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Abstract

In this note we clarify and generalize the main result in Karni and Vierø (2013) by

allowing the discovery of new consequences to nulllify some states that were non-null

before the discovery.
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We begin by briefly restating the framework of Karni and Vierø (2013). Let F be a finite,

nonempty set of feasible acts, and C be a finite, nonempty set of feasible consequences.

Together these sets determine a conceivable state space, CF , whose elements depict the

resolutions of uncertainty.

On this conceivable state space, we define what we refer to as conceivable acts. Formally,

F̂ := {f : CF → ∆(C)}, (1)

where ∆(C) is the set of all lotteries over C. As is usually done, we abuse notation and use

p to also denote the constant act that returns the lottery p in each state. We use both c
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and δc to denote the lottery that returns consequence c with probability 1, depending on the

context.

Discovery of new consequences expands the conceivable state space. Let C denote the

initial set of consequences and suppose that a new consequence, c̄, is discovered. The set of

consequences of which the decision maker is aware then expands to C ′ = C∪{c̄}. We denote

by F ∗ the set of feasible acts with range C ′. Using these notations, the expanded conceivable

state space is (C ′)F
∗
. The corresponding expanded set of conceivable acts is given by

F̂ ∗ := {f : (C ′)
F ∗ → ∆ (C ′)}. (2)

We consider a decision maker whose choice behavior is characterized by a preference

relation <F̂ on F̂ . We denote by �F̂ and ∼F̂ the asymmetric and symmetric parts of <F̂ ,

with the interpretations of strict preference and indifference, respectively. For any f ∈ F̂ ,
p ∈ ∆ (C) , and s ∈ CF , let psf be the act in F̂ obtained from f by replacing its s − th

coordinate with p. A state s ∈ CF is said to be null if psf ∼F̂ qsf for all p, q ∈ ∆(C). A

state is said to be nonnull if it is not null. Denote by EN the set of null states and let

S(F,C) = CF − EN be the set of all nonnull states. Henceforth we refer to S(F,C) as the

feasible state space. Let F be a family of sets of conceivable acts corresponding to increasing

awareness of consequences.

In Karni and Vierø (2013) it was implicitly assumed that upon the expansion of the

state space following the discovery of a new consequence, non-null states remain non-null.

Formally, that

for all f ∈ F̂ and f ′ ∈ F̂ ∗, psf �F̂ qsf ⇒ psf
′ �F̂ ∗ qsf

′ for all s ∈ S(F,C).

which under monotonicity is equivalent to assuming that

S(F,C) ⊆ S(F ∗, C ′).

However, there are important situations in which such inclusion is violated. For example,

situations of scientific discoveries that falsify prior beliefs. To illustrate, consider the famous

Michelson–Morley experiment. The experiment compared the velocity of light traveling in

perpendicular directions in an attempt to detect difference in the return time that would

indicate motion of matter through the substance aether, which was hypothesized to fill

empty space. The failure to detect such difference provided strong evidence against the

aether theory, contradicted the predictions of Newtonian mechanics, and prompted research

that eventually led to Einstein’s special relativity theory.

In terms of reverse Baysianism, the a-priori (i.e. before the Michelson–Morley experi-

ment) feasible state-space includes states in which the velocity of light obeyes the of rules

of Newtonian mechanics. The Michelson-Morley experiment resulted in a consequence that
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required a revision of the Newtonian outlook. This revision nullified some of the a-priori

feasible states simultaneous to an expansion of the conceivable state space.

To allow for the possibility that some non-null states do become null upon the discovery

of new consequences, the axiom awareness consistency (axiom (A.7) in Karni and Vierø

(2013)) should be modified as follows:

(A.7r) (Revised awareness consistency) For every given F , for all C,C ′ with C ⊂ C ′,

and for f, g ∈ F̂ , and f ′, g′ ∈ F̂ ∗, such that f ′ = f and g′ = g on S(F,C) ∩
S(F ∗, C ′), f = g on S(F,C) − [S(F,C) ∩ S(F ∗, C ′)] and f ′ = g′ on S(F ∗, C ′) −
[S(F,C) ∩ S(F ∗, C ′)] it holds that f <F̂ g if and only if f ′ <F̂ ∗ g

′.

Dominiak and Tserenjigmid (2017) have shown that the invariant risk preferences axiom

(A.6) in Karni and Vierø (2013) is redundant. Therefore, in addition to invoking the revised

awareness consistency axiom, we state and prove the theorem below without the invariant

risk preferences axiom. Since the proof in Dominiak and Tserenjigmid (2017) was based on

the awareness consistency axiom, the revised awareness consistency axiom requires a proof of

the below theorem that differs from the proofs in both Karni and Vierø (2013) and Dominiak

and Tserenjigmid (2017). For the statement of the remaining axioms, we refer to Karni and

Vierø (2013).1

Theorem. For each F̂ ∈ F , let <F̂ be a binary relation on F̂ then, for all F̂ , F̂ ∗ ∈ F , the

following two conditions are equivalent:

(i) Each <F̂ satisfies (A.1) - (A.5) in Karni and Vierø (2013) and, jointly, <F̂ and <F̂ ∗
satisfy (A.7r).

