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Abstract

This paper presents an intertemporal model of growing awareness. It provides a

framework for analyzing problems with long time horizons in the presence of growing

awareness and awareness of unawareness. The framework generalizes both the standard

event-tree framework and the framework from Karni and Vierø (2017) of awareness

of unawareness. Axioms and a representation are provided along with a recursive

formulation of intertemporal utility. This allows for tractable and consistent analysis

of intertemporal problems with unawareness.
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ism
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1 Introduction

Under the Bayesian paradigm, the state space is fixed. As new discoveries are made, and new

information becomes available, the universe shrinks as some states become null. However,

there are many situations in which our universe in fact expands as we become aware of

new opportunities. That is, there are, quoting United States former Secretary of Defense

Donald Rumsfeld, “unknown unknowns” that we may learn about.1 In other words, a
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Ontario K7L 3N6, Canada, viero@econ.queensu.ca. Financial support from SSHRC grant number 435-2014-

0642 is gratefully acknowledged. I thank John Quiggin and participants at the Decisions, Markets, and
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1U.S. Department of Defense news briefing February 12, 2002.
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decision maker’s awareness may grow over time, and the decision maker may be aware of

this possibility.

This paper provides a framework for analyzing intertemporal problems with long time

horizons in the presence of growing awareness and awareness of unawareness. It thus makes

possible the analysis of, for example, many macro and finance problems such as Lucas

(1978) tree type asset pricing models, search models, etcetera, when agents are exposed

to unawareness.

The analysis builds on the reverse Bayesianism framework of Karni and Vierø (2013,

2015, 2017). However, these papers considered a one-shot increase in a decision maker’s

awareness. They provided a framework for analyzing such an increase and axiomatized the

decision maker’s choice behavior in response to the increased awareness. In Karni and Vierø

(2013, 2015) the decision maker was myopic with respect to his own unawareness and never

anticipated making future discoveries. In Karni and Vierø (2017), the decision maker is

aware of her unawareness, so although she cannot know exactly what she is unaware of, she

is aware that there may be aspects of the universe that she cannot describe with her current

language.

When an agent is looking forward over many future periods, she can envision a plethora

of ways that her awareness may grow over time. At each point in time, there is not only

the possibilities of making new discoveries or not, but also the possibility of making multiple

new discoveries at the same time and different numbers of possible simultaneous discoveries.

Thus, the possible paths of resolutions of uncertainty are much more complicated than in a

standard event tree. To stay with the tree analogy, under growing awareness branches can

sprout in many places in the event tree, and there will be different sprouts, and a different

number of sprouts, on different branches.

Because of the complexity of the evolution of the state space over time, one important

issue is how to make the problem tractable. Also, given that there is a great number of

potential unkowns that the decision maker may discover in the future, the question arises

of how much consistency it is reasonable to impose. Furthermore, with a long time horizon

the decision maker will form beliefs over the entire future, and connecting these beliefs as

awareness grows is a much more challenging task than just considering a one-shot increase

in awareness.

Another issue adding complexity is that, in addition to not being measurable with respect

to current information, future acts are generally not even fully describable with respect to

current awareness. If awareness grows in the future, the decision maker will then know, and

derive utility from, a larger set of consequences than she can currently describe. Additional

measurability issues thus arise because different such consequences are indistinguishable

2



given the current level of awareness. In order to formulate preferences from the decision

maker’s current point of view, these issues must be dealt with by the axiomatic structure.

To obtain tractability, one of the new axioms that will be imposed serves the purpose of

“preventing the agent’s head from exploding”. In somewhat more scientific language, the

axiom assumes that the decision maker acts as if she simplifies the universe by “collapsing”

unknown consequences and parts of the event tree in a particular way. Other new axioms

regard the evolution of the decision maker’s attitude towards the unknown as awareness

grows, and a strengthening of invariance of preferences towards known risks from Karni and

Vierø (2017) to also apply across two successive periods.

The main result is an intertemporal representation of preferences. At any point in time,

the agent can make complete contingent plans, also for events that involve new discoveries,

to the extent that she can describe these plans. The axiomatic structure ensures dynamic

consistency in a forward looking way, but not necessarily looking backwards. When aware-

ness does grow, the agent may wish to change her course of action in response to her new

awareness. She will, however, still maintain that her original plan was the right one given

the awareness she had at the time it was made. Thus, the agent is rational to the extent

possible given her limited awareness.

A recursive formulation of the decision maker’s utility is also obtained. However, the

decision maker can only forecast her future utility function to the extent of her awareness.

She is aware that her utility function may change in the future in response to increased

awareness, but uses an estimate of her future utility function, based on her current awareness,

in the recursive formulation. This recursive formulation makes possible convenient analysis

of, and accommodation of awareness and growing awareness in, a large class of problems

along the lines of the analysis in, e.g., Sargent (1987).

The intertemporal framework introduced in this paper combines awareness of unaware-

ness with an approach to defining intertemporal acts from Epstein and Schneider (2003).

The evolution of awareness and uncertainty is captured by a generalized event tree that has

the standard event tree as a special case. As such, the framework is a natural extension of

both the standard intertemporal model and the state spaces in Karni and Vierø (2017).

Epstein and Schneider (2003) axiomatize an intertemporal version of multiple-priors util-

ity. As is the case in the present paper, they impose axioms on the entire preference pro-

cess, i.e. on conditional preferences at each time-event pair. They also connect preferences

conditional on different histories, rather than simply applying their axioms to conditional

preferences after each history separately. The approach taken in the present paper of speci-

fying acts from the start to the end of the event tree is inspired by Epstein and Schneider’s

model. The extension of one of the key axioms from Karni and Vierø (2017) to the present
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intertemporal setting is also inspired by one of Epstein and Schneider’s axioms.

In the statistical literature, Walley (1996) and Zabell (1992) have considered related

problems. Walley (1996) considers the problem of making inferences from multinomial data

in cases where there is no prior information, illustrated by repeated sampling from a bag of

marbles whose contents are initially unknown. His approach is not choice theoretic. Rather

he proposes using the imprecise Dirichlet model to analyze such problems. Zabell (1992)

also considers a problem involving repeated sampling which may result in an observation

whose existence was not suspected. Zabell’s approach is not choice theoretic either, but

limits attention to the probabilities of events.

Halpern, Rong, and Saxena (2010) consider Markov decision problems with unawareness.

Their decision maker is initially aware of only a subset of states and actions and their model

provides a special explore action by playing which the decision maker may become aware of

actions he was previously unaware of. Halpern, Rong, and Saxena provide conditions under

which the decision maker can learn to play near-optimally in polynomial time.

Easley and Rustichini (1999) consider a decision maker who must repeatedly choose an

action from a finite set. The decision maker knows the set of available actions and that a

payoff will occur to each action in each period, but no further structure. The decision maker

prefers more payoff to less. He begins with an arbitrary ordering over acts and selects the

action with the highest rank. Upon resolution of the period’s uncertainty, he observes the

payoff to each action and updates his ordering. Easley and Rustichini provide axioms that

lead to actions eventually being chosen optimally according to expected utility.

Grant and Quiggin (2013a) consider dynamic games with differential awareness, where

players may be unaware of some histories of the game. Unawareness thus materializes as

players considering only a restricted version of the game. For such games, Grant and Quiggin

provide logical foundations for players using inductive reasoning to conclude that there may

be propositions, and hence parts of the game tree, of which they are unaware. Players

may also gain inductive support for particular actions leading to unforeseen contingencies.

As a result, they may choose strategies subject to heuristic constraints that rule out such

actions. Grant and Quiggin (2013b) simplifies the model of Grant and Quiggin (2013a) to a

single-person decision problem modelled as a game against nature. This framework is used

to formalize and evaluate two versions of the precautionary principle.

There is a number of papers taking a choice theoretic approach to unawareness or related

issues. These include Li (2008), Ahn and Ergin (2010), Schipper (2013), Lehrer and Teper

(2014), Kochov (2016), Walker and Dietz (2011), Alon (2015), Grant and Quiggin (2015),

Dietrich (2017), Piermont (forthcoming), and Dominiak and Tsjerengjimid (2017a). Kochov

(2016) uses a three-period model to distinguish between unforeseen and ambiguous events;
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thus he considers a different issue than the present. The other papers are either static in

nature or consider one-shot increases in awareness.

Walker and Dietz (2011) take a choice theoretic approach to static choice under “conscious

unawareness.” Schipper (2013) focuses on detecting unawareness. Ahn and Ergin (2010)

introduce a model in which the evaluation of acts may depend on the manner in which the

underlying events, or contingencies, are described. Lehrer and Teper (2014) model a decision

maker who has an increasing ability to distinguish between events, and who has Knightian

preferences on the expanded set of acts. Alon (2015) models a decision maker who acts as

if she completes the state space with an extra state and assigns the worst consequence to

that state. Grant and Quiggin (2015) model unawareness by augmenting a standard Savage

(1954) state space with a set of “surprise states”.

Dominiak and Tsjerengjimid (2017a) generalizes the preference structure in Karni and

Vierø (2013) to allow for the decision maker’s ex-post preferences to be ambiguity averse.

Dietrich (2017) considers a one-shot increase in awareness in a Savage framework. Piermont

(forthcoming) presents a model with a one-shot increase in awareness, where the decision

maker may be aware of his unawareness. In his model, the behavioral manifestation of

awareness of unawareness is that the decision maker is unwilling to commit to any contingent

plan. In other words, when he is aware of his unawareness, the decision maker has a strict

preference for delaying choice at a positive cost.

Since the present paper builds on Karni and Vierø (2013, 2015, 2017), it is useful to

describe these works in somewhat more detail. Karni and Vierø (2013) considers a one-shot

increase in a decision maker’s awareness. There are two main contributions. The first is to

provide a framework of an expanding universe. What they call the conceivable state space

expands as new acts, consequences, or links between them are discovered, that is, when

awareness grows. The second contribution is to invoke the revealed preference methodology

and axiomatize the decision maker’s choice behaviour in the expanding universe. The chal-

lenge is that preferences under different levels of awareness are defined over different domains,

so they need to be linked. The axioms imply that for a given level of awareness, the decision

maker is an expected utility maximizer. The axioms that link behaviour across different

state spaces imply that the utility of known risks is invariant to expansions of awareness and

also imply reverse Bayesian updating of beliefs: when new discoveries are made, probability

mass is shifted proportionally away from events in the prior state space to events created as

a result of the expansion of the state space.

