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Spatial Price Transmission, Transaction Costs, and Econometric Modelling: How 

Inference Can Be Improved When Transaction Costs Are Observed?  

 

Background and Previous Studies 

The study of spatial price transmission and market efficiency has long been of interest for 

several agricultural commodities and has been performed with the objectives of 

evaluating market integration and the degree and speed of transmission of prices across 

markets  (Lo and Zivot 2001; Hassouneh, Serra, and Gil 2010; Goodwin 2006; Brosig et 

al. 2011; Esposti and Listorti 2013).  Spatial price transmission theory is mostly backed 

on the concept of “Law of One Price (LOP)”, which should be a theoretical condition for 

markets to be integrated (Goodwin 2006). According to the LOP, prices of a 

homogeneous good must be the same across markets, net of transaction costs. When there 

is price difference between regions greater than costs of transporting and selling goods 

from one market to another, arbitrage becomes profitable so that prices are driven back to 

an equilibrium, in which price differences are equal or lower than transaction costs 

(Sexton, Kling, and Carman 1991). Therefore, in order to study price transmission and 

market efficiency, it is imperative to account for transaction costs. Barrett (1996) affirms 

that inference on price transmission and the LOP hypothesis is only possible when 

transaction costs, and preferably trade flow data, are incorporated in the model. Such 

data, however, is not easily available and is seldom observed. 

 To overcome the problem of unobserved transaction costs, the threshold vector error 

correction model (TVECM) that allows for the presence of thresholds in the cointegrating 

vector has arisen. These thresholds would be consistent with the existence of varying 
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transaction costs, which induces different corrections (regimes) towards the established 

long-run equilibrium (Fackler and Goodwin 2001; Listorti and Esposti 2012). Although 

the model is able to account for transaction costs, one can argue that such estimators are 

biased, as actual transaction costs are omitted from the equations (Barrett 2001).  

When incorporating both transaction cost data, trade flow and prices, Barrett and Li 

(2002) using a maximum likelihood estimation of a mixture distribution model 

demonstrated that at least one assumption among stationary transfer costs, and constant 

and unidirectional trade was violated in every direction-specific market pair, 

underscoring the need for incorporating transaction costs and using more flexible 

methods to model price transmission. 

Despite its popularity in the price transmission literature, some recent work have 

demonstrated that the TVECM is fragile, as determination of thresholds is much 

dependent on the methodology used and may not truly represent transaction costs, as well 

as corrections towards the long run equilibrium may not be immediate but rather smooth 

(Frey and Manera 2007; Goodwin, Holt and Prestemon 2011).  

Although several modelling methods have been proposed to better adjust price behavior 

to specific markets’ characteristics, it is still unclear how the dynamics of transaction 

costs impact spatial price transmission, as few of these studies have explicitly 

incorporated transaction cost data into the modelling framework. Bekkerman, Goodwin 

and Piggott (2009), revisiting the work of Goodwin and Piggott (2001) by incorporating 

diesel prices in the model and specifying a variable transaction costs framework, showed 

that the asymmetric variable thresholds model outperformed the alternative constant and 

symmetric variable thresholds specification, which might have implied an 
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underestimation of the overall post-shock price effects in evaluated markets, as viewed 

through nonlinear impulse response functions. 

Lence et al.(2017) evaluated the performance of a Band-TVECM through a Monte Carlo 

experiment and proved that the model failed to represent the true underlying data 

generating process, systematically underestimating the transference costs, while 

counterintuitively providing poor inference on possible trade occurrence (as viewed 

through percentage of observations within different price regimes) and therefore 

suggesting lower than expected market integration, as well as biasing downwards the 

speed of price transmission.  

Although underscoring the weaknesses of the Band-TVECM, the authors did not evaluate 

any alternative econometric modelling which could theoretically better represent the 

dynamics of the transaction costs and the price correction mechanism (e.g. the 

assumption of time-varying co-integration and smooth transition).  This paper did not 

evaluate the addition of potential sources of observed transaction costs into the modelling 

framework or dealt with the problem of thresholds estimation. In our study, we model 

price transmission between regions by using the same Band-TVECM with two thresholds 

and three regimes as defined in Greb et al. (2013) or one threshold and two regimes, but 

we explicitly incorporate transaction costs into the modelling framework. Following the 

rationale provided by Greb et al. (2014), in our empirical application, we use a 

regularized Bayesian estimator to estimate the thresholds and we compare a time varying 

threshold model with a constant threshold model in a Monte Carlo experiment. We 

observed a potential significant model misspecification due to results of the test for linear 

cointegration against threshold cointegration, specially when true underlying DGP was of 
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three price regimes (two thresholds). We observed that specifying a time varying 

threshold model dependent on lagged transportation costs improved inference in terms of 

both estimation of transaction cost (as viewed by threshold estimation) as well as in the 

speed of price adjustment to the long run equilibrium and identification of number of 

violations to spatial price equilibrium. Our findings suggest that a varying threshold 

model using transportation costs outperformed the constant threshold specification 

specifically under the assumption of endogenous transportation cost. The empirical 

application using Brazilian farm gate hog prices and freight indices revealed threshold 

effects in price transmission, which were significantly different when accounting for time 

variation in transaction costs. Our paper follows with a Literature review explaining the 

theory behind the TVECM and its use to evaluate spatial price transmission in 

agricultural markets. We then provide detailed specification on modelling procedure, data 

generation and results for our MC experiment, concluding with our empirical application 

and directions for future research.   

 

Literature Review 

 

Spatial price analysis is based on the assumptions of the Law of One Price, which states 

that prices of a given commodity must be the same across regions, net of transaction 

costs. Therefore, the Law of One Price is a consequence of spatial arbitrage, and also one 

possible explanation for cointegration (Goodwin and Schroeder 1991). The concept of 

cointegration, on the other hand, relates to the property of a function of a given pair of 

nonstationary variables to be stationary.  For the case of price series, cointegration means 
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that two nonstationary price series share a common long run mean, to which prices tend 

to return in the long run.  

Methodologies based on co-integration have been widely used to evaluate market 

integration and price transmission in agricultural and other commodities markets (Frey 

and Manera 2007). As price series tend to be nonstationary, cointegration models are able 

to represent how non-stationary variables are linked by a stationary long-run relationship, 

allowing them to diverge from it in the short run. 

This provides the distinction between short and long run dynamics of the prices of 

interest. One of the most popular methodologies used for such purpose is the vector error 

correction model (VECM). In the VECM, a long run relationship is established by the 

presence of co-integration between the analyzed prices. If this hypothesis is not 

confirmed, then the dependence of prices is limited to short run responses to shocks 

(Listorti and Esposti 2012). This long run relationship expresses the LOP, which assume 

the price spreads to be constant or in constant proportions. This may be regarded as a 

caveat of the methodology, as prices may not be cointegrated in given integrated markets, 

as transaction costs and other factors contributing to price differences could be 

nonstationary and time varying (Barrett 1996; Listorti and Esposti 2012). Such caveat has 

been partially overcome by identifying thresholds in the error correction term, which 

allows the parameters not to be constant, but dependent on these thresholds, leading the 

prices to be corrected only if the differentials lie within or outside an interval given by the 

thresholds. These models are described as Threshold Vector Error Correction Models 

(TVECM). 
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Most works describing spatial price transmission in agricultural markets have accounted 

for transaction costs using threshold autoregressive (TAR) and TVECM models (Brosig 

et al. 2011; Lo and Zivot 2001b; Meyer 2004; Serra, Gil and Goodwin 2006; Listorti and 

Esposti 2012; Greb et al. 2013).  

