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Abstract

In the cointegrated vector autoregression (CVAR) literature, deterministic terms
have until now been analyzed on a case-by-case, or as-needed basis. We give a compre-
hensive unified treatment of deterministic terms in the additive model Xt = γZt + Yt,
where Zt belongs to a large class of deterministic regressors and Yt is a zero-mean
CVAR. We suggest an extended model that can be estimated by reduced rank regres-
sion, and give a condition for when the additive and extended models are asymptotically
equivalent, as well as an algorithm for deriving the additive model parameters from the
extended model parameters. We derive asymptotic properties of the maximum like-
lihood estimators and discuss tests for rank and tests on the deterministic terms. In
particular, we give conditions under which the estimators are asymptotically (mixed)
Gaussian, such that associated tests are χ2-distributed.

Keywords: Additive formulation, cointegration, deterministic terms, extended model,
likelihood inference, VAR model.

JEL Classification: C32.

1 Introduction
The cointegrated vector autoregressive (CVAR) model continues to be one of the most com-
monly applied models in many areas of empirical economics, as well as other disciplines.
However, the formulation and modeling of deterministic terms in the CVAR model have
until now been analyzed only on a case-by-case basis because no general treatment exists.
Moreover, the role of deterministic terms is not always intuitive and is often diffi cult to
interpret. Indeed, Hendry and Juselius (2001, p. 95) note that “In general, parameter infer-
ence, policy simulations, and forecasting are much more sensitive to the specification of the
deterministic than the stochastic components of the VAR model.”
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The CVAR model with general deterministic terms 2

In this paper we give a comprehensive unified treatment of the CVAR model for a large
class of deterministic regressors and derive the relevant asymptotic theory. There are two
ways of modeling deterministic terms in the CVAR model, and we call these the additive
and innovation formulations. In the additive formulation, the deterministic terms are added
to the process, and in the innovation formulation they are added to the dynamic equations.

1.1 The additive formulation

In this paper, we analyze the additive formulation. To fix ideas, let the p-dimensional time
series Xt be given by the additive model,

Hadd
r : Xt = Yt + γZt, t = 1− k, . . . ,−1, 0, . . . , T, (1)

Π(L)Yt = εt, t = 1, . . . , T,

where Zt is a multivariate deterministic regressor and

Π(z) = (1− z)Ip − αβ′z −
k−1∑
i=1

Γi(1− z)zi (2)

is the lag-polynomial defining the cointegrated I(1) process Yt. Furthermore, εt is i.i.d. (0,Ω),
Y0, . . . , Y1−k are fixed initial values. We let π = (α, β,Γ1, . . . ,Γk−1) denote the parameters
in Π(L) and let λ = (π, γ) with true value λ0 = (π0, γ0). Then λ consists of freely varying
parameters, where α, β are p × r for some r < p. Throughout, we will use the Gaussian
likelihood function to derive (quasi-) maximum likelihood estimators (MLEs), but as usual,
asymptotic properties will not require normality. We also fix Ω = Ω0 at the true value, which
is without loss of generality in the asymptotic analysis of the remaining parameters because
inference on Ω is asymptotically independent of inference on λ.
The advantage of the formulation in (1) is that the role of the deterministic terms for the

properties of the process is explicitly modeled, and the interpretation is relatively straight-
forward. One can, for example, focus on the mean of the stationary processes ∆Xt and β′Xt,
for which we find from (1) that

E(∆Xt) = γ∆Zt and E(β′Xt) = β′γZt. (3)

Thus, γ can be interpreted as a “growth rate”, and, moreover, β′γ can be more accurately
estimated than the rest of γ, because the information

∑T
t=1 ZtZ

′
t in general is larger than∑T

t=1 ∆Zt∆Z
′
t. Note that if Zt contains the constant with parameter γ1 ∈ Rp, then the

corresponding entry in ∆Zt is zero and does not contain information about γ1, and we can
therefore only identify β′γ1.
When analyzing properties of the process, the following I(1) conditions are important,

see Johansen (1996, Theorem 4.2). Here, and throughout, for any p × s matrix a of rank
s < p we denote by a⊥ a p × (p − s) matrix such that a′⊥a = 0, and for s ≤ p we define
ā = a(a′a)−1.

Assumption 1. The roots of det Π(z) = 0 are either greater than one in absolute value or
equal to 1, thus ruling out seasonal roots. The matrices α and β are p× r of rank r, and for
Γ = Ip −

∑k−1
i=1 Γi, we assume that det(α′⊥Γβ⊥) 6= 0, such that Yt is an I(1) process, β′Yt is

a stationary I(0) process, and C = β⊥(α′⊥Γβ⊥)−1α′⊥ is well defined.
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It follows from Assumption 1, specifically det(α′⊥Γβ⊥) 6= 0, that (β,Γ′α⊥) has full rank,
see (51), and we use this property throughout. In the statistical analysis of the model Hadd

r

in (1), we assume freely varying parameters. Thus, for example, α and β will be freely
varying p× r matrices. For the probability analysis of the data generating process, however,
we assume the conditions of Assumption 1. Thus, for instance, the true values of α and β
will be of full rank, and the matrix C is well defined because α′⊥Γβ⊥ has full rank when
evaluated at the true values. We can then find the solution of the model equations (1) for
Yt. The solution is given by the following version of Granger’s Representation Theorem,

Yt = C
t∑
i=1

εi +

t−1∑
i=0

C∗i εt−i + At, (4)

where At depends on initial values of Yt and β′At decreases to zero exponentially. The
representation for Xt is therefore

Xt = C
t∑
i=1

εi +
t−1∑
i=0

C∗i εt−i + γZt + At, (5)

which again illustrates the explicit role of the deterministic terms in the additive formulation.
The additive formulation has been analyzed by several authors, but each for very specific

choices of deterministic terms. For example, for Zt in model (1), Lütkepohl and Saikko-
nen (2000) and Saikkonen and Lütkepohl (2000a) consider a linear trend, Saikkonen and
Lütkepohl (2000b) and Trenkler, Saikkonen, and Lütkepohl (2007) consider a linear trend
together with an impulse dummy and a shift dummy, while Nielsen (2004, 2007) considers
a linear trend together with impulse dummies. In contrast, we give a unified analysis of
general deterministic terms.