Karni and Vierø (2015) has a more general preference structure within the same frame-

work. In both Karni and Vierø (2013) and Karni and Vierø (2015) the decision maker is

myopic with respect to his unawareness. Hence, he never anticipates making future discov-
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eries and always acts as if he is fully aware.

The premise of Karni and Vierø (2017) is that if you have become aware of new things

in the past, you may anticipate that this can also happen in the future. The paper also

considers a one-shot increase in the decision maker’s awareness and extends the framework

from Karni and Vierø (2013) to allow for decision makers being aware of their unawareness.

So, although decision makers cannot know exactly what they are unaware of, they are aware

that there may be aspects of the universe that they cannot describe with their current

language. The framework has an augmented conceivable state space which is partitioned

into fully describable and imperfectly describable states, in the latter of which awareness

expands. The axiomatic structure gives that for a given level of awareness, the decision

maker is a generalized Expected Utility maximizer: the utility representation consists of a

Bernoulli utility function over known consequences, beliefs over the augmented conceivable

state space that assign beliefs to expansions in the decision maker’s awareness, and an extra

parameter that reflects the decision maker’s attitude towards the unknown. As in Karni

and Vierø (2013), there is reverse Bayesian updating of beliefs and the utility of known

risks is invariant to expansions in awareness. However it is now also possible to characterize

the decision maker’s sense of ignorance and the evolution thereof, which is captured by the

probability assigned to expansions in her awareness.

The paper is organized as follows: Section 2 presents the framework for modelling long

time horizon problems with awareness of unawareness. Section 3 presents and discusses the

axioms. Section 4 contains the representation results, while Section 5 concludes. The proof

of the main result is in the appendix.

2 Analytical Framework

Time is discrete, indexed by t ∈ T = {0, 1, . . . , T}, where T is finite. The decision maker

is aware of this. Let the initial state of the world, which is known by the decision maker,

be denoted by s0. Let A be a finite, nonempty, set of basic actions with generic element

a. The set of basic actions is available in each period, known by the decision maker, and

remains fixed throughout. In contrast, the set of known feasible consequences evolves over

time as the decision maker’s awareness grows. Let C(s0) be the initial set of known feasible

consequences, which is finite and nonempty.

For any set of consequences C, let c denote a generic element and define x(C) = ¬C to

be the abstract “consequence” that has the interpretation “none of the above” and captures

consequences of which the decision maker is currently unaware. Also define Ĉ = C ∪{x(C)}
referred to as the set of extended consequences with generic element ĉ. Label by ĉ1, ĉ2, . . .
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the currently unknown consequences in order of discovery.

From a time-0 perspective, the only well-defined consequences are those in C(s0) and

x(C(s0)). From a time-0 perspective any yet undiscovered consequences ĉ1, ĉ2, . . . are all

“none-of-the-above” and thus part of, or indistinguishable from, x(C(s0)) and also indistin-

guishable from each other. However, the decision maker does know that when she has to

make future choices, she may have discovered additional consequences.

As an intermediate construct to developing the state space, we first consider one-step-

ahead resolutions of uncertainty and awareness. With this intermediate construct, the state

space can then be defined recursively.

2.1 One-step-ahead resolutions of uncertainty

Define

S1(s0) ≡ (Ĉ(s0))A = {s : A→ Ĉ(s0)},

i.e. the set of all functions from set of basic actions to the initial set of extended consequences.

It depicts the possible resolutions of uncertainty at t = 1. This object is what was referred

to as the augmented conceivable state space in Karni and Vierø (2017). It exhausts all the

possible ways one can assign extended consequences to the basic actions. Define also the set

S̃1(s0) ≡ (C(s0))A = {s : A→ C(s0)},

i.e. the set of functions from basic actions to the initial set of known consequences. In Karni

and Vierø (2017) this was referred to as the subset of fully describable states. The elements

of S1(s0) \ S̃1(s0) are referred to as imperfectly describable, since their descriptions include

the unknown consequence x = x(C(s0)). A generic element of these sets is denoted by s1.

Example 1 provides an illustration.

Example 1 Consider the following situation in which there are two basic actions, A =

{a1, a2}, and two feasible consequences, C(s0) = {c1, c2}. The possible one-step-ahead res-

olutions of uncertainty are captured by the nine ‘states’ depicted in the matrix (1), where

x = x(C(s0)):

s1
1 s2

1 s3
1 s4

1 s5
1 s6

1 s7
1 s8

1 s9
1

a1 c1 c2 c1 c2 x x c1 c2 x

a2 c1 c1 c2 c2 c1 c2 x x x

(1)

The subset of fully describable elements is S̃1(s0) = {s1
1, . . . , s

4
1}, while {s5

1, . . . , s
9
1} are im-

perfectly describable.�
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As it appears from Example 1 and matrix (1), the elements of S1(s0) differ in how

many previously unknown consequences will be discovered. In each of the fully describable

elements s1
1, . . . , s

4
1, no new consequence is discovered. In each of elements s5

1, . . . , s
8
1, one

new consequence is discovered, and in element s9
1 two potentially different new consequences

are discovered. The set of known feasible consequences at time 1 thus depends on what is

discovered at time 1, i.e. it is a function of which ‘state’ is realized in the first period.

Define n1(s1) as the number of previously unknown consequences discovered in s1. Note

that n1(s1) ∈ {0, . . . , |A|}. Let {ĉi(s1)}n1(s1)
i=1 be the set of new consequences discovered in s1,

with {ĉi(s1)}n1(s1)
i=1 = ∅ if n1(s1) = 0. Then the set of known feasible consequences at time 1

is given by

C(s1) ≡ C(s0) ∪ {ĉi(s1)}n1(s1)
i=1 .

Similar to the definition for the initial state, define S2(s1) ≡ (Ĉ(s1))A, that is, S2(s1) depicts

the possible one-step-ahead resolutions of uncertainty following s1. Also define the subset of

fully describable elements S̃2(s1) ≡ (C(s1))A and let S2 ≡ ∪s1∈S1S2(s1), with generic element

s2.

Example 2 Consider a situation with two basic actions, A = {a1, a2}, and initially just one

feasible consequence, C(s0) = {c1}. The possible first-period one-step-ahead resolutions of

uncertainty are captured by the four ‘states’ in matrix (2) below, where again x = x(C(s0)):

s1
1 s2

1 s3
1 s4

1

a1 c1 c1 x x

a2 c1 x c1 x

(2)

In s1
1, no new consequence is discovered. Hence, C(s1

1) = C(s0), and S2(s1
1) = S1(s0), i.e.

as depicted in (2). In s2
1, one new consequence, ĉ1(s2

1), is discovered. Therefore, C(s2
1) =

C(s0) ∪ {ĉ1(s2
1)}, and S2(s2

1) = (Ĉ(s2
1))A consists of 9 elements as depicted in matrix (3)

below, where x = x(C(s2
1)) and ĉ1 = ĉ1(s2

1):

s1
2 s2

2 s3
2 s4

2 s5
2 s6

2 s7
2 s8

2 s9
2

a1 c1 c1 ĉ1 ĉ1 c1 ĉ1 x x x

a2 c1 ĉ1 c1 ĉ1 x x c1 ĉ1 x

(3)

The situation if s3
1 is realized is similar to that if s2

1 is realized, except that the consequence

ĉ1(s3
1) that is discovered in s3

1 could be different from that which would be discovered if s2
1

were realized. Since ĉ1(s3
1) is potentially different from ĉ1(s2

1), the sets C(s2
1) and C(s3

1)

are potentially different, as are the entities derived from these sets. Importantly, from an

ex-ante perspective, the decision maker cannot distinguish between different such unknown
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consequences, since she is unaware of their attributes. However, she can reason, like we just

did, that they can potentially be different. So although S2(s3
1) is also as depicted in (3), with

x and ĉ1 appropriately redefined, the decision maker can envision that the situation may be

different than that following s2
1.

In s4
1, two new consequences ĉ1(s4

1) and ĉ2(s4
1) are discovered. It could be that ĉ1(s4

1) =

ĉ2(s4
1), but from an ex-ante perspective using distinct ĉ1(s4

1) and ĉ2(s4
1) allows the decision

maker to formulate the maximal increase in awareness that she can anticipate. Then C(s4
1) =

C(s0)∪{ĉ1(s4
1), ĉ2(s4

1)} and S2(s4
1) = (Ĉ(s4

1))A consists of 16 elements as in matrix (4), where

x = x(C(s4
1)), and (ĉ1, ĉ2) = (ĉ1(s4

1), ĉ2(s4
1)):

s1
2 s2

2 s3
2 s4

2 s5
2 s6

2 s7
2 s8

2 s9
2 s10

2 s11
2 s12

2 s13
2 s14

2 s15
2 s16

2

a1 c1 c1 c1 ĉ1 ĉ1 ĉ1 ĉ2 ĉ2 ĉ2 c1 ĉ1 ĉ2 x x x x

a2 c1 ĉ1 ĉ2 c1 ĉ1 ĉ2 c1 ĉ1 ĉ2 x x x c1 ĉ1 ĉ2 x

(4)

The total number of elements in S2 = ∪s1∈S1S2(s1) is 4+9+9+16=38.�

In general, for t > 0, define nt(st) as the number of previously unknown consequences

discovered in st. Let {ĉi(st)}nt(st)i=1 be the set of new consequences discovered in st, with

{ĉi(st)}nt(st)i=1 = ∅ if nt(st) = 0. Then the set of known feasible consequences in st is given by

C(st) ≡ C(st−1) ∪ {ĉi(st)}nt(st)i=1 .

Define

St+1(st) ≡ (Ĉ(st))
A,

which depicts the possible one-step-ahead resolutions of uncertainty following st. Define the

subset of fully describable elements S̃t+1(st) ≡ (C(st))
A, and define St+1 ≡ ∪st∈StSt+1(st),

with generic element st+1.

2.2 The state space

The state space can be depicted by an event tree, albeit non-standard. Define a time-t state

ωt by

ωt ≡ (s0, s1, . . . , st),

where sτ ∈ Sτ (sτ−1) for all τ ∈ {1, . . . , t}. Thus, a time-t state gives the path through the

event tree up to and including time t. Define, for all t ∈ {0, . . . , T},

Ωt ≡ {ωt = (s0, s1, . . . , st) : sτ ∈ Sτ (sτ−1) ∀ τ = 1, . . . , t} (5)
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which is referred to as the time-t state space. The time-t state space is the set of all possible

evolutions of the decision maker’s awareness and uncertainty up to and including time t as

she can describe them given her awareness at time 0.

