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Abstract

We consider the fractional cointegrated vector autoregressive (CVAR) model of
Johansen and Nielsen (2012a) and make two distinct contributions. First, in their con-
sistency proof, Johansen and Nielsen (2012a) imposed moment conditions on the errors
that depend on the parameter space, such that when the parameter space is larger,
stronger moment conditions are required. We show that these moment conditions can
be relaxed, and for consistency we require just eight moments regardless of the pa-
rameter space. Second, Johansen and Nielsen (2012a) assumed that the cointegrating
vectors are stationary, and we extend the analysis to include the possibility that the
cointegrating vectors are nonstationary. Both contributions require new analysis and
results for the asymptotic properties of the likelihood function of the fractional CVAR
model, which we provide. Finally, our analysis follows recent research and applies a
parameter space large enough that the usual (non-fractional) CVAR model constitutes
an interior point and hence can be tested against the fractional model using a x2-test.

Keywords: Cointegration, fractional integration, likelihood inference, vector autore-
gressive model.

JEL Classification: C32.

1 Introduction

For a p-dimensional time series, X, the fractional cointegrated vector autoregressive (CVAR)
model of Johansen (2008) and Johansen and Nielsen (2012a), hereafter JN(2012a), is

k
A'X, = af ATPLX + Y DA LX +ey, t=1,...,T, (1)

=1
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Nonstationary cointegration in the fractionally cointegrated VAR model 2

where ¢; is p-dimensional independent and identically distributed with mean zero and co-
variance matrix 2 and A® and L, = 1 — A are the fractional difference and fractional lag
operators, respectively.

The fractional difference is given by, for a generic p-dimensional time series Z;,

AZ = m(~d) 2oy, (2)
n=0

provided the sum is convergent, and the fractional coefficients 7, (u) are defined in terms of

the binomial expansion (1 —z)™" = >"> m,(u)z", ie.,

ut+1)---(u+n-—1)
n!

n(u) = u :
With the definition of the fractional difference operator in (2), Z; is said to be fractional of
order d, denoted Z; € I(d), if AYZ, is fractional of order zero, i.e., if AYZ; € 1(0). The latter
property can be defined in the frequency domain as having spectral density matrix that is
finite and non-zero near the origin or in terms of the linear representation coefficients if the
sum of these is non-zero and finite, see, for example, JN(2012a, p. 2672). An example of a
process that is fractional of order zero is the stationary and invertible ARMA model. Finally,
then, if Z; € I(d) and one or more linear combinations are fractional of a lower order, i.e.,
there exists a p x r matrix § such that 8’7, € I(d — b) with b > 0, then Z, is said to be
(fractionally) cointegrated.

In this paper, we make two distinct contributions to the fractional CVAR literature.
First, in their consistency proof, JN(2012a) imposed moment conditions on the errors that
depend on the parameter space, such that when the parameter space is larger, stronger
moment conditions are required. Specifically, with the lower bound for the parameter b
being denoted by n > 0, the moment conditions in JN(2012a) include the requirement that
Ele]? < oo for some ¢ > 3/n, in addition to F|g|® < oo. That is, when the parameter
space for b allows very small values, corresponding to very weak cointegration that would
be difficult to detect in practice, the errors were required to have more moments. We show
that the moment conditions can be relaxed, and we assume just E|e;|® < oo regardless of the
parameter space. This requires new results on certain product moments of nonstationary
processes, and specifically requires proving tightness of the inverse of such product moments.

Our second contribution is to extend the analysis of JN(2012a) to include the possibility
that the cointegrating vectors are nonstationary. JN(2012a) assumed that the cointegrating
vectors are stationary, i.e., that dy—by < 1/2, and extending the results to allow do—by > 1/2
requires new analysis and results for the asymptotic properties of the likelihood function of
the fractional CVAR model, which we provide. Such nonstationary cointegrating vectors
have been found in many empirical studies; some examples in finance using the fractional
CVAR model are Caporin et al. (2013, Table 2), Barunik and Dvorakova (2015, Table 6),
and Dolatabadi et al. (2016, Tables 5-6).

Finally, following JN(2018), we also allow the parameter space to include the usual CVAR
of Johansen (1996), which is obtained by the restriction d = b = 1, as an interior point in
the parameter space. This, of course, allows testing the usual CVAR model as a restriction

on the fractional CVAR model.
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The remainder of the paper is laid out as follows. In the next section we give the
assumptions and the main results. The results and their proofs rely on a series of bounds
on product moments, which we give in Section 3. These bounds include the important
tightness proof for the inverse of product moments of nonstationary processes, which is given
in Lemma 2. Some concluding remarks are offered in Section 4. The proof of consistency of
the estimators is quite involved, and is given in Section 5.

2 Assumptions and main results

In JN(2012a), asymptotic properties of maximum likelihood estimators and test statistics
were derived for model (1) with the parameter space n < b < d < dy for some d; > 0,
which can be arbitrarily large, and some 7 such that 0 < < 1/2. The parameter space was
extended by Johansen and Nielsen (2018) to

N =N@,m,d) ={d,b:n<b<d+m,d<d; (3)

again for an arbitrarily large d; > 0 and an arbitrarily small i such that 0 < n < 1/2. While
n is exactly the same as in JN(2012a), we have in (3) introduced the new constant n; > 0,
which is zero in JN(2012a). We note that the parameter space A/ explicitly includes the line
segment {d,b: n < d =b < di} in the interior precisely because 1, > 0. Although n > 0
can be arbitrarily small, a smaller 1 implies a stronger moment condition in both JN(2012a)
and JN(2018). This moment condition is relaxed below.

We will assume that the data for ¢ > 1 is generated by model (1). A standard approach
for autoregressive models, which we follow, is to conduct inference using the conditional
likelihood function of X, ..., X7 given initial values {X_,,},>0. That is, we interpret (1)
as a model for X;,t = 1,...,T, given the past, and use the conditional density to build a
conditional likelihood function. Thus, since our entire approach is conditional on the initial
values { X _,, },>0 we consider these non-random, as is standard for (especially nonstationary)
autoregressive models.

However, it is difficult to imagine a situation where {X,}Z_ _ is available, or perhaps
even exists, so we assume that the data is only observed for t = —N +1,..., 7. JN(2016)
argue in favor of the assumption that data was initialized in the finite past using two leading
examples, political opinion poll data and financial volatility data, but we maintain the more
general assumption from JN(2012a), where the data {X_,}°° \ may or may not exist, but
in any case is not observed. However, although the initial values assumption is based on
that of JN(2012a), our notation for initial values is closer to that of JN(2016) (in particular,
our notation N and M, follows the notation in JN(2016), and is basically reversed from the
notation in JN(2012a)). That is, given a sample of size To = T+ N, this is split into NV initial
values, {X_,}=' on which the estimation will be conditional, and 7" sample observations,
{X:}I_,, to which the model is fitted. We summarize this in the following display:

XN C Xine.Xe . Xu ... Xp (4)
—— N———— N —
Data may or may not exist, Data is observed Data is observed
but is not observed (initial values) (estimation)

The inclusion of initial values, i.e. letting N > 1, has the purpose of mitigating the effect
of the unobserved part of the process from time ¢ < —N. Note that the (both observed an
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unobserved) initial values, i.e. {X_,}22,, are not assumed to be generated by the model (1),
but will only be assumed to be bounded, non-random numbers, see Assumption 3 below.
Also note that the statistical and econometric literature has almost universally assumed
N = 0 and, in many cases, also assumed that data did not exist for ¢ < 0 or was equal to
zero for t < 0.

Because we do not observe data prior to time ¢ = 1— N, it is necessary to impose X_,, = 0
for n > N in the calculations, even if these (unobserved) initial values are not in fact zero.
To obtain our results we will need different assumptions on the initial values, and we will
discuss these below. Consequently, for calculation of the likelihood function, we will apply
the truncated fractional difference operator defined by

t—1+N

AEl\[)(t: Z ﬂ-n(_d)Xt—na

n=0

and keep N fixed, but allow for more non-zero initial values in the data generating process
(DGP); see Assumptions 3 and 5. Note that our Ay corresponds to A, in, e.g., JN(2012a),
and we will use the notations Ay and A, synonymously. Efficient calculation of truncated
fractional differences is discussed in Jensen and Nielsen (2014).