Lo and Zivot (2001) used TVECM to detect threshold type cointegration and found 

evidence for this type of cointegration for several tradable goods, including agricultural 

commodities. Authors also compared the threshold magnitudes to distance between 

different markets, obtaining different prices’ speed of adjustment for different cities but 

failed to detect a consistent significant effect of distance on threshold magnitude, 

suggesting that not only transportation costs would be affecting price transmission. 

Another alternative for this lack of relationship between threshold magnitude and market 

distances may be related to the accuracy of the estimated thresholds, as well as the 

assumption of constant thresholds. 

 Meyer (2004) applied a three regime TVECM to account for transaction costs in spatial 

price transmission in European pig markets, considering symmetric adjustment towards 

the long run equilibrium by allowing the existence of two thresholds of equal magnitude. 

Although the model allows for the presence of a band of inactivity, in which price 

deviations from the long run equilibrium are not sufficiently high to be corrected, such 

approach precludes the existence of asymmetric corrections and assume constant 

transaction costs. Brosig et al. (2011) applies a similar methodology to study wheat 

market integration in Turkey, using the determined threshold to infer on a minimum level 

of transaction costs which would impede full market integration. The same restriction on 
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symmetrical adjustment and also on assuming constant transaction costs are the main 

shortcomings of the methodology.  

Chen and Lee (2008), carrying out a similar methodology as Brosig et al. (2011), studied 

market integration and deviations from the LOOP in Taiwanese pig markets using a 

Band-Tar model, considering a symmetric transaction costs band of inactivity, and 

employing an IRF to check for estimated half-lifes of shocks to the prices between 

regions, taking one central market as reference. The authors found the market to be 

tightly integrated and estimated that shocks to prices in one central market are transferred 

to other markets in periods as short as four months. One shortcoming of this study is, 

besides assuming constant transaction costs, the use of monthly data, which may not be 

the most adequate to test for price transmission, as lower frequency data (e.g. daily) may 

better capture eventual price discrepancies within regions (Frey and Manera 2007). 

Another potential limitation for using TVECM to model transaction costs and evaluate 

market integration and efficiency is the absence of trade flow variables. While such 

information may be valuable to study market integration, it may not be necessarily 

needed to study market performance,  as reported by Stephens et al. (2012) when 

evaluating price transmission in different tomato markets in Zimbabwe. They found that 

intermarket price adjustments occurred both in presence and absence of physical trade, 

with larger and more rapid adjustments occurring in periods without physical trade flows, 

which, according to the authors, potentially …“underscores the importance of 

information flow for market performance”.  Following a similar rationale, Lence, 

Moschini and Santeramo (2018) developed a DGP which accounted for expectations of 

decision makers and delivery lags in the price determination. Under this framework, 
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existence of price differences greater than transaction costs were fully consistent with 

market equilibrium, as authors showed that price movements due to trade decisions were 

made before shocks on supply and demand were realized on the terminal markets, which 

seems to be a reasonable assumption. Under this framework, this condition allows 

arbitrage and leads to price correction in the following period, which provides a useful 

condition to evaluate the performance of the TVECM, once the researcher knows the 

exact transaction costs, speed of adjustment and number of observations falling within 

each of the trade regimes occurring for different scenarios of interest. 

Methodology 

Monte Carlo experiments are conducted with data generation under the framework 

described by Lence et al. (2018). Briefly, the DGP accounts for delivery lags and rational 

expectations, considering the simple case of a two region equilibrium model where prices 

are determined according to stochastic supply and demand conditions in each market, 

assuming that the product is perishable (no storage is allowed, which holds for the case of 

live animals and perishable products), demand parameterization is built to ensure that 

every product that is shipped to a region is consumed. The model is also built under a 

complementarity slackness condition that implies that the expected price differential is 

exactly equal to transfer cost when there is a positive shipment between regions. 

Production in each region is assumed to follow a covariance stationary random process, 

which accounts for autocorrelation in supply. To generate I(1) prices, demand is then 

assumed to be subject to exogenous I(1) shocks, generating price series exhibiting 

threshold cointegration by construction. We encourage readers to refer to the original 

paper for details on data generating process and parametrization. To account for time 
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varying transaction costs, we considered two scenarios of transaction cost variation 

described in (Lence et al. 2018): exogenous time varying per unit costs, and endogenous 

time-varying per unit costs. To simulate the conditions of potential empirical applications, 

we generated price series data under the assumption of equal demand elasticities between 

regions (demand elasticity of 0.7) and one region with inelastic demand (0.7) and another 

region with more elastic demand (1.5). We used this parametrization because in some 

empirical applications, it is likely that transmission may occur between regions with 

different demand elasticities, specially from those with more elastic demand to those with 

more inelastic demand. 

In total, we generated 500 samples of 520 observations each under the following 

assumptions: stochastic exogenous transfer cost with equal demand elasticities between 

regions, stochastic exogenous transfer cost with different demand elasticity between 

regions, stochastic endogenous transfer cost with equal demand elasticities between 

regions and stochastic endogenous transfer cost with different demand elasticities 

between regions. Although some empirical applications involve data with more than 2000 

observations (daily price series from e.g. a 10 year period), we used 520 observations in 

our MC study to reduce computational burden, as it was previously determined that this 

sample size, and even smaller sample sizes, were sufficient to evaluate the performance 

of the TVECM (Greb et al. 2013; Lence et al. 2018).       

For each of the described scenarios, we generated 500 samples with known 3 price 

regimes (two thresholds) and 500 samples with known 2 price regimes (one threshold).  
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For those with 3 price regimes, all samples had at least 10% of observations falling 

within the outside price regimes (exceeding the thresholds in each region specific 

direction).  

In our modelling framework, we do not restrict thresholds to be symmetric and we  use 

the profile likelihood estimator (PL) to perform the Monte Carlo experiment.  Although it 

has been proven that the regularized Bayesian estimator (RB) as described in Greb et al. 

(2013),  outperforms the PL, computation of the posterior density demands much more 

computing power. Moreover, as our main objective is to evaluate whether using a flexible 

threshold specification improves inference, it is desired to use a method commonly 

applied in previous literature.   

Our evaluation starts testing each of the price series for stationarity with the Augmented 

Dickey-Fuller (ADF) and DF-GLS (Elliott, Rothenberg and Stock 1996) tests under the 

null hypothesis of nonstationarity. Also, the KPSS (Kwiatkowski et al. 1992) test under 

the null hypothesis of stationarity is performed. The lag length to be used in the ADF and 

DF-GLS tests is obtained using the Schwarz criterion.  

