straightforward least-squares |
procedures essentially focus on only the conditional ¢(+) function or the
sum-of-squares term, u'PPu, as the minimand, so that resulting estimates
are interpreted as conditional upon the initial p disturbances. "Uncondit-
ional" least squares procedures such as suggested by Box and Jenkins (1970),
on the other hand, can be seen as minimizing the full exponent term S(o) =
u;M*u* + u'P'Pu. Both approaches disregard the determinantal term 1/2
RnIM*l as asymptotically negligible, and both can be seen as approximations
to exact ML estimators based on the full Tlikelihood function (2.5). Con-
sideration of the "penalty" term 1/2 2n|M,| in (2.5), however, greatly

facilitates investigation of the structure of the autoregressive prbcess

near the boundaries of the stationarity region.

Alternatively, S(a) can be written as

S(a) = uM.u, + u'P'Pu
= U4 R'Ruy + u'P'Pu

u' [?'$ + PPy P1P2:] u where P = [Py | P,]
PZ P] Pépz (T'p)Xp (T'p)X(T'p)

(2.7) u'Q'Qu where Q
(TxT

and Q'Q = 02V(u)-]. Consequently, given o, S(o.) may be calculated from

M, and P as in (2.6) or from Rand Pasin (2.7).




The approach2 which is followed in this paper is to determine
M, explicitly in terms of o by imposing the condition that the full
disturbance vector u be covariance stationary, and then utilizing én
expression for the inverse of the covariance matrix of stationary auto-

regressive processes. Specifically, Galbraith and Galbraith (1974, eq. ]1)3

show that the elements of M, = 02V(u*)—] can be expressed analytically

in terms of the a's in relatively simple fashion as

* - - ' '
(2.8) m._ =% ! prr-s 4, for 1<r<s<p

rs 3=0 *j%j+s-r ~ j=p+1-s %j%j+s-r

*
and Mo equal zero otherwise, with % = -1.

It may be informative to examine the matrix M, given by (2.8)
for several plausible autoregressive processes. A second-order process
is still relatively simple, but allows a more flexible correlogram than
an AR(1) process. On the other hand, a full AR(4) or the simp]er mixed
first- and fourth-order process may be appropriate in quarterly regression
models where the errors incorporate effects from the previous quarter as
well as from the same quarter of the previous year. The cbrresponding

matrices for these processes are presented in Table 1 for reference.

2. One alternative approach to maximizing (2.6) might be to replace
M, by R'R and explicitly express the elements Rij of R in terms of the a's.

One could follow Lempers and Kloek (1973), for example, and again require
that the covariance structure of u, be the same as that of Ugeq2e e e sUy

expressed in terms of the a's. But this procedure rapidly becomes burden-
some for AR processes beyond second order. Another approach suggested by
Ali (1978) involves computing the matrix Q numerically from a procedure that
requires characteristic roots of a p-by-p matrix that is substantially less
straightforward to operate on than the M, matrix used in the present paper.

3. Further results are also provided by de Gooijer (1978) and the
references he cites. It shgu]d p?rhaps be noted that M, is not the upper-
left corner of the matrix o¢V(u)-'.




Table 1

M, Matrices for Illustrative AR Processes
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It is typically simpler to operate on the concentrated log-
likelihood function obtained from so]yjng the first-order conditions for
;2 = S(a)/T, substituting back into (2.6), and expressing the log-likelihood
function for the regression model in terms of the full set of o and B

parameters based on the sample observations for y and X:

(2.9) L (asB3y,X) = const + % an[My| - %Jm [(y-X8)'Q'Q(y-X8)].

This is the objective'function which will be maximized by the procedures
described in Section IV. It is useful, however, to look more closely at
the relationship between the stationarity of the autoregressive process

and the form of the log likelihood function in (2.9).

III. Covariance Statjonarity and the Likelihood Function

Consider initia]]y a first-order process in which the Jacobian
term in (2.6) is (1/2)2n(1—a$). Clearly, this process is stationary
and the Tog-Tikelihood function well behaved for -1 < ay < 1. But as
o, approaches a bdundary of the stationarity region (—1,1),2n(]-a$)+-m,
and with o2 fixed the likelihood function itself approaches zero. In
other words, the Tikelihood is zero that the sample u was generated by
an AR(1) process for which oy = *1. This should not be surprising, as
the Tikelihood function was formulated on the assumption that the process
was stationary, and therefore assigns zero 1likelihood to the possibility
of it being nonstationary. This suggests that a similar relationship
between stationarity and behaviour of the likelihood functioﬁ may also

hold for higher-order processes, and this is indeed the case.

Consider then the p'th-order autoregressive process defined in

(2.2). The process is stationary if and only if the roots of the




associated polynomial

p-1 _
]Z ...OLp

(3.1) ¢(z) = 2P - &
lie inside the unit circle in the complex plane (i.e., have modulus less
than unity). For the first-order process, ¢(z)=z-a], so that oy is the
root of ¢(z), and the Jacobian term (1/2)en|M | = (1/2)2n(1-a$) clearly
involves the root of the polynomial ¢(z). In fact, for higher-order

processes, this simple result generalizes easily. Anderson and Mentz

(1977) have demonstrated that for the p'th-order process,

( =P -
(3.2) M, T3,5=1 (1 rirj)

where r],...,rp are the proofs of ¢ (z). Thus the Jacobian term of the
Tikelihood function can generally be expressed in terms of the roots
of the associated polynomial of the process. Now (3.2) can be usefully

rewritten as

) _-p 2 p 2
(3.3) M [ =15,y (-rf)ary g (T-rsr )%

J#k
2

When all the roots of ¢ (z) are inside the unit circle, ry < 1 and |M*[ >0.