We therefore fit the model

k
AV, = af ATPLX, + ) TIAYLX, +e, t=1,....T, (5)
=1

and consider maximum likelihood estimation of the parameters, conditional on only N initial
values, {X_,, 1128 Define the residuals

k
el(N) = ALX, — af AV L X, - Y DAY L, (6)

i=1

where A is the collection of parameters {d,b,«, 3,'1,..., 'y, Q}, which are freely varying;
that is, A is in a product space. The Gaussian log-likelihood function, conditional on N

initial values, {X_,}.2%' is then

log Ly (\) = —% log det(£2) — g Q7T e (Na(N)), (7)

and the maximum likelihood estimator, 5\, is defined as the argmax of (7) with respect to
A such that (d,b) € N. Specifically, for given values of (d,b), the log-likelihood function
log L7(\) can be concentrated with respect to {«, 5,T1,...,Tk, Q} by reduced rank regres-
sion, and the resulting concentrated log-likelihood function is then optimized numerically
with respect to (d,b) over the parameter space N given in (3). Algorithms for optimiz-
ing the likelihood function (7) are discussed in more detail in JN(2012a, Section 3.1) and
implemented in Nielsen and Popiel (2016); see also Section 5.3 below.

Before we impose further conditions on the DGP, we introduce the following notation.
For any n x m matrix A, we define the norm |A| = tr(A’A)Y/? and use the notation A, for

4
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an n X (n —m) matrix of full rank for which A’A, = 0. For symmetric positive definite
matrices A and B we use A > B to denote that A — B is positive definite. We also let

U(y)=(1—yl,—aBy-> Ti(l—y)y' (8)

i=1

denote the usual polynomial from the CVAR model. Then model (1) can be written as
(L) X; = AT W(Ly) Xy = &4, so that

TI(2) = (1 — 2)4"T(1 — (1 — 2)b). 9)

Finally, we let C, denote the fractional unit circle, which is the image of the unit disk
under the mapping y = 1 — (1 — 2)°, see (9) and Johansen (2008, p. 660), and we define
I=1,- Zf:l L.

Assumption 1 For k > 0 and 0 < r < p the process Xy, t = 1,...,T, is generated by
model (1) with the parameter value o, using non-random initial values {X_,}22 .

Assumption 2 The errors ; are i.i.d.(0, ) with Qo > 0 and E|&;[® < co.
Assumption 3 The initial values {X_, };° are uniformly bounded, i.e. sup,,sq | X_,| < co.

Assumption 4 The true parameter value Ao satisfies (dg,bg) € N, dg — by > 0, by # 1/2,
and the identification conditions 'ox # 0 (if k > 0), ag and By are pxr of rank r, a5y # —1,
and det(agy, ToBor) # 0. If r < p, det(Vo(y)) = 0 has p — r unit roots and the remaining
roots are outside Cuaxipo,1y- If k=1 =10 only 0 < dy # 1/2 is assumed.

The conditions in Assumptions 1-3 are identical to those in JN(2012a), while Assump-
tion 4 is weaker than that in JN(2012a) since it does not impose dy — by < 1/2. First,
Assumption 1 implies that the data is only generated by model (1) starting at time ¢ = 1.
Specifically, the theory will be developed for observations X, ..., X7, generated by model
(1) with fixed, bounded initial values, X_,,n > 0, that are not assumed to be generated by
the model. That is, we conduct inference using the conditional likelihood function (7) and
derive properties of estimators and tests using the conditional distribution of Xi,..., X
given X_,,,n >0, as developed by JN(2012a) and JN(2016).

Moreover, for A*X; a > 0, to be well-defined as an infinite sum, see (2), we assume
that the initial values, X_,,n > 0, are uniformly bounded, c.f. Assumption 3. Many of the
intermediate results can be proved under just the boundedness assumption in Assumption 3,
but to get the asymptotic distributions we need to impose the stronger Assumption 5 as dis-
cussed below. Assumption 2 importantly does not assume Gaussian errors for the asymptotic
analysis, but only assumes ¢; is i.i.d. with eight moments, although the moment condition
needs to be strengthened for the asymptotic distribution theory.

The conditions in Assumption 4 guarantee that the lag length is well defined and that
the parameters are identified, see JN(2012a, Section 2.5) and Carlini and Santucci de Mag-
istris (2017), who discuss identification of the parameters when the lag length is not fixed.
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However, Assumption 4 does not impose that the cointegrating relations 5)X; are (asymptot-
ically) stationary, i.e. satisfy 0 < dy — by < 1/2, as in JN(2012a) and JN(2018), but instead
only imposes dy — by > 0, thus allowing both stationary and nonstationary cointegrating
relations, and also allowing the important special case of dy = by(= 1).

We are now ready to state our main results in the following two theorems. The cor-
responding theorems in both JN(2012a) and JN(2018) required some strengthening of the
moment assumptions, and these are avoided here.

Theorem 1 Let Assumptions 1-4 hold and let the parameter space N'(n,m,dy) be given in
(3), where n and n; are chosen such that 0 < n < 1/2 and 0 < my < 1/4. Then, with
probability converging to one, {(i, b,a,B3,T,... I, Q} exists uniquely for (d,b) € N, and is
consistent.

The proof of Theorem 1 is given in Section 5. As discussed above, we note that Theorem 1
holds without any additional moment conditions beyond that in Assumption 2 and that it
applies both when the cointegrating errors are stationary or nonstationary. In comparison,
the moment conditions required in JN(2012a) and JN(2018) are summarized in Table 1 of
JN(2018) and are much more involved than the simple condition in Assumption 2. For
example, for consistency in the case with by > 1/2, they require the additional moment
condition Ele;|? < oo for some ¢ > 1/ min{n/3, (1/2 — dy + by)/2,by — 1/2}.

The next theorem presents the asymptotic distributions of the estimators. For this result
we will need to strengthen the condition in Assumption 3 on the initial values of the process
and impose the following assumption, which was also made in JN(2012a) and JN(2018). The
stochastic terms are not influenced by Assumption 5.

Assumption 5 Fither of the following conditions hold:

(i) Sup,sq | X_n| < 00 and the sum Y oo\ n= 2| X_,| is finite,

(ii) sup,so |X_n| <00 and X_,, =0 for all n > My for some My > 0.

The condition in Assumption 5(i) is that the (non-random) initial values satisfy the
summability condition Y °° n71/2|X_,| < co. This allows the initial values to be non-zero
back to the infinite past, but the summability condition implies that initial values do not
influence the asymptotic distributions. For example, Assumption 5(i) would be satisfied if
|X_,| <en V%< for all n > 1 and a fixed € > 0.

Alternatively, under Assumption 5(ii), the initial values are assumed to be zero before
some time in the past; that is, X_, = 0 for all n > M,, where M, > 0 is fixed.! Assump-
tion 5(ii) is illustrated in the following display, see also (4):

Xy o X Xov o XiwXo , Xi Xp (10)
w_/ N~ ~~ ~~
Data does not exist Data exists Data is observed Data is observed
but is not observed (initial values) (estimation)

1JN(2018) argue that My could be allowed to diverge without altering the results as long as My /v/T — 0,
as in Section 4.2 of JN(2012a). To avoid further notational complexity we do not consider this possibility.
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Note that M, is a feature of the data generating process and is not related to N, which is
chosen in the analysis of the data. The condition in Assumption 5(ii) was also imposed by
JN(2016), and they provide some motivation for this assumption based on political polling
data and financial volatility data.

Theorem 2 Let Assumptions 1-5 hold with (dy,by) € int(N') and let the parameter space
N(n,n1,dy) be given in (3), where n and 1y are chosen such that 0 <n <1/2 and 0 < n, <
1/4. Then the following hold.

(i) If by < 1/2 the distribution of {d,b,&, 3,11, ..., T} is asymptotically normal.

(i) If by > 1/2 we assume, in addition, that E|5t|q < oo for some ¢ > (bg — 1/2)~'. Then
the distribution of {d b a, Ty, .. I‘k} 15 asymptotically normal and the distribution of
B is asymptotically mized Gausszan, and the two are independent.

Proof of Theorem 2. This follows from parts (i) and (ii) of Theorem 10 in JN(2012a).
Specifically, the proof of Theorem 10 in JN(2012a) relies on the usual Taylor expansion of
the score function around the true values, and this applies to the current setting as well
without any changes. m

Note that the moment condition ¢ > (by — 1/2)~! in part (ii) of Theorem 2 is used
in the proof of Theorem 10 in JN(2012a) to apply the functional CLT for processes that
are fractional of order by and obtain convergence to fractional Brownian motion, see also
JN(2012b). This fractional Brownian motion appears in the mixed Gaussian asymptotic
distribution of B .