According to Enders and Granger (1998), for a given pair of two prices, say 𝑝𝑝𝑡𝑡𝑎𝑎 and 𝑝𝑝𝑡𝑡𝑏𝑏, 

assumed to be integrated of order one, I(1), there is a long run relationship established by: 

(1) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 = 𝑧𝑧𝑡𝑡 = 𝑝𝑝𝑡𝑡𝑎𝑎− 𝛼𝛼0 −  𝛼𝛼1𝑝𝑝𝑡𝑡𝑏𝑏 

Where the error term 𝑧𝑧𝑡𝑡 represents the deviations from the long run equilibrium between 

the two price series at a given time period t. In our case study, we assume 𝛼𝛼0 = 0. 
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Linear cointegration between each pair of price series was evaluated using both the 

Johansen’s approach (Johansen 1992a; Johansen 1992b; Johansen 1995), as well as the 

ADF test on zt for both filtered and unfiltered prices. Samples known to have 3 regimes, 

which failed to reject the null of a unit root were subjected to the BBC test with the null 

hypothesis of linear no cointegration against the alternative of threshold cointegration 

(Bec, Ben Salem and Carrasco 2004).  We followed with the Hansen test to determine the 

number of samples inferred to have one or two thresholds.  

According to Hansen (1997), the conventional test used to test for linearity in the ECT is 

not appropriate given that the null hypothesis of linearity in the AR process does not 

follow a standard distribution. Therefore, to test for linearity and the presence of one or 

two thresholds, three versions of the Hansen (1997; 1999b) tests are used: Hansen’s F12 

(F13 , F23) test postulates a null hypothesis of one (one,two) regime(s) versus an 

alternative of two (three, three) regimes. The test is performed sequentially: first F12 is 

performed. If the null of one price regime is rejected, then F23 is performed. If F23’s null 

is rejected, the sample is inferred to have 3 price regimes. If F12’s null is not rejected, 

then  F13 is performed to distinguish samples with one price regime and 3 price regimes.  

We used the test based inference sample classification to evaluate the power of the tests 

with filtered and unfiltered prices. Therefore, we used all 500 samples to obtain the 

model estimates under 3 and 2 known price regimes.   

 

Model Specification and Inference Strategy 
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Assuming that 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 represents the price difference between markets a and b (that is, 

𝛼𝛼0=0 from equation (1)), we have that 𝐸𝐸𝐸𝐸𝐸𝐸 may be described as 𝛾𝛾′𝑝𝑝𝑡𝑡 = (𝑝𝑝𝑡𝑡−1𝑎𝑎 −  𝑝𝑝𝑡𝑡−1𝑏𝑏 ), 

now representing the price differential between two markets, lagged by one period, 

assuming the connecting vector is equal to (1,-1). 

The error correction model conditional on one threshold value may be specified as: 

 

(2) 
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Where ∆ is the first difference operator,  ϑi represents the speed of adjustment towards 

the long run equilibrium for each regime, πin and ρin represent the short run relationships 

between the two markets a and b, ψ is the threshold value to be estimated, and  u𝑖𝑖𝑡𝑡 is an 

error term assumed to be iid and normally distributed. The Schwarz Information Criterion 

is employed to determine the appropriate lag structure of equation (2). 

When deviations (𝛾𝛾′𝑝𝑝𝑡𝑡) are below the threshold value (ψ), the price transmission process 

is defined by regime 1, and arbitrage is not expected to happen, as the regime represents 
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spatial price efficiency. As a consequence, no significant price adjustment is expected to 

be observed, or the speed of adjustment, as viewed through coefficient  𝜗𝜗1𝑎𝑎 and 𝜗𝜗1𝑏𝑏   is 

expected to be smaller than that for 𝜗𝜗2𝑎𝑎 and 𝜗𝜗2𝑏𝑏, as the outer regime represent situations 

when the spatial equilibrium is broken, allowing profitable arbitrage, which is expected to 

drive prices faster towards the long run equilibrium. Greb et al. (2013), describes some 

restrictions on the coefficients 𝜗𝜗 that ensures that pa and pb are cointegrated. It is 

expected that (i) -1 ≤ 𝜗𝜗2𝑎𝑎< 0, (ii) 0 < 𝜗𝜗2𝑏𝑏< 1 , (iii) 0 < (|𝜗𝜗2𝑎𝑎| + 𝜗𝜗2𝑏𝑏) < 1. Condition (i) 

ensures that pa is reduced when spatial equilibrium is violated, while condition (ii) 

ensures that pb increases. Both conditions ensure that changes in pa and pb will restore the 

spatial equilibrium. Condition (iii) ensures that there is no overshooting in price 

correction. The same rationale is valid for the model specification with two thresholds. 

The only difference is that there are two conditions in which spatial equilibrium is 

violated, which are related to trade in both directions. A two threshold, three regime 

TVECM may be specified as follows: 

(3)  
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⎛�𝜋𝜋2𝑛𝑛𝑎𝑎∆𝑝𝑝𝑡𝑡−𝑛𝑛

𝑎𝑎
𝑗𝑗

𝑛𝑛=1

�𝜋𝜋2𝑛𝑛𝑏𝑏∆𝑝𝑝𝑡𝑡−𝑛𝑛
𝑏𝑏

𝑗𝑗

𝑛𝑛=1 ⎠

⎟⎟
⎟
⎞

+

⎝

⎜⎜
⎜
⎛�𝜌𝜌2𝑛𝑛𝑎𝑎∆𝑝𝑝𝑡𝑡−𝑛𝑛

𝑎𝑎
𝑗𝑗

𝑛𝑛=1

�𝜌𝜌2𝑛𝑛𝑏𝑏∆𝑝𝑝𝑡𝑡−𝑛𝑛
𝑏𝑏

𝑗𝑗

𝑛𝑛=1 ⎠

⎟⎟
⎟
⎞

+ �
𝑢𝑢2𝑡𝑡𝑎𝑎
𝑢𝑢2𝑡𝑡𝑏𝑏

� 

If 𝜓𝜓1  ≤ 𝛾𝛾′𝑝𝑝𝑡𝑡 ≤  𝜓𝜓2  , Regime 2. 
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�
∆𝑝𝑝𝑡𝑡

𝑎𝑎

∆𝑝𝑝𝑡𝑡
𝑏𝑏� = �

𝜇𝜇3𝑎𝑎
𝜇𝜇3𝑏𝑏

� +  �𝜗𝜗3𝑎𝑎
𝜗𝜗3𝑏𝑏

�  𝛾𝛾′𝑝𝑝𝑡𝑡 +

⎝

⎜⎜
⎜
⎛�𝜋𝜋3𝑛𝑛𝑎𝑎∆𝑝𝑝𝑡𝑡−𝑛𝑛

𝑎𝑎
𝑗𝑗

𝑛𝑛=1

�𝜋𝜋3𝑛𝑛𝑏𝑏∆𝑝𝑝𝑡𝑡−𝑛𝑛
𝑏𝑏

𝑗𝑗

𝑛𝑛=1 ⎠

⎟⎟
⎟
⎞

+

⎝

⎜⎜
⎜
⎛�𝜌𝜌3𝑛𝑛𝑎𝑎∆𝑝𝑝𝑡𝑡−𝑛𝑛

𝑎𝑎
𝑗𝑗

𝑛𝑛=1

�𝜌𝜌3𝑛𝑛𝑏𝑏∆𝑝𝑝𝑡𝑡−𝑛𝑛
𝑏𝑏

𝑗𝑗

𝑛𝑛=1 ⎠

⎟⎟
⎟
⎞

+ �
𝑢𝑢3𝑡𝑡𝑎𝑎
𝑢𝑢3𝑡𝑡𝑏𝑏

�  

If 𝜓𝜓2 < 𝛾𝛾′𝑝𝑝𝑡𝑡    , Regime 3. 