1.2 The innovation formulation

The most commonly applied method of modeling deterministic terms in the CVAR model is
the innovation formulation, where the regression variables are added in the dynamic equation,
i.e.,

∆Xt = αβ′Xt−1 +
k−1∑
i=1

Γi∆Xt−i + γ̃Zt + εt, (6)

and the deterministic terms are possibly restricted to lie in the cointegrating space; see
Johansen (1996) for a detailed treatment of the case Zt = (t, 1)′ or Rahbek and Mosconi
(1999) for stochastic regressors, Zt, in the innovation formulation. They point out that the
asymptotic distribution of the test for rank contains nuisance parameters, and that these
can be avoided by including the cumulated Zt as a regressor with a coeffi cient proportional
to α. We show below that starting with the additive formulation, the highest order regressor
automatically appears with a coeffi cient proportional to α in the innovation formulation,
and we find conditions for inference to be asymptotically free of nuisance parameters.
Under Assumption 1, the I(1) solution for the process Xt in (6) is given by, see (4),

Xt = C
t∑
i=1

(εi + γ̃Zi) +
t−1∑
i=0

C∗i (εt−i + γ̃Zt−i) + At. (7)
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A model like (6) is easy to estimate using reduced rank regression, but it follows from (7)
that the deterministic terms in the process are generated by the dynamics of the model. We
see that the deterministic term in the process is a combination of the cumulated regressors in
the first term and a weighted sum of lagged regressors. Thus, for instance, an outlier dummy
in the equation (6) becomes a combination of a step dummy from the first term in the process
(7) and an exponentially decreasing function from the second term in (7), giving a gradual
shift from one level to another. A constant in the equation (6) becomes a linear function in
the process (7), see for instance Johansen (1996, Chapter 5) for a discussion of some simple
models and Johansen, Mosconi, and Nielsen (2000) for a discussion of a model with broken
trends and impulse dummies to eliminate a few observations just after the break. Thus, one
can use the innovation formulation to model the deterministic terms in the process by taking
into account the dynamics of the model.
Applications including broken trends and several types of dummy variables are also given

in, for example, Doornik, Hendry, and Nielsen (1998), Hendry and Juselius (2001), Juselius
(2006, 2009), and Belke and Beckmann (2015). An application using various dummies,
including a “volcanic function” dummy variable for modeling volcanic eruptions, is given
in Model V of Pretis (2015), see also Pretis et al. (2016) for the definition of the volcanic
function.
The remainder of the paper is organized as follows. In the next section we discuss

the structure of the regressors, derive the extended model, and consider identification and
estimation. In Section 3 we derive the asymptotic theory for the parameter estimators in
both the extended and additive models, and in Section 4 we derive and discuss tests on
the cointegrating rank and on the coeffi cients to the regressors. Finally, we conclude and
give some general recommendations in Section 5. The proofs of all results are given in the
appendix.

2 The regressors and the additive and extended models
Going back to the additive formulation of Hadd

r in (1), we find by applying Π(L) on both
sides of (1) that Hadd

r has the alternative formulation

Hadd
r : ∆Xt = αβ′Xt−1 +

k−1∑
i=1

Γi∆Xt−i + γ∆Zt − αβ′γZt−1 −
k−1∑
i=1

Γiγ∆Zt−i + εt. (8)

From (8) it follows that maximum likelihood estimation and inference is not so straightfor-
ward as in the model with no deterministic terms, and this is the issue we want to address
in the present paper.
In the model equation (8) forXt, the coeffi cients (γ,−αβ′γ,−Γ1γ, . . . ,−Γk−1γ) all involve

γ. These depend nonlinearly on the model parameters, so the model becomes a nonlinear
restriction in the usual linear CVAR model with k lags and an innovation formulation of the
deterministic term (∆Zt, Zt−1,∆Zt−1, . . . ,∆Zt−k+1).
A general technique for handling such nonlinear models consists of finding a larger model

where the estimation problem is easier to handle. As a simple special example of this
principle, consider a linear regression with autoregressive errors, i.e. Xt = Yt + γZt, where
Yt = ρYt−1+εt and εt is i.i.d. (0, σ2). The equation forXt isXt = ρXt−1+γZt−ργZt−1+εt and
maximum likelihood leads to non-linear least squares estimation. Now consider extending
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the model to Xt = ρXt−1 + γZt + γ1Zt−1 + εt with ρ, γ, γ1, σ
2 freely varying. This extended

statistical model can be easily estimated by (linear) least squares, and asymptotic properties
of the estimators are derived under the assumption that the original (non-linear) model is
the data generating process. If we are interested in the original parameters, we can choose
the estimators of ρ, γ from the extended model. Alternatively, we can use these (consistent)
estimators as starting values for an iteration to find the MLE.
Extending model (8) in a similar way to the simple example above, leads to the problem

that the regressors Zt−1 and ∆Zt−i for i = 0, . . . , k − 1 may be linearly dependent. As a
simple example of this, consider Zt−1 = (t − 1, 1)′ with ∆Zt−i = (1, 0)′ for i ≥ 0, which are
clearly linearly dependent. Such a linear dependence between the regressors has to be avoided
before the parameters can be estimated and the properties of the estimators derived. We
therefore first discuss a formulation of the regressors that allows an analysis of the additive
model and its extension.

2.1 Formulation of a class of regressors

If a univariate deterministic regressor Ut has the property that it is linearly dependent on
some of its differences, i.e.

∑n
i=0 ci∆

iUt = 0 for all t, say, then Ut is the solution to a linear
difference equation. A basis for the solution of such an equation is of the form at

∑p
i=0 ait

i,
where a is a root of multiplicity p + 1 of

∑n
i=0 cia

i = 0, see Miller (1968). For a = 1 we
therefore get a polynomial, for a = −1 and p = 0 we get a seasonal (semi-annual) dummy
(−1)t, and for a = ±i, i =

√
−1, we can find quarterly dummies. We do not deal with

exponential regressors Zt = at, |a| > 1, because the asymptotic theory is different since the
Central Limit Theorem does not apply to sums of the form

∑T
t=1 εta

t for |a| > 1.
Thus, in the following we consider all regressors that are linearly independent of their

differences, but for regressors that are linearly dependent on their differences we only consider
a polynomial and seasonal dummies.
For asymptotic analysis, such as proving consistency of a regression coeffi cient, an impor-

tant property of a regressor is whether its information is divergent (in which case consistency
usually follows) or bounded (in which case consistency cannot be shown). For a general re-
gressor, Ut, the simple inequality (∆i+1Ut)

2 ≤ 2(∆iUt)
2 + 2(∆iUt−1)2 shows that if the

information of ∆iUt is bounded, then it is also bounded for ∆i+1Ut. On the other hand, if
the information of ∆i+1Ut is divergent then so is the information of ∆iUt. Thus, for a given
deterministic regressor these considerations motivate the following definition of the order of
a regressor.

Definition 1. For a univariate deterministic regressor Ut we define the information as∑T
t=1 U

2
t . If the information of Ut diverges, we define the order of Ut as the largest integer i

for which the information of ∆iUt diverges, i.e.

m = sup{i ≥ 0 :
T∑
t=1

(∆iUt)
2 →∞ as T →∞}. (9)

In particular, if the information of ∆iUt diverges for all i we define the order to be ∞.
Finally, if the information of Ut is bounded, we define the order to be m = −1.