3 Bounds on product moments

We analyze product moments of processes that are either asymptotically stationary, near
critical, or nonstationary, and we first define the corresponding fractional indices and the
relevant class of processes. We use Definition A.1 from JN(2012a):

Definition 1 We define S(Ky, K, Ry, Ku) as the set where the three fractional indices w, v,
and u are in the intervals

[_w0> _1/2 - K’w]v [_1/2 — KBy _1/2 +Ev]7 [_1/2 + /’iuauo]a (11)
respectively, and where we assume 0 <R, < K, and 0 < K, < min(by/3, Ky /2, Kkw/2,1/6).

In the following we shall in fact always choose x, = Ky, and K, = k,, where the last
choice requires an argument, which we give when the results on the asymptotic behaviour of
moments JN(2012a) are applied.

Definition 2 We define the class Z, as the set of multivariate linear stationary processes
Zy, which can be represented as

Zy =g + AP Z & etn,
n=0

where b > 0 and ¢; is i.1.d.(0,Q2) and the coefficient matrices satzsfy Yoo lér] < oo, We
also define the corresponding truncated process Z;7 = &g + Ab Z 05*5,5 n-
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Definition 2 is a fractional version of the usual Beveridge-Nelson decomposition, where
Yo obncin = O obn)er + A (&kery € Z1. The main representation theorem in
JN(2012a) shows that the solution of equation (1) is given in terms of processes in the
classes Zj, or Z;7. Thus for Z, € Z,,b > 0, and indices (w,v,u) € S(Ku, Ky Ko, k) a8 in
Definition 1, A% Zt+ is nonstationary, A% Z;" is asymptotically stationary, and AY Z;" is close
to a critical process of the form EA;l/zet.

We define product moments of fractional differences of processes in the class Z,, see
Definition 2. For m = m; + my we define the product moments

T
D™ Mr(a1,az) = T™'> (D™ A% Z3}) (D™ A Z5 ), (12)
t=1
LAYz 1T Avzy
Mr((a1,a ai, a as as )
T((l 2)(12 Z[A Z;;}|:A+Z2+t:|

Mry(ay, aslas) = Mr(ay, az) — Mr(ar, as) My (as, az) ™ Mr(as, as),

where ay, as, as can be u, w, and v in the intervals in Definition 1.

In the following, we will consider Mr(ay,ay) as processes in the space of continuous func-
tions, typically CP(K), indexed by (ay, as) € K, where K is a compact set in R?; see Billingsley
(1968) or Kallenberg (2001) for the general theory. Let Nr be a normalizing sequence. We de-
fine Mr(ay,az) = Op(Nr) to mean that Ni.' My (aq, az) is tight as a process in CP(K) indexed
by (a1, as), and hence sup,, q,)ex |N; ' My (ay,as)| is tight. Similarly My (a1, az) = op(Nr)
means that Ni'Mz(ai,ay) is tight as a process in CP(K) indexed by (aj,as) and that
SUD (4, ap)ex [Nz Mr(ay, )] L 0. Finally, = is used for convergence in distribution as
a process on a function space (CP or DP). For example, N.' My(ay, ay) = M (ay, az) means
that Ny ' Mr (a1, a;) converges in distribution as a process in CP(K) to the limit M (ay, as).

When the product moments include nonstationary processes, these need further nor-
malization. Therefore, we introduce the notation M;*(wy,wq) = T T2 M (wy, ws) and
M (wy,a) = T2 Mp(wy, a), where a can be u or v, to indicate that the nonstationary
processes have been normalized by T%i*1/2,

For the asymptotic analysis we sometimes apply the result that, when w < —1/2 and
Elet|? < 0o for some ¢ > max{2, —1/(w + 1/2)}, then for Z; € Z,, b > 0, we have

Tw“/QA“’Z[;u = (W_yy1(u) = T (—w)™? /0 (u — s)""H(dW) on D?([0,1]), (13)
where T'(+) is the gamma function and W denotes p-dimensional Brownian motion (BM)
generated by &;. The process W_,,_; is the corresponding fractional Brownian motion (fBM)
of type II. The proof of (13) is given in JN(2010, Lemma D.2) for Z; € Z,,b > 0, see also
Taqqu (1975) for Z; = ;. Note that the moment condition ¢ > max{2,1/(—w —1/2)} is in
fact necessary; see JN(2012b).

The next lemma is Lemma A.9 of JN(2012a) and is reproduced here for ease of reference,
although the results are presented in a different order. It contains the key results on the
asymptotic behavior of product moments of processes that can be stationary, nonstationary,
or critical, in the sense of the intervals in Definition 1.

8



Nonstationary cointegration in the fractionally cointegrated VAR model 9

Lemma 1 (JN(2012a) Lemma A.9) Let Z; = &g + A" D (&hern € Zpyyi = 1,2,
define Mr(ay,az) in (12), and assume that E|e;|® < co. Then it holds jointly that:

(1) Uniformly for (w;,v,u;) € S(Ky, Ky, Ry, Ku), © = 1,2,7 = 1,2,

D™ My (uy, ug) = D™ E(A™ Z1,) (A" Zy, ), (14)
D™ M (w1, we) = Op(1), (15)
DmM*( 1) = Op((1 + log T)>Hmp—minruruw)y, (16)
Mi(w,v) = Op((1 +log T)*T*), (17)

Mr(v,u) = Op(1). (18)

(11) If we choose N =T* with 0 < o < 1/4, then for —=1/2—k, <v; < =1/24F&,, i = 1,2,
we find
1 _ N-2
2K,
where Ry = op(1) uniformly for |v; +1/2] < k,.
(11i) Assume, in addition, that E|e;|? < oo for some q > Kk,
w; < —1/2 = Ky, 1 =1,2,

Mr((v1,v2), (v1,v2)) > ¢ €1, €)' Qlé1, &) + R, (19)

L. Then, uniformly for —wy <

1
M;‘* (U)l, w?) = 51/ qun*l(S)W*wal(S),deé' (20)
0

We note that (19) is proved in JN(2012a) fork, < k,, but the inequality

1 M ) ) ) 2 i M M ) ) 21
‘Wflﬂ/l;llgv T((Ul v2), (V1 Uz)) |vi+fln/121‘1§ﬁv T((Ul U2) (Ul 02)) ( )

shows that the result also holds for &, = k,.

The main problem in our model, which was not a problem in JN(2012a) because of their
assumption that dy — by < 1/2, is that the moment condition required in (20) becomes
very strong. Indeed, we will require this result for k,, arbitrarily small, and so the moment
condition in (20) would require existence of all moments of ¢;. For example, we will need
(20) with arbitrarily small x,, to conclude that

]\4}*(@0,11))_1 = 0Op(1) and M}*(wl,wﬂwg)_l = 0p(1). (22)

Thus, as an alternative to (20), we next prove the result (22) without the additional assump-
tion that E|e;|? < oo for some q > r,'. That is, we apply only the simpler assumption that
Eley|® < oc.

3.1 Obtaining the bound (22) without additional moment conditions

The important realization here is that when w < —1/2 is arbitrarily close to —1/2, the
moment condition ¢ > —1/(w 4 1/2) required to obtain convergence of T¥T1/2A%¢; to

fractional Brownian motion (see JN(2012b)) requires existence of all moments of ;. The
basic idea in proving (22) is to derive a lower bound for Mj*(wq, ws) in which the relevant
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processes have fractional index that is sufficiently far away from the critical point —1/2 that
the moment condition is implied by the existence of ¢ = 8 moments.?
The next lemma provides the required result.

Lemma 2 Let Z; = &gy + AP S EEErn € Zy,, where & is m X p and g, € RP with

n=0 Sin

Ele® < 0o. Then, as T — oo, it holds uniformly for —wy < w; < —1/2 — Ky, i = 1,2, that

2m

det(My" (wr, 1)) > (T + O(T ™)) det(My (wy = 1wy — 1), (23)
det(M7* ((wq, ws), (wy, ws)) > (ZQ_: +O(T™ ) det( M ((wy — 1, wy — 1), (wy — 1,wq — 1)),

(24)
where the O(T™') terms do not depend on w;.