Under specification (3), regimes 1 and 3 are compatible with spatial arbitrage, therefore 

coeffiecients 𝜗𝜗1and 𝜗𝜗3 are expected to be significant and greater than 𝜗𝜗2. Same 

restrictions described for the one threshold model, which are expected to be met in order 

to have proper price adjustment, apply to the thre regime specification.    

Equations (3) is commonly obtained by using the profile likelihood estimator, where for 

each possible pair of the threshold parameters ψ = (ψ1,ψ2), the remaining parameters in 

the likelihood function corresponding to equation (3) are replaced by their maximum 

likelihood estimates. Then, the pair of thresholds that maximizes the resulting profile 

likelihood function is selected as the estimate (Hansen and Seo 2002; Lo and Zivot 

2001a; Greb et al. 2013). This estimator is criticized because, to allow estimation 

possible, a minimum number of observations in each outer regimes have to be arbitrarily 

selected  (trimming parameter), which bias the estimation (either when the number of 

observations is not large enough, or when the differences between the true thresholds is 

not large enough) , as well as the uncertainty inherent to the coefficient estimates for each 

combination of possible threshold values cannot be clearly measured (Greb et al. 2014).     
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The RB estimator, on the other hand, do not require a minimum number of observations 

to lie within each regime. Instead, the selection of thresholds is done using integral 

calculus, which also provides a way to account for inherent variability of estimates. The 

posterior median is a function used to choose optimal threshold values over the grid of 

ECTs (Greb et al. 2014), which is defined as: 

(4)    ∫ 𝑃𝑃𝑅𝑅𝑅𝑅(ψ𝑖𝑖
ψ�𝑖𝑖
min (𝛾𝛾′𝑝𝑝𝑡𝑡) |∆𝑃𝑃,𝑋𝑋)𝑑𝑑ψ𝑖𝑖 = 0.5,𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2 

Where PRB is the posterior distribution, X is a n x d matrix containing columns of ECTs, 

intercepts and values of lagged terms, and ∆𝑃𝑃 is the dependent variable. As noted by 

Serebrennikov and Götz (2015), PRB is well defined in the whole threshold parameters 

space T = {ψ1,ψ2| min (𝛾𝛾′𝑝𝑝𝑡𝑡) < ψ1 < ψ2 < max (𝛾𝛾′𝑝𝑝𝑡𝑡)}. Computation is based on a 

prior 𝑃𝑃𝑅𝑅𝑅𝑅(ψ|𝑋𝑋) ∝ 𝐼𝐼(ψ ∈ T) for ψ, where 𝐼𝐼(∙) is an indicator function providing 

switching between regimes.  The estimation is done in software R, using the package 

nlme, taking the optimal thresholds and estimating parameters using restricted maximum 

likelihood framework, implemented as part of mixed effects modelling.  

To allow for time varying cointegration, we followed the description provided by Park, 

Mjelde and Bessler (2007). This approach consists in obtaining “filtered price series” by 

running the following regressions using OLS: 

(5)      𝑝𝑝𝑡𝑡𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1𝐸𝐸𝑇𝑇𝑡𝑡−1
𝑖𝑖𝑗𝑗 + 𝛼𝛼2𝐸𝐸𝑇𝑇𝑡𝑡−1

𝑗𝑗𝑖𝑖 + 𝜀𝜀𝑡𝑡𝑖𝑖   

where  𝐸𝐸𝑇𝑇𝑡𝑡−1
𝑖𝑖𝑗𝑗  is the lagged transportation cost from region i to region j, 𝛼𝛼0 is a constant 

term and  𝛼𝛼1 and 𝛼𝛼2 are coefficients associated with lagged transportation costs, for 

i,j ∈ a, b. The term 𝜀𝜀𝑡𝑡𝑖𝑖 will then represent the price in each region after considering the 
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effect of transportation cost in the previous period, as decisions on shipment made on 

period t will effectively induce price changes on period t+1. So, to obtain the variable 

threshold model, instead of using 𝑝𝑝𝑡𝑡𝑖𝑖, we used the filtered price series 𝜀𝜀𝑡𝑡𝚤𝚤� . It follows from 

equation 4 , taking the middle regime, that time varying thresholds can be obtained  from 

the relationship: 

(6)       𝜓𝜓1 ≤ 𝜀𝜀𝑡𝑡𝑎𝑎� −  𝜀𝜀𝑡𝑡𝑏𝑏� ≤  𝜓𝜓2 

where 𝜀𝜀𝑡𝑡𝑎𝑎� = 𝑝𝑝𝑡𝑡𝑎𝑎 −  𝛼𝛼0𝑎𝑎� − 𝛼𝛼1𝑎𝑎�𝐸𝐸𝑇𝑇𝑡𝑡−1𝑎𝑎𝑏𝑏 − 𝛼𝛼2𝑎𝑎�𝐸𝐸𝑇𝑇𝑡𝑡−1𝑏𝑏𝑎𝑎 , as well as  𝜀𝜀𝑡𝑡𝑏𝑏� = 𝑝𝑝𝑡𝑡𝑏𝑏 −  𝛼𝛼0𝑏𝑏� − 𝛼𝛼1𝑏𝑏�𝐸𝐸𝑇𝑇𝑡𝑡−1𝑏𝑏𝑎𝑎 −

𝛼𝛼2𝑏𝑏�𝐸𝐸𝑇𝑇𝑡𝑡−1𝑎𝑎𝑏𝑏  . Therefore, from algeabric manipulation we obtain that daily threshold values 

based on transportation costs are: 

(7)   𝜓𝜓1𝑡𝑡 =  𝜓𝜓1 + (𝛼𝛼0𝑎𝑎� + 𝛼𝛼1𝑎𝑎�𝐸𝐸𝑇𝑇𝑡𝑡−1𝑎𝑎𝑏𝑏 + 𝛼𝛼2𝑎𝑎�𝐸𝐸𝑇𝑇𝑡𝑡−1𝑏𝑏𝑎𝑎 − 𝛼𝛼0𝑏𝑏� − 𝛼𝛼1𝑏𝑏�𝐸𝐸𝑇𝑇𝑡𝑡−1𝑏𝑏𝑎𝑎 − 𝛼𝛼2𝑏𝑏�𝐸𝐸𝑇𝑇𝑡𝑡−1𝑎𝑎𝑏𝑏 ) 

(8)   𝜓𝜓2𝑡𝑡 =  𝜓𝜓2 + (𝛼𝛼0𝑎𝑎� + 𝛼𝛼1𝑎𝑎�𝐸𝐸𝑇𝑇𝑡𝑡−1 + 𝛼𝛼2𝑎𝑎�𝐸𝐸𝑇𝑇𝑡𝑡−1𝑏𝑏𝑎𝑎 − 𝛼𝛼0𝑏𝑏� − 𝛼𝛼1𝑏𝑏�𝐸𝐸𝑇𝑇𝑡𝑡−1𝑏𝑏𝑎𝑎 − 𝛼𝛼2𝑏𝑏�𝐸𝐸𝑇𝑇𝑡𝑡−1𝑎𝑎𝑏𝑏 ) 

Using daily values of transportation cost in equations 6 and 7 provide the time varying 

thresholds.  

This approach allows one to consider the effect of different transference cost according to 

the transportation route (backhaul problem), which is more likely to happen and well 

described in transportation problems (Behrens and Picard 2011). 