Example 1. For a polynomial in t of degree m, say Pm(t), we note that ∆mPm(t) is a
constant which has diverging information, but ∆m+1Pm(t) = 0. Thus, the order (9) of the
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polynomial is equal to the degree, m. More generally, for the power function Ut = ta, with
a ∈ R and a > −1/2, the order of Ut is m = [a+ 1/2], where [x] denotes the integer part of
x. �
Example 2. For the impulse dummy Ut = 1{t=t0}, where 1{A} denotes the indicator function
for the event A, we find

∑T
t=1(∆iUt)

2 → ci for all i, so the order of Ut ism = −1. In this case,
all differences ∆iUt are linearly independent. For the broken linear trend Ut = (t − t0)+,
with x+ = max{0, x}, we see that all differences are linearly independent, but because
∆Ut = 1{t≥t0+1} satisfies

∑T
t=1(∆Ut)

2 → ∞ and
∑T

t=1(∆2Ut)
2 =

∑T
t=1 1{t=t0+1} = 1, the

order of Ut in this case is m = 1. �
Example 3. For the semi-annual dummy Ut = (−1)t (orthogonalized on the constant) we
have ∆iUt = (−2)i+1Ut, so that

∑T
t=1(∆iUt)

2 = 4i+1T →∞ for all i, and hence the order is
m =∞. Moreover, for the semi-annual dummy we find the linear dependence ∆Ut = 2Ut =
M2Ut. Similarly, for the quarterly dummy U1t = it + (−1)t + i−t (also orthogonalized on the
constant) and Ut = (U1t, U1,t−1, U1,t−2)′ ∈ R3, we find that ∆Ut = M4Ut, where

M4 =

 1 −1 0
0 1 −1
1 1 2

 . (10)

The matrix M4 has eigenvalues (2, 1 + i, 1− i). In general, a seasonal dummy with s seasons
corrected for the constant is given by U1t =

∑s−1
u=1(e2πiu/s)t, so setting Ut = (U1,t, . . . , U1,t−s+1)′

we find the linear dependence ∆Ut = MsUt, where the matrixMs has eigenvalues 1− e2πij/s,
j = 1, . . . , s− 1. �
The regressors considered are conveniently expressed in differences (rather than lags)

since these have natural interpretations in many cases. Furthermore, as both Definition 1
and the examples suggest, the sums of squares of differences of the regressors will typically
have different orders of magnitude, and hence different normalizations. We therefore define
the structure of regressors in terms of differences.

Definition 2. Let U1t, . . . , Uqt be linearly independent regressors with orders mv < ∞ for
v = 1, . . . , q. Assume further that {∆iUvt, i ≥ 0} are either linearly independent for all
i ≥ 0, or (for a polynomial) equal to zero for i > mv. Let Use,t be an (s − 1)-dimensional
seasonal dummy variable orthogonalized to the constant term. We define the multivariate
q-dimensional regressor Ut = (U1t, . . . , Uqt)

′ and consider the regressor defined as

Zt = (U ′t ,∆U
′
t , . . . ,∆

nU ′t , U
′
se,t)

′,

which is of dimension (n+ 1)q + s− 1. We decompose γ correspondingly,

γ = (γ0, . . . , γn, γse), γi = (γi1, . . . , γ
i
q), i = 0, . . . , n,

such that

γZt =

n∑
i=0

γi∆iUt + γseUse,t =

q∑
v=1

n∑
i=0

γiv∆
iUvt + γseUse,t. (11)

It is important to note that some of the components of Zt may be zero (if a polynomial
is differenced too many times), or more generally have bounded information if the order of
the component is less than n.
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2.2 Some reparametrizations of the additive model

To express the deterministic term in the additive model in terms of differences of Ut, we
expand Π(z) around z = 1 and find the coeffi cients

Π(z) = Φ0 + Φ1(1− z) + · · ·+ Φk(1− z)k, Φi = (−1)iDi
zΠ(z)|z=1/i!,

where Φi are functions of the dynamic parameters in π. In particular, see (1),

Φ0 = −αβ′ and Φ1 = αβ′ + (Ip −
k−1∑
i=1

Γi) = αβ′ + Γ. (12)

The deterministic term in the additive model equation, see (8) and (11), is then

Π(L)γZt =

k∑
i=0

Φi(

n∑
j=0

γj∆i+jUt + γse∆iUse,t) =

n+k∑
i=0

Υi∆
iUt + ΥseUse,t, (13)

where we have introduced the coeffi cients Υ0,Υ1, . . . ,Υn+k,Υse depending on (π, γ) and
given by

Υi = Υi(π, γ) =

min{i,k}∑
j=max{0,i−n}

Φj(π)γi−j, 0 ≤ i ≤ n+ k,Υse =
k∑
i=0

Φi(π)γseM i
s. (14)

In particular, we find

Υ0(π, γ) = Φ0(π)γ0 = −αβ′γ0 and Υ1(π, γ) = Φ0(π)γ1 + Φ1(π)γ0 = −αβ′γ1 + (αβ′ + Γ)γ0.

We note that Υ0 is proportional to α, and define the parameter ρ′ = ᾱ′Υ0 = ᾱ′Φ0γ
0 = −β′γ0.

It is then clear from (14) that, for given values of the dynamic parameter π, the parameters
ρ and Υ = (Υ1, . . . ,Υn+k,Υse) are linear functions of γ, and for given β also linear functions
of π. In Theorem 1 we next give an algorithm for recovering the parameter γ as a linear
function of the parameters Υ0,Υ1, . . . ,Υn, α

′
⊥ΓΥn+1,Υse, for given values of π.

Theorem 1. Let Assumption 1 be satisfied and consider the deterministic term in the addi-
tive model, Π(L)γZt, and the parameter functions Υ0,Υ1, . . . ,Υn+k,Υse, see (13) and (14).
Then, for i = 0, . . . , n,

β′γi = −ᾱ′Υi + ᾱ′
min{i,k}∑
j=1

Φjγ
i−j and α′⊥Γγi = α′⊥Υi+1 − α′⊥

min{i+1,k}∑
j=2

Φjγ
i+1−j, (15)

which can be solved for γi because (β,Γ′α⊥) has full rank. Moreover,

vec(γse) = (
k∑
i=0

M i
s ⊗ Φi)

−1 vec(Υse). (16)

The relations (15) show that, for a given value of π, the parameters (γ0, . . . , γi−1, β′γi)
can be found recursively as an invertible linear function of (ρ,Υ1, . . . ,Υi) because (β,Γ′α⊥)
has full rank, see Assumption 1. In particular, we can find γ0 from

ρ′ = −β′γ0 = ᾱ′Υ0 and α′⊥Γγ0 = α′⊥Υ1. (17)

Note that the coeffi cients β′Υn+1,Υn+2 . . . ,Υn+k are not needed to recover the coeffi cients
in γ.
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2.3 The extended model

Corresponding to the additive model Hadd
r with regressors γZt, we define the extended model

Hext
r using (8) and the coeffi cients in (14) by

Hext
r : ∆Xt = α(β′Xt−1 + ρ′Ut) +

k−1∑
i=1

Γi∆Xt−i +

n+k∑
i=1

Υi∆
iUt + ΥseUse,t + εt, (18)

where the parameters in ξ = (π, ρ,Υ) are freely varying. Thus ρ,Υ1 are not in general
functions of π, γ, but the additive modelHadd

r in (8) is a submodel of the extended modelHext
r

in (18). For the true values, the relations (14) express the true value of the extended model
parameter, ξ0, as a function of the true value of the additive model parameter, λ0 = (π0, γ0).