Define the full state space Ω by

Ω ≡
T⋃
t=0

Ωt.

Thus, the full state space Ω is the set of all states at all times, i.e. the set of all partial and

complete paths through the event tree. Define also

Ω ≡
T−1⋃
t=0

Ωt. (6)

This notation for Ω\ΩT is convenient because the ultimate period is different from the rest,

which will be made precise in subsection 2.3.

Example 2 (continued) The event tree for the situation with A = {a1, a2}, C(s0) = {c1},
and T=3 is depicted in Figure 1. The numbers after each time-2 state is the number of

branches originating at that state, and thus give the number of possible one-step-ahead res-

olutions of uncertainty following that second-period state.�

Note that while n, C, S, etcetera are defined recursively one step ahead as functions

of st, they can also be described as functions of ωt: nt(ωt), C(ωt), St+1(ωt), S̃t+1(ωt), and

St+1 = ∪ωt∈ΩtSt+1(ωt). Define, for τ ∈ {t, . . . , T},

Ωτ (ωt) ≡ {ωτ = (ωt, st+1, . . . , sτ ) : st+1 ∈ St+1(ωt) and st̂ ∈ St̂(st̂−1) ∀ t̂ = 2, . . . , τ}.

This is the set of time-τ states that can be reached from state ωt, or, in other words, the

possible continuation paths through time τ , starting from state ωt. Also, define

Ω(ωt) ≡
T⋃
τ=t

Ωτ (ωt),

which is the set of all partial and full continuation paths from ωt, starting at ωt, and

Ω(ωt) ≡
T−1⋃
τ=t

Ωτ (ωt), (7)

which differs from Ω(ωt) by excluding the last period.

One can also define

Sτ (ωt) ≡ ∪
st+1∈St+1(ωt)

...
sτ−1∈Sτ−1(sτ−2)

Sτ (sτ−1)
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Figure 1: Full state space for Example 2
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t = 0 t = 1 t = 2 T = 3

s0

s1
1 = (c1, c1)

s2
1 = (c1, x)

s3
1 = (x, c1)

s4
1 = (x, x)

(c1, c1)→ 4

(c1, x)→ 9
(x, c1)→ 9

(x, x)→ 16

(c1, c1)→ 9

(c1, c2)→ 9

(c2, c1)→ 9

(c2, c2)→ 9

(c1, x)→ 16

(c2, x)→ 16
(x, c1)→ 16
(x, c2)→ 16
(x, x)→ 25

(c1, c1)→ 9
(c1, c2)→ 9
(c2, c1)→ 9
(c2, c2)→ 9
(c1, x)→ 16
(c2, x)→ 16
(x, c1)→ 16
(x, c2)→ 16
(x, x)→ 25

(c1, c1)→ 16
(c1, c2)→ 16
(c1, c3)→ 16
(c2, c1)→ 16
(c2, c2)→ 16
(c2, c3)→ 16
(c3, c1)→ 16
(c3, c2)→ 16
(c3, c3)→ 16
(c1, x)→ 25
(c2, x)→ 25
(c3, x)→ 25
(x, c1)→ 25
(x, c2)→ 25

(x, c3)→ 25

(x, x)→ 36
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for τ ∈ {t + 1, . . . , T}. This is the time-τ part of Ωτ (ωt), describing the possible one-step-

ahead resolutions of uncertainty from time τ − 1 to time τ when the current state is ωt. For

example, St+2(ωt) = ∪
st+1∈St+1(ωt)

St+2(st+1).

If we increase T , A, or C(s0), the number of states, and hence the possible evolutions of

awareness, quickly becomes very large. If the initial set of outcomes is C0 = C(s0), there are

(abusing notation and also letting the notation for a set denote the number of elements in

the set) (C0 + 1)A first-period states. Suppressing the variables’ dependency on states, there

are
A∑

n1=0

(
A

n1

)
(C0)A−n1(C0 + n1 + 1)A

time-2 states and

A∑
n1=0

(
A

n1

)
(C0)A−n1

A∑
n2=0

(
A

n2

)
(C0 + n1)A−n2(C0 + n1 + n2 + 1)A

time-3 states. In comparison, in a standard model without increases in awareness, there

would be (S1)t time-t states if there were S1 time-1 states. Thus, due to the possible ex-

pansions in the decision maker’s awareness, the number of states grows much more rapidly

here.

Example 2 (continued) When A = {a1, a2} and C(s0) = {c1}, there are 4 time-1 states,

38 time-2 states, and 618 time-3 states. In a standard model with 4 time-1 states, there

would be 16 time-2 states and 64 time-3 states.�

Let C(ωt)
+n = C(ωt) ∪ {ĉ1, . . . , ĉn} and define the functions γ(n,A,C) by γ(n,A,C) =(

A
n

)
(C)A−n and C({nj}, ωt, τ) = C(ωt)

+
∑τ
j=1 nj . From the point of view of state ωt, the set

of possible resolutions of uncertainty at time τ is given by

Sτ (ωt) =
A⋃

nt+1=0

γ(nt+1,A,C(ωt))⋃
i1=1

A⋃
nt+2=0

γ(nt+2,A,C(ωt)
+nt+1 )⋃

i2=1

· · ·
A⋃

nτ=0

γ(nτ ,A,C({nj},ωt,τ))⋃
it=1

(Ĉ({nj}, ωt, τ))A.

Many of these states, as well as the consequences the decision maker can obtain in

them, are indescribable beyond “there may be a number of currently unknown consequences

that I could potentially have discovered by then” from her current point of view. In other

words, future acts are not even fully describable with respect to the decision maker’s current

awareness. An implication is that even constant future acts are not necessarily measurable

with respect to the decision maker’s current awareness, since they may involve consequences

she does not yet know. In contrast, in a standard model without unawareness, the only
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source of non-measurability is the uncertainty about states, and hence constant acts are

always measurable with respect to current information. Some of the axioms that will be

imposed on preferences have the role of “collapsing” states and unknown outcomes in a

way that keeps the world from exploding and addresses the additional measurability issues

that arise from some future consequences being indestinguishable given the current level of

awareness.

The framework introduced above captures the important aspects of the problem of aware-

ness of unawareness with long time horizons, namely that there is a plethora of ways that

awareness can evolve both in terms of how much, when, and in which order. The framework

does so in a systematic way that generalizes the standard approach of using event trees.

Furthermore, it is a natural extension of the state spaces in Karni and Vierø (2017).

2.3 Conceivable acts

Since this paper uses the revealed preference methodology, it is a requirement that for a

given level of awareness bets can be both meaningfully described using current language and

settled once uncertainty has been resolved. Define

f(ω0) : S1(ω0)→ ∆(Ĉ(ω0)) such that f(ω0)(s) ∈ ∆(C(ω0)) for all s ∈ S̃1(ω0), (8)

where ∆(·) denotes the probability simplex.2 I.e. f(ω0) is a function from S1(ω0) into the

set of lotteries over the time 0 set of extended consequences for which the range in the fully

describable ‘states’ is restricted to lotteries over the known feasible consequences. See Figure

2 for an illustration. The acts defined in (8) are referred to as restricted Anscombe-Aumann

acts.

The reason for the range being restricted in the fully describable ‘states’ is the requirement

that bets should be possible to settle once uncertainty resolves, and that decision makers

cannot meaningfully form preferences over acts that assign indescribable consequences to

fully describable ‘states’. In fully describable ‘states’, the consequence x remains abstract,

and one cannot deliver a consequence that has not yet been discovered. However, there is no

problem with promising to deliver a consequence, which is none of the prior consequences, if

such a consequence is discovered. Therefore, the acts can assign, to imperfectly describable

‘states’ only, consequences that will be discovered if these ‘states’ obtain.3 As a result, the

support of the lotteries in the restricted Anscombe-Aumann acts is L-shaped across ‘states’,

2The usual abuse of notation is adopted, where c is also used to denote the lottery that returns consequence

c with probability 1.
3For further discussion of this issue, see Karni and Vierø (2017).
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Figure 2: Illustration of the support of the lotteries in the restricted Anscombe-Aumann acts

-

6
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rather than rectangular like the standard Anscombe and Aumann (1963) acts, as Figure 2

shows.

In general, for ωt ∈ Ω, define similar restricted Anscombe-Aumann acts using the set of

feasible consequences for state ωt:

f(ωt) : St+1(ωt)→ ∆(Ĉ(ωt)) such that f(ωt)(s) ∈ ∆(C(ωt)) for all s ∈ S̃t+1(ωt). (9)

The acts defined in (9) are restricted Anscombe-Aumann acts originating in state ωt, with

the supports of the lotteries restricted to the set of known consequences in the ωt-fully de-

scribable elements of St+1(ωt). They are one-step-ahead acts in the sense that the uncertainty

regarding them will be resolved at the end of the current period. Let

F (ωt) ≡ {f(ωt)}.

This is the set of all restricted Anscombe-Aumann acts originating in state ωt, defined in

(9).

Define

f ≡ (f(ωt))ωt∈Ω, (10)

with Ω defined in (6). The acts defined in (10) are intertemporal acts, consisting of a one-

step-ahead act as defined in (9) for each state, that is, for each point in the event tree. Thus,

at each point in time (and in each state), two things happen: the uncertainty regarding the

previous period’s one-step-ahead act f(ωt−1) resolves and a new, current, one-step-ahead act

f(ωt) may be chosen. The last period differs, since no new one-step-ahead act is chosen. In

(9), the notation ωt is used to denote the originating state and s is used to denote the next
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period states in which the payoff of the one-step-ahead restricted Anscombe-Aumann act

materializes.4 This convention will be adopted throughout the paper.

The set of all intertemporal acts can now be defined:

F ≡ {f = (f(ωt))ωt∈Ω}. (11)

The intertemporal acts reflect that from a time-0 perspective, the only well-defined conse-

quences are those in C(s0) and x(C(s0)), but that the decision maker knows that when she

has to make future choices, she may have discovered additional consequences. The set of all

intertemporal acts, defined in (11), is the domain of the decision maker’s preferences.

For E ⊆ St+1(ωt), let p̂Ef be the intertemporal act that returns the lottery p̂ in all states

in the event E and agrees with f elsewhere. Also, let hωtf be the intertemporal act obtained

from f by replacing the restricted Anscombe-Aumann act originating at ωt by h ∈ F (ωt).