Finally, for each one of the four evaluated scenarios we obtain, before model fitting, the 

number of correct classification of cointegrated samples (expressed as percentage out of 

500 samples), the number of correct classification of samples with two and three regimes 

using filtered (time varying threshold) and unfiltered prices (fixed threshold). After fitting 

models according to the known spatial price regimes, we compare the number of correct 

classifications of observations within and outside the band of inaction under the fixed and 

flexible threshold specifications and the estimated transference cost using a two sample t-
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test, as well as the mean speed of price adjustment using a one sample t-test.  

 

Empirical Application 

 

Our empirical application was carried out using daily farm gate hog prices of 6 different 

regions of the State of Parana, Brazil, namely: Cascavel, Curitiba, Maringa, Ponta 

Grossa, Londrina and Toledo. Time series price data from the period comprising Jan 

2006 until November 2015 (2,575 observations) was obtained from Parana State 

Agriculture and Supplies Bureau website. These timeseries are specifically interesting to 

study because of the relevance of Hog production to the State of Parana, which is the 

second largest producer in volume, as well as because trade within the state is 

unrestricted, as long as legislation for transporting live animals is respected. Furthermore, 

transportation from and to each of the studied regions is feasible, and all regions have 

registered producing units and processing plants. To model time variation, we used a 

national freight cost index, which is elaborated by the Department of Economics of 

NTC&Logistica (National Association of Breakbulk Freight and Logistics from Brazil). 

This index is corrected monthly and accounts for variations in costs specifically regarding 

the transportation sector. Different indices are available according to transportation 

distance. In our study, we used indices for 50km, 400km and 500km transportation 

routes. As the index is reported monthly, we disaggregated the monthly index into daily 

observations using the Chow and Lin (1971) procedure with diesel prices for each region 

as a high frequency indicator (Chow and Lin 1971), and followed with procedures 

described in equations (5-8) to obtain filtered prices and time varying thresholds. This 
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procedure allowed us to work with route specific disaggregated indices. Region specific 

diesel prices series were obtained from The National Agency for Oil, Natural Gas and 

Biofuels, Brazil. 

 

Results For Monte Carlo Experiment 

 

All generated filtered and unfiltered price series were found to be I(1). Sample 

classification according to results of Johansen, ADF and Hansen’s test for samples 

generated under the assumption of stochastic exogenous transfer cost are shown in tables 

1 and 2. 

Table 1. Percentage of Samples generated under stochastic exogenous transfer costs 
assumption classified according to different test procedures.  

DGP: Exogenous Stochastic Transfer Cost with Different Demand Elasticity 

True price 
regimes Type Johansen1  ADF 2 BBC-test3 

1 Inferred 
Regime4 

2 Inferred 
regimes5 

 
3 Inferred 
regimes6  

3Z regimes Unfiltered 0.107 0.069 0 0.236 0.266 0.498 

 
Filtered 0.105 0.060 0 0.204 0.262 0.534 

2Z regimes Unfiltered 0.016 0.011 - 0.394 0.147 0.459 

 
Filtered 0.016 0.011 - 0.399 0.174 0.427 

 
DGP: Exogenous Stochastic Transfer Cost with Equal Demand Elasticity 
3Z regimes Unfiltered 0.112 0.064 0 0.202 0.286 0.512 

 
Filtered 0.110 0.060 0 0.186 0.274 0.540 

2Z regimes Unfiltered 0.013 0.009 - 0.373 0.159 0.468 

 
Filtered 0.011 0.009 - 0.425 0.164 0.411 

1Frequency of samples rejected for cointegration (trace statistic) 
2Frequency of samples rejected for cointegration (non stationary zt) 
3Frequency of samples among  2 which failed to reject the null of linear no-cointegration 
4Frequency of samples classified as having one stationary price regime (linear cointegration – Hansen test) 
5Frequency of samples classified as having two price regimes (threshold cointegration with one threshold – 
Hansen test) 
6Frequency of samples classified as having three price regimes (threshold cointegration with two thresholds 
– Hansen test) 
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Co-integration was rejected in 10-11% (Johansen test) and 6-7% (ADF test) of samples 

containing 3 price regimes, while more than 95% of samples containing 2 price regimes 

were correctly identified as cointegrated from both tests. None of  the 3 regime price 

diferentials samples which were rejected for cointegration were still found to be I(1) after 

the BBC test. Results from the Hansen’s tests correctly identified only approximately 

50% of samples know to have 3 price regimes and at most 18% of samples know to have 

2 price regimes. Lence et al. (2018) also reported a poor performance of the test in 

correctly identifying price regimes in a similar Monte Carlo experiment. Price diferentials 

obtained from filtered data showed slightly better results favoring correct regime 

specifications. 

Table 2. Percentage of Samples generated under stochastic endogenous transfer 
costs assumption classified according to different test procedures  

DGP: Endogenous Stochastic Transfer Cost with Different Demand Elasticity 

True price 
regimes Type Johansen1  ADF2  BBC-test3 

1 Inferred 
Regime4 

2 Inferred 
regimes5 

 
3 Inferred 
regimes6  

3Z regimes Unfiltered 0.516 0.385 0 0.07 0.424 0.506 

 
Filtered 0.006 0.002 0 0.242 0.216 0.542 

2Z regimes Unfiltered 0.277 0.156 - 0.206 0.256 0.538 

 
Filtered 0.002 0.004 - 0.346 0.118 0.536 

DGP: Endogenous  Stochastic Transfer Cost with Equal Demand Elasticity 

3Z regimes Unfiltered 0.447 0.305 0.119 0.056 0.428 0.516 

 
Filtered 0.006 0.002 0 0.288 0.218 0.494 

2Z regimes Unfiltered 0.177 0.093 - 0.244 0.226 0.530 

 
Filtered 0.002 0.002 - 0.334 0.123 0.543 

1Frequency of samples rejected for cointegration (trace statistic) 
2Frequency of samples rejected for cointegration (non stationary zt) 
3Frequency of samples among  2 which failed to reject the null of no-cointegration 
4Frequency of samples classified as having one stationary price regime (linear cointegration – Hansen test) 
5Frequency of samples classified as having two price regimes (threshold cointegration with one threshold – 
Hansen test) 
6Frequency of samples classified as having three price regimes (threshold cointegration with two thresholds 
– Hansen test)  
 
Samples generated under the assumption of endogenous transfer cost (table 2) were 
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rejected for cointegration at a rate as high as 51% (Johansen test) and 38% (ADF test). 

Among this rejected samples, around 11% were still found to comprise only I(1) price 

regimes after the BBC test for the case of equal demand elasticities. Interestingly, less 

than 1% of filtered price series were rejected for cointegration. Identification of samples 

with 2 and 3 price regimes was only effective in around 25% and 53% of the samples, 

respectively. The use of filtered data slightly favored identification for 3 regime price 

samples under assumption of different demand elasticites, but also reduced correct 

identification of 2 price regime samples under both elasticities scenarios.  

Given the poor performance of the tests, these results highlight the need for a deep 

understanding of the market to be analyzed, as well as the correct observation of 

economic theory and use of alternative model selection strategies while defining a 

methodology to evaluate price transmission and the assumption of the number of price 

regimes. Furthermore, the need to assume an arbitrary trimming value used for Hansen’s 

test calculation may also affect the correct identification of different price regimes.  