2.4 Comparison of the additive and extended models

We compare the additive and extended models in a simple case with lag length k = 1 and a
univariate regressor, Ut, with order m = 1, which can illustrate the role of the order and the
choice of n. The additive and extended models have the same dynamic parameters, (α, β),
and only differ in the choice of regressors and their coeffi cients. Because m = 1, Ut and ∆Ut
have diverging information, while ∆2Ut has bounded information, see Definition 1. First
suppose we choose the deterministic term Zt = Ut in the additive model, i.e. n = 0. The
additive model and associated extended model are given by

Hadd
r : ∆Xt = α(β′Xt−1 − β′γUt) + (αβ′ + Ip)γ∆Ut + εt, (19)

Hext
r : ∆Xt = α(β′Xt−1 + ρ′Ut) + Υ1∆Ut + εt. (20)

In this case the deterministic term in Hadd
r has p parameters, γ, whereas Hext

r has r + p
parameters, (ρ,Υ1). Thus, the additive model is a genuine submodel of the extended model.
An analysis of inference in this model is given in Theorem 9.
If instead we choose the deterministic term γZ = γ0Ut + γ1∆Ut, i.e. n = 1, then we find

Hadd
r : ∆Xt = α(β′Xt−1 − β′γ0Ut) + ((αβ′ + Ip)γ

0 − αβ′γ1)∆Ut + (αβ′ + Ip)γ
1∆2Ut + εt,

(21)

Hext
r : ∆Xt = α(β′Xt−1 + ρ′Ut) + Υ1∆Ut + Υ2∆2Ut + εt. (22)

Now the extended model has r + 2p parameters, (ρ,Υ1,Υ2), but Υ2 cannot be estimated
consistently, because ∆2Ut has bounded information. This leaves p+ r parameters, (ρ,Υ1),
for Hext

r . The additive model has parameters γ
0 and γ1, but because ∆2Ut has bounded

information, the only large-sample information comes from the coeffi cients β′γ0 and (αβ′ +
Ip)γ

0 − αβ′γ1, in the sense that only these coeffi cients can be estimated consistently. We
can obviously recover β′γ0 from the first coeffi cient and, using Theorem 1, we can find α′⊥γ

0

as well as β′γ1 from the second coeffi cient. Thus, for large-sample inference, the additive
model also has p+ r parameters, (γ0, β′γ1), which are in one-to-one correspondence with the
parameters (ρ,Υ1) from the extended model. This is an example of an additive model, where
n has been chosen greater than or equal to m = 1. In this case the models Hadd

r and Hext
r

are reparametrizations of each other, if we remove regressors with bounded information, and
in that sense the models are asymptotically equal, see Theorem 4. An analysis of inference
in this model is given in Theorem 8.
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In either case, note that one can include the regressors with bounded information in the
estimation, but they automatically disappear in the asymptotic analysis, as we shall show
in Lemma 1 and Theorem 4.
In general Hadd

r is a submodel of Hext
r , but there is a special case where the two models

are the same, as given in the next theorem.

Theorem 2. Consider the polynomial regressors fi(t) = (t+i) . . . (t+1)/i! for 1 ≤ i ≤ m, t ≥
0 and f0(t) = 1 for t ≥ 0. Then ∆fi(t) = fi−1(t) so that the additive model has deterministic
term γZt =

∑m
i=0 γ

ifm−i(t) and the corresponding extended model has deterministic term
αρ′fm(t) +

∑m
i=1 Υifm−i(t), see (1) and (18). If Assumption 1 is satisfied, then the additive

model is a reparametrization of the extended model.

The regressor Zt = (fm(t), fm−1(t), . . . , f0(t))′ in Theorem 2 is equivalent to the more
common regressor Zt = (tm, . . . , 1)′, in the sense that they span the same space of polyno-
mials. The form of Zt shows that we have chosen n = m in this case. The deterministic
term thus contains pm+ r identified parameters, γ0, . . . , γm−1, β′γm, in the additive model,
and the same number of identified parameters in the form of ρ,Υ1, . . . ,Υm in the extended
model. Theorem 1 shows that γ0, . . . , γm−1, β′γm from the additive model can be determined
uniquely from ρ,Υ1, . . . ,Υm from the extended model for a given value of π. Thus, for this
choice of regressors, the additive model parametrized by λ = (π, γ0, . . . , γm−1, β′γm) is the
same as the extended model parametrized by ξ = (π, ρ,Υ1, . . . ,Υm). With the choice of Zt
in Theorem 2, the models with m = 0 and m = 1 are analyzed in Johansen (1996, Chapter
5) as H∗(r), H∗1 (r). Note that the result in Theorem 2 still holds if Zt were enlarged to
include also a seasonal dummy.
In general, of course, the additive model is not a reparametrization of the extended model.

In order to derive the simple result that the additive model and the extended model with
regressors with bounded information removed, are reparametrizations, we will need to make
the next assumption.

Assumption 2. For the regressor Zt = (U ′t , . . . ,∆
nU ′t , U

′
se,t)

′ we choose n ≥ max1≤v≤qmv,
where mv is the order of Uvt, v = 1, . . . , q, see Definition 2.

The important condition in Assumption 2 is that, for each regressor in the additive
model, one should also include its differences, as long as these differences have diverging
information. As an illustration of a situation with n = 0 but m = 1, in which Assumption
2 is violated, consider the following example.

Example 4. Consider the model Xt = Yt + γ(t − t0)+ and ∆Yt = αβ′Yt−1 + εt, where
not including the step dummy associated with the broken trend function has the effect of
enforcing continuity (in t) of the deterministic term. From (19) and (20) we find the additive
and extended models,

Hadd
r : ∆Xt = α(β′Xt−1 − β′γ(t− t0)+) + (αβ′ + Ip)γ1{t≥t0+1} + εt,

Hext
r : ∆Xt = α(β′Xt−1 + ρ(t− t0)+) + υ1{t≥t0+1} + εt. �

We note that in this example, Assumption 2 would be satisfied by including a step
dummy, 1{t≥t0+1} = ∆(t − t0)+, in the additive model formulation. This is illustrated as
follows.
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Example 5. Continuation of Example 4. Suppose we include the missing step dummy,
1{t≥t0+1} = ∆(t− t0)+, in the additive model formulation such that Xt = Yt + γ0(t− t0)+ +
γ11{t≥t0+1} giving

Hadd
r : ∆Xt =α(β′Xt−1 − β′γ0(t− t0)+) + ((αβ′ + Ip)γ

0 − αβ′γ1)1{t≥t0+1}

+ (αβ′ + Ip)γ
11{t=t0+1} + εt,

Hext
r : ∆Xt =α(β′Xt−1 + ρ(t− t0)+) + υ11{t≥t0+1} + υ21{t=t0+1} + εt,

see (21) and (22). With this slightly larger additive model we have n = 1 and m = 1.
That is, by including the missing step dummy, 1{t≥t0+1}, in the additive model, and hence
allowing the broken trend to have a discontinuity at the breakpoint, t0, Assumption 2 is now
satisfied. �

For the general case, we next discuss identification and estimation of the parameters
in the additive model, in the situation where we have included a polynomial regressor to
illustrate what happens with identification and estimation of the constant term.