(ii) There exist real-valued, non-constant, affine functions, U on ∆(C) and U∗ on ∆(C ′),

and for any two F̂ , F̂ ∗ ∈ F , there are probability measures, πF̂ on CF and πF̂ ∗ on (C ′)F
∗
,

such that for all f, g ∈ F̂ ,

f <F̂ g ⇔
∑
s∈CF

U (f(s))πF̂ (s) ≥
∑
s∈CF

U (g(s))πF̂ (s). (3)

and, for all f ′, g′ ∈ F̂ ∗,

f ′ <F̂ ∗ g
′ ⇔

∑
s∈(C′)F∗

U∗ (f ′(s))πF̂ ∗(s) ≥
∑

s∈(C′)F∗
U∗ (g′(s))πF̂ ∗(s). (4)

Moreover, U and U∗ are unique up to positive linear transformations, and there exists

such transformations for which U(p) = U∗(p) for all p ∈ ∆(C). The probability distributions

1The remaining axioms are the standard subjective expected utility axioms of Anscombe and Aumann

(1963).
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πF̂ and πF̂ ∗ are unique, πF̂ (S(F,C)) = πF̂ ∗ (S(F ∗, C ′)) = 1, and

πF̂ (s)

πF̂ (s′)
=
πF̂ ∗(s)

πF̂ ∗(s
′)
, (5)

for all s, s′ ∈ S(F,C) ∩ S(F ∗, C ′).

Note that if S(F,C) ⊆ S(F ∗, C ′), then S(F,C) ∩ S(F ∗, C ′) = S(F,C), and we have the

result in Theorem 1 in Karni and Vierø (2013).

The generalization in the theorem allows for a wider range of applications of reverse

Bayesianism than Karni and Vierø (2013). The generalization permits a particular type of

belief revision on the prior feasible state space, namely extreme belief revision in which a

state is nullified. For prior feasible states that are still considered feasible after the expansion

in awareness, beliefs are updated according to reverse Bayesianism. This can be justified

from a philosophical viewpoint. It is possible to falsify a hypothesis, but one can only gain

statistical evidence that supports that something is true. Therefore, it is reasonable that

one would nullify a state when presented with evidence that falsifies what is called a link

in Karni and Vierø (2013), but that with other types of evidence one maintains the relative

beliefs.

With a strengthening of axiom (A.7r), nullification of prior feasible states will not occur:

(A.7r’) For every given F , for all C,C ′ with C ⊂ C ′, f, g ∈ F̂ and f ′, g′ ∈ F̂ ∗, such that

f ′ = f and g′ = g on S(F ∗, C ′)∩S(F,C) and f ′ = g′ on S(F ∗, C ′)−[S(F,C)∩S(F ∗, C ′)]

it holds that f %F̂ g if and only if f ′ %F̂ ∗ g
′.

Proposition. If <F̂ and <F̂ ∗ satisfy axioms (A.7r’) and (A.4) (Monotonicity) in Karni and

Vierø (2013), then S(F,C) ⊆ S(F ∗, C ′).

The difference between axioms (A.7r) and (A.7r’) is that axiom (A.7r) allows for pref-

erence reversals for acts that differ on S(F,C)− [S(F ∗, C ′) ∩ S(F,C)], while axiom (A.7r’)

does not. By forcing the prior and posterior preference relations to agree on the ranking of

acts, even if the acts differ in that event, axiom (A.7r’), together with monotonicity, has the

implication that S(F,C)− S(F ∗, C ′) must be null under the posterior preference relation.

1 Proofs

Proof of Theorem: (Sufficiency) Fix F and C. By (A.1) - (A.5), the theorem of Anscombe

and Aumann (1963) and the von Neumann-Morgenstern expected utility theorem, there

exists a real-valued, non-constant, function uF̂ on C such that for all p, q ∈ ∆(C)

p <F̂ q ⇔
∑

c∈Supp(p)

uF̂ (c)p(c) ≥
∑

c∈Supp(q)

uF̂ (c)q(c). (6)
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Let C ′ ⊃ C and F̂ ∗ ∈ F . Then, by the same argument as above, there exists a real-valued

function uF̂ ∗ on C ′ such that for all p′, q′ ∈ ∆(C ′)

p′ <F̂ ∗ q
′ ⇔

∑
c∈Supp(p′)

uF̂ ∗(c)p
′(c) ≥

∑
c∈Supp(q′)

uF̂ ∗(c)q
′(c). (7)

The functions uF̂ and uF̂ ∗ are unique up to positive linear transformations. Define

U(f(s)) :=
∑

c∈Supp(f(s)) uF̂ (c)f(s)(c), for all f ∈ F̂ and s ∈ S(F̂ , C) and define U∗(f(s)) :=∑
c∈Supp(f(s)) uF̂ ∗(c)f(s)(c), for all f ∈ F̂ ∗ and s ∈ S(F̂ ∗, C ′).