Estimation results for the three regime TVECM under the assumption of exogenous 

stochastic transfer cost are shown in tables 3 and 4.  
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Table 3. Summary of estimated and true parameters for three regimes TVECM 
under fixed and flexible threshold specifications – Samples generated under the 
assumption of exogenous stochastic transfer cost. 

DGP: Exogenous Stochastic Transfer Cost with Different Demand Elasticity 

Parameter Specification Mean S.D. Median [5% , 95%] 
Violations of spatial price 
equilibrium 

Fixed threshold 0.683*** 0.197 0.714 [0.301 , 0.924] 
Flexible threshold 0.712*** 0.181 0.750 [0.351 , 0.930] 
True value 0.556 0.114 0.555 [0.390 , 0.760 ] 

Speed of adjustment1 Fixed threshold 0.830 0.274 0.800 [0.448 , 1.235] 
Flexible threshold 0.846 0.266 0.839 [0.453 , 1.270] 

Inaction band Fixed threshold 0.077 0.061 0.064 [0.019 , 0.174] 
Flexible threshold 0.074 0.067 0.058 [0.018 , 0.187] 
True Value 0.100 0.000 0.100 [0.099 , 0.101] 

DGP: Exogenous Stochastic Transfer Cost with Same Demand Elasticity 

Violations of spatial price 
equilibrium 

Fixed threshold 0.712*** 0.192 0.747 [0.346 , 0.935] 
Flexible threshold 0.717*** 0.187 0.764 [0.362 , 0.932] 
True value 0.544 0.108 0.538 [0.385 , 0.739 ] 

Speed of adjustment1 Fixed threshold 0.824 0.258 0.823 [0.433 , 1.228] 
 Flexible threshold 0.829 0.255 0.815 [0.459 , 1.244] 
Inaction band Fixed threshold 0.070 0.056 0.055 [0.014 , 0.192] 
 Flexible threshold 0.069 0.058 0.054 [0.014 , 0.174] 
 True Value 0.100 0.000 0.100 [0.099 , 0.101] 
1True speed of adjustment is 1. 
*** Denotes significant difference from the true value at 1%. 

 

For the three price regimes case, we observe that the estimated number of observations 

falling in trade regimes (outside the spatial arbitrage inaction band) is significantly 

upward biased and skewed to the right. The speed of adjustment is roughly 15% lower 

than the true value, while the inaction band is also roughly 30% lower than the true value 

and skewed to the left, although those values were not significantly different from the 

true value. No noticeable differences were obtained when using filtered price data. 

Similar results were obtained in previous studies for fixed threshold specifications and 

may be caused by the limitations of the PL already reported (Greb et al. 2013; Lence et 

al. 2018).  
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Table 4. Summary of estimated and true parameters for two regimes TVECM 
under fixed and flexible threshold specifications – Samples generated under the 
assumption of exogenous stochastic transfer cost. 

DGP: Exogenous Transfer Cost with Different Demand Elasticity 

Parameter Specification Mean S.D. Median [5% , 95%] 
Violations of spatial price 
equilibrium 

Fixed threshold 0.329*** 0.205 0.303 [0.076 , 0.712] 
Flexible threshold 0.491 0.285 0.486 [0.074 , 0.919] 
True value 0.492 0.039 0.500 [0.423 , 0.535 ] 

Speed of adjustment1 Fixed threshold 0.933 0.371 0.981 [0.081 , 1.438] 
Flexible threshold 0.932 0.377 0.980 [0.094 , 1.485] 

Transference cost Fixed threshold 0.049 0.020 0.049 [0.017, 0.082] 
Flexible threshold 0.048 0.020 0.047 [0.018 , 0.081] 
True Value 0.050 0.000 0.050 [0.050 , 0.050] 

DGP: Exogenous Transfer Cost with Same Demand Elasticity 

Violations of spatial price 
equilibrium 

Fixed threshold 0.365*** 0.212 0.331 [0.073 , 0.761] 
Flexible threshold 0.494 0.289 0.481 [0.083 , 0.930] 
True value 0.494 0.038 0.500 [0.425 , 0.535 ] 

Speed of adjustment1 Fixed threshold 0.965 0.374 0.992 [0.237 , 1.530] 
 Flexible threshold 0.946 0.352 0.984 [0.208 , 1.379] 
Transference cost Fixed threshold 0.048 0.020 0.047 [0.015, 0.083] 
 Flexible threshold 0.048 0.020 0.048 [0.018 , 0.083] 
 True Value 0.050 0.000 0.050 [0.050 , 0.050] 
1True speed of adjustment is 1. 
*** Denotes significant difference from the true value at 1% . 
 

 

The two price regime scenario displayed similar results than the three price regimes. 

However, under the two regime specification, differences in the speed of price 

transmission and transaction cost estimation are less evident, although variation is still 

high. The number of observations compatible with spatial arbitrage was similar to the 

true value and less variable when using filtered price series, while the fixed threshold 

specification provided downwards biased estimates. Results were similar for both DGP 

assumptions.  

Results obtained from samples generated under stochastic endogenous transfer cost 

(tables 5 and 6) show larger differences with regards to the true parameter values. 
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Table 5. Summary of estimated and true parameters for three regimes TVECM 
under fixed and flexible threshold specifications – Samples generated under the 
assumption of endogenous stochastic transfer cost. 

DGP: Endogenous Stochastic Transfer Cost with Different Demand Elasticity 

Parameter Specification Mean S.D. Median [5% , 95%] 
Violations of spatial price 
equilibrium 

Fixed threshold 0.693*** 0.174 0.723 [0.376 , 0.917] 
Flexible threshold 0.689*** 0.203 0.752 [0.279 , 0.926] 
True value 0.477 0.079 0.476 [0.350 , 0.617 ] 

Speed of adjustment1 Fixed threshold 0.410** 0.284 0.346 [0.075 , 1.032] 
Flexible threshold 0.640 0.285 0.625 [0.216 , 1.146] 

Inaction band Fixed threshold 0.101*** 0.065 0.088 [0.023, 0.208] 
Flexible threshold 0.060*** 0.067 0.042 [0.010 , 0.171] 
True Value 0.148 0.036 0.138 [0.113 , 0.233] 

DGP: Endogenous Stochastic Transfer Cost with Same Demand Elasticity 

Violations of spatial price 
equilibrium 

Fixed threshold 0.687*** 0.175 0.713 [0.370 , 0.917] 
Flexible threshold 0.701*** 0.200 0.759 [0.314 , 0.923] 
True value 0.478 0.077 0.475 [0.350 , 0.610 ] 

Speed of adjustment1 Fixed threshold 0.474* 0.274 0.431 [0.115 , 1.031] 
 Flexible threshold 0.634 0.283 0.591 [0.220 , 1.099] 
Inaction band Fixed threshold 0.092*** 0.056 0.083 [0.025, 0.193] 
 Flexible threshold 0.056*** 0.061 0.039 [0.010 , 0.155] 
 True Value 0.138 0.031 0.129 [0.111 , 0.199] 
1True speed of adjustment is 1. 
***,**,* Denotes significant difference from the true value at 1%, 5% and 10%, respectively. 
 