2.5 Identification of the parameters in the extended and additive models

Consider the parameter ξ = (π, ρ,Υ) in the extended model (18), where a polynomial re-
gressor U1t is included and U1t is of order m1. We assume that the zero regressors of the
polynomial, i.e. ∆iU1t = 0 for i > m1, have been removed together with their coeffi cients, so
that the remaining regressors are linearly independent (Definition 2). Therefore ξ is iden-
tified, because if the likelihood functions for parameters ξ1 and ξ2 are the same, then in
particular for the deterministic terms,

α1ρ
′
1Ut +

n+k∑
i=1

Υ1i∆
iUt + Υ1,seUse,t = α2ρ

′
2Ut +

n+k∑
i=1

Υ2i∆
iUt + Υ2,seUse,t for all t,

such that ξ1 = ξ2, because of linear independence of the retained regressors, except for α
and β, where only their product is identified. A convenient normalization to identify β, see
Johansen (1996, p. 179), is to assume that β′β̄0 = Ir. This will be assumed throughout.
We next consider identification of the additive model (8) as a submodel of the extended

model (18). Identification of the additive model is a consequence of the following result,
which is based on Theorem 1. The result is formulated for the additive model with a
polynomial regressor to illustrate what happens to identification of the constant term, which
generates a zero regressor when differenced.

Theorem 3. Let Assumption 1 be satisfied. Let λ = (π, γ) be the parameters in the additive
model (8), which contains a polynomial Pt = U1t, say, of order m1, and assume that the
regressors ∆iU1t = 0, i > m1, have been removed together with their coeffi cients γi1. Let ξ =
ξ(λ) = (π, ρ,Υ), where ρ,Υ are defined by (14) and ρ′ = ᾱ′Υ0, and assume the coeffi cients
Υi1, i > m1, corresponding to the polynomial have been removed. Then, for any set of
parameters λ0 and λh, h→ 0, we find

ξ(λh)→ ξ(λ0) as h→ 0 implies λh → λ0, (23)

except for the constant term with coeffi cient γm1
1,h if n ≥ m1, where we only find β′γ

m1
1,h →

β′γm1
1,0 .
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Identification of the additive model as a submodel of the extended model follows from
Theorem 3 because if ξ(λ1) = ξ(λ0) then, choosing λh = λ1, we find from (23) that λ1 = λ0.
Thus, a special case of Theorem 3 implies identification of the parameters of the additive
model in the usual sense.
However, in anticipation of our proof of consistency, Theorem 3 proves the more general

result that ξ depends continuously on the parameter λ, which one could call “continuous
identification”. The function ξ(λ) is clearly a continuous function of all parameters. If Λ
denotes the parameter space for λ and we let ξ(Λ) denote the image of Λ, then Theorem 1
shows that the function ξ restricted to ξ(Λ) is invertible. What is shown in Theorem 3 is
that this inverse function is continuous on ξ(Λ).
The result in Theorem 3 thus shows continuous identification of γ, with the exception

that, if n ≥ m1 (so that the constant term, ∆m1Pt = ∆m1U1t, is included in the model), then
the coeffi cient to the constant term is only identified in the β-directions.

2.6 Estimation of the parameters in the extended and additive models

For estimation we continue to assume that the zero regressors ∆iU1t = 0, i > m1, have
been removed together with their coeffi cients, so that the remaining regressors are linearly
independent. Then maximum likelihood estimation of the parameters of the extended model
(18) can be conducted by reduced rank regression of ∆Xt on (X ′t−1, U

′
t)
′ corrected for the

non-zero regressors. See Anderson (1951) and Johansen (1996, Chapter 6).
The additive model (8) has no simple closed-form estimation algorithm, but one can use a

numerical optimization algorithm to maximize the likelihood function, using that the model
is a submodel of the extended model subject to the restrictions (14). Starting values for
the iterations in the numerical optimization of the likelihood function can be found, using
Theorem 1, from parameter estimates of the extended model.

3 Asymptotic theory for parameter estimators
We first give some conditions on the regressors, which are needed for the asymptotic analy-
sis. We then discuss consistency of the parameter estimators and find their asymptotic
distribution, both for the additive model and the extended model.

3.1 Regressors with bounded information

In the application of the models it is useful to allow, for instance, impulse dummies like
Uvt = 1(t=t0) as a regressor to account for an outlier. However, for the asymptotic analysis,
regressors with bounded information will not give consistent estimation or asymptotically
Gaussian inference for their associated coeffi cients. That is, for any deterministic term
Uvt with order mv, the coeffi cients to the regressors ∆iUvt, i > mv, cannot be consistently
estimated because

∑T
t=1(∆iUvt)

2 is bounded for i > mv, see Definition 1. We next prove
a result that allows us to disregard regressors with bounded information in the asymptotic
analysis of the model, in the sense that these regressors have no influence on asymptotic
inference for the remaining parameters.

Lemma 1. Let Z1t be stochastic or deterministic with diverging information,
∑T

i=1 Z
2
1t

P→∞,
and let Z2t be deterministic with bounded positive information, 0 <

∑T
t=1 Z

2
2t ≤ c. Then∑T

t=1 Z1tZ2t

(
∑T

t=1 Z
2
2t)

1/2(
∑T

t=1 Z
2
1t)

1/2

P→ 0.
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A consequence of Lemma 1 is that the limit of the information matrix normalized by its
diagonal elements will be asymptotically block diagonal, with one block corresponding to
regressors with bounded information. This is used to prove that the latter type of regressors
do not contribute to the asymptotic distribution of the remaining parameters. To this end,
we now define the additive and extended models where regressors with bounded information
have been removed, and subsequently we give the result.

Definition 3. Define Hadd∗
r as the additive “core”model, given by Hadd

r in (8), but where
regressors with bounded information have been removed. Similarly define Hext∗

r as the ex-
tended “core”model, given by Hext

r in (18), but where regressors with bounded information
have been removed.

Theorem 4. The asymptotic distribution of the MLEs inHadd∗
r is the same as the asymptotic

distribution of the MLEs of the same parameters in Hadd
r , and the asymptotic distribution

of the MLEs in Hext∗
r is the same as the asymptotic distribution of the MLEs of the same

parameters in Hext
r . Moreover, if Assumptions 1 and 2 are satisfied, then the models Hext∗

r

and Hadd∗
r are reparametrizations of each other.