The act p̂Ef is thus a special case of hωtf for which h agrees with f(ωt) for s ∈ St+1(ωt) \E
and is constant at p̂ for s ∈ E.

For all f ∈ F , define

Hωt(f) ≡ {hωtf |h ∈ F (ωt)},

which is the set of intertemporal acts that agree with f with the exception of the restricted

Anscombe-Aumann act originating at ωt. Also define

HΩt(f) ≡ {hΩtf |h(ωt) ∈ F (ωt) ∀ωt ∈ Ωt},

with Ωt defined in (5). This is the set of intertemporal acts whose restricted Anscombe-

Aumann acts originating at all other times than t agree with f . Finally, define

Fωt ≡ {f ∈ F |f(ωτ )(s) ∈ ∆(C(ωt)) ∀ωτ ∈ Ω(ωt),∀s ∈ Sτ+1(ωτ )}

This is the set of intertemporal acts for which the support of all lotteries in the continuation

path from ωt is restricted to C(ωt). Hence, it is the set of intertemporal acts that are

measurable with respect to the ωt-level of awareness.

3 Preferences

The decision maker has a preference ordering on F at any state ωt ∈ Ω, denoted by%ωt , which

expresses the ordering conditional on the awareness level prevailing given the cumulative

4Here and henceforth, the term “each state” is used to refer to all states but the ultimate-period states.

In order to keep the exposition clean, the distinction of ultimate states will not be mentioned, except when

it is directly relevant.
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discoveries made in state ωt. Strict preference �ωt and indifference ∼ωt are defined as usual.

Axioms will be imposed on the collection of preference orderings {%ωt : ωt ∈ Ω}. It is

henceforth assumed that C(ω0) contains at least two elements.

3.1 Axioms

Axiom 1 states that only continuations of acts matter for preferences. Thus, at any point in

time and at any state, the decision maker does not care about parts of the event tree that

cannot be reached from her current position.

Axiom 1 (Conditional Preference). For all ωt ∈ Ω, for all f, f ′ ∈ F , if f(ωτ ) = f ′(ωτ ) for

all ωτ ∈ Ω(ωt) then f ∼ωt f ′.

Axioms 2 through 5 are, like Axiom 1, imposed on preferences at any time and in any

state. They resemble the axioms in Karni and Vierø (2017) that result in their generalized

expected utility representation, although the present domains are different than in Karni

and Vierø (2017). Axiom 2 contains the standard expected utility axioms.

Axiom 2 (Expected Utility). For all ωt ∈ Ω,

(i) (Preorder) the relation �ωt is asymmetric and negatively transitive on F .

(ii) (Archimedian) for all h, h′, h′′ ∈ F , if h �ωt h′ and h′ �ωt h′′, then there exist α, β ∈
(0, 1) such that αh+ (1− α)h′′ �ωt h′ and h′ �ωt βh+ (1− β)h′′.

(iii) (Independence) for all h, h′, h′′ ∈ F and for all α ∈ (0, 1], h �ωt h′ if and only if

αh+ (1− α)h′′ �ωt αh′ + (1− α)h′′.

In Axiom 3 below, the content of parts (i) and (ii) are similar to the standard content

of monotonicity, but the statement differs. The difference in statement is necessary because

the support of the lotteries in fully describable ‘states’ is restricted to the set of known

consequences, while in the imperfectly describable ‘states’, the lotteries can involve the

unknown consequence that will be discovered. That is, across one-step-ahead ‘states’ the

support of the lotteries is L-shaped rather than rectangular, as Figure 2 illustrates, which

necessitates the statement of monotonicity as in Axiom 3. Part (iii) extends monotonicity

to also hold for lotteries that occur at different points in time.5

Axiom 3 (Monotonicity). For all ωt ∈ Ω,

5In part (iii), the notation p is abused to denote the restricted Anscombe-Aumann act for which f(ωτ ) = p

for all s ∈ Sτ+1(ωτ ).
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(i) for all ωτ ∈ Ω(ωt) and �ωt-nonnull s ∈ S̃τ+1(ωτ ), for all p, q ∈ ∆(C(ωτ )), and for all

f ∈ F it holds that psf �ωt qsf if and only if pSτ+1(ωτ )f �ωt qSτ+1(ωτ )f .

(ii) for all ωτ ∈ Ω(ωt) and �ωt-nonnull s ∈ Sτ+1(ωτ ) \ S̃τ+1(ωτ ), for all p̂, q̂ ∈ ∆(Ĉ(ωτ )),

and for all f ∈ F it holds that p̂sf �ωt q̂sf if and only if p̂Sτ+1(ωτ )\S̃τ+1(ωτ )f �ωt
q̂Sτ+1(ωτ )\S̃τ+1(ωτ )f .

(iii) for all ωτ ∈ Ω(ωt), for all p, q ∈ ∆(C(ωt)), and for all f ∈ F it holds that pωτf �ωt qωτf
if and only if pΩ(ωt)f �ωt qΩ(ωt)f .

Axiom 4 requires non-triviality of each preference relation �ωt on sets of acts that only

differ in one future (or in the current) state. It implies that no state in the continuation

path is �ωt-null.

Axiom 4 (Nontriviality). For all f ∈ F , and for all ωt ∈ Ω, the strict preference relation

�ωt is non-empty on Hωτ (f) for all ωτ ∈ Ω(ωt).

Axiom 5 regards intertemporal acts that only differ in the restricted Anscombe-Aumann

act originating in a particular future (or in the current) state. Furthermore, those restricted

Anscombe-Aumann acts only differ on the imperfectly describable ‘states’ that follow and are

constant on that set of ‘states’. The axiom requires that the ranking of such intertemporal

acts is independent of the aspects on which the acts agree. This separability is not implied

by Independence, since the the payoff x(C(ωτ )) is not defined on S̃τ+1(ωτ ).

Axiom 5 (Separability). For all ωt ∈ Ω, for all f, g ∈ F , for all ωτ ∈ Ω(ωt), and for

all p̂, q̂ ∈ ∆(Ĉ(ωτ )), it holds that p̂Sτ+1(ωτ )\S̃τ+1(ωτ )f �ωt q̂Sτ+1(ωτ )\S̃τ+1(ωτ )f if and only if

p̂Sτ+1(ωτ )\S̃τ+1(ωτ )g �ωt q̂Sτ+1(ωτ )\S̃τ+1(ωτ )g.

The following axioms connect preferences across different levels of awareness. Axiom 6

requires that the attitude towards known risks is invariant over time and levels of awareness,

both for acts that differ in a single period and in two successive periods. To state the axiom,

define

Lωt(f) = {hΩ(ωt)f | h(ωτ )(s) = lτ ∈ ∆(C(ωt)) for all ωτ ∈ Ωτ (ωt), s ∈ Sτ+1(ωτ ) and τ ≥ t},

and

Lωt(F ) =
⋃
f∈F

Lωt(f).

The objects in Lωt(F ) return the same lottery, with support being a subset of ∆(C(ωt)), in

each state at time τ + 1 for all τ ≥ t, but can return different lotteries at different times.
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Hence, Lωt(F ) is a subset of F that involves risk but no subjective uncertainty, and only

involves currently known consequences. Therefore, Lωt(F ) ⊂ Fωt .
6

Axiom 6 (Time- and Awareness-Invariant Risk Preferences). For all l ∈ Lωt(F ), for all

p, p′, q, q′ ∈ ∆(C(ωt)), if for some ωt̂ ∈ Ω(ωt), and τ ≥ t̂ it is true that pΩτp
′
Ωτ+1

l %ωt̂
qΩτ q

′
Ωτ+1

l, then it is true for every ωt̂ ∈ Ω(ωt), and τ ≥ t̂.

Axiom 6 contains elements that concern preferences within an awareness level as well

as elements that link preferences across awareness levels. The part that links preferences is

stronger than the Invariant Risk Preferences axiom from Karni and Vierø (2017), since it

also applies for acts that differ across two successive periods. This was beyond the scope of

the framework in Karni and Vierø (2017).7

To state the next axiom, the following notation is introduced: For all ωt ∈ Ω and for all

st+1, s̃t+1 ∈ St+1(ωt), define the event Et+2(s̃t+1|(ωt, st+1)) by

Et+2(s̃t+1|(ωt, st+1)) ≡
{
st+2 ∈ St+2(ωt, st+1) : ∀a ∈ A, if a(s̃t+1) ∈ C(ωt) then a(st+2)

= a(s̃t+1) and if a(s̃t+1) /∈ C(ωt) then a(st+2) ∈ {x(C(ωt, st+1))} ∪ (C(ωt, st+1) \ C(ωt)).

(12)

Definition (12) maps fully describable states into degenerate events and imperfectly describ-

able states into non-degenerate events. The definition can be illustrated using matrices

(2) and (3) from Example 2. There, Et+2(s1
1|(ω0, s

2
1)) = s1

2, Et+2(s2
1|(ω0, s

2
1)) = {s2

2, s
5
2},

Et+2(s3
1|(ω0, s

2
1)) = {s3

2, s
7
2}, and Et+2(s4

1|(ω0, s
2
1)) = {s4

2.s
6
2, s

8
2, s

9
2}.

Fix two outcomes c∗, c∗ ∈ C(ω0) for which c∗ω0
f �ω0 c∗ω0f for some8 f ∈ F . Such two

outcomes exist by Axiom 4.

Axiom 7 requires that the ranking of subjective versus objective uncertainty τ periods

ahead is independent of the level of detail with which the subjective uncertainty can be

described. This is imposed for all future states and the corresponding events following

immediately after.

Axiom 7 (Forward Awareness Consistency). For all f ∈ F , for all ωt ∈ Ω, for all st+1 ∈
St+1(ωt), for all ωτ ∈ Ω(ωt, st+1) ∪ {ωt}, for all sτ+1, s̃τ+1 ∈ Sτ+1(ωτ ), for all h, g ∈ Hωτ (f),

6In axiom 6, the notation p is again abused to denote the restricted Anscombe-Aumann act for which

f(ωτ ) = p for all s ∈ Sτ+1(ωτ ).
7Dominiac and Tserenjigmid (2017b) show that in Karni and Vierø (2013), the invariant risk preferences

axiom is implied by the other axioms. It is not clear whether this would also be the case with awareness of

unawareness. Also, in the present context the axiom is necessary for acts that differ across two successive

periods.
8and hence, given the axioms, all
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and for all h′, g′ ∈ H(ωτ ,sτ+1)(f), if

g = (ηc∗ + (1− η)c∗)Sτ+1(ωτ )f, h = c∗s̃τ+1
c∗Sτ+1(ωτ )f,

g′ = (ηc∗ + (1− η)c∗)Sτ+2(ωτ ,sτ+1)f, h′ = c∗Eτ+2(s̃τ+1|(ωτ ,sτ+1))c∗Sτ+2(ωτ ,sτ+1)f,

then h %ωt g if and only if h′ %(ωt,st+1) g
′.