Percentage of observations identified in spatial arbitrage regimes were found to be 

systematically higher than the true value. Speed of adjustment was found to be downward 

biased and nearly 60% lower than the true value under fixed threshold specification, 

while transaction costs estimates were found to be downward biased for both 

specifications. Accounting for time variation markedly improved inference on speed of 

adjustment, but still provided biased results in terms of violations of spatial equilibrium 

and estimation of transaction costs.  
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Table 6. Summary of estimated and true parameters for two regimes TVECM 
under fixed and flexible threshold specifications – Samples generated under the 
assumption of endogenous stochastic transfer cost. 

DGP: Endogenous Stochastic Transfer Cost with Different Demand Elasticity 

Parameter Specification Mean S.D. Median [5% , 95%] 
Violations of spatial price 
equilibrium 

Fixed threshold 0.340*** 0.191 0.317 [0.079 , 0.694] 
Flexible threshold 0.497 0.274 0.483 [0.091 , 0.917] 
True value 0.500 0.033 0.504 [0.460 , 0.537] 

Speed of adjustment1 Fixed threshold 0.344** 0.331 0.245 [-0.031 , 0.992] 
Flexible threshold 0.883 0.302 0.896 [0.291 , 1.324] 

Transference cost Fixed threshold 0.170 0.064 0.170 [0.068, 0.282] 
Flexible threshold 0.170 0.062 0.164 [0.076 , 0.275] 
True Value 0.171 0.054 0.166 [0.093 , 0.269] 

DGP: Endogenous Stochastic Transfer Cost with Same Demand Elasticity 

Violations of spatial price 
equilibrium 

Fixed threshold 0.339*** 0.196 0.311 [0.075 , 0.703] 
Flexible threshold 0.492 0.280 0.483 [0.087 , 0.919] 
True value 0.500 0.032 0.506 [0.462 , 0.535] 

Speed of adjustment1 Fixed threshold 0.417* 0.350 0.349 [-0.009 , 1.056] 
 Flexible threshold 0.902 0.337 0.900 [0.396 , 1.458] 
Transference cost Fixed threshold 0.147 0.059 0.143 [0.057, 0.261] 
 Flexible threshold 0.150 0.058 0.144 [0.068 , 0.263] 
 True Value 0.150 0.046 0.145 [0.085 , 0.232] 
1True speed of adjustment is 1. 
***,**,* Denotes significant difference from the true value at 1%, 5% and 10%, respectively. 
 

Results for the 2 price regime specifications showed a similar pattern, except for the 

transaction cost estimation and the characterization of frequency of arbitrage 

opportunities: under flexible threshold specification, estimation of transaction costs, as 

well as number of observations outside the inaction band were found to be very close and 

significantly similar to the true values, while transaction cost estimate for the fixed 

threshold specification was similar to the true value, but speed of adjustment was 

downward biased in both DGP. The greatest and most important difference in terms of 

spatial arbitrage was observed for the speed of adjustment estimation, which was, for the 

flexible threshold specification, almost twice as high as the estimated under the fixed 

threshold specification. 

Results demonstrate that, when transaction costs are more variable and even 
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nonstationary (most of transaction cost generated series under endogenous transference 

cost were found to be nonstationary), the TVECM specification with a fixed threshold 

performs poorly in estimating transaction costs, speed of price adjustment and frequency 

of violations of spatial equilibrium in the presence of either one or two thresholds. 

Results were worse for the two threshold case, which was already demonstrated by Lence 

et al. (2018)  and Greb et al. (2013) and may have been worsen due to the choice of the 

estimator.  By specifying a time variable threshold using filtered price series, the model 

could be substantially improved, specially under the presence of one threshold, but also 

under the presence of two thresholds, although still did not provide satisfactory results 

under the latter case. Part of this limitations could be due to the use of the PL estimator, 

which was already shown to provide biased and more variable estimates (Greb et al. 

2013).  However, due to constraints in computing power, the replication for the study 

using the Bayesian estimator could not be completed and remains as a direction for future 

improvement.  

 

Empirical Application Results 

 

Our MC results revealed that a time varying TVECM which incorporated transaction cost 

information outperformed the fixed threshold specification. Therefore, this is the 

specification we used in our empirical application.  

Summary statistics for the price series used, as well as route specific freight index series 

are shown in tables 7 and 8. 
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Table 7. Descriptive Statistics of Farm Gate Hog Prices (BRL$) for Each Studied 
Region 

Region Mean SDa CVb Minimum Maximum 
  Cascavel 2.336 0.672 0.288 1.000 4.020 
  Curitiba 2.518 0.781 0.310 1.000 4.850 
  Londrina 2.548 0.723 0.284 1.100 4.800 
  Maringa 2.561 0.732 0.286 1.100 4.850 
  Ponta-Grossa 2.494 0.760 0.305 1.000 4.850 
  Toledo 2.324 0.627 0.270 1.200 3.850 
aStandard Deviation. 
bCoefficient of Variation. 
 

Table 8. Freight Cost Index for Each Specific Route 

Route Freight Cost Index Mean SDa CVb Minimum Maximum 

  Toledo-Cascavel 3.992 0.762 0.191 2.969 5.437 

  Toledo-Curitiba 4.036 0.742 0.184 3.033 5.478 

 Toledo-Londrina 
 Toledo-PontaGrossa 
 Toledo-Maringa 

3.963 0.717 0.181 2.989 5.344 

  Cascavel-Toledo 3.992 0.762 0.191 2.969 5.435 

  Curitiba-Toledo 4.036 0.741 0.184 3.033 5.452 

  Londrina-Toledo 3.962 0.716 0.181 2.989 5.324 

 PontaGrossa- Toledo 3.963 0.717 0.181 2.982 5.342 

 Maringa-Toledo 3.962 0.715 0.180 2.989 5.347 
aStandard Deviation. 
bCoefficient of Variation. 
 

Hog prices (filtered and unfiltered) as well as freight cost indices were found to be I(1) in 

levels (ADF-test and KPSS test).  

Cointegration was further evaluated and confirmed for the filtered price series. Results 

for cointegration tests are reported in table 9. 
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Table 9. Results for Cointegration of Filtered Price Pairs  

Price pair Adf-test statistic1 Johansen (Trace statistic)2 
Toledo-Cascavel -6.616*** 109.50*** 
Toledo-Curitiba -6.252*** 109.39*** 
Toledo-Londrina -6.117*** 100.17*** 
Toledo-Maringa -6.336*** 93.01*** 
Toledo-Ponta Grossa -5.985*** 86.30*** 
*** denotes the rejection of H0 at 1% level. 
1 Engle-Granger Procedure – H0 of I(1) price differences, H1 of I(0) price differences. 
2The number of maximum cointegrating vectors (r) =0.  
 

Market structure for the evaluated regions allow us to assume that two thresholds and 

three regimes specification will better represent price transmission behavior. As transit 

between regions is unrestricted and there are both producing units and processing plants 

close to or located at each of the evaluated regions, we understand that transmission of 

prices may happen in both ways for each region pair. We have selected Toledo as the 

central market, as it concentrates most of hog production and processing in the state of 

Parana, and is a reference center nationwide. Cascavel is located 50km from Toledo and 

is the second largest producing center in the state. Ponta Grossa is also an important 

production and processing center (448km from Toledo) while Maringa (324km from 

Toledo),  Londrina (413km from Toledo) and Curitiba (541km from Toledo) may be 

considered marginal markets in terms of production and processing, as compared to 

regions of Toledo,  Cascavel and Ponta Grossa. 