There are two important results in Theorem 4. First, the asymptotic distributions of
the MLEs in the core models are the same as the asymptotic distributions of the MLEs of
the same parameters in the models that include the regressors with bounded information.
Consequently, we will therefore assume in the asymptotic analysis that all such regressors
and their coeffi cients have been removed. Second, under Assumptions 1 and 2, Theorem 4
shows that the two core models, Hext∗

r and Hadd∗
r , are reparametrizations of each other. That

is, in general Hext
r and Hadd

r are not reparametrizations as for polynomials, see Theorem 2,
but Assumption 2 is the important condition that allows us to establish that, asymptotically,
a result that parallels Theorem 2 holds for the core models.

Example 6. Continuation of Examples 4 and 5. It is seen that the two models in Ex-
ample 5 are not reparametrizations as for polynomials, see Theorem 2, but the coeffi cient
υ2 is associated with a regressor with information

∑T
t=1 12

{t=t0+1} = 1, and hence does not
contribute to the asymptotic analysis (Lemma 1). That is, by including the missing step
dummy, 1{t≥t0+1}, in the additive model, and hence allowing the broken trend to have a
discontinuity at the breakpoint, t0, Assumption 2 is now satisfied and the two models in
Example 5 are asymptotically equivalent in the sense that their respective core models are
reparametrizations of each other, see Theorem 4. �
3.2 Partition and normalization of regressors with diverging information

In the following we consider only the core models,Hext∗
r andHadd∗

r , based on the arguments in
Theorem 4. That is, we remove regressors Uvt with bounded information and assume, without
loss of generality, that all components Uvt have mv ≥ 0, and we discard the regressors ∆iUvt
with i > mv. We then find that the deterministic term in the extended model (18),

α

q∑
v=1

ρ′vUvt +
n+k∑
i=1

q∑
v=1

Υiv∆
iUvt + ΥseUse,t, (24)

can be replaced– without changing the results of the asymptotic analysis– by

αρ′Z0t + Υ1Z1t, (25)



The CVAR model with general deterministic terms 13

where Z0t = Ut and Z1t are the regressors with diverging information including the seasonal
dummies,

Z1t = (∆iUvt, 1 ≤ i ≤ min{n+ k,mv}, 1 ≤ v ≤ q;U ′se,t)
′, (26)

and where the corresponding freely varying coeffi cients are

ρ′ = −β′γ0 and Υ1 = (Υiv, 1 ≤ i ≤ min{n+ k,mv}, 1 ≤ v ≤ q; Υse). (27)

We note that Z1t may be empty, in which case the remainder of the analysis is easily simplified
accordingly. We also note that the true values ρ0 and Υ1

0 are both functions of (π0, γ0), see
(14).
The asymptotic analysis is based on the behaviour of suitable product moments. We

therefore introduce the notation for product moments of sequences Ut, Vt,Wt, t = 1, . . . , T ,

〈U, V 〉T = T−1

T∑
t=1

UtV
′
t ,

and for the residuals of Ut corrected for Wt,

(Ut|Wt) = Ut − 〈U,W 〉T 〈W,W 〉
−1
T Wt.

Product moments of residuals are denoted

〈U, V |W 〉T = 〈(U |W ), (V |W )〉T = 〈U, V 〉T − 〈U,W 〉T 〈W,W 〉
−1
T 〈W,V 〉T .

When the limit as T →∞ of a product moment exists, we use the notation 〈U, V 〉T → 〈U, V 〉.
Next, for the asymptotic analysis we need the following normalizations of the regressors

and a mild condition to rule out asymptotically multicollinear regressors. For a regressor
with diverging information, i.e. ∆iUvt with i ≤ mv, we introduce the normalization MT iv.
The normalizations of Z0t and Z1t are then given by the diagonal matrices

NT0 = diag(MT0v, 1 ≤ v ≤ q),

NT1 = diag(MT iv, 1 ≤ i ≤ mv, 1 ≤ v ≤ q; ι′s−1),

where ιs−1 is an (s− 1)-vector of ones, because the s− 1 seasonal dummies need no normal-
ization. This defines the normalized regressors

Z0Tt = N−1
T0Z0t and Z1Tt = N−1

T1Z1t. (28)

Assumption 3. The normalizations satisfy M−1
T ivT

−1/2 → 0 and M−1
T ivMT,i+1,v → 0 and the

asymptotic information matrix for the normalized regressors is nonsingular, i.e. satisfies〈(
Z0T

Z1T

)
,

(
Z0T

Z1T

)〉
T

→
〈(

Z0

Z1

)
,

(
Z0

Z1

)〉
> 0. (29)

Example 7. The nonsingularity condition in Assumption 3 rules out asymptotically multi-
collinear regressors, and is easily satisfied in practice. As an example of what is ruled out,
consider the regressor Ut = (t + 1{t≥t0+1}, t + 1{t≥t0−1})

′ and suppose n = m = 1 such that
Z0t = Ut, Z1t = ∆Ut, see Definition 2 and (26). We normalize by MT0v = T and MT1v = 1
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and find Z0T [Tν] → (ν, ν)′ and Z1T [Tν] → (1, 1)′, such that the limit in (29) is singular. In
this case, one could choose instead Ut = (t+ 1{t≥t0+1}, 1{t≥t0−1}− 1{t≥t0+1})

′, which spans the
same space, but T−1U[Tν] → (ν, 0)′ and ∆U[Tν] → (1, 0)′, such that we can discard the second
component and find Z0T [Tν] → ν, Z1T [Tν] → 1, which gives rise to consistent estimation with
a non-singular asymptotic information matrix. �

Finally, for a sequence εt, which is i.i.d. (0,Ω), we define the Brownian motion Wε as the
weak limit of the partial sum of εt; that is, for St =

∑t
i=1 εi we define Wε from

T−1/2S[Tν] = T−1/2

[Tν]∑
t=1

εi
D→ Wε(ν). (30)

Of course, Wε can be considered as Wε = Ω1/2B, where B is standard Brownian motion,
but we find that using Wε is a simpler notation. For the asymptotic analysis we make the
following high-level assumption, for which primitive suffi cient conditions are well-known.

Assumption 4. The following limits as T →∞ exist and the convergences hold jointly,

T 1/2 〈ZjT , ε〉T = T−1/2N−1
Tj

∑T
t=1 Zjtε

′
t

D→ 〈Zj, ε〉 for j = 0, 1,

T−1/2 〈ZjT , St−1〉T = T−3/2N−1
Tj

∑T
t=1 ZjtS

′
t−1

D→ 〈Zj,Wε〉 for j = 0, 1,

T−1/2 〈St−1, ε〉T = T−3/2
∑T

t=1 St−1ε
′
t

D→
∫ 1

0
Wε(dWε)

′ = 〈Wε, ε〉 .

Again, we use 〈Zj, ε〉, for example, as the notation for the limit of a product moment,
because simple expressions in terms of stochastic integrals are not possible for all regressors.
Examples of the limits in Assumption 4 are given next.

Example 8. Let Ut = (t, (t − t0)+)′ with ∆Ut = (1, 1{t≥t0+1})
′. Then MT0v = T and

MT1v = 1 and we note that M−1
T ivT

−1/2 → 0 and M−1
T0vMT1v → 0, reflecting that the order of

the regressor in this case decreases when differenced. We define

u(ν) = lim
T→∞

UT,[Tν] = lim
T→∞

N−1
T0U[Tν] = (ν, (ν − ν0)+)′,

u̇(ν) = lim
T→∞

∆UT,[Tν] = lim
T→∞

N−1
T1 ∆U[Tν] = (1, 1{ν>ν0})

′.

For this example we find the limits, as T →∞,

〈UT ,∆UT 〉T = T−1
∑T

t=1(T−1Ut)(∆Ut)
′ →

∫ 1

0
u(ν)u̇(ν)′dν = 〈U,∆U〉 ,

T 1/2 〈UT , ε〉T = T−1/2
∑T

t=1 T
−1Utε

′
t

D→
∫ 1

0
u(ν)dWε(ν)′ = 〈U, ε〉 ,

T−1/2 〈UT , St−1〉T = T−3/2
∑T

t=1 T
−1UtS

′
t−1

D→
∫ 1

0
u(ν)Wε(ν)′dν = 〈U,Wε〉 .

�

The previous example illustrates a relatively simple regressor, which when appropri-
ately normalized has a limit, u(ν), in L2. In this case, the limit of the product moment
T 1/2 〈UT , ε〉T , for example, can be expressed as a stochastic integral of u(ν) with respect to
Brownian motion, Wε. However, such simple limit expressions are not always possible, as
the following example shows.
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Example 9. Let Use,t = (−1)t be a seasonal dummy variable. Then, as T →∞,

T 1/2 〈Use, ε〉T = T−1/2

T∑
t=1

Use,tε
′
t

D→ N(0,Ω) = 〈Use, ε〉 ,

T−1/2 〈St−1, Use〉T = T−3/2

T∑
t=1

St−1Use,t = OP (T−1),

where we note that 〈Use, ε〉 is not a stochastic integral involving a limit of Use,t because Use,t
does not converge in L2. �

3.3 Consistency of parameter estimators

Because we have eliminated regressors with bounded information by the above arguments,
see in particular Theorem 4, from this point onwards the asymptotic analysis will focus
on the additive and extended core models, Hadd∗

r and Hext∗
r , see (8), 18), and Definition

3. The parameters of the additive core model, Hadd∗
r , are given by λ = (π, γ) with true

value λ0 = (π0, γ0), and the parameters of the extended core model, Hext∗
r , are given by

ξ = (π, ρ,Υ1) with true value ξ0 = (π0, ρ0,Υ
1
0) = (π0,−β′0γ0,Υ

1(π0, γ0)).
Let θ denote a parametrization of the conditional mean, e.g. λ or ξ. Then, for this

parametrization, the negative (quasi-) log-likelihood function is, apart from a constant term,

L(θ) = − logLT (θ,Ω = Ω0) =
1

2
tr{Ω−1

0

T∑
t=1

εt(θ)εt(θ)
′}, (31)

where we have set Ω = Ω0 (without loss of generality for asymptotic inference on the remain-
ing parameters) and εt(θ) are the residuals, which are defined for the additive and extended
(core) models as

Hadd∗
r : εt(λ) = ∆Xt − α(β′Xt−1 − β′γ0Z0t)−

k−1∑
i=1

Γi∆Xt−i −Υ1(π, γ)Zt, (32)

Hext∗
r : εt(ξ) = ∆Xt − α(β′Xt−1 + ρ′Z0t)−

k−1∑
i=1

Γi∆Xt−i −Υ1Z1t, (33)

see (1) and (18). The MLEs of λ and ξ are then defined as λ̆ = arg minλ L(λ) and ξ̂ =
arg minξ L(ξ), respectively. The latter can be obtained by reduced rank regression, but the
former requires numerical optimization, see Section 2.6.
To prove consistency, we use the fact that both the additive and extended models can be

expressed as nonlinear submodels of a linear regression model. The Gaussian log-likelihood
function in the linear regression model is quadratic and therefore the level curves are ellipses.
This means that, for any ellipse, the log-likelihood is smaller outside the ellipse than all values
inside the ellipse. This simple fact can be used to prove consistency for a nonlinear submodel,
as in the following result from Johansen (2006, Lemma 16, p. 114), which we will apply.
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Lemma 2. Consider the regression model yt = ς ′zt+εt, where εt is i.i.d. (0,Ω0), with stochas-
tic or deterministic regressors, and let ς = ς(τ) be a continuously identified parametrization
of a submodel. We define the estimator τ̂ as the minimizer of

tr{Ω−1
0

T∑
t=1

(yt − ς(τ)′zt)(yt − ς(τ)′zt)
′}.

If the information diverges in probability for all components of zt, that is,

P
(
ωmin(

∑T

t=1
ztz
′
t) > A

)
→ 1 for all A > 0 as T →∞,

where ωmin(·) denotes the smallest eigenvalue of the argument, then τ̂ exists with probability
converging to one and is consistent as T →∞.

Consistency of the continuously identified parameters in both the additive and extended
core models thus follows from Theorems 3 and 4 because we only include regressors with
divergent information.

Theorem 5. Suppose Assumptions 1 and 3 are satisfied. In the extended core model Hext∗
r ,

see Definition 3 and (18), with parameter ξ, the MLE ξ̂ exists with probability converging to

one and ξ̂ P→ ξ0. Similarly, in the additive core model Hadd∗
r , see Definition 3 and (8), with

parameter λ, the MLE λ̆ exists with probability converging to one and λ̆ P→ λ0.

3.4 Asymptotic distribution of estimators

Letting Π0(L) denote the characteristic polynomial with the true values π0 inserted, we first
note that the residuals (33) for the extended model are

εt(ξ) = Π(L)Xt − αρ′Z0t −Υ1Z1t = Π(L)Yt + Π(L)γ0Zt − αρ′Z0t −Υ1Z1t

= (Π(L)− Π0(L))Yt + Π(L)γ0Zt − αρ′Z0t −Υ1Z1t + εt. (34)

The deterministic term in (34) is

Π(L)γ0Zt − αρ′Z0t −Υ1Z1t = −α(β′γ0
0 + ρ′)Z0t − (Υ1 −Υ1(π, γ0))Z1t. (35)

The stochastic term in the residuals in (34) is, using the normalization β = β0 +β0⊥β̄
′
0⊥(β−

β0),

(Π(L)− Π0(L))Yt = −(α− α0)β′0Yt−1 − α(β − β0)′β̄0⊥β
′
0⊥Yt−1 −

k−1∑
i=1

(Γi − Γi,0)∆Yt−i, (36)

see (2), where we note in particular that, from (4) and (30),

T−1/2β′0⊥Y[Tν] = T−1/2β′0⊥C0S[Tν] + oP (1)
D→ β′0⊥C0Wε(ν)

as T →∞.
We simplify the notation by defining new parameters to account for the parameters that

actually appear in (35) and (36) and to account for different normalizations. After deriving
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their asymptotic distributions, we use those to derive the asymptotic distributions of the
MLEs of the extended model parameters ξ = (π, ρ,Υ1) and the additive model parameters
λ = (π, γ). Thus, a convenient device for deriving the asymptotic distributions of ξ̂ and λ̆ is
to define