Proof. Define the T x m matrix Z = [Z,...,Zy] and the T x T fractional integration
matrix

1 0 - 0
@(UJ): 7T1(’LU) 1

0

mr—1(w) - m(w) 1

such that [AYZ;, ..., AS’;ZT}I = ®(—w)Z and M (w,w) = T** Z'®(—w)'®(—w)Z. We note
the following properties of ®(w):

det(®(w)) = 1, ®(w;)P(wy) = ®(w; + wy), and (w) ' = &(—w). (25)

The first property in (25) is trivial, the second follows because AY'AY?Z, = AV ™27, (see
Lemma A.4 in JN(2016)), and the third property is a consequence of the second property
using ¢(0) = Ir.
Proof of (23): With this notation we find, using X = ®(1 — w;)Z and the properties in
(25), that
O(—w)Z =0(—1)P(1 —uwy)Z =P(—1)X

and

det(M3* (wq,w1)) TP det(Z'0(—wn) P(—wy) Z)
det(Mz*(w; — 1,w; — 1)) T2wi=Dm det(Z'®(1 — w;)'®(1 — w)2)
det(X'®(—1)®(—1)X
det(X'X)
> T2 A (B(=1)'®(-1)), (26)

min

— T2m

2Hualde and Robinson (2011, eqn. (2.36), p. 3163) faced a similar problem for a univariate process. By
the Cauchy-Schwarz inequality they reduced the problem to showing that, for suitable wy < we < —1/2, the
random variable M = inf,,, <u<uw, W—(1)? is positive almost surely. This, however, cannot be correct. The
two-dimensional random variable (W_,, (1), W_,,,(1)) has a nonsingular zero-mean Gaussian distribution
and the set A = {W_,, (1) <0< W_,, (1)} satisfies P(A4) > 0. Because W_,,(1) is continuous in w for w <
—1/2, there exists on A a w* € [wy, we] for which W_,,«(1) = M = 0, and therefore P(M = 0) > P(A) > 0.

10
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where the inequality follows from, e.g., Horn and Johnson (2013, p. 258). From Rutherford
(1948), see also Tanaka (1996, eqn. (1.4)), we find the eigenvalues

2 —1
B(—1)B(—1)) = 4sin® | = 1T
N (-1 0(-1) = asin? (L) e
such that, in particular,
1 2
Amin (B(—1)'®(—1)) = 4sin’ (ng - 1) = %T‘Z +O0(T7). (27)

The bound (23) follows by combining (26) and (27). .
Proof of (24): Define Z; = [Z1i,..., Zri) for i = 1,2 and the block matrices Z =
block diag{Z1, Z2}, ®(wy,ws) = block diag{®(w,), P(wq)}. Then, as in (26), we find

det( M7 (w1, wa), (wi, wy)))
det(M7*((w1 — L, wa — 1), (wy — 1, wy — 1)))
det(Z’é(—wl, —wg),&)(—wl, —UJQ)Z)

=T =% = = = T4m)‘?nni?n((i)(_17 _1)>7
det(Z’@(l — Wy, 1— w2>/q)(1 — Wy, 1-— U}Q)Z)

and the result follows by (27). =
The lower bound obtained in Lemma 2 is used in the next lemma to provide a justification
for the tightness of the inverse in (22).

Lemma 3 Let Z;; = &0 + A Yo o &tEten € 2y, where &1 = 1,2, is m X p, [&],&))]
has full rank, and &, € RP with El|g® < oo. Then, as T — oo, it holds uniformly for
—wy < w; < =1/2 — Ky, i =1,2, that

M (wi,wi) ™" = Op(1), (28)
My (w, wi fws) ™" = Op(1). (29)
Proof. Proof of (28): We want to show that
P( inf det(M7*(wy,wy)) = 0) — 0.

—wo<w1; <—1/2—Ky
We apply the bound (23) in Lemma 2, so that we have to analyze det(M;*(w; — 1, w; — 1)).
Because wy — 1 < —3/2 — Ky, the additional moment condition for weak convergence in (13)
and (20) becomes ¢ > (1 + x,,)~" and is not binding for M}*(w; — 1,w; — 1) since ¢ = 8
moments are assumed. Thus, we can apply Lemma 1(iii) to obtain

1
imf det(MP(wi— L —1) 3 it det(&, / W ()W, (1) i),
0

—wo<w; <—1/2—Ky —wo<w; <—1/2—Ky
(30)

where the right-hand side is positive almost surely. To see this, assume that there were a
point w* € [—wg, —1/2 — K,,], for which

1
det(fl/ W (W)W _ e (u) duéy) = 0,
0

11
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which implies that for some non-zero vector A € R?,

1
/ NW e (W)W (w) Adu = 0,
0

and hence N'W_,«(u) = 0 for almost all u € [0,1]. Using partial integration and the recur-
rence relation for the Gamma function,

1 h / — g —w*—1 s
o [ AW s

so that N'W_,«(u) = 0 implies that the Brownian path N'W (u) is zero (for almost all u),
which clearly has probability zero.
It follows that, because 0 is a continuity point for the limit distribution,

P ( inf det( M2 (wy, w,)) = o)

—wo<wi1<—1/2—Ky

)\/W—w* (U) =

ﬂ.Qm

< o : Hk o .

<P (( o +0(T™) —wogwllgfl/z—nw det(M7*(wy — Lw; — 1)) = )
2m 1

— P <4—m —w0§w112£1/2—/£w det(&/0 Wy (W)W, (w) duly) = )

Proof of (29): For notational simplicity we use My = M3*((wy —1,we—1), (w1 —1,wy—1))
in this proof. From (24) we have, for T sufficiently large,
det (M7 ((wy, ws), (wy, we))) - det(Mr)
det( M+ (wq, w2)) ~ det(MyF(wa, we))

det (M7 (wy, wi|ws)) =

for some finite constant ¢ > 0.
By (15) of Lemma 1 we find that sup_,,  <,,<_1/2-, det(Mz*(wa, ws)) = Op(1), so that

P inf det(M7" = <P inf det(Mrp) =0). 1
<w0Sw11£1/21€w ¢ ( T (w17w1|w2)) 0) - <w0Swi1£1/2Hw ¢ ( T) O> <3 )
Again the additional moment condition for weak convergence in (13) and (20) is not binding
for My because ¢ = 8 is assumed, so by (20) of Lemma 1 we find

1
. D . /
—wogwgflm—mw det(Mr) = —wogw,-lgi/z—aw det(/0 X(u) X (u) du),
where X (u) = diag{&, {&»} diag{W_,,, (v), W_,,, (u)} such that the right-hand side is positive
almost surely. Hence,

P ( inf det(Mr) = 0) P ( inf det( / X (u du) = 0) =0,

—wo<w; <—1/2— Ky —wo<w; <—1/2— Ky
(32)
and the result follows by (31) and (32). =
For the proof of existence and consistency of the MLE, we need the product moments
that enter the likelihood function ¢ ,(¢)), which are analyzed in the following corollary. This
corollary is identical to Corollary A.10 in JN(2012a), and the proof is given there, with

the exception that we apply our Lemma 2 to avoid the additional moment condition in
Lemma 1(iii).
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Corollary 1 (JN(2012a) Corollary A.10) Let the assumptions of Lemma 1 be satisfied.
Then the following hold uniformly in (w,v,u) € S(Kw, Ky, kv, Ku), see (11) of Definition 1:

(i) It holds that

M;’*(wh w2"l,U3, U) = M’;*(wlu U}2|w3) + OP(1)7 (33>
My (uy, ug|w, uz) = Var(A"™ Zyy, A" Zo | A" Z3;), (34)
MT(U,U1|U], u2) - OP(l) (35)

(1) If N =T with 0 < o < 1/4, then

1 — N2

MT((Ula U2>» (U17U2)|w7u) 2 C QE

(61,€2)" (&1, &) + R, (36)
where Ry = Op(1) uniformly for |v; +1/2] < k,.

Note that the result (36) is valid also for k, = %, see (21). We apply the results of
Lemmas 1 and 2 and Corollary 1 in the analysis of ¢7,(¢) and ¢r,(¢) to show that they
converge uniformly in 1), which is the key ingredient in the proof of consistency of the MLE.
The results for m = 0, 1,2 in Lemmas 1 and 2 are used to show that the information matrix
is tight in a neighborhood of the true value.

4 Conclusions and discussion

In this paper we have analyzed the fractional cointegrated VAR model of Johansen and
Nielsen (2012a) and made two distinct contributions. First, in their consistency proof, Jo-
hansen and Nielsen (2012a) imposed moment conditions on the errors that depend on the
parameter space, such that when the parameter space is larger, stronger moment conditions
are required. We have shown that these moment conditions can be relaxed, and for con-
sistency we require just eight moments regardless of the parameter space. In light of the
complicated moment conditions of Johansen and Nielsen (2012a, 2018) summarized in Table
1 of Johansen and Nielsen (2018), our contribution provides a substantial simplification of
the assumptions.