But as a root rs approaches the unit circle, 1-r§-+ 0 and | M, |+ 0. In

addition, if the a's are chosen such that a root rs lies outside the
unit circle, ]-r? < 0 and [M,[<0. However, it is not true that [M,|>0

if andonly if the autoregressive process is stationary. For if an even
number of roots lie outside the unit circle, |M,| will again be positive.
Clearly, then |M*|>O is a necessary but not sufficient condition for the

corresponding autoregressive process to be stationary.

Necessary and sufficient conditions on the coefficients of a

polynomial so that the roots of the polynomial lie within the unit circle




have been forwarded in several forms. Wise (1956) and Samuelson (1941)
derive conditions based on the Routh-Hurwitz criteria, but this approach
is not as simple and direct as an alternative approach that has more
immediate applicability in the present context. It is perhaﬁs natural

to look at work on the stability of linear, constant coefffcient, differ-
ence equations for appropriate conditions since such difference equations
are stable if and only if a certain polynomial has all its roots inside
the unit circle. Such results were first obtained by Schur, Cohn, and
Fujiwara (see Marden (1966)), and all known as the Schur-Cohn conditions.

In the present context, they may be most conveniently stated as follows:

Theorem 1: A necessary and sufficient condition for all the roots of

the polynomial ¢(z) = P zp']—...-a to have modulus less than unity

_ p
is that a matrix S be positive definite, where S is the symmetric (pxp)

- a

matrix with elements

- min(i,j) 3 L
(3°4) S]J k=1 (a'i"‘kaj-k ocp_i_l_kap_j_'_k) 1,J=1,... 5P

where ag = -1 by convention (for proof and discussion, see Kalman (1965)
and Folsom, Boger, and Mullikin (1976)). The matrix S haskthefefore a
simple form and moreover its rows can be calculated in a sihp]e recursive
fashion (Power (1970)). The Schur-Cohn criterion is therefore easily

implemented and less cumbersome than the results given by Wise.

The Schur-Cohn criterion given in (3.4) is also of importance
because of its relationship to the covariance matrix of the auto-
regressive process. In fact, on expanding the expressions in (2.6) and
(3.4) and noting the symmetry in M, and S, one can see that S is identical

to the matrix M, defined earlier. In other words, as Pagano (1973) has




noted, the autoregressive process is stationary if and only if the
expression ‘for the inverse of the covariance matrix for p consecutive
observations from the process yields a positive definite matrix. One
can thus see why |M,|>0 is not sufficient to guarantee stationarity

of the process sincevgll,the principal minors of M, must be positive

and not merely the principal minor of order p. The Schur-Cohn criterion
thus provides a direct relationship with the covariance structure of

the process.

Though quite straightforward, the Schur-Cohn criterion can be
simplified further for particular applications. Jury (1962) has shown
that half the determinantal conditions involving S are redundant and
need not be considev*ed.4 A relatively simply application of Jury's "
simplified criterion is to a mixed first- and fourth-order AR(1/4)

process refered to earlier. The process
Up T o Uy Tog U g F 8y
is stationary if and only if all the roots of

T -0y

lie inside the unit circle. Specializing Jury's results, we have the

following stabiiity criteria, after allowing for unnecessary restrictions:
]-OL] -a

1+ o

4. Jury's result is the analogue for the Schur-Cohn conditions
of the Lienard-Chirpart theorem concerning the Routh-Hurwitz conditions
(see Anderson and Jury (1973)).




The corresponding stationarity region is illustrated in Figure 1 and

shown to have nonlinear boundaries on two of its sides. In contrast

to an AR(2) process, for example, this region is not a simplex. Note
also that movement from an interior point A across two boundary lines
to a point such as B may leave M, still positive although one is

clearly in a nonstationary region.

In summary, then, it can be seen that the behaviour of the full
Tikelihood function reflects one of the necessary conditions for station-
arity, namely |M,|>0, but that this alone does not generally guarantee

stationarity unless M, is also constrained to be positive definite.

IV. Modified Gauss-Newton Optimization Procedures

IV.T Outline of Procedure

The objective function (2.9) is clearly nonlinear in the two
sets of parameters, o and B, and the present section outlines the
optimization algorithms employed to maximize the concentrated log-
Tikelihood function. General purpose algorithms such as Davidson-
Fletcher-Powell and Gil1-Murray-Pitfield described, for exaﬁp]e, in
Wolfe (1978) could be applied directly to (2.9) if these are readily
available to the user in packaged form. However, modified Gauss-Newton
procedures are ré]étively straightforward to program and appear to work
quite well on the present problem, and so form the basis of fhe approach
of this paper. These procedures employ analytic first and approximate

second derivatives, and can be shown to have useful convergence properties.

Perhaps a natural point of departure is to employ the same type
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Figure 1

Stationarity Region for the Mixed First-
and Fourth-Order AR Process
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of iterative algorithm to find stationary points in the fui] AR(p) case
as was suggested by Cochrane and Orcutt (1949) for the approximate
AR(1) case, and more recently advocated by Magnus (1978) in a much more
general context. Their procedure sequentially maximizes the objective
function with reﬁpect to the B's holding o fixed, and then with respect

to the a's holding g fixed.

The maximum 1ikelihood estimator of g, given partich]ar values

of a, is seen to be the Aitken estimator
(4.1)

where the transformed variables y = Qy and X = QX. This may be obtained

by numerically computing a lower-triangular matrix R from M, such that

R'R = M, by a Cholesky decomposition algorithm (Wilkinson and Reinsch
(1971)), constructing Q from (2.7), and then running ordinary least squares

on the transformed variables. A particularly useful form of the decom-

position (Pagano (1973)) is

M, = R,DR, = R,L'LR, = R'R

where D and L are diagona] matrices and R = LR,. For é real symmetric
matrix M,, such a decomposition will yield strictly positive diagonal
elements on D (as characteristic roots of M,) if and only if M, is positive
definite. Consequently, this procedure serves the purpose of insuring

that the M, matrix discussed in Theorem 1 above is indeed positive definite,

so that the error process is stationary.5

5. 2n|M,| can also then be calculated in the evaluation of the
(Tog) likelihood function as Z?=] zn(dii) since |R,] = 1 (Wilkinson and
Reinsch (1971)).




Finding exact ML estimates of the a's given particular values
for the B's, however, involves more of a problem. The first-order
conditions for a given B yield a set of p nonlinear equations. In the
case of a one-parameter (or "simple") AR(p) process, this equation can
be solved analytically without resort to numerical methods as presented
in Appendix 1 at the end of the paper. However, for general auto-
regressive processes of higher than first order, iterative gradiant
optimization methods are used in the form of a modified Gauss-Newton pro-
cedure. If &(i) denotes the i'th iteration estimate of a (for given 5),

the procedure iterates on the formula
~(i ~ (i ; ~rs b~
(4.2) (1) 2 o (-1 (1) G(u(1-]) g(a(l-]))

oL

where g(a(i_])) = (5&EJI~(1-]) is the gradiant vector of (2.9) with
a

respect to a eva]uated at the previous iteration, G is a negative definite
matrix representing the metric of the iteration, and A(i) is a variable
step size as suggested by Berndt, Hall, Hall, and Hausman (1974). If

A(i) =1 for all i and G is the Hessian matrix of second-order derivatives
of (2.9), this reduces to the standard Newton-Raphson method (Wolfe (1978)).
In the present case, we use analytic derivatives for g(d) based on our
explicit expressions for M, and P, but an approximation to the Hessian
matrix for G(a) in 6rder to gain a more robust iteration prbcedure, as

is outlined below. This approximation to the Hessian converts the procedure
to a Gauss-Newton algorithm (Bard (1974)), and the addition of a variable
step size in order to assist convergence accounts for the "modified" aspect

of the algorithm.




IV.2 Calculating the Components of the Algorithm

The first step in setting out the components of this algorithm
then is to work out an expression for the gradient vector g(d) =
(BLC/Ba],..., BLC/Bap)'. Using the result of Sawa (1978), Lemma A.1),

one notes that

BIQ,nlMlgaH '___vtr { M;] (%)}

Boci Boci
so that now

_1 el oM
(4:3) g;a) = 5 tr 05 (G

23!

Loy Uy (U, - aqly ;- ... -

t t-1

by using (2.4) and indicating values conditional upon given B's by a

tilde on the u's. This can be written alternatively for the full (px1)
vector g(a) by letting u, = (u], cees up)', u, = (up+],...,qT)', u_; =
(up+]-i""’ uT-i) for i =1, ..., p, and the (T-p) x p matrix Ut =

LU_], e U_p]. Then
~2 ~|~ ~|~
g(a) = (1/5%) (U4, - UU,a) +d
where the first component of this expression corresponds to the normal
equations for regressing the residuals D+ on the lagged residuals ﬁ_], cen

ﬁ_p while ignoring the initial terms of the likelihood function, and the

second component, d, with

di = (L) tr (5% ]

20

is the initial-term adjustment factor. This can be seen as adjusting
the first component for any difference between the calculated covariance

for p consecutive errors based on the assumption that the full sample




is covariance stationary (OZM;]) and the estimate based on the initial

)
p observations of the sample (U,i,).

M;]in (4.3) can be easily obtained by numerical inversion of M,
evaluated at &(1"]). The matrix of partial derivatives (%g*) can also
' i
be efficiently computed by using the result of Pagano (1973) that M, can

be expressed as

M, = KK' - LL'

Consequently,

oLy, oL’
(@‘.‘)L - L (a_oc;)

My - 3Ky o 4 @Kl
(301.-) (301.1) K K(3a1) i

and 1, (%) 4, = 2 1, [(

p-i rows

for i=1,..

( i rows

)




—

Qgpp - - = - - 0\._-___0

i rows
for i=1,...,p.

!p-i rows

J

Turning to.the second-order matrix G, one notes that minus the
Hessian matrix (worked out as HH in Appendix 2) will hot always be
positive definite (i.e., the (log) Tikelihood function will not always
be concave) for parameter values that are not within a close neighbourhood
of the full ML estimates. Consequently, a standard Newton-Raphson algorithm
based on the full Hessian matrix for G runs the risk of breaking down if a
characteristic root of the Hessian becomes zero or negative as the computer
iterates toward a maximum of the likelihood function. A more robust pro-
cedure involves choosing a consistent approximation to the Hessian that
will be positive definite. It can be seen from the appendix that the dominant

i

]
term asymptotically corresponds to the set of inner products u_. u_j for

.» P, so that a natural choice for G is

, [Erig-- .-
G = -(1/5°) '

Lu_p U_.I - - - _U_p U_p—|

Convergence to an optimum may not be as rapid as for some procedures using

~

~ o~

= - (1/6%)u,u, .

_"I u...p
t

the exact Hessian matrix, but the algorithm is safeguarded against G not




1

6 Once convergence has been obtained, -G~' can

being negative definite.
also serve as the basis for a consistent estimate of the covariance
matrix of the a's, although one may wish alternatively to use the actual

Hessian matrix in Appendix 2.7

Finally, A(i) is computed by a simple quadratic line-search
method. Start with A = 1 and check whether the (log) 1ikelihood functioﬁ
has been increased. If not, continue trying values of A = Z-j for
J=1,2,...,d until one finds a value of j- for which the (Tog) Tikeli-
hood function has increased and then decreased. Then choose the value of
A corresponding to the maximum of a quadratic approximation over this

interval (Wolfe (1978)).8

The resulting algorithm can be seen to satisfy Berndt, Hall, Hall,
and Hausman's (1974) Convergence Theorem conditional on the é's, so that
- in the limit the process is guaranteed to converge to a stationary point
which in general wi]]Ibe a local maximum. The convergence criterion for
the a's conditional on the é's is that

(1) (1)
&§1-])

for some chosen value C].

p

6. 1t may be noted that (4.4) is not the only possible choice for G
that safeguards against G not being negative definite. One alternative would
be to use the outer product of the gradient vectors gg' following Berndt, Hall,
Hall, and Hausman (1974), or a truncated version disregarding the initial-time
factor (g-d)(g-d)'. However, (4.4) appears to work very well in practice.

_ 7. Its negative definiteness at the optimuni insures the second-order
conditions for a maximum obtain.

8. If the resulting values of a(]) from (4.2) yZe}ds an M, matrix

which is not positive definite, then a smaller value of Al

repeating this procedure with a reduced starting value.

is sought by
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Combining the conditional estimates of B given a from (4.1) and
of a given B from the procedure of (4.2), one obtains an iterative algorithm
that Oberhofer and Kmenta (1974) show will converge in the limit to a
solution of the joint first-order maximizing conditions under fairly general

conditions. The convergence criterion for the joint maximization is that

(4.5) 1) 25?:1.

and

for selected values C2 and C3, where 8(1), a(I) and B(i']), a(i_]) corres-

pond to successive conditional estimates of B given a and of a given B.
0f course,-to check that the point of convergence is indeed a global

maximum, several different initial values for the parameters can be tried.

IV.3 Extension for Lagged Dependent Variables

In some circumstances, however, the above hemstitching approach
of Cochrane and Orcutt may be rather slow to converge if there 1§ marked
covariance betweehbthe a's and some of the B's so that the iso-Tikelihood
contours in a,B-épace are very elongated. This is particularly likely to
occur in models with lagged dependent variables (Hendry(1976)). The
appropriate procedure to follow in this case is to incorporate information
on the &-é covariances and to replace the sequential Cochrane-Orcutt iter-
ative algorithm by one that estimates a and B jointly within each iteration.
Indeed, the modified Gauss-Newton algorithm introduced above for the

conditional estimates of the a's can be extended very simply to handle

the estimation of o and B jointly according to the formula
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500 2501 ) 56Tl

where now ¢ = (g ) represents the combined parameter vector. The first-

order (gradiant) vector becomes

Ulu, - U u U U 40 + d
g(a,8) = (1/5 )[*_" = (1/8 )[ * J
X'y - X +B + d

where d; is the vector d defined in IV.2, d, =‘X*(y* - X*B) is the adjustment
factor for the degree to which initial residuals and transformed X's are

not orthogonal, and
X
:(*)
Ky

X, = PX

Xe = [RIOTX

Corresponding to (4.4), the extended second-order matrix G now becomes

UU. UX
6 = -(1/5%) [b*'+ * +-] = -(1/5%)1'1
Uy XX

where the (T-p)x(K+p) matrix Z = (U+EX+), Again the matrix is robust
against singu]arities and also incorporates covariances between the

a's and B's in its off-diagonal blocks. A(i) is chosen in the same way
as before, and the convergence criterion is analogous to (4.5) except
that summation is now over all K+p elements in 6. Similarly, Berndt,
Ha]T, Ha]],‘and Hausman's Convergence Theorem again applies for the full

$ vector‘.9

9. It may be worth remarking that in applying a stationary auto-
regressive transform to a dynamic equation, one is treating the regress1on
parameters,a, and the error parameters,g, asymmetrically. One is imposing
stationarity on the error process, but not necessarily on the coefficient
structure of the 1agged dependent variables. However, this may be with good
reason. The regression parameters are behavioural coeff1c1ents with known




Initial parameter values used for the two maximization algorithms
also differ for static and dynamic regression models. In the Cochrane-
Orcutt sequential optimization procedure, initial &'s were obtained simply
by in effect regressing least-squares residuals on their lagged values,
G+ and initial é's by running the GLS or transformed regression of
Yy =Qyon X =0QX. In the joint optimization procedure applied to dynamic
models, however, a consistent set of initial values for o were obtained
by regressing least-squares rgsidua]s on their own lagged values as well
as the full set of X regressors for the model. A corresponding'set of
consistent (and asymptotically efficient) initial estimates for B can
then be gotten by regressing the transformed Yy = Py on the transformed

~

X, = PX as well as the full set of lagged least-squares residuals, u,

(Hendry (1976), p. 81).

The various statistical properties of maximum Tikelihood estimates
as yielded by the»a]gorithms of this paper have been well documented
elsewhere (for example, Dhrymes (1971) and Magnus (1978)). It is suffic-
ient to note that under fairly general conditions, the final estimates

S will be consistent and asymptotically efficient, and /fké-d) is asymptot-

ically normal with mean zero and covariance matrix given by plim [—%H] where
_ T

H is the Hessian matrix in Appendix 2.

economic meaning and one may very well wish to allow nonstationarity in the

y's if the data so indicate. The error structure, on the other hand, is .
parameterized on the basis of relatively little knowledge and generally does
not reflect behavioural economic content, so that an assumption of stationarity
is a convenient way of making more efficient use of the data available.




i

V. Some Illustrative Estimates

V.1 Weekly Earnings Equation

The procedures of Section IV are now applied to two regression
equations. The first, from Pesaran (1973) and originally from Godley
and Nordhaus (1972), is an earnings equation for male and female employees
in United Kingdom manufacturing industries using semi-annual data over

1953-69 (34 observations).

Tog(AWE) = By * B,T + 33109 (BHR) + By Tog (H) + u

where AWE is average weekly earnings, T is a time trend, BHR is the basic
hourly wage rate, and the standard-hour-equivalents variable H = HS + A(H-SN),
where H denotes actual hours worked per week, HS is normal or standard hours
per week, and A is an overtime premium assumed for present convenience to

take a value of 1.5. Table 2 presents regression estimates by ordinary.

least squares and by exact ML procedures for the AR(4) and AR(1) cases. The
figures in brackets in the table are "t-ratios" given by dividing the
estimated coefficient by an estimate of the asymptotic standard error of

the coefficient. As can be seen, the estimated regression coefficients are
not insensitive to the assumed error structure. The hours elasticity varies

between .95 and .80, and the intercept also varies substantially. Indeed,

the estimated hours elasticity on the OLS regression woqu not appear

significantly less than unity, whereas the estimates based on the full AR(4)
adjustments appear as 1.87 standard errors less than unity (statistically
significant at the 95% confidence level), rather more in keeping with ex-

pectations (Godley and Nordhaus (1973), p. 858).




Table 2

Earnings Equation Estimates

OLS

AR(4)

AR(2)

AR(1)

Reg Coefs
Const.
T
log(BHR)
Tog(H)
AR Coefs

Summary

Statistics

SSR

-1.2087(2.017
.0250(6.723
.7115(9.044
.9535(7.312

.2328x1072

2

.828x10-

.0787x10~
.480x10~

-.7740(1.481)
.0231(8.152)
.7475(12.05)
.8002(7.480)

.7252(4.265)
.0583(0.269)
.2651(1.180)

.2343(1.159)

2
2

.7660(1.196)
.0231(7.018)
.7467(10.37)
.7990(6.168)

.9775(5.200)
.3903(1.810)

.1056x1072

.557x1072

-1

.1373(1.880)
.0220(5.883)
.7724(9.767)
.8642(7.481)

.6852(5.485)

.1224x1072

.602x10-2

114.77 132.16 127.70 125.38

.9991 .9990 .9990 .9990

34.78 25.86 21.22




The treatment of autocqrre]ation also increases the Tog likelihood
function a good deal, and affects the sum of squared residuals and standard
error of the regression quite dramatically. Between the OLS and AR(4)
estimates, SSR and s decline by 66% and 42% respectively. Since the (log)
1ikelihood functions for exact ML estimation do not involve dropping initial
observation in the data, they are readily comparable for likelihood ratio
tests on the structure of the autocorrelation. Thus against the null hypo-
thesis of no autocorrelation, twice the difference in Tog likelihood values
is 22.22 for an AR(1) process, 25.86 for an AR(2) process, and 34.78 for

an AR(4) prcess, all highly significant on conventional standards. On a

test of H_: AR(2) vs. H i AR(4), the (asymptotic) W2 statistic is 8.92,

while the corresponding statistic for HO: AR(1) vs H]: AR(4) is 13.56, both
also significant at conventional levels. With a convergence criterion

of Ci = .005, the full AR(4) estimates took five iterations to converge and
0.18 seconds of central processor time on the CDC 7600 University of London
computer. In summary, then, the exact ML regression estimates appear to

be fairly straightforward to calculate and readily adaptable to inference

on the autoregressive structure of the disturbance term.

V.2 Demand for Money Equation

The second example that is considered involves a lagged dependent
variable, a larger number of regression coefficients, and more than twice
the number of observations. The example is a demand for money function from
Clinton (1973) estimated with quarterly Canadian data for the period 19561

to 19771V (88 observations):




3

Tog(M/P) = By + 23 By Q5 + By Tog (Y) + Bg log (R) + 8, Tog (M_y/P)+u

where M is currency plus non-government demand deposits (Clinton's MO, a
narrow definition of money), P is the implicit GNE price deflator, the Qi's
are quarterly seasonal dummies (with the fourth quarter dummy omitted), Y

is a real GNE income variable, R is an opportunity cost intérest rate term
related to the 90 day finance paper rate, and M_] is a lagged stock of money
term. Estimates for the equation based on OLS and on AR(4) error process

are presented in Table 3 along with the standard summary statistics (C]inton's

analysis in contrast was based solely on OLS procedures).

As can be seen, autocorrelation in this example is not particularly
severe. Consequently, the regression coefficient estimates are not greatly
different between the two procedures except for some reduction in the lag
coefficient from .888 to .859. As a result, the mean lag of adjustment is
reduced from the rather lengthy value of two years to oﬁe,and a half (and
the lag distribution variance from 72 quarters to 43). The short-run or
impact elasticities on income and interest rates have been slightly increased
(in absolute value) as a result of the autocorrelation adjustment, but the
long-run or cumulative elasticities have been reduced -- from 1.056 to .8882
for Y, and from -.3540 to -.3008 for R. Thus it appears that the overall
pattern of distributed lag effects has been substantially shifted forward

in time. In addition, the long-run income e]asticity'of demand for money

is in accordance with the more traditional view that it is less than unity

(and indeed statistically significantly less than unity), while the OLS

estimates suggest an approximate unit elastic effect.
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Table 3

Money Demand Equation Estimates

OLS

AR(4)

Reg. Coefs.
const
Q
Q,
Q3
Tog(Y)
log R
1og(M_]/P)

AR Coefs.

a
o
2
o

1
3
4

Summary
Statistics

SSR

o

S

L
2

.5562(6.457

.0452(8.690)
.0000(0.005)
.0082(1.563)

J1174(3.771) 1.056

.0394(5.655) -.354
.8882(16.67) Av-Lag

24.0mths

1.633x1072

1.367x1072
253.17

.9944

LR Elas

.5778(6.292)
.0448(10.23)
.0004(0.107)
-.0091(2.032)

.1255(3.893) nggéiﬁ

-.0425(5.681) - .301

Av.Lag

-8587(15.89) yg*5 5

.1989(1. 865)
.1238(1.191)
.2991(2.877)
.1618(1.521)

1.439x1072

-2
1.279x10
258.56

.9944
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The autocorrelation, though not severe, is still statistically

significant at the five percent level. In a test of Ho: AR(0) against

Hl:AR(4), twice the difference in the log likelihood functions comes to

10.78 compared to the critical value of a x2 variate with four degrees

of freedom at the 95% level of confidence of 9.49, so that the null
hypothesis is just rejected. This corroborates the results of Wallis

(1972) that, with quarterly data, seasonal dummies may not be sufficient

to take account fully of autocorrelation and a fourth-order autocorrelation
adjustment may be appropriate as well. Indeed, null hypotheses of an AR(1/4)
and of a simple AR(4) process are also each rejected against the alternative
of a general AR(4) error process, so that fairly simple processes may not

be as effective as a general fourth-order AR process in adjusting for
quarterly autocorrelation. The standard error and sum of squared residuals
are again reduced by autoregressive estimation but rather more moderately
this time, and.both regression fits appear to be fairly close. With the
same convergence factor as before, the full AR(4) estimates took nine

iterations to converge and 0.85 seconds of CPU time on a CDC 7600 machine.

Finally, it may be worth pointing out that both the OLS and AR(4)
regression estimates appear to be noticeably different from those obtained
by Clinton over the period 1955-1970. The income and interest rate
elasticities in Table 3 are Tlower (in magnitude) while the lagged adjust-
ment coefficients are higher. This suggests that there may have been some
significant structural change in the money demand function recently that
would be worth furthér investigation. This contrasts with one of Clinton's
principal conclusions that money, narrowly defined, has a stable demand

function for Canada, at least over the 1970's period.




VI. Conclusions

Several conclusions may be made on the basis of the work in this
paper. First of all, exact maximum likelihood estimation of regressions
with general autoregressive error processes appears to be computationally
quite practical and readily lends itself to inference on the autoregressive
structure of the disturbances. Indeed, making inferences about the auto-
regressive error structure near the stationarity boundary is a particular
advantage of the method. Secondly, with quarterly data being heavily used
nowadays to estimate regression hode]s, it may be appropriate to consider
more general autoregressive processes for the disturbances than a simple

one-parameter AR(4) process, even when a set of seasonal dummy variables

is used as well in the equation. It has been found, for example, that even

when regression estimates appear to be fairly robust to the treatment of
autocorrelation, distributed lag patterns may still be quite sensitive to
the appropriate treatment of autocorrelation, so that fairly careful efforts
should be made to identify jointly the appropriate error structure and

dynamics of a regression model.




Appendix 1

Estimation of "Simple" AR(p) Processes

In the case of a simple (i.e., one-parameter) AR process, the
estimation procedure can be substantially simplified from that given in
Section IV of the paper in that an analytic solution for the autoregressive
parameter estimates conditional on the B's can:now be obtained, so that
jterative numerical techniques (such as Gauss-Newton) need not be resorted

to.]

If the simple AR error process is of p'th order,

and the log-likelihood function for a given sample of the u's simplifies to

L(a,oz;u) = const - %-ln o + %—gn (]_az)

1 r(1-62) 5P W+ 5T .
202 [(] o ) Z'I ut + Zp_*_] (ut

Maximizing the concentrated log-1likelihood function with respect to o con-

ditional on the g regression coefficients yields the first-order condition

P ~2 T i~
Tlozy Uy + 2o,y up o (U - oug )] 0
2y p ~2 T ~ ~ 2 |
) £y ug ¥ Lot (u, - aut_p)

—aP _ 4
(1-a%) (1-o

Rearrangement leads to the cubic equation

1. This result is in contrast to work by Thomas and Wallis (1971)
where approximate methods of ML estimation are employed for the simple
AR(4) model, and Pagan (1974, p. 275) where numerical optimization methods

are employed at each stage again for the simple AR(4) model.




f(a)5a3+ua2+boc+c

r -
-(1/d)(T-2p) £, up v,

2 LT <2
(V/ALT-p)z} up - Togy, Wi p - P2

T~ ~
(1/d) T o1 Ut Ugop

~2
p+] Ug-

and (T-p) Z
This equation can be shown to have three real roots, the middle of which
always lies in the unit interval and is found by setting
o 2 o 3
=b-av/3 q=c=ab/3 + 2a7/27
‘[/— ]
29v~g

-2 L9 ¢y my_a
and 2 /ﬁ;— Cos (3 + 3) 3 -

This provides an exact solution for o, given g, which is computationally
much simpler than the iterative procedure of Section IV. The procedure
of Beach and MacKinnon (1978) is a special case of this corresponding

top=1.

An estimate of the standard error of the final estimate o once
convergence has been attained between o and g assuming fixed X's is given

by the square root of the inverse of

2 a2
-3L F’L(H*OL ) .

2 |~ A ~2
da 5B (1-a7)

1 T-p
5 X
O2 p+1




Appendix 2

Hessian Matrix for the Full Likelihood Function

It is useful to recall the matrix derivative results that, if

are matrices whose elements are functions of the scalar x, then

-1
3A = o A-] (BA)A"]

X X

atr _ JA d B
and -ax—' (AB) = tr {('a—)Z')B} + tr {A(W)}.

Also, let the first-order condition for 02 be denoted
o2 = q(a,8) = u'Mu/T where M = Q'Q
and where hats and tildes are omitted for convenience. Then the second-

order derivative Hessian matrix ford = (g) may be calculated as

2 2 —
82L {‘a Lc/aaiaaj ) Lc/aaiBj H]1 H]Z_]
H = [___21] =

360
i H H
2 2 L "21 22_J
[_a Lo/3B; day 9L /3B38,

Turnihg to the upper-left submatrix, one recalls from Section

IV.2 that

aL

c _ 1 -1 ;oM 1
—=tr { M (=)} --—
Bai 2 * aai 202

du'Mu

aai

= tr {M;] (%gfﬁ} - El§-{u* (%g*) Uy
i o i

T
"2 1ioh ut-i(ut'alut-l E




2 '

bt (00 - uwy) Gl SNy - (1767

.U -
§°%5 -1

1 u Mu) (au Mu)

2 ( da

2T(6%) i %oy

_m1 (M Qu'Muy _ ' oM '
where N, = M, (gaf) and (%~ ) = uk(Gg¥uy - 2u_. (u, - Uya).

i i i 1
The only new expression introduced here that will not have already been

2

computed for the first-order condition is (%EM§a—). Using the result of
i
Pagano (1973) referred to in the text, one can obtain a fairly simple

expression for this. Let k = max(i,j), & = min(i,j),s = min(i,p-i), and
q = |i-J| . Then, if i=j,
2M,

(5&:357") Diag (0,...10;
1]

d=-2if p

d=0 ifp
and d=2 ifpc<

Ifi#jandp =1+ ],




If i #3J and p > i+j,

ey
Baiaaj‘

If i #Jand p < i+j,.

(i+k)
-p

p-k{ 0

Much simpler to compute, on the other hand, is the submatrix

: ] Viy - _l___ 1
H22 - (—7) X'X = -( 2) X'MX.
o g

Similarly,

Hoy =




- 36 -
Bibliography

Ali, M.M., "Analysis of Autoregressive-Moving Average Models: Estimation
and Prediction", Biometrika, vol. 64(1977), pp. 535-545.

Ali, M.M., "Estimation of Regression Models with ARMA Errors", Discussion’
Paper (1978).

Anderson, B.D.0. and E.I. Jury, "A Simplified Schur-Cohn Test", IEEE Trans.
Aut. Control, vol. 18 (1973), pp. 157-163.

Anderson, T.W. and R.P. Mentz, "The Generalized Variance of a Stationary
Autoregressive Process", Journal of Multivariate Analysis, VOl. 7
(1977), pp. 584-588.

Ansley, Craig F., "An Algorithm for the Exact Likelihood of a Mixed
Autoregressive-Moving Average Process", Biometrika, vol. 66 (1979),
pp. 59-65.

Beach, Charles M. and James G. MacKinnon, "A Maximum Likelihood Procedure
for Regressions with Autocorrelated Disturbances", Econometrica,
vol. 45 (1978), pp. 51-58.

Berndt, E.K., B.H. Hall, R.E. Hall, and J.A. Hausman, "Estimation and
Inference in Nonlinear Structural Models", 4Annals of Economic and
Social Measurement, vol. 3 (1974), pp. 653-665.

Box, George E.P. and Gwilym M. Jenkins, Time Series Analysis: Forecasting
and Control (San Francisco: Holden-Day, 1970).

Clinton, Kevin, "The Demand for Money in Canada, 1955-70: Some Single-
Equation Estimates and Stability Tests", Canadian Journal of
Economics, vol. 6 (1973), pp. 53-61.

Cochrane, D. and G.H. Orcutt, "Applications of Least Squares Regressions to
Relationships Containing Auto-correlated Error Terms", Journal of
the American Statistical Association, vol. 44 (1949), pp. 32-61.

de Gooijer, J.G., "On the Inverse of the Autocovariance Matrix for a General
Mixed Autoregressive Moving Average Process", Statistische Hefte,
vol. 19 (1978), pp. 114-123.

Dent, Warren, T., "Computation of the Exact Likelihood Function of an
ARIMA Process", Journal of Statistical Computation and Simulationm,
vol. 5 (1977), pp. 193-206.

Dent, Warren and An-Sik Min, "A Monte Carlo Study of Autoregressive Integrated
Moving Average Processes", Journal of Econometrics, vol. 7 (1978),
pp. 23-55.

Dhrymes, Phoebus J., Distributed Lags: Problems of Formulation and Estimation
(San Francisco: Holden-Day, 1971).




- 37 -

Folsom, R.N., D.C. Boger and H.C. Mullikin, "Stability Conditions for Linear
Constant Coefficient Difference Equations in Generalized Differenced
Form", Econometrica, vol. 44 (1976), pp. 575-591.

Fuller, W.A. and J.E. Martin, "The Effects of Autocorrelated Errors on the
Statistical Estimation of Distributed Lag Models", Journal of
Farm Economics, vol. 43 (1961), pp. 71-82.

Galbraith, R.F. and J.F. Galbraith, "On the Inverse of Some Patterned
Matrices Arising in the Theory of Stationary Time Series",
Journal of Applied Probability, vol. 11 (1974), pp. 63-71.

Godfrey, L.G., "Testing for Higher Order Serial Correlation in Regression
Equations When the Regressors Include Lagged Dependent Variables",
Econometrica, vol. 46 (1978), pp. 1303-1310.

Hannan, E.J., "The Estimation of ARMA Models", Annals of Statistics,
vol. 3 (1975), pp. 975-981.

Harvey, A.C. and G.D.A. Phillips, "Maximum Likelihood Estimation of Regression
Models with Autoregressive-Moving Average Disturbances", Biometrika,
vol. 66 (1979), pp. 49-58.

Hendry, David F., "Maximum Likelihood Estimation of Systems of Simultaneous
Regression Equations with Errors Generated by a Vector Autoregressive
Process", International Economic Review, vol. 12 (1971), pp. 257-272.

, "The Structure of Simultaneous Equations Estimators",
Journal of Econometrics, vol. 4 (1976), pp. 51-88.

Hendry, David F. and G.E. Mizon, "Serial Correlation as a Convenient
Simplification Not a Nuisance: A Comment on a Study of the
Demand for Money by the Bank of England,"The Economic Journal,
vol. 88 (1978), pp. 549-563.

Hendry, David-F. and P.K. Trivedi, "Maximum Likelihood Estimation of Difference
Equations with Moving Average Errors: A Simulation Study", The
Review of Economic Studies, vol. 39 (1972), pp. 117-145.

Jury, E.I. "A Simplified Stability Criterion for Linear Discrete Systems",
Proc IRE, vol. 50 (1962), pp. 1493-1500.

Kadiyala, K.R., "A Transformation Used to Circumvent the Problem of Auto-
correlation", Econometrica, vol. 36 (1968), pp. 93-96.

KéTman, R.E., "On the Hermite Fajuvara Theorem in Stability Analysis",
Quarterly Journal of Applied Mathematics, vol. 23 (1965), pp. 279-
282.

Lempers, F.B. and T. Kloek, "On a Simple Transformation for a Second-Order
Autocorrelated Disturbance in Regression Analysis", Statistic
Neerlandica, vol. 27 (1973), pp. 69-75.




- 38 -

Magnas, Jan R., "Maximum Likelihood Estimation of the GLS Mode] with Unknown
Parameters in the Disturbance Covariance Matrix", Journal of
Econometries. vol. 7 (1978), pp. 281-312.

Marden, M., The Geometry of Folynomials. Mathematical Surveys No. 3
(Providence, R.I.: American Mathematical Society, 1966).

Newbold, Paul, "The Exact Likelihood Function for a Mixed Autoregressive-
Moving Average Process", Biometrika, vol. 61 (1974), pp. 423-437.

Newbold, Paul and N. Davies, "Error Misspecification and Spurious Regressions",
Tnternational Economic Review, vol. 19 (1978), pp. 513-519.

Oberhofer, W. and J. Kmenta, "A General Procedure for Obtaining Maximum
Likelihood Estimates in Generalized Regression Models", Econometrica,
vol. 42 (1974), pp. 579-590.

Pagan, Adrian, "A Generalized Approach to the Treatment of Autocorrelation",
Australian Economic Papers, vol. 13 (1974), pp. 267-280.

Pagano, M., "When is an Autoregressive Scheme Stationary?", Communications
in Statistics, vol. (1973), pp. 533-544.

Pesaran, M.H., "Exact Maximum Likelihood Estimation of a Regressive Equation
with a First-Order Moving-Average Error", Review of Economic
Studies, vol. 40 (1973), pp. 529-535.

Pierce, D.A., "Least Squares Estimation in Dynamic Disturbance Time Series
Models", Biometrika, vol. 59 (1972), pp. 73-78.

Power, H.M., "A Note on the Hermite-Fujuvana Theorem", Electronics Letters,
vol. 6 (1970), pp. 39-40.

Prothero, L. and K.F. Wallis, "Model1ing Macroeconomic Time Series (with
Discussion)", Journal of the Royal Statistical Society, Series A,
vol. 139 (1976), pp. 468-500.

Samuelson, P.A., "Conditions That the Roots of a Polynomial be Less Than One
in Absolute Value", Annals of Mathematical Statistics, vol. 21
(1941), pp. 360-364.

Sawa, Takamistsu, "The Exact Moments of the Least Squares Estimator for the
Autoregressive Model", Journal of Econometrics, vol. 8 (1978),
pp. 159-172.

Sargan, J.D., "Wages and Prices in the United Kingdom: A Study in
Econometric Methodology" in Econometric Analysis for National
Economic Planning edited by P.E. Hart, G. Mills and J.K. Whitaker
(London: Butterworth and Co. Ltd., 1964), pp. 25-54.

Thomas, J.J. and K.F. Wallis, "Seasonal Variation in Regression Analysis",
Journal of the Royal Statistical Society, Series A, vol. 134 (1971),
pp. 54-72.




-39 -

Wallis, Kenneth F., "Testing for Fourth Order Autocorrelation in Quarterly
Regression Equations", Econometrica, vol. 40 (1972), pp. 617-636.

Wilkinson, J.H. and C. Reinsch, Linear Algebra: Handbook for Automatic
Computation (Springer-Verlag, 1971).

Wise, J., "Stationarity Conditions for Stochastic Processes of the Autoregressive
and Moving Average Type", Biometrika, vol. 43 (1956), pp. 215-219.

Wolfe, M.A., Numerical Methods for Unconstrained Optimization (London: Van
Nostrand Reinhold, 1978).