Axiom 7 contains elements of both Awareness Consistency I and II in Karni and Vierø

(2017) and also implies a non-increasing sense of unawareness. It ensures consistency of

preferences when looking forward. It is not necessarily reasonable to impose such a require-

ment looking backwards, since the decision maker’s awareness may have reached a higher

level. Thus, looking backwards, there are things that the decision maker can take into con-

sideration that she was not able to take into consideration previously. However, looking

forward, Axiom 7 requires that preferences will be consistent regarding the currently know

and well-understood part of the decision maker’s universe.9

As the name suggests, Axiom 8 requires that the decision maker treats all unknowns as

such. She does not a-priori distinguish between, for example, unknowns to be discovered in

different states or at different times. Anything that can not be described or imagined at her

current state of awareness is treated the same way by the decision maker. This does not

preclude that she will have a preference for when to make such discoveries.

When setting ĉ = x(C(ωτ )), Axiom 8 states that from her current point of view, the

decision maker is indifferent between getting, at time τ + 1, a consequence that she cannot

describe using her current language, but may be able to describe at time τ , and a consequence

that she will still not be able to describe with her time-τ language. Since ĉ can also be any

consequence discovered between times t and τ , Axiom 8 also states that from her current

point of view, the decision maker is indifferent between getting, at time τ + 1, different

consequences that she cannot currently describe.

Axiom 8 (Unknowns are Unknowns). For all f ∈ F , for all ωt ∈ Ω, for all ωτ ∈ Ω(ωt), and

for all ĉ ∈ Ĉ(ωτ ) \ C(ωt), x(C(ωt))Sτ+1(ωτ )\S̃τ+1(ωτ )f ∼ωt ĉSτ+1(ωτ )\S̃τ+1(ωτ )f .

Axiom 9 states that the decision maker’s attitude towards the unknown is invariant to

her level of awareness. She does not become more fearful or excited towards the unknown as

her awareness evolves. Part (i) states that the decision maker’s current attitude towards the

9There may be situations in which axiom 7 is too strong. For example, the decision maker could become

ambiguity averse in response to increases in awareness. Such a possibility is investigated in Dominiak and

Tsjerengjimid (2017a) for a one-shot increase in awareness and the decision maker being myopic with respect

to his unawareness. It is far from clear how ambiguity aversion would interplay with awareness of unawareness

or with the long time horizon.
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unknown is independent of which future state she is considering. Part (ii) states that the

attitude towards the unknown remains unchanged as the decision maker’s awareness grows.

Axiom 9 (Constant Attitude Towards the Unknown). For all f ∈ F and for all ωt ∈ Ω,

(i) if x(C(ωt))St+1(ωt)\S̃t+1(ωt)
f ∼ωt (αc∗ + (1− α)c∗)St+1(ωt)\S̃t+1(ωt)

f then

x(C(ωt))Sτ+1(ωτ )\S̃τ+1(ωτ )f ∼ωt (αc∗ + (1− α)c∗)Sτ+1(ωτ )\S̃τ+1(ωτ )f for all ωτ ∈ Ω(ωt).

(ii) if x(C(ωt))St+1(ωt)\S̃t+1(ωt)
f ∼ωt (αc∗ + (1− α)c∗)St+1(ωt)\S̃t+1(ωt)

f then

x(C(ωt, st+1))St+2(ωt,st+1)\S̃t+2(ωt,st+1)f ∼(ωt,st+1) (αc∗ + (1− α)c∗)St+2(ωt,st+1)\S̃t+2(ωt,st+1)f

for all st+1 ∈ St+1(ωt)

4 Representation

Theorem 1 provides a representation of preferences over intertemporal acts at each event and

awareness level. It also connects preferences, through connecting utilities and beliefs, across

events and awareness levels. To facilitate reading the theorem, keep the following notation

in mind: In the statement of Theorem 1, ωt is the current state, ωτ is used to denote the

state in which a restricted Anscombe-Aumann act originates, and s indexes the states in

which the uncertainty regarding the restricted Anscombe-Aumann act resolves. The proof

of Theorem 1 is in the appendix.

Theorem 1. The following statements are equivalent:

(a) {%ωt}ωt∈Ω satisfy Axioms 1 through 9.

(b) For all ωt ∈ Ω, there exist a real-valued, continuous, non-constant, Bernoulli-utility

function uωt on C(ωt) and a parameter u∗ωt, unique probability measures πωt on Ω with

πωt(ω) = 0 if ω /∈ Ω(ωt) and πωt(ω) > 0 for all ω ∈ Ω(ωt), and β > 0 such that for

every ωt, %ωt is represented by Vωt(·), where

Vωt(f) =
T−1∑
τ=t

βτ−t
∑

ωτ∈Ωτ (ωt)

∑
s∈Sτ+1(ωτ )

πωt(ωτ , s)

 ∑
c∈C(ωt)

f(ωτ )(s)(c)uωt(c)

+
(

1−
∑

c∈C(ωt)

f(ωτ )(s)(c)
)
u∗ωt

 . (13)

The function uωt is unique up to positive linear transformations, and the parameter

u∗ωt = u∗ for all ωt. Also, for all c ∈ C(ωt), uωτ (c) = uωt(c) for all ωτ ∈ Ω(ωt). The
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probability measures πωt satisfy that for all st+1 ∈ St+1(ωt), for all ωτ ∈ Ω(ωt, st+1) ∪
{ωt}, and for all sτ+1, s̃τ+1, s̄τ+1 ∈ Sτ+1(ωτ ) we have that

πωt(ωτ , s̃τ+1)

πωt(ωτ , s̄τ+1)
=
π(ωt,st+1)(ωτ , sτ+1,Eτ+2(s̃τ+1|(ωτ , sτ+1))

π(ωt,st+1)(ωτ , sτ+1,Eτ+2(s̄τ+1|(ωτ , sτ+1))
. (14)

The representation of preferences over intertemporal acts in (13) has the following form:

When finding herself in state ωt, the decision maker acts as if she computes subjective

expected utility over states using her ωt-beliefs and computes the discounted sum of utilities

using the time and state invariant discount factor β. The utility functions uωt are time and

state, and thus awareness, invariant for consequences that are common to the states. The

parameter u∗ωt reflects the decision maker’s attitude towards the unknown, which is also time

and state, and thus awareness, invariant. For each state s, the decision maker computes

the generalized von Neumann-Morgenstern utility of the lottery that the intertemporal act

under evaluation returns in that state. The generalized von Neumann-Morgenstern utility

evaluates all outcomes in C(ωt) according to uωt and collapses all unknown consequences

from the ωt-point of view into one unknown consequence, which is assigned utility value u∗.

Furthermore, all possible continuation paths are assigned positive probability.

As awareness (potentially) evolves and we move from one state to the next, beliefs are

updated according to reverse Bayesianism, which is described in (14). When awareness grows

and new consequences are indeed discovered, the resulting Bernoulli-utility function is an

extension of the previous one. The decision maker’s attitude towards the unknown remains

unchanged in response to the increase in awareness. Hence, she does not become more

excited about or fearful towards the unknown. However, the reverse Bayesian updating

of beliefs implies a decreasing sense of unawareness: As the decision maker’s awareness

grows, her posterior assigns a lower probability to making future discoveries than her prior

did. Theorem 1 thus succeeds in separating the evolution of the decision maker’s attitude

towards the unknown from the evolution of her sense of unawareness.

Existence, linearity, and state separability of the representation is a result of Axiom 2.

That only the continuation path enters (13) follows from Axiom 1. Axiom 3 aides in iden-

tifying the subjective probabilities, and the full support follows from Axiom 4. Axiom 5

ensures that in each state, the attitude towards the unknown, u∗ωt is independent of the act

under evaluation. Axiom 6 ensures exponential discounting as well as time- and awareness

invariance of the discount factor β and that subsequent Bernoulli-utility functions are exten-

sions of preceding ones. The collapsing of all unknown consequences into one, and the time-

and awareness invariance of u∗, are results of Axioms 8 and 9. Reverse Bayesian updating

of beliefs follows from (13) and Axiom 7.
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The next result in Theorem 2 provides a recursive formulation of utility. However, the

decision maker can only forecast her future utility function to the extent of her awareness.

That is, she can currently only express her future utility with respect to her current set

of extended consequences. She does not yet know what will be her Bernoulli-utility of

consequences to be discovered between the current and the next period.

To ease notation, define Uωt(p̂) =
∑

c∈C(ωt)
p̂(c)uωt(c) +

(
1−
∑

c∈C(ωt)
p̂(c)

)
u∗. This is the

generalized (with the attitude towards unawareness parameter) von Neumann-Morgenstern

utility of the lottery p̂.

Theorem 2. Let V(ωt,s)(f |C(ωt)) be derived from V(ωt,s)(f) by setting u(ωt,s)(c) = u∗ for all

c ∈ C(ωt, s) \ C(ωt). Then the representation in part (b) of Theorem 1 implies that

Vωt(f) =
∑

s∈St+1(ωt)

πωt(ωt, s)
[
Uωt(f(ωt)(s)) + βV(ωt,s)(f |C(ωt))

]
. (15)

Proof: The result is a direct consequence of Theorem 1.

The function V(ωt,s)(f |C(ωt)) can be thought of as the decision maker’s current estimate

of her future utility function, given her current awareness. The estimate treats all conse-

quences that the decision maker will potentially discover between now and the next period

as currently unknown consequences. As a result, they are all assigned a utility value of u∗.

Once the consequences that the decision maker will potentially discover between the

current and the next period are “collapsed” into the current unknown consequence, future

lotteries returning different such unknowns with the same probabilities are equivalent from

the current point of view. Then the reverse Bayesian updating of beliefs in (14) implies

that next period beliefs agree with current beliefs. Hence, the convenient recursive relation

in (15) applies. It generalizes the standard recursive approach to include unawareness. For

a comprehensive textbook discussion of the standard recursive approach and some of the

models it can be used to analyze, see e.g. Sargent (1987).

5 Conclusion

This paper has presented an intertemporal model of growing awareness, which generalizes

both the standard event-tree framework and the framework from Karni and Vierø (2017) of

awareness of unawareness. At first glance, the problem is seemingly intractable: With a long

time horizon, there is a great number of ways in which awareness may grow, both in terms

of when increases in awareness occur, what and how much is discovered at any given time,
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and in which order discoveries are made. The framework provided incorporates all these

elements of the problem in a tractable manner.

An axiomatic structure is provided that allows for a representation of preferences over

intertemporal acts under awareness of unawareness. The approach to define intertemporal

acts is inspired by Epstein and Schneider (2003). The resulting utility function is separable

across time and states and has the standard subjective expected utility form as a special

case in the absence of awareness of unawareness. With awareness of unawareness present,

the decision maker uses a generalized expected utility as in Karni and Vierø (2017) for each

state and acts as if acts were describable with respect to uncertainties she can express given

her current awareness. A recursive formulation of intertemporal utility is also obtained.

The results in Theorem 1 imply that even when facing highly complex problems with

awareness of unawareness and long time horizons, the agent can make complete contingent

plans, also for events that involve new discoveries, to the extent that she can describe these

plans. The axiomatic structure ensures dynamic consistency in a forward looking way, but

not necessarily looking backwards. When awareness does grow, the agent may wish to change

her course of action in response to her new awareness. She will, however, still maintain that

her original plan was the right one given the awareness she had at the time it was made.

Thus, the agent is rational to the extent possible given her limited awareness.

A Proof of Theorem 1

A.1 Sufficiency of Axioms

The set of intertemporal acts F is a convex set, and�ωt satisfies Axiom 2 for all ωt ∈ Ω. Thus,

by the mixture space theorem, there exists, for all ωt, a real-valued function Vωt : F → <
such that �ωt on F is represented by Vωt and

Vωt(αf + (1− α)f ′) = αVωt(f) + (1− α)Vωt(f
′) (16)

for all f, f ′ ∈ F . Moreover, Vωt is unique up to positive linear transformation: V ′ωt also

represents �ωt if and only if V ′ωt = κVωt + ζ, with κ > 0.

Lemma 1. For all ωt ∈ Ω, the function Vωt satisfies

Vωt(f) =
∑
ωτ∈Ω

Vωt(ωτ )(f(ωτ )),

i.e. Vωt is separable across states.
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Remark: Note that in Lemma 1, f(ωτ ) is the restricted Anscombe-Aumann act that orig-

inates in state ωτ .

Proof of Lemma 1: Fix f ∗ ∈ F and for each f ∈ F, τ ∈ T \ {T}, and ωτ ∈ Ωτ , let

fωτ = fωτf
∗ ∈ F be defined by fωτ (ωτ ) = f(ωτ ) and fωτ (ω) = f ∗(ω) for ω 6= ωτ . Let

m =
∑

ω∈Ω 1. For any f ∈ F ,

1

m
f +

m− 1

m
f ∗ =

∑
ωτ∈Ω

1

m
fωτ . (17)

By (16) and (17),

1

m

∑
ωτ∈Ω

Vωt(f
ωτ ) =

1

m
Vωt(f) +

m− 1

m
Vωt(f

∗). (18)

For each ωτ ∈ Ω, define Vωt(ωτ ) : ∆(C(ωτ ))
S̃τ+1(ωτ ) × ∆(Ĉ(ωτ ))

Sτ+1(ωτ )\S̃τ+1(ωτ ) → <
(this definition embodies the appropriate restriction on the support in the fully describable

‘states’) by

Vωt(ωτ )(g(ωτ )) = Vωt(g(ωτ )ωτf
∗)− m− 1

m
Vωt(f

∗).

For f ∈ F , this definition gives

Vωt(ωτ )(f(ωτ )) = Vωt(f
ωτ )− m− 1

m
Vωt(f

∗),

which implies

1

m

∑
ωτ∈Ω

Vωt(ωτ )(f(ωτ )) =
1

m

∑
ωτ∈Ω

Vωt(f
ωτ )− m− 1

m
Vωt(f

∗).

Combining with (18) and multiplying by m on both sides, we get

Vωt(f) =
∑
ωτ∈Ω

Vωt(ωτ )(f(ωτ )).

Thus, the representation is additively separable across states.

Lemma 2. For all ωτ /∈ Ω(ωt), Vωt(ωτ )(f(ωτ )) = k ∈ <.

Proof of Lemma 2: This follows from Axiom 1.

Remark: One can set k = 0 without affecting anything. For ease of notation, this is

adopted.

Lemma 3. For all ωt ∈ Ω,

Vωt(f) =
∑

ωτ∈Ω(ωt)

ρωt(ωτ )vωt(ωτ )(f(ωτ )), (19)

with ρωt(ωτ ) > 0 for all ωτ ∈ Ω(ωt).
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Remark: In Lemma 3, f(ωτ ) is, again, the restricted Anscombe-Aumann act that orig-

inates in state ωτ . Therefore, an equivalent way to state (19) is as Vωt(ωτ )(f(ωτ )) =

ρωt(ωτ )vωt(ωτ )(f(ωτ )).

Proof of Lemma 3: This follows from the Anscombe and Aumann theorem and Axioms

1, 2, 3(iii), and 4, as will now be shown. By Lemmas 1 and 2,

Vωt(f) =
∑

ωτ∈Ω(ωt)

Vωt(ωτ )(f(ωτ )). (20)

Consider the set of acts whose lottery supports are restricted to C(ωt) for all ωτ ∈ Ω(ωt).

By Axiom 4 there is a nonnull one-step-ahead resolution of uncertainty for all states. By

Axiom 3(iii) and (20),10

Vωt(ωτ )(p) > Vωt(ωτ )(q)⇔
∑

ωτ∈Ω(ωt)

Vωt(ωτ )(p) >
∑

ωτ∈Ω(ωt)

Vωt(ωτ )(q)

⇔Vωt(ω′τ )(p) > Vωt(ω
′
τ )(q) (21)

for all ωτ , ω
′
τ ∈ Ω(ωt). Thus, Vωt(ωτ ) and Vωt(ω

′
τ ) are ordinally equivalent when evaluat-

ing restricted Anscombe-Aumann acts whose lottery supports are confined to C(ωt) for all

ωτ , ω
′
τ ∈ Ω(ωt).

Let vωt ≡ Vωt(ωt). Then, for all ωτ ∈ Ω(ωt), Vωt(ωτ ) = κωτvωt + ηωτ , with κωτ , ηωτ ∈ <
and κωτ > 0 when restricted to such acts. Hence, by (20), for f, g with f(ωτ ) : Sτ+1(ωτ )→
∆(C(ωt)) and g(ωτ ) : Sτ+1(ωτ )→ ∆(C(ωt)),

f �ωt g ⇔
∑

ωτ∈Ω(ωt)

κωτvωt(f(ωτ )) + ηωτ >
∑

ωτ∈Ω(ωt)

κωτvωt(g(ωτ )) + ηωτ .

Cancel out terms, divide both sides by
∑

ωτ∈Ω(ωt)
κωτ , and define ρωt(ωτ ) ≡

κωτ∑
ωτ∈Ω(ωt)

κωτ
.

Then

Vωt(f) =
∑

ωτ∈Ω(ωt)

πωt(ωτ )vωt(f(ωτ )). (22)

By Axiom 4, ρωt(ωτ ) > 0 for all ωτ ∈ Ω(ωt).

For general acts, it follows from (22) that Vωt(f) =
∑

ωτ∈Ω(ωt)
ρωt(ωτ )vωt(ωτ )(f(ωτ )) and

that vωt(ωτ ) and vωt(ω
′
τ ) agree when evaluating acts whose lottery supports are restricted to

C(ωt).

10Here, the notation p is abused to denote the restricted Anscombe-Aumann act for which f(ωτ ) = p for

all s ∈ Sτ+1(ωτ ).

25



Lemma 4. For all ωτ ∈ Ω(ωt),

vωt(ωτ )(f(ωτ )) =
∑

s∈S̃τ+1(ωτ )

πωt(s|ωτ )
∑

c∈C(ωτ )

f(ωτ )(s)(c)uωt(ωτ )(c)

+
∑

s∈Sτ+1(ωτ )\S̃τ+1(ωτ )

πωt(s|ωτ )
∑

ĉ∈Ĉ(ωτ )

f(ωτ )(s)(ĉ)u
∗
ωt(ωτ )(ĉ) (23)

where uωt and u∗ωt are unique up to positive linear transformations and agree on C(ωτ ).

Proof of Lemma 4: First note that Axioms 2, 3(i), 3(ii), 4, and 5 all hold on Hωτ (f) for

all ωτ ∈ Ω(ωt) and all f ∈ F .

Consider h, h′ ∈ Hωτ (f). By Lemma 1, the terms in the utilities of h and h′ cancel out

for all states but ωτ , since h and h′ agree outside of ωτ . Thus, the choice of conditioning act

f is immaterial and, by Lemma 3,

h �ωt h′ ⇔ vωt(ωτ )(h(ωτ )) > vωt(ωτ )(h
′(ωτ )).

Since F (ωτ ) is a convex set, arguments analogous to those preceding Lemma 1 and in the

proof of Lemma 1 imply that

vωt(ωτ )(h(ωτ )) =
∑

s∈Sτ+1(ωτ )

vωt(ωτ )(s)(h(ωτ )(s)).

The standard induction argument shows that for p ∈ ∆(C(ωτ )) and s ∈ Sτ+1(ωτ ),

vωt(ωτ )(s)(p) =
∑

c∈C(ωτ )

p(c)uωt(ωτ )(s)(c),

with uωt(ωτ )(s)(c) = vωt(ωτ )(s)(c), where the former c denotes the consequence c and the

latter c denotes the lottery that returns c with probability 1.

Similar arguments show that for s ∈ Sτ+1(ωτ ) \ S̃τ+1(ωτ ) and p̂ ∈ ∆(Ĉ(ωτ )),

vωt(ωτ )(s)(p̂) =
∑

ĉ∈Ĉ(ωτ )

p̂(ĉ)u∗ωt(ωτ )(s)(ĉ),

where u∗ωt(ωτ )(s)(ĉ) = vωt(ωτ )(s)(ĉ).