Second, Johansen and Nielsen (2012a) assumed that the cointegrating vectors are sta-
tionary. However, nonstationary cointegrating relations have been found in much empirical
work; see, e.g., the references cited in the introduction. In this paper, we have therefore ex-
tended the analysis to allow the cointegrating vectors in the fractionally cointegrated VAR
model to also be nonstationary.

Finally, our analysis has followed recent research in Johansen and Nielsen (2018) and
applied a parameter space large enough that the usual (non-fractional) cointegrated VAR
model constitutes an interior point and hence can be tested against the fractional model
using a x2-test.

The main technical contribution that has allowed these extensions of the theory is the
proof of a strictly positive lower bound for product moments of nonstationary processes,
assuming only a relatively weak moment condition. This bound is proved in Lemmas 2
and 3.

13
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5 Proof of Theorem 1

Theorem 4 of JN(2012a) gives, under their assumptions, the properties of the likelihood
function. These are used in Theorem 5(i) of JN(2012a) to show that the maximum likelihood
estimator exists uniquely with large probability for large T', i.e. to prove the result in our
Theorem 1 for the smaller parameter set, with 7; = 0 in (3). Thus, if the results of Theorem 4
of JN(2012a) can be established under our assumptions, which are weaker than those in
JN(2012a) as discussed above, then we can apply the proof of Theorem 5(i) of JN(2012a)
with minor changes to prove our Theorem 1 for the larger parameter set with n; > 0 in (3).

The strategy of the proof is as follows. First, we discuss the solution of the autoregressive
equations, i.e., the representation theory. Then we show that the contribution of the initial
values {X_,}n>0 to the likelihood function is negligible, such that we only need to analyze
the stochastic terms. Next, we analyze the likelihood function and discuss the convergence
and divergence of the likelihood on different parts of the parameter space. This establishes
the notation necessary to present a version of Theorem 4 of JN(2012a), stated as Theorem 3,
which we subsequently prove.

5.1 Solution of the equations

The solution, X;,t > 1, of the equations (1) for the DGP is found in Theorem 2 of JN(2012a)
under Assumptions 1-4 as

Xy = CoAT%e, + AT DY 4 g, for dy > 1/2, (37)
X, = CoA g, 4 A~y for dy < 1/2. (38)

Here, Y; = Y 07 Ton€t—n is a stationary process and Y;" = Z;_:lo Ton€t—n, for some matrix
coeflicients 7y,, depending only on the true values and satisfying » >, [70,| < co. The matrix
Cy is given by

Co = Bor(ap Tofor) " agy- (39)

Moreover, by a fractional version of the Beveridge-Nelson decomposition, see eqn. (12) of
JN(2012a), the stationary process Y; can be written as Y; = Cpe;+Ab0 Y o o TonEt—n for some
matrix coefficients 7, depending only on the true values and satisfying » > |7g,] < oo,
where Cj = > "7 7o, satisfies

B(l) 8040 =—1,. (40)

We let I{-} denote the indicator function and define

t—1 [e'¢)
U (L)X, =I{t>1}) WX, ; and O_(L)X, = Y ¥, X, ;,
=0 =t

see (8). Then the term pg; is
por = —Voy (L) Wo_ (L)X,

which expresses fio; as function of the fixed initial values {X_,}7%,. It is seen from (6) and
(37), say, that the likelihood function contains terms of the form A% X, from which there
are both stochastic and deterministic contributions. The latter arise because the likelihood

14
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is analyzed conditional on the initial values. Therefore, the terms in the likelihood function
that are generated by the initial values are considered deterministic in the analysis of the
model.

We define X; = X;I{1 — N <t < 0} as the initial values used in the calculations, see (6)
and (7). We also define the operator A_ such that, for any Z; and any a > 0 it holds that
A Zy = A4 7, + A Z,. When dy > 1/2, the deterministic terms in the likelihood are simple
functions of

(AT? — A1) X, + (AL — AL pror, 1= -1,
Dy(d,b) = { (AT — AT X, 4 (AT — AT gy, 0= 0, k=1, (41)
Aiﬂvat + Ai+kb/L0t, i = /{,
see eqn. (14) in JN(2018). When dy < 1/2, we use a different representation of the solution
and hence leave out the terms involving pip; in (41), see Theorem 2 in JN(2012a).

5.2 Negligibility of initial values

We now establish that the deterministic terms generated by the initial values are uniformly
negligible. This follows from results in JN(2018), which generalizes JN(2012a) to apply to
the larger parameter space N. In particular, we will apply the results in Lemma 1(i) of
JN(2018) to conclude that deterministic terms from initial values do not influence the limit
behavior of product moments, and hence do not influence the limit behavior of the likelihood
function. For ease of reference, we quote Lemma 1(i) of JN(2018), where the terms Dy (d, b)
are the initial values contributions to the likelihood function given in (41) and D™ denotes
m’th order derivatives with respect to d and/or b.

Lemma 4 (JN(2018) Lemma 1(i)) Let Assumption 3 be satisfied. Choose ki and m
such that 0 < m; < k1 < 1/4 and define the intervals S; = [dy — 1/2 — k1, 00[ and S_ =
[—m1,do — 1/2 — k1]. Then the functions D™D (d,b) are continuous in (d,b) € N(n,n1,d;)
and satisfy

sup |D™D;(d,b)| — 0 ast — oo, (42)
d+ibeS,
sup max |D™TE D260 D (db)| — 0 as T — oo. (43)

d+ibes_ 1<t<T

We first note that the result in Lemma 4(i) does not depend on the assumption that
do — by < 1/2, which was made in both JN(2012a) and JN(2018) to deal with the stochastic
terms.

However, the results in eqns. (42) and (43) depend on the parameter x; > 0, which
in JN(2018) is the parameter that separates the nonstationary processes (with fractional
index < —1/2 — k) from the stationary and near-critical processes (with fractional index
> —1/2 — k). This is important because the initial values contribution is normalized by
TwH1/2 = Td+ib=do+1/2 i the nonstationary case in (43) and not in the stationary and near-
critical case in (42). It is further relevant because, as we will see below, in our case we will
need to choose our version of x; arbitrarily small, so because Lemma 4 requires setting s
such that 11 < k1 < 1/4, this suggests that we would need to let n; be arbitrarily small. To
avoid this, additional arguments are needed, which we now provide.

15
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In the present notation, the nonstationary processes have fractional index w < —1/2 —
Kw, and the stationary and near-critical processes have fractional index > —1/2 — K, see
Definition 1. Let 1, € (0,1/4) be fixed and choose any x; such that n; < k; < 1/4. Thus,
in the present notation, x, is the parameter that separates the nonstationary processes
from the stationary and near-critical processes, while k; will be used for the application of
Lemma 4. Because x,, > 0 will be chosen arbitrarily small in the following subsections, we
assume without loss of generality that x,, < ki.

For the stationary and near-critical processes, which have fractional index > —1/2—x,, >
—1/2 — Ky, we can apply (42) directly to conclude that the initial values contribution is
uniformly negligible. Similarly, for the (normalized) nonstationary processes with fractional
index < —1/2—ky, we can apply (43) to conclude that the contribution from the initial values
is uniformly negligible. We are then left with the (normalized) nonstationary processes with
fractional index in the interval [—1/2 — k1, —1/2— K], for some arbitrarily small x,, > 0. For
this interval, we can apply the non-normalized result in (42) together with the evaluation
Twtl/2 < Thrw < 1, which shows that the normalized initial values contribution is smaller
than the non-normalized contribution.

Thus, with these additional arguments, it follows from Lemma 4, that the initial values
do not influence the limit behavior of product moments, and hence do not influence the limit
behavior of the likelihood function. In the subsequent analysis of the likelihood function, we
can therefore assume that the deterministic terms generated by the initial values are zero.

5.3 Convergence of the profile likelihood function

Because the deterministic terms generated by the initial values can be assumed to be zero,
we can rewrite ;(\) in (6), and hence the likelihood (7), as

k—1
er(A) = AiﬂcbXt _ aﬁ’(Ai‘b _ Ai)Xt _ \I/i+1(Ai+z’b _ Ai+kb)Xt
=0
k—1
= X —af' Xy — Z Wi 1 X, (44)
i=0

where

Xy = (AT — ATRYX, i=0,...,k—1,

th = Ai+kat’ and X—lt = (Alj__b — At_it,.)Xt
Moreover, the process X; can be expressed in terms of the stationary process Coe; + APY,
see (37) and (38), so that Xj; is expressed in terms of the differences Aiﬂb_do(C’oet + AbY).