Let b and w be a best and worst consequence in C, respectively. Without loss of generality,

normalize uF̂ (b) = uF̂ ∗(b) = 1 and uF̂ (w) = uF̂ ∗(w) = 0.

Take any lottery q ∈ ∆(C) and acts f, g ∈ F̂ and f ′, g′ ∈ F̂ ∗ such that f ′ = f and

g′ = g = q on S (F,C) ∩ S(F ∗, C ′), f = g = δw on S(F,C) − [S (F,C) ∩ S(F ∗, C ′)] and

f ′ = g′ = δw on S (F ∗, C ′) − [S (F,C) ∩ S(F ∗, C ′)]. Then, by axiom (A.7r), we have that

f <F̂ g if and only if f ′ <F̂ ∗ g
′, which implies that∑

s∈S(F,C)∩S(F ∗,C′)

U(f(s))πF̂ (s) = U(q)πF̂ (S (F,C) ∩ S(F ∗, C ′))

⇔
∑

s∈S(F,C)∩S(F ∗,C′)

U∗(f(s))πF̂ ∗(s) = U∗(q)πF̂ ∗(S (F,C) ∩ S(F ∗, C ′)) (8)

The next step will show that beliefs are updated according to reverse Bayesianism for all

states in S (F,C)∩S(F ∗, C ′). For any s ∈ S (F,C)∩S(F ∗, C ′), let f(s) = δc for some c ∈ C
and f(s̃) = δw for all s̃ 6= s. Let q =

πF̂ (s)

πF̂ (S(F,C)∩S(F ∗,C′))δc + (1 − πF̂ (s)

πF̂ (S(F,C)∩S(F ∗,C′)))δw. Then

the utility of f is given by ∑
s∈S(F,C)

U(f(s))πF̂ (s) = πF̂ (s)U(c) (9)

while the utility of g is given by∑
s∈S(F,C)

U(g(s))πF̂ (s) =
πF̂ (s)

πF̂ (S (F,C) ∩ S(F ∗, C ′))
U(c)πF̂ (S (F,C) ∩ S(F ∗, C ′)). (10)

Equations (9) and (10) imply that f ∼F̂ g.

The utility of f ′ is given by∑
s∈S(F ∗,C′)

U∗(f ′(s))πF̂ ∗(s) = πF̂ (s)U∗(c) (11)

while the utility of g′ is given by∑
s∈S(F ∗,C′)

U∗(g′(s))πF̂ (s) =
πF̂ (s)

πF̂ (S (F,C) ∩ S(F ∗, C ′))
U∗(c)πF̂ ∗(S (F,C) ∩ S(F ∗, C ′)). (12)
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By axiom (A.7r), f ′ ∼F̂ ∗ g′, since f ∼F̂ g. Hence, (8) implies that

πF̂ ∗(s)U
∗(c) =

πF̂ (s)

πF̂ (S (F,C) ∩ S(F ∗, C ′))
U∗(c)πF̂ ∗(S (F,C) ∩ S(F ∗, C ′)). (13)

Equivalently,
πF̂ ∗(s)

πF̂ ∗(S (F,C) ∩ S(F ∗, C ′))
=

πF̂ (s)

πF̂ (S (F,C) ∩ S(F ∗, C ′))
(14)

Next we show that under the normalization of the utility functions uF̂ and uF̂ ∗ it holds

that U∗(c) = U(c) for all c ∈ C. For any c ∈ C and s ∈ S (F,C) ∩ S(F ∗, C ′)), let f(s) =

αδc + (1− α)δw and f(s̃) = δw for all s̃ 6= s. Let q = βδb + (1− β)δw. By the normalization,

U(δb) = U∗(δb) = 1. Hence, (8) implies that

αU(δc)πF̂ (s) = βπF̂ (S (F,C) ∩ S(F ∗, C ′))) (15)

⇔πF̂ ∗(s)αU
∗(δc) = πF̂ ∗(S (F,C) ∩ S(F ∗, C ′)))β (16)

Equations (14), (15), and (16) now imply that U∗(δc) = U(δc) for all c ∈ ∆(C).

(Necessity) The necessity of (A.1)-(A.5) is an implication of the Anscombe and Aumann

(1963) theorem. The necessity of (A.7r) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and probability in

Anscombe and Aumann (1963). �

Proof of Proposition: Suppose there exists s such that s ∈ S(F,C), s 6∈ S(F ∗, C ′). Let

p, q ∈ ∆(C) be such that p �F̂ q (Note that if no such p, q exist then by Monotonicity

S(F,C) = ∅, so the result is trivial). Define the conceivable acts f, g, and f ′, g′ as follows:

f = g on S(F,C)\s, f(s) = p, g(s) = q. Furthermore f ′ = f , g′ = g on S(F,C), and f ′ = g′

on S(F ∗, C ′)− [S(F ∗, C ′) ∩ S(F,C)]. Note that f ′ and g′ coincide exactly on S(F ∗, C ′), so

f ′ ∼F̂ ∗ g. Moreover, by Monotonicity f �F̂ g′. Since f, g, f ′, g′ satisfy the conditions of

(A.7r’) we have a contradiction.
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