GTt =

(
T−1/2β′0⊥Yt−1

Z0Tt

)
, ζ =

(
T 1/2β̄′0⊥(β − β0)
NT0(γ0′

0 β + ρ)

)
, and υ = (Υ1 −Υ1(π, γ0))NT1, (37)

as well as

α∗ = (α− α0,Γ1 − Γ1,0, . . . ,Γk−1 − Γk−1,0) and Y ∗t = (Y ′t−1β0,∆Y
′
t−1, . . . ,∆Y

′
t−k+1)′, (38)

with Σstat = V ar(Y ∗t ) and

Υ1(π, γ0) = (Υiv(π, γ0), 1 ≤ i ≤ min{n+ k,mv}; Υse(π, γ0)). (39)

These definitions yield a simple expression for the residuals,

εt(α
∗, ζ, υ) = −α∗Y ∗t − αζ ′GTt − υZ1Tt + εt, (40)

and it is clear that there is a simple one-to-one relation between the parameters ξ = (π, ρ,Υ1)
and (α∗, ζ, υ) such that (α∗, ζ, υ) are freely varying parameters. By an analysis of the like-
lihood function (31) corresponding to εt(α∗, ζ, υ) in (40), we can prove the following result,
from which we will subsequently derive the asymptotic distribution of the estimators in the
extended and additive models.

Theorem 6. Suppose Assumptions 1, 3, and 4 are satisfied and that the data is generated
by (1) with λ = λ0. We consider the statistical model Hext∗

r and the parameters (α∗, ζ, υ),
see (37) and (38). Then the asymptotic distributions of the MLEs (α̂∗, ζ̂, υ̂) based on (31)
and (40) are given by

T 1/2α̂∗
D→ Np×(r+(k−1)q)

(
0,Σ−1

stat ⊗ Ω0

)
, (41)

T 1/2ζ̂
D→ −〈G,G|Z1〉−1 〈G, εα|Z1〉 , (42)

T 1/2υ̂
D→ −〈ε, Z1〉 〈Z1, Z1〉−1 + α0 〈εα, G|Z1〉 〈G,G|Z1〉−1 〈G,Z1〉 〈Z1, Z1〉−1 , (43)

where the convergences hold jointly and εα,t = (α′0Ω−1
0 α0)−1α′0Ω−1

0 εt. Furthermore, the dis-
tribution (41) is asymptotically independent of the distributions (42) and (43).

The distribution in (42) is mixed Gaussian (MG), and an important consequence is
that asymptotic inference on β can be conducted using the χ2-distribution. However, the
distribution in (43) is not MG, although we can obtain asymptotic Gaussianity for the
linear combinations α̂′⊥υ̂ = α̂′⊥(Υ̂1−Υ1(π̂, γ0))NT1 or α′0⊥υ̂ = α′0⊥(Υ̂1−Υ1(π̂, γ0))NT1, using
Slutsky’s Theorem.

3.5 Asymptotic distribution of the parameters in the extended model

We now apply Theorem 6 to derive the asymptotic distribution of the MLEs of the parameters
in the extended core model, Hext∗

r . By Theorem 4, these are the same as those of the MLEs
of the same parameters in the full extended model, Hext

r .
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Theorem 7. Suppose Assumptions 1, 3, and 4 are satisfied and that the data is generated by
(1) with λ = λ0. We consider the statistical model Hext∗

r and the parameters ξ = (π, ρ,Υ1).
Then:

(i) The asymptotic distribution of T 1/2(α̂−α0, Γ̂1−Γ1,0, . . . , Γ̂k−1−Γk−1,0) is given in (41)
in Theorem 6, and the asymptotic distribution of T β̄′0⊥(β̂ − β0) follows from (42).

(ii) For ρ′ = (ρ′1, . . . , ρ
′
q), ζ = (ζ ′1, ζ

′
2)′ defined in (37), ζ ′2 = (ζ2,1, . . . , ζ2,q), and 1 ≤ v ≤ q,

the expansions

ρ̂′v − ρ′v0 = −(β̂ − β0)′γ0
0v − β̂′(γ̂0

v − γ0
0v) = −(T 1/2ζ̂ ′1β

′
0⊥γ

0
0v)T

−1 + (T 1/2ζ̂2,v)M
−1
T0vT

−1/2

(44)
shows that the asymptotic distribution of ρ̂−ρ0, suitably normalized, follows from (42),
and is mixed Gaussian.

(iii) For 1 ≤ v ≤ q and 1 ≤ i ≤ mv, the asymptotic distribution of Υ̂iv − Υiv,0 = Υ̂iv −
Υiv(π0, γ0) consists of two terms,

Υ̂iv −Υiv,0 = (T 1/2υ̂iv)T
−1/2M−1

T iv + (T 1/2Υiv(π̂ − π0, γ0))T−1/2, (45)

see (37). The asymptotic distribution of T 1/2υ̂iv is given in (43), and, replacing β̂ by
β0, the asymptotic distribution of T 1/2Υiv(π̂−π0, γ0) depends only on that of α̂∗, which
is Gaussian and given in (41), and the two terms on the right-hand side of (45) are
asymptotically independent.

The asymptotic distributions in parts (ii) and (iii) of Theorem 7 both depend only on
the largest term. That is, in part (ii) the asymptotic distribution depends on the relation
between the normalizations T−1 andM−1

T0vT
−1/2 as well as the value of the parameter β′0⊥γ

0
0v,

whereas in part (iii) it depends on the relation between T−1/2M−1
T iv and T

−1/2. Haldrup (1996)
encounters a similar problem of different limit behaviour of estimators in the context of a
Dickey-Fuller regression with a slope coeffi cient.

3.6 Asymptotic distribution of the estimators in the additive model

Under Assumption 2, the extended and additive core models are reparametrizations of each
other, see Theorem 4. Thus, in this case we have that Υ1 = Υ1(π, γ), such that

Υ1(π̂, γ̂)−Υ1(π̂, γ0) = Υ1(π̂, γ̂ − γ0). (46)

We use this fact, together with the simple one-to-one relation between the parameters in
the extended core model, ξ, and the parameters in Theorem 6, and the one-to-one relation
between ξ and λ(ξ) in Theorem 1 to derive the asymptotic distribution of the maximum
likelihood estimator for the additive model, which we here denote λ̂ = λ(ξ̂), from the results
in Theorem 6.

Theorem 8. Suppose Assumptions 1—4 are satisfied and that the data is generated by (1)
with λ = λ0. We consider the statistical model Hadd∗

r and the parameters λ = (π, γ). Then