We define §,, as the fractional index for ), X,,; and ¢, as the fractional index for 5{X,,
and find for m,n = —1,...,k that

S = d +mb—dy and ¢,, = d +nb — dg + by. (45)

For notational reasons we define ¢_5 = 0_5 = —00 and ¢p41 = 041 = 0o. Then [y, X, €
I(—=0p) and G\ X € I(—n)-

16
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For fixed 1, the conditional MLE is found from (7) and (44) by reduced rank regression
of X, on X_;, corrected for the regressors X, ..., X;_1;. We define the corresponding
residuals

ROt(¢) = (th|X0t7 S 7Xk—1,t> and th(@/)) = (X—1t|XOta - 7Xk—1,t)7

and their sums of squares

T

Sii(¥) = Ty " Ru(¥)Ru() for i, j = 0, 1.

t=1

Then we solve the generalized eigenvalue problem

det(wS11 () — S10(¥)Soo () " Sor(¢)) = 0, (46)

which gives eigenvalues 1 > @y (¢)) > --- > @,(¢)) > 0 that all depend on . The maximized
likelihood (scaled by —2T~!), for fixed ¢, is given by

U (¥) = log det(Son()) + > log(1 — &i(v)) = log det(Q(v))), (47)

see Johansen (1996) for the details in the 7(1) model or JN(2012a) and Nielsen and Popiel
(2016) for details in the fractional CVAR. Finally, the MLE of 4 is found as the argmin of
the profile likelihood in (47).

In the full rank case with r = p, the profile likelihood ¢r,(¢) is found by regression of
Xt on {Xit}f:_il, ie.,

Urp(¢) = log det(SSRr(v)) = log det(T™ > Ri(¥) Ry(v)), (48)

where R;(1)) = (Xp|{Xs}F=",) denotes the regression residual. Equivalently, this is found
by regressing (3, Xy and B X on the regressors ), Xt and B\ X for =1 <n,m < k—1,
where these can be either asymptotically stationary, near critical or nonstationary. We define
Faat (1) as the set of stationary regressors for a given v, and if Aff“kat is stationary, we let
Q(¢)) be the variance of AT X, conditional on the variables in Fy (). That is,

Fatar () = {ATB0 Xyt 6y > —1/2,m < kYU {AD™BI Xy ¢y > —1/2,n <k},  (49)
Q) = VGT(AiJrkat’fstatW)) if Afrkat is stationary. (50)

We next define the probability limit, £,(¢), of the profile likelihood function ¢7,(¢) in
(48). The limit of log det(SSRr(7)) is finite if Xy, is (asymptotically) stationary and infinite
if X}, is near critical or nonstationary, see Theorem 3. We therefore define the subsets of NV,

Naiv(k) = N{d,b:d+kb—dy < —1/2+ Kk}, k >0,

Neony(kK) = NN{d,b:d+kb—dy > —1/24+ K}, k>0,
Noowr(0) = NOd, b d + kb — do > —1/2},
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and note that N = Ny (k) U Neony (k) for all £ > 0. The sets Ny, (k) decrease as £ — 0 to
the set Ny (0), where Xy, is nonstationary and log det(SSRr(¢))) diverges. Similarly, the
sets Neony (k) increase as k — 0 to Neony(0), where Xy, is stationary and log det(SSRr(v))
converges in probability uniformly in ¢). We therefore define the limit likelihood function,
gp(w)ﬂ as

/ (w) — { o0 1f¢ € Ndiv(())a
Y log det(€2(1)))  if 1 € Neonv(0)-

We are now ready to state and prove a version of Theorem 4 of JN(2012a). We show that
for all A > 0 and all v > 0 there exists a Ky > 0 and T > 0 so that with probability larger
than 1 — ~, the profile likelihood 7, (1) is uniformly larger than A on Ny (ko) for T' > Tp.
Thus, the minimum of ¢7,(¢)) cannot be attained on Ny (ko). On the rest of N, however,
we show that ¢7,(¢)) converges uniformly in probability as 7" — oo to the deterministic
limit ¢,(¢) which has a strict minimum, log det(€2), at 1. We prove this by showing weak
convergence, on a compact set, of the likelihood function ¢7,(¢) as a continuous process in
the parameters.

(51)

Theorem 3 Let Assumptions 1-4 hold, so that in particular E|e;|® < oo and dy > by. Then
the following hold:

(i) The function €,() has a strict minimum at 1 = o, that is
Cy() > €y(1ho) = log det(S) for v € N, (52)
and equality holds if and only if 1 = 1.

(ii) Forr=0,...,p it holds that
Cr(100) 2 log det(€). (53)

(11i) The likelihood function for H, satisfies that, for any A > 0 and v > 0, there exists a
ko > 0 and a Ty > 0 such that

P( inf  lr,(¢) > A)>1—7 for all T > Ty. (54)
HEN gin(K0)
It also holds that
lrp() = £,(1) on C(Neonu(ko)) as T — oo. (55)

The remainder of this section is devoted to the proof of Theorem 3, and is divided into
several subsections.

5.4 Proof of Theorem 3(i)

The proof of Theorem 3(i), i.e. of (52), in Appendix B.1 of JN(2012a) applies without change
under our assumptions. In the next two subsections we give the proofs of Theorem 3(ii) and
(iii), respectively.
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5.5 Proof of Theorem 3(ii)

The proof of this result in Appendix B.2 of JN(2012a) applies (20) and the moment condition
Elei|? < oo for some g > (bg — 1/2)~!. With our new Lemma 3, we now give the proof
without this condition and to the larger parameter set in (3). Throughout this proof all
moment matrices (5;; etc.) are evaluated at the true value 1 = ).

Case 1: by > 1/2. For ¢ = 1y, the regressand [, X_1, is nonstationary with index
6%, = —bp < —1/2 and B{X 1, = B}Y; is stationary with index ¢°, = 0. Pre- and post-
multiplying by the matrix [TV/27% 3, 3]’ and its transposed in (46) we get

85,511 Bos %5’11501 {Béﬁi*o} - { 5515 D
det I Qo / - / S / =0.
¢ (w { 50511@0L 5051150 50510 00 50810

Here, T1=2% 30 S115, and its inverse are Op(1) by (15) of Lemma 1 and Lemma 3 (for
fixed ¢ = 1)g), while 3), S5, 80 and B}, Si, are Op((1 + log T)?T~min(1/2bo=1/2)) 1y (16) of
Lemma 1. Furthermore, at the true value v = 1y, the following limits exist by the law of
large numbers,

(56511607 ﬁ(l]slm SOO) 3} (Zﬁoﬁoa E[3007 200)' (56)

Thus, the solutions of the eigenvalue problem (46) are asymptotically equivalent to those
of the eigenvalue problem

det ({ w571 BoL 0 ])
0 wpB(S1150 — 565105&]150150

= det(wfy, S11PoL) det(wpfySiifo — 565105&)150150) =0.
This equation has p — r zero roots and r positive roots, where the latter are the roots of the

equation det(wfS1180 — B5S10S50 So1fo) = 0. Moreover, by (56), these roots converge to
the solutions of the equation

det(w25050 - 250026012050) = 07

which we denote w?, ... wY. Therefore, see (47),

U1, (o) = log det(Spo) —|—Z log(1—a&) 5 log det (o) —|—Z log(1—w?) = logdet(€p). (57)

i=1 i=1

Case 2: by < 1/2. In this case 8, X_1, is stationary with index 6°, = —by > —1/2. The

profile likelihood is still given by (47), but (56) becomes S;; RN YY) = E(Sy), say, and the
limit (57) still holds.

5.6 Proof of Theorem 3(iii)

To analyze the properties of the likelihood function, the parameter space is partitioned as
in Figure 1, using two sets of lines §,, = —1/2 and ¢,, = —1/2, where n,m = —1,... k.
These lines may intersect, and close to these intersection points there are two nearly critical
processes. Specifically, we partition the parameter space into “interiors”, “critical points”,
and “boundaries”, which depend on two parameters 0 < kK < ka.
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Figure 1: Illustration of parameter space with k =1
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(a) The parameter space N is bounded by the (b) An intersection point: For k > 1 the set

bold lines b =1, b = d+mn1, and d = d;. The sets 1’0 covers the intersection between the lines
Nt = N (k2), where two processes are close ¢ = —1/2 and ¢o = —1/2, where Z1; and Wy,
to being critical, and the sets A, are also shown are nearly critical. The sets N = N () and
(if £ > 1 there would be more dotted lines). NPd = NP (), k) are also indicated.