Let Hωτ (f) ≡ {hωτf |h : Sτ+1(ωτ ) → ∆(C(ωτ ))}, i.e. the subset of Hωτ (f) for which

the support of the lotteries in h are restricted to ∆(C(ωτ )). Consider h, h′ ∈ Hωτ (f). By

Lemma 1, the choice of conditioning act f is immaterial. By Axiom 4, there exists at least

one �ωt-nonnull state s′ ∈ Sτ+1(ωτ ). By Axiom 3(i), for any p, q ∈ ∆(C(ωτ )),∑
c∈C(ωτ )

p(c)uωt(ωτ )(s)(c) >
∑

c∈C(ωτ )

q(c)uωt(ωτ )(s)(c)

⇔
∑

c∈C(ωτ )

p(c)uωt(ωτ )(s
′)(c) >

∑
c∈C(ωτ )

q(c)uωt(ωτ )(s
′)(c)
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for all �ωt-nonnull s ∈ Sτ+1(ωτ ). Thus, standard arguments following those in the proof of

Lemma 3 imply that there exists a unique probability measure πωt(·|ωτ ) on Sτ+1(ωτ ) such

that for h, h′ ∈ Hωτ (f)

h �ωt h′ ⇔
∑

s∈Sτ+1(ωτ )

πωt(s|ωτ )
∑

c∈C(ωτ )

h(ωτ )(s)(c)uωt(ωτ )(c)

>
∑

s∈Sτ+1(ωτ )

πωt(s|ωτ )
∑

c∈C(ωτ )

h′(ωτ )(s)(c)uωt(ωτ )(c),

recalling that by Lemma 1 the choice of conditioning act f is immaterial.

Analogous arguments to those above (using Axiom 3(ii) in place of 3(i)) imply that

there exists a unique probability measure φωt(·|ωτ ) on Sτ+1(ωτ ) \ S̃τ+1(ωτ ) such that for all

h, h′ ∈ Hωt(F ) that agree in all s ∈ S̃τ+1(ωτ ),

h �ωt h′ ⇔
∑

s∈Sτ+1(ωτ )\S̃τ+1(ωτ )

φωt(s|ωτ )
∑

ĉ∈Ĉ(ωτ )

h(ωτ )(s)(ĉ)u
∗
ωt(ωτ )(ĉ)

>
∑

s∈Sτ+1(ωτ )\S̃τ+1(ωτ )

φωt(s|ωτ )
∑

ĉ∈Ĉ(ωτ )

h′(ωτ )(s)(ĉ)u
∗
ωt(ωτ )(ĉ).

Now, arguments analogous to those in the proof of Theorem 1 in Karni and Vierø (2017)

complete the proof of Lemma 4.

Lemma 5. For all ωt ∈ Ω and all ωτ ∈ Ω(ωt), uωt(ωτ )(c) = uωt(ωt)(c) ≡ uωt(c) for all

c ∈ C(ωt).

Proof of Lemma 5: By the arguments preceeding (22), the functions vωt(ωt)(·) and

vωt(ωτ )(·) are ordinally equivalent for all ωτ ∈ Ωτ (ωt). Hence, uωt(ωt)(·) and uωt(ωτ )(·)
in Lemma 4 must be equal on ∆(C(ωt)) after suitable linear transformations.

Lemma 6. For all ωt ∈ Ω and all ωt̂ ∈ Ω(ωt), uωt̂(c) = uωt(c) for all c ∈ C(ωt).

Proof of Lemma 6: By Lemma 5, it suffices to consider lottery acts that only differ one

step ahead. Consider l ∈ Lωt(F ) and p, q, p′ ∈ ∆(C(ωt)). By Axiom 6,

pΩt+1(ωt)p
′
Ωt+2(ωt)l %ωt qΩt+1(ωt)p

′
Ωt+2(ωt)l

⇔pΩt̂+1(ωt̂)
p′Ωt̂+2(ωt)l %ωt̂ qΩτ (ωt̂+1)p

′
Ωt̂+2(ωt̂)

l.

Thus, vωt and vωt̂ are ordinally equivalent for p ∈ ∆(C(ωt)) for all ωt̂ ∈ Ωt̂(ωt). Hence,

after suitable linear transformation, uωt̂(c) and uωt(c) must be equal on ∆(C(ωt)).

Lemma 7. For all ωt ∈ Ω and all ωτ ∈ Ω(ωt), vωt(ωτ ) = (βωt)
τ−tvωt(ωt) for some βωt > 0.
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Proof of Lemma 7: By axiom 6, for p, q, p′, q′ ∈ ∆(C(ωt)),

vωt(ωτ )(p) + vωt(ωτ+1)(p
′) ≥ vωt(ωτ )(q) + vωt(ωτ+1)(q

′)

⇔vωt(ωτ̂ )(p) + vωt(ωτ̂+1)(p
′) ≥ vωt(ωτ̂ )(q) + vωt(ωτ̂+1)(q

′). (24)

Define

Wωt(ωτ )(p, p
′) = vωt(ωτ )(p) + vωt(ωτ+1)(p′).

Then (24) implies that Wωt(ωτ ) and Wωt(ωτ̂ ) are ordinally equivalent for all ωτ , ωτ̂ ∈ Ω(ωt).

By Lemma 5, vωt(ωτ ) and vωt(ωt) are ordinally equivalent for all ωτ ∈ Ω(ωt). Hence,

vωt(ωτ ) = αωτvωt(ωt) + γωτ for all ωτ ∈ Ω(ωt). Let vωt(ωt) ≡ vωt . Then

vωt(ωτ )(p) + vωt(ωτ+1)(p′) = αωτvωt(p) + γωτ + αωτ+1vωt(p
′) + γωτ+1

and

vωt(ωτ+1)(p) + vωt(ωτ+2)(p′) = αωτ+1vωt(p) + γωτ+1 + αωτ+2vωt(p
′) + γωτ+2 .

By ordinal equivalence of Wωt(ωτ ) and Wωt(ωτ+1),

αωτ+1vωt(p)+γωτ+1 +αωτ+2vωt(p
′)+γωτ+2 = βωt [αωτvωt(p)+γωτ +αωτ+1vωt(p

′)+γωτ+1 ]+γ (25)

for some α > 0 and γ ∈ <. It follows from (25) that αωτ+1 = βωtαωτ and αωτ+2 = β2
ωtαωτ ,

while the constants γ, γωt+1 , γωt+2 can be set to zero since they will cancel out when comparing

acts. Since ωτ was chosen arbitrarily from Ω(ωt) and αωt = 1, it follows that

vωt(ωτ ) = (βωt)
τ−tvωt(ωt)

for all ωτ ∈ Ω(ωt).

Lemma 8. For all ωt ∈ Ω, βωt = β > 0.

Proof of Lemma 8: For all p, q, p′, q′ ∈ ∆(C(ωt)) and for all ωt̂, ωt̃ ∈ Ω(ωt), ωτ ∈ Ω(ωt̂),

and ω′τ ∈ Ω(ωt̃), it holds, by Axiom 6, that

vωt̂(ωτ )(p) + vωt̂(ωτ+1)(p
′) ≥ vωt̂(ωτ )(q) + vωt̂(ωτ+1)(q

′)

⇔vωt̃(ωτ ′ )(p) + vωt̃(ωτ ′+1)(p
′) ≥ vωt̃(ωτ ′ )(q) + vωt̃(ωτ ′+1)(q

′),

which by Lemma 7 implies that

(βωt̂)
τ−t̂vωt̂(ωt̂)(p) + (βωt̂)

τ+1−t̂vωt̂(ωt̂)(p
′) = (βωt̃)

τ ′−t̃vωt̃(ωt̃)(p) + (βωt̃)
τ ′+1−t̃vωt̃(ωt̃)(p

′). (26)

By Lemma 6, we can set vωt̃(ωt̃) = vωt̂(ωt̂). Hence, (26) gives that

(βωt̂)
τ−t̂vωt̂(ωt̂)(p) + (βωt̂)

τ+1−t̂vωt̂(ωt̂)(p
′) = (βωt̃)

τ ′−t̃vωt̂(ωt̂)(p) + (βωt̃)
τ ′+1−t̃vωt̂(ωt̂)(p

′). (27)
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Consider τ, t̂, τ ′, t̃ such that τ − t̂ = τ ′ − t̃. Then (27) implies that

(βωt̂)
τ−t̂vωt̂(ωt̂)(p) + (βωt̂)

τ+1−t̂vωt̂(ωt̂)(p
′) = (βωt̃)

τ−t̂vωt̂(ωt̂)(p) + (βωt̃)
τ+1−t̂vωt̂(ωt̂)(p

′),

which implies that βωt̂ = βωt̃ ≡ β.

Lemma 9. For all ωt ∈ Ω, ωτ ∈ Ω(ωt), and ĉ ∈ Ĉ(ωτ ) \ C(ωt), u∗ωt(ωτ )(ĉ) = u∗ωt(x(C(ωt))).

Proof of Lemma 9: By Axiom 8,

u∗ωt(ωτ )(ĉ) = u∗ωt(ωτ )(c̆) (28)

for all ĉ, c̆ ∈ Ĉ(ωτ ) \ C(ωt). Also by Axiom 8,

u∗ωt(ωτ )(x(C(ωt))) = u∗ωt(ωτ )(x(C(ωτ ))). (29)

By Axiom 9(ii),

u∗ωt(ωt)(x(C(ωt))) = αu∗ωt(ωt)(c
∗) + (1− α)u∗ωt(ωt)(c∗) (30)

⇒u∗ωt(ωτ )(x(C(ωt))) = αu∗ωt(ωτ )(c
∗) + (1− α)u∗ωt(ωτ )(c∗) (31)

By Lemma 4, u∗ωt(ωτ ) agrees with uωt(ωτ ) on C(ωt) for all ωt and ωτ ∈ Ω(ωt). By Lemma

5, uωt(ωτ )(c) = uωt(c) for all c ∈ C(ωt). Therefore, the right hand sides of (30) and (31) are

equal, which implies that u∗ωt(ωτ )(x(C(ωt))) = u∗ωt(ωt)(x(C(ωt))) ≡ u∗ωt(x(C(ωt))). Equation

(29) now implies that u∗ωt(ωτ )(x(C(ωτ ))) = u∗ωt(x(C(ωt))) for all ωτ ∈ Ω(ωt) and (28) implies

that u∗ωt(ωτ )(ĉ) = u∗ωt(x(C(ωt))) for all ωτ ∈ Ω(ωt) and ĉ ∈ Ĉ(ωτ ) \ C(ωt).

Lemma 10. For all ωt ∈ Ω, u∗ωt(x(C(ωt))) = u∗(x(C(ωt))) ≡ u∗.

Proof of Lemma 10: By Lemmas 3, 4, and 9,

x(C(ωt))St+1(ωt)\S̃t+1(ωt)
f ∼ωt (αc∗ + (1− α)c∗)St+1(ωt)\S̃t+1(ωt)

f

⇔u∗ωt(x(C(ωt))) = αuωt(c
∗) + (1− α)uωt(c∗) (32)

and

x(C(ωt, st+1))St+2(ωt,st+1)\S̃t+2(ωt,st+1)f ∼(ωt,st+1) (αc∗ + (1− α)c∗)St+2(ωt,st+2)\S̃t+2(ωt,st+2)f

⇔u∗(ωt,st+1)(x(C(ωt, st+1))) = αu(ωt,st+1)(c
∗) + (1− α)u(ωt,st+1)(c∗) (33)

By Lemma 6, u(ωt,st+1)(c) = uωt(c) for all c ∈ C(ωt). Thus, the right hand sides of (32)

and (33) are equal. By Axiom 9(i), (32) implies (33). Thus, u∗(ωt,st+1)(x(C(ωt, st+1))) =
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u∗ωt(x(C(ωt))). One can proceed by induction to show that u∗ωτ (x(C(ωτ ))) = u∗ωt(x(C(ωt)))

for all ωτ ∈ Ω(ωt). Setting t = 0, it follows that

u∗ωτ (x(C(ωτ ))) = u∗ω0
(x(C(ω0))) ≡ u∗(x(C(ω0))).

Since all other c ∈ C(ωτ ) can be evaluated by uωτ , x(C(ωτ )) is the only ‘consequence’ that

needs to be evaluated by u∗ωτ . Thus, one can define u∗ ≡ u∗(x(C(ω0))) and use u∗ in the

representation.

Lemma 11. Define πωt(ωτ , s) = pωt(ωτ )πωt(s|ωτ ). Then

Vωt(f) =
T−1∑
τ=t

βτ
∑

ωτ∈Ωτ (ωt)

∑
s∈Sτ+1(ωτ )

πωt(ωτ , s)

 ∑
c∈C(ωt)

f(ωτ )(s)(c)uωt(c)

+
(

1−
∑

c∈C(ωt)

f(ωτ )(s)(c)
)
u∗ωt


Proof of Lemma 11: This follows from Lemmas 1 through 10.

Lemma 12. The probability measures πωt satisfy that for all st+1 ∈ St+1(ωt), for all ωτ ∈
Ω(ωt), and for all sτ+1, s̃τ+1, s̄τ+1 ∈ Sτ+1(ωτ ) we have that

πωt(ωτ , s̃τ+1)

πωt(ωτ , s̄τ+1)
=
π(ωt,st+1)(ωτ , sτ+1,Eτ+2(s̃τ+1|(ωτ , sτ+1))

π(ωt,st+1)(ωτ , sτ+1,Eτ+2(s̄τ+1|(ωτ , sτ+1))
.

Proof of Lemma 12: Let g, h, g′ and h′ be as in Axiom 7. Then

g %ωt h⇔
∑

s∈Sτ+1(ωτ )

πωt(ωτ , s)uωt(ηc
∗ + (1− η)c∗)

≥ πωt(ωτ , s̃τ+1)uωt(c
∗) +

 ∑
s∈Sτ+1(ωt+τ )

πωt(ωτ , s)− πωt(ωτ , s̃τ+1)

uωt(c∗)

⇔
∑

s∈Sτ+1(ωτ )

πωt(ωτ , s)[uωt(ηc
∗ + (1− η)c∗)− uωt(c∗)]

≥ πωt(ωτ , s̃τ+1)[uωt(c
∗)− uωt(c∗)], (34)
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and

g′ %(ωt,st+1) h
′ ⇔

∑
s∈Sτ+2(ωτ ,sτ+1)

π(ωt,st+1)(ωτ , sτ+1, s)u(ωt,st+1)(ηc
∗ + (1− η)c∗)

≥
∑

s∈Eτ+2(s̃τ+1|(ωτ ,sτ+1))

π(ωt,st+1)(ωτ , sτ+1, s)u(ωt,st+1)(c
∗)

+

 ∑
s∈Sτ+2(ωτ ,sτ+1)

π(ωt,st+1)(ωτ , sτ+1, s)−
∑

s∈Eτ+2(s̃τ+1|(ωτ ,sτ+1))

π(ωt,st+1)(ωτ , sτ+1, s)

uωt(c∗)

⇔
∑

s∈Sτ+2(ωτ ,sτ+1)

π(ωt,st+1)(ωτ , sτ+1, s)[u(ωt,st+1)(ηc
∗ + (1− η)c∗)− u(ωt,st+1)(c∗)]

≥
∑

s∈Eτ+2(s̃τ+1|(ωτ ,sτ+1))

π(ωt,st+1)(ωτ , sτ+1, s)[u(ωt,st+1)(c
∗)− u(ωt,st+1)(c∗)], (35)

By Lemma 6, u(ωt,st+1) = uωt . Thus, when (34) and (35) hold with equality, they imply

that
πωt(ωτ , s̃τ+1)∑

s∈Sτ+1(ωτ ) πωt(ωτ , s)
=

∑
s∈Eτ+2(s̃τ+1|(ωτ ,sτ+1)) π(ωt,st+1)(ωτ , sτ+1, s)∑

s∈Sτ+2(ωτ ,sτ+1) π(ωt,st+1)(ωτ , sτ+1, s)
. (36)

A relationship like the one in (36) holds for all states s̃τ+1 ∈ Sτ+1(ωτ ). Therefore, we have

the result in (14).

Proof of sufficiency of Axioms: The result follows from Lemmas 1 through 12.

A.2 Necessity of Axioms

Necessity of Axiom 1 is obvious. Necessity of Axiom 2 follows from the mixture space

theorem. Necessity of Axiom 4 follows from u being non-constant and πωt having full support

on Ω(ωt).

Axiom 3 is necessary, since the utilities for states where the LHS and RHS acts agree

cancel out and one can divide through with the probabilities so that the utilities reduce to

the same expressions for the two rankings in the axiom. A similar argument shows necessity

of Axiom 5. Necessity of Axiom 8 follows from all ĉ /∈ C(ωt) being assigned the same utility

value u∗. Axiom 9 follows from u∗ωt being invariant to both the awareness level ωt and to the

state under evaluation ωτ .
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To show necessity of Axiom 6, note that

pτp
′
τ+1l %ωt̂ qτq

′
τ+1l (37)

⇔Vωt̂(pτp
′
τ+1l) ≥ Vωt̂(qτq

′
τ+1l)

⇔βτ−t̂
∑

c∈C(ωt)

p(c)uωt̂(c) + βτ−t̂+1
∑

c∈C(ωt)

p′(c)uωt̂(c)

≥ βτ−t̂
∑

c∈C(ωt)

q(c)uωt̂(c) + βτ−t̂+1
∑

c∈C(ωt)

q′(c)uωt̂(c)

⇔
∑

c∈C(ωt)

p(c)uωt̂(c) + β
∑

c∈C(ωt)

p′(c)uωt̂(c) ≥
∑

c∈C(ωt)

q(c)uωt̂(c) + β
∑

c∈C(ωt)

q′(c)uωt̂(c) (38)

For different ωt̃, ωτ̃ , it holds that

pτ̃p
′
τ̃+1l %ωt̃ qτ̃q

′
τ̃+1l (39)

⇔Vωt̃(pτ̃p
′
τ̃+1l) ≥ Vωt̃(qτ̃q

′
τ̃+1l)

⇔β τ̃−t̃
∑

c∈C(ωt)

p(c)uωt̃(c) + β τ̃−t̃+1
∑

c∈C(ωt)

p′(c)uωt̃(c)

≥ β τ̃−t̃
∑

c∈C(ωt)

q(c)uωt̃(c) + β τ̃−t̃+1
∑

c∈C(ωt)

q′(c)uωt̃(c)

⇔
∑

c∈C(ωt)

p(c)uωt̃(c) + β
∑

c∈C(ωt)

p′(c)uωt̃(c) ≥
∑

c∈C(ωt)

q(c)uωt̃(c) + β
∑

c∈C(ωt)

q′(c)uωt̃(c) (40)

Since uωt̂(c) = uωt̃(c) for all c ∈ C(ωt) and for all ωt̂, ωt̃ ∈ Ω(ωt), the expressions in (38) and

(40) are equivalent, and the equivalence of (37) and (39) follows.

To show necessity of Axiom 7, note that

g %ωt h⇔ ηuωt(c
∗) + (1− η)uωt(c∗) ≥ πωt(ωτ , s̃τ+1)uωt(c

∗) + (1− πωt(ωτ , s̃τ+1))uωt(c∗),

which holds if and only if η ≥ πωt(ωτ , s̃τ+1). Also,

g′ %ωt h
′ ⇔ηu(ωt,st+1)(c

∗) + (1− η)u(ωt,st+1)(c∗)

≥π(ωt,st+1)(ωτ , s̃τ+1,Eτ+2(s̃τ+1|(ωτ , sτ+1)))u(ωt,st+1)(c
∗)

+ (1− π(ωt,st+1)(ωτ , s̃τ+1,Eτ+2(s̃τ+1|(ωτ , sτ+1))))u(ωt,st+1)(c∗),

which holds if and only if η ≥ π(ωt,st+1)(ωτ , s̃τ+1,Eτ+2(s̃τ+1|(ωτ , sτ+1))).

By (14),

πωt(ωτ , s̃τ+1)

1− πωt(ωτ , s̃τ+1)
=

π(ωt,st+1)(ωτ , s̃τ+1,Eτ+2(s̃τ+1|(ωτ , sτ+1)))

1− π(ωt,st+1)(ωτ , s̃τ+1,Eτ+2(s̃τ+1|(ωτ , sτ+1)))
,

which is equivalent to πωt(ωτ , s̃τ+1) = π(ωt,st+1)(ωτ , s̃τ+1,Eτ+2(s̃τ+1|(ωτ , sτ+1))). Hence, η ≥
πωt(ωτ , s̃τ+1) if and only if η ≥ π(ωt,st+1)(ωτ , s̃τ+1,Eτ+2(s̃τ+1|(ωτ , sτ+1))), which establishes

that the axiom holds.
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