We have included estimation of a three regime, two thresholds TVECM using unfiltered 

data to compare differences in terms of inference while accounting for transaction costs 

difference (flexible versus fixed threshold assumption) throughout the evaluated time 

space. Estimation results are shown in table 10.  

 



29 
 

Table 10. Model Fit Results for Empirical Evaluations of Price Transmission for Each Eegion Pair. 

 # of  
lags 

 (∆𝑝𝑝)  𝜗𝜗1  𝜓𝜓1 𝜗𝜗2 𝜓𝜓2 𝜗𝜗3 𝜓𝜓2 − 𝜓𝜓1 Adj11 
 

Adj2 Adj3 

Flexible 
Threshold 2 Tol. -0.098 (0.154) -0.554 -0.065 (0.009) 0.495 -0.932 (0.123) 1.049 1.779 

[1] 
0.082 
[2569] 

0.932 
[4]   Cas. 1.678 (0.119) 0.017 (0.005) 0.000 (0.078) 

Fixed 
Threshold 2 Tol. 0.020 (0.042) -0.533 -0.064 (0.009) 0.474 -0.430 (0.052) 1.007 0.327 

[11] 
0.077 
[2548] 

0.476 
[16]   Cas 0.347 (0.028) 0.013 (0.005) 0.046 (0.034) 

Flexible 
Threshold 2 Tol. -0.553 (0.273) -0.833 -0.073 (0.008) 0.343 -0.074 (0.048) 1.176 0.551 

[1] 
0.071 
[2561] 

0.069 
[12]   Cur. -0.002 (0.272) -0.002 (0.008) -0.005 (0.046) 

Fixed 
Threshold 4 Tol. -0.042 (0.019) -0.501 -0.051 (0.009) 0.062 -0.034 (0.008) 0.563 0.080 

[47] 
0.070 
[1527] 

0.049 
[1001]   Cur 0.038 (0.019) 0.019 (0.009) 0.015 (0.007) 

Flexible 
Threshold 2 Tol. -0.720 (0.143) -0.868 -0.065 (0.008) 0.381 -0.592 (0.060) 1.249 0.744 

[3] 
0.073 
[2563] 

0.605 
[8]   Lon. 0.024 (0.142) 0.008 (0.008) 0.013 (0.059) 

Fixed 
Threshold 4 Tol. -0.017 (0.025) -0.614 -0.054 (0.009) 0.061 -0.026 (0.007) 0.675 0.029 

[26] 
0.051 
[1569] 

0.033 
[980]   Lon. 0.012 (0.024) -0.003  (0.008) 0.007 (0.007) 

Flexible 
Threshold 4 Tol. -0.119 (0.016) -0.479 -0.034 (0.014) -0.059 -0.081 (0.013) 0.420 0.134 

[176] 
0.056 
[2013] 

0.065 
[385]   Mar. 0.015 (0.014) 0.022 (0.012) -0.016 (0.011) 

Fixed 
Threshold 4 Tol. -0.052 (0.009) -0.009 -0.041 (0.214) 0.003 -0.033 (0.008) 0.675 0.062 

[1299] 
0.039 
[20] 

0.040 
[1256]   Mar. 0.010 (0.007) -0.002 (0.214) 0.007 (0.006) 

Flexible 
Threshold 3 Tol. -0.036 (0.035) -0.479 -0.057 (0.008) 0.332 -0.377 (0.058) 0.811 0.156 

[20] 
0.061 
[2543] 

0.378 
[11]   PG. 0.120 (0.030)  0.004 (0.007)  0.001 (0.051) 

Fixed 
Threshold 5 Tol. -0.055 (0.020) -0.606 -0.045 (0.009) 0.007 -0.028 (0.008) 0.613 0.096 

[28] 
0.057 
[1298] 

0.041 
[1249]   PG. 0.041 (0.016)  0.012 (0.007)  0.013 (0.006) 

Notes. 𝜗𝜗𝑖𝑖 denotes the adjustment coefficient for the i-th regime. 𝜓𝜓1, 𝜓𝜓2 denote lower and upper threshold. Flexible thresholds are average recovered values 
reported. 1Refers to total adjustment (𝜗𝜗𝑖𝑖𝑏𝑏 − 𝜗𝜗𝑖𝑖𝑎𝑎) and number of observations for each regime are between brackets. Bold values represent significant estimates.  
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Our estimation results show evidemce of threshold cointegration for all evaluated price 

pairs. Different transaction costs were determined for each price pairs, which were not 

necessarily proportional to distance between regions, e.g. we observed an inaction band 

(𝜓𝜓2 − 𝜓𝜓1) of 1.049 for a short distance (50km) pair Toledo-Cascavel (Tol.-Cas.), related to 

an average minimum price difference (transaction cost) of  BRL$0.523 to trigger price 

transmission between regions, while for a longer distance (324km) specific price pair, the 

average minimum transaction cost was of BRL$0.210. This observation may be 

explained by the market structure of the regions in question and the interpretation of 

thresholds not only as costs of transport and restrictions to trade, but also to the so called 

sunk costs of arbitrage, as discussed in O’Connell and Wei (2000) and mentioned in Ihle 

and Cramon-Taubadel (2008). Toledo and Cascavel, although being closely located, have 

their own market structure, with cooperatives and contracted producers, which may 

prevent entry from other parties and increase the potential transference cost needed to 

trigger price transmission. 

Overall, results observed for the empirical application are similar to those evidenced in 

our MC study: when considering time-varying thresholds, number of samples falling in 

arbitrage price regimes (outside regimes) were lower, and adjustment to the long-run 

equilibrium was greater (faster) as compared to the fixed threshold scenario, which is 

related to more integrated markets. Given the non-stationarity of freight indices, it is 

unlikely that the assumption of constant thresholds will hold for our empirical case. 

Therefore, we understand that the estimation obtained under flexible threshold 

specification better represents the behavior of price transmission for the evaluated 

markets. Additionally, coefficients obseverd for regimes 1 and 3, and consequently, total 
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adjustment are more reasonable in terms of spatial price transmission theory (favoring 

market integration), given the information on market structure. 

The modelling alternative incorporating freight indices as a source of variation in 

transference cost sounds appealing with regards to spatial price transmission theory. 

Different modelling alternatives able to account for time variation in cointegration when 

data on transference cost is unavailable remains to be further developed.  

 

Conclusion 

 

Our results showed that in the presence of variable transaction costs, specially when such 

costs are more variable, route specific and or nonstationary, a fixed threshold 

specification of a band TVECM may provide misleading results regarding inference of 

transaction costs, speed of adjustment to the long run equilibrium and the frequency of 

violations to the spatial equilibrium. Specifying a variable threshold model improved 

inference and provided unbiased estimates of both adjustment to the long run equilibrium 

and estimation of transaction costs, specially when modelling transmission on presence of 

one threshold, as compared to the case of two thresholds. Further research to extend this 

work will involve the use of the regularized Bayesian estimator to estimate the threshold 

variables, as well as extension of the empirical applications (either evaluating more 

regions and different commodities). Other forms of modelling time variation on the 

absence of transference cost data may also help to improve inference, as it is unlikely that 

a fixed threshold will hold in empirical applications, specially when evaluating large time 

series data.  
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