Definition 3 We define for —1 < n < m < k + 1 a covering of the parameter set N =
U_1<n<m<kt+1Nmn where

Non = {0 € N : max(0,, 1, Pn1) < —1/2 < min(d,,, Pn) },
as well as the corresponding interiors
NI ) = {p € N i max(6pm1, Pn1) < —1/2 — K and —1/2 + k < min(d,,, d,)}.  (58)

We next define for —1 < n < m < k and each pair of near critical indices 6,, = ¢, =
—1/2, the critical sets around the point where 6,, = ¢, = —1/2:

Nom(k2) = {1+ |dn +1/2] < ko, and |0 +1/2] < o}, (59)

Similarly we define for —1 < n < m < k around each line where 6,, = —1/2, the boundary
sets

NP (ko k) = {0t 6 +1/2] < K, and ¢y < —1/2 — iy and — 1/2+ k2 < ¢y}, (60)
and for —1 <m < n < k+ 1 around the line where ¢,, = —1/2, the boundary sets
NP (kg k) = {0 ¢ |dm +1/2| < K, and 6,1 < —1/2 — Ky and — 1/2 + Ky < 6,}.  (61)

The interpretation of the sets N,,, is that, for ¥ € N, the processes (3 LAdJ“mbXt and
ﬁoAd+”bXt are asymptotically stationary, whereas f;, A d+(m b Xt nd A d+ (n=1)b Xt are
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either nonstationary or (nearly) critical. The true value ), is contained in Ny _; if by > 1/2
and in N_y _; if by < 1/2.

Note that ¢, = 0., + bg, so that ¢, > 0, see (45). Hence, if 3, AT X, of index 6,
is asymptotically stationary then S,A™ X, of index ¢,, is also asymptotically stationary.
Likewise, if Z)A%t™P X, is nonstationary then £, AT*™ X, is also nonstationary. Further-
more, note that if n; < 1/2 — dy + by, there are no crossing points and the sets N (k2) are
empty, in which case the proof is easily simplified accordingly.

The set N (k2) contains the crossing point between the lines given by 4, = —1/2 and
¢n = —1/2, where ), X,y and B X, are both critical. To the left they are nonstationary
and to the right stationary. The set N (kq, k) covers the line segment ¢, = —1/2 be-
tween N7, (/@'2) and N (ky), and N (Ko, k) covers the line segment 4,, = —1/2 between
N (k) and N7, | (k2). In these sets either £, X,y and (X, is nearly critical, but not
both. See Figure 1 for illustrations in the case k = 1.

The following theorem proves (54) and (55) of Theorem 3. Here we use the notation
U1 (1)) = 00 on C(N{(ke)), for example, as shorthand for the more precise statement in
(54) on the space N (k2).

Theorem 4 Let Assumptions 1-4 hold, so that in particular E|e|® < oo and dy > by.

(i) For (ke,T) — (0,00) it holds that

Ur ()= C,(¥) on CNZ (K2)) for —1<n<m<k-—1, (62)
lr ()= 00 on C(N (k2)) for —1<n<k. (63)

(i1) For fized ko and (k,T) — (0,00) it holds that

b (V)= £,(¥)) on C(N?? (ky, k) forn <m <k, (64)
by ()= 00 on C(NP (K, K)) forn < m =k, (65)
Urp ()= 00 on CNRG14 (K2, 1)), (66)
b (V)= £,(¥) on C(NP (Ko, k) form <n <k, (67)

(¥) (68)

Urp(1)= 00 on C(NP, 11 (ka, k) for m < k.

(iii) For fized k and T — oo it holds that

lr ()= £,()) on C(N™(k)) for —1<n <m <k, (69)
lrp(1h)== 00 on C(N{Y, (k) for —1<n <k, (70)
lrp(1h)== 00 on CNY i (K)). (71)

In the proof of Theorem 4, given in the next three subsections, we apply the following
notation. We use uy, vq, or w; to indicate the index of 5 Xj:, depending on whether it is
asymptotically stationary, critical, or nonstationary, and similarly we use us, v9, or ws to
indicate the index of B Xy;. We collect all asymptotically stationary regressors in a vector
with indices greater than or equal to u, and the nonstationary regressors are collected in a
vector with indices smaller than or equal to w. Finally, we use the notation k, Ky, k,, Ry as
in Definition 1 to describe the intervals for the indices in order to apply Corollary 1.
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5.7 Proof of Theorem 4(i): the critical sets N (k»)
We assume ko < 1 and let (k2,7) — (0,00). The set N (ko) is defined by the inequalities

|6n + 1/2| < Ky and [6,, + 1/2| < ko

for =1 < n < m < k. We note that v; = 9,, and vy = ¢,, are the near critical indices
and let kK, = K, = kg, see (21). The nonstationary regressors are given by the indices
b1, . Op_1,0_1,...,0,_1 and the maximal index is

w = max(¢n_1,0m_1) = max(Pn, dy) — b < —1/2 4+ Ky — 1.

The stationary regressors are defined by the indices ¢, 41, ..., ®r_1,0ms1,---,0k_1, and the
minimal index is

w=min(¢ni1, Op1) = Min(Gp, o) +b > —1/2 — ko + 1.

Thus we can take k, = Ky, =1 — Ka.

The notation (u,v,w) for the indices for the regressands /3 | Xy and 5 Xy, differ depend-
ing on the values of m,n. We consider two cases: n <m < k and n <m = k.

Proof of (62) on the sets N (k2) for n < m < k: When m < k both 5}, Xy and 5 Xy
are asymptotically stationary with indices u; = 0 and uy = ¢y, such that SSRr(¢y) =
BoMp((uy, ug), (uy, ug)|vy, vo, w, u) By. We decompose the matrix as follows

My ((us, ug), (us, ug)|w, u) (72)

— My ((u1, uz), (v1, vo)|w, u) My ((vy, v2), (v1,v2)|w, U)_lMT((Ul, v2), (u1, uz)|w, u),
and we apply Corollary 1. From (34) we see that, for T — oo,
log det(Bo My ((u1,us2), (u1, u2)]w,u)36) = log det(2(v))) = gp(?ﬁ), (73)

see (50) and (51). We next show that the second term of (72) is op(1).
The critical processes are Af“mbﬁ(’)  X; and Af"bﬁ(’)Xt with indices vy, v and stochastic
components

ATBY Xy s AP (G + AR YD), (74)

Ai+nb5(/)Xt . Alfﬂ(’)y;"‘ = Aff (525,5 + Aboﬁ[l) Z 7—0n5t7n)7 <75)

n=0

see (37)—(40). These are fractional differences of processes in Z;,, with leading coefficients
& = B, Co and & = B CE. Here, [€], &) has full column rank because

el ol Oééucéﬁm_ %LC&"ﬁo o Oéé)LC(IJBOJ_ Oéé)LCg/ﬁo
[CYOLa aO] [51, 62] = 0 0466’())”50 = 0 1, (76)

has full rank, see (39), (40), and Assumption 1. It follows from (35) and (36) that, for
(k2,T) — (0,00),

MT(<U17 UZ)? (Ub U2>’w7 u)il = OP(1>7
Mrp((uy,uz), (v1,v2)|w,u) = Op(1),
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and from (73) we find log det(SSRr(v)) = £,(¢).

Proof of (63) on the sets N (k2) for n < m = k: In this case [ Xj; is near critical
with index v; = 0 € [—1/2 — ko, —1/2 + Ry, setting R, = K, = kg, and 5 Xy with index
us = ¢ > —1/2 + K, is stationary. The other near critical process is the regressor )X,
with v = ¢,, n < k. The determinant det(SSRz(v))) has, apart from the factor (det By)?,
the form

det (Mr((v1,uz), (v1,us)|v, w,u)) = det(Mr(ug, ug|vy, v, w, w)) det( My (vy, v1|ug, v, W, w)).

The first factor satisfies det(Myp(uq, us|vy, w,w)) = det(E(Mp(uz, us|u)) > 0 as (ko, T) —
(0, 00), see Corollary 1.

The second factor is analyzed as follows. Let M = My ((v1,v), (v1,v)|w,u). For & =
By, Co and & = [B{Cy, the matrix [£], &S] has full rank, see (76), such that the two critical
processes are given in (74) and (75). From (36) we have for k, = R, = ko and N =T, that
uniformly in (vy, v, w,u) € S(Kuw, Ku, Ky, Ry) it holds that

MY M2 L — T2 [ 600l Q08 o
M—l — < 124061 125062
{ M2 M2 } = (C ko { SIISERSINS )

where Ry = Op(1). Because (1 — T72%2)/(2ky) — 00 as (kg, T) — (0,00), it follows that
the factor My (vy, vi|ug, v, w,u) = My, — MisMy," My = My, 5 satisfies

My (v, v1lug, v,w,u) ™t = MYy = MY = 0 as (kq, T) — (0, 00),
and therefore log det(SSRyp(v)) = oo if m = k.

5.8 Proof of Theorem 4(ii): the boundary sets N (k,, k) for n < m

We fix ky < 7, assume Kk < 7 — kg, and let (k,T) — (0,00). The set N’ (9, k) with
—1 <n <m <k is defined by the inequalities

|0m +1/2] < K, ¢pp1 < —1/2 — ko, and — 1/2 + kg < .

There is only one near critical process with index v = 9,, so we let K, = kK, = k. The
stationary regressors are given by the indices 0,,41,...,0k_1 and ¢y, ..., ¢x_1 with minimal
value

u = min(y, Omr1) = min(dy,, oy +0) > min(—1/2 + ko, —1/2 — Kk + 1) = —1/2 + Ko,

and the nonstationary processes given by indices 6_1,...,0,,_1,0_1, ..., ¢p_1 with a maximal
value

w = max(0p—1, pp—1) < max(d, —b, —1/2—ks) < max(—1/2+Kk—n, —1/24kKy) = —1/2— ko,

so we let Kk, = K, = kg. We consider two cases defined by n < m < k and n <m = k.

Proof of (64) on the sets N (kq, k) for n < m < k: In this case 3}, X}, is stationary with
index u; = 0 > 0, and [{ Xy, is stationary with index uy = ¢ > ¢,. Then det(SSRr()))
is, apart from the factor (det By)?, the determinant of a matrix of the form

My ((uy, ug), (ur,u)|v,w,u) = Mp((uy,us), (ug, us)|w, u) (77)

- MT<(U1, u2)7 ?}|’LU, U)MT(U7 U|w7 u>_1MT(U7 (ula UQ)IUJ, U,)
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Here log det(B{ My ((u1,ug), (u1,us)|w, w)By) == £,(¢) by (34); see also (73).
Next, Mrp((u1,usz),v|w,u) = Op(1) by (35) and Mz(v,vlw,u)~! = 0 by (36). Thus,
the decomposition (77) shows that

lrp() = logdet(SSRr(v)) = £,(¢)).

Proof of (65) on the sets NP (ka, k) for n < m = k: Here 8}, Xj; is near critical with
index vy = J; and [ Xj is stationary with index uy = ¢, > ¢, such that, apart from a
factor (det By)?, det(SSRz(v)) is of the form

det(My((v1, ua), (v1, ug)|w,w)) = det( My (vy, v1|w, w)) det( My (us, uglvy, w,w)),
The first factor diverges due to (36) and the second satisfies
det(Mr(ug, ug|vy, w,u)) = det(E(Mr(ug, ug|u))) > 0
by Corollary 1. Thus, logdet(SSRy(v)) = oo.

5.9 Proof of Theorem 4(ii): the boundary sets N'*¢ (k,, k) for m <n

Again, we fix Ky < 1, assume k < 1 — kg, and let (k,T) — (0,00). The set N’ (kq, k) with
—1<m<n<k+1is given by

| +1/2| < K, 01 < —1/2 — kg, and — 1/2 + kg < 6.

There is one near critical process with index v = ¢, and we let k, = kK, = k. The
nonstationary regressors have indices ¢_1, ..., ¢yn_1,0_1,...,0,_1 with maximal index

w = max(¢m_1,0n_1) = max(Py, —b, —1/2—kK9) < max(—1/24+r—n,—1/2—kKy) = —1/2—K,,
and the stationary processes have indices ¢,,11,. .., ®x—1,0n, . ..,0r_1 With minimal index
u = min(Pp1,0y) > min(dp, + b, —1/2 4+ k) > min(—1/2 — K +n, —1/2 4 ko) = —1/2 + Ko,

SO Ky = Ky = Ko. We consider the three cases: (m,n) = (k,k+ 1), m < n < k, and
n=k+1,m<Ek.

Proof of (66) on the set N, (r2,k): In this case ), Xy is nonstationary with index
wy = 0 and ByXy is near critical with index vy = ¢y. There are no stationary processes.
Then det(SSRr (1)) is, apart from the factor (det By)?,

det( Mz ((wy,vq), (wy,ve)|w)) = det(Mr(ve, va|wy, w)) det( My (wq, wy|w)).

The first factor diverges to infinity as (k,7) — (0,00) by (36). Because 2w; + 1 < —2k,,
the second factor satisfies det(Mz(wy, w;|w)) > det(T*2 Mz*(wy, wy|w)), which diverges to
infinity by (29) of Lemma 3.

Proof of (67) on the sets N4 (kq, k) for m < n < k: In this case both 3}, X, and 3) Xy
are stationary, and the proof is identical to that of (64), see (77).

Proof of (68) on the sets NP (Ko, k) for m < k: Here 3, X}, is nonstationary with
index w; = 0y, while SyXy; is stationary with index us = ¢. Therefore SSRr(¢) =
BoMr((wy,us), (wy, ug)|v, w, u) By and

My ((wq, ug), (Wi, uz)|v, w,u) = Ay — A21A1_11A12 = A,
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where we use the notation
An = MT(% U|1U, U)> Ap = MT(U7 (wl, U2)|1U, U)> Aoy = MT((wl,Uz), (wl,u2)|w,u).
The Woodbury matrix identity, see Magnus and Neudecker (1999, p. 11, eqn. (7)), then gives
Agyy = Ay [Aga + Ag ALl Aro) Asy
We find from Lemmas 1 and 3 and Corollary 1 that
Ay = Mit*((wlau2)a (w1,U2)|waU) = OP(l);
Azsil = OP(1>7
A}y = Mi(v, (wy, ug)lw,u) = Op((1 +log T)*T"),
2

A;ll.Q = OP(l_—lﬁ_Qﬁ) for N =T°.

Because 2w + 1 < —2k5, we then find that
2K
1— N—2

This implies that det(SSRr(v)™') = 0, and hence l7,(¢)) = log det(SSR7(¢)) = oo as
(r, T) = (0, 00).

5.10 Proof of Theorem 4(iii): the interior sets N (k)
We now fix x and ky and let ' — oo. The set N (k) is defined by

max (01, 0n_1) < —1/2 — kK and — 1/2 4+ k < min(dy,, dn)-

Ag’zl'l = TQ”“”“A;’2‘31 = Op(T’2”2(1—i— (1+1log T)4T2“)) =op(1l) as (k,T) — (0, 00).

The nonstationary regressors (indices 6_1,...,0m_1,%_1,...,%,_1) have maximal index
w = max(dy_1, Pn_1) < —1/2—k, and the stationary regressors (indices 0., . . ., Ok—_1, Pny - - -, Pp—1)
have smallest index v = min(d,,, ¢,) > —1/2 + k. Thus, k, = K, = K and there are no near
critical processes.

We consider three cases: n <m <k,n<m=k+1,andn=m=Fk—+ 1.

Proof of (69) on the sets N™ (k) for n < m < k: In this case 3}, Xy and BjXy are
both stationary with indices u; = d; and uy = ¢. Therefore

det(SSRy(¢)) = det(BoMz((u1, uz), (ur, uz)|lw, u)By) = (1))

as T — oo, see (34).

Proof of (70) on the sets Nit (k) for n < k + 1. Here 5, X}, is nonstationary with
index w; = d;, and B) X}, is stationary with index uy = ¢p. Then, apart from (det By)?,
det(SSRr(v)) is given by

det( My ((wy,ug), (wy,ug)|w, u)) = det(Mr(ug, us)|w, w)) det( My ((wq, wy)|w, usz)).

The first factor converges to £,(1)), see (34), and the last one diverges due to lack of normal-
ization, see (29) of Lemma 3. Thus, logdet(SSRr(¢)) = 0o as T' — 0.
Proof of (71) on the set Nit .. (r): In this case all variables are nonstationary, so that

log det(SSRT(w)) = lOg det(BoMT((wl, wg), (wl, U)Q)‘U))B()) - 0

as T — oo, due to lack of normalization, see Lemma 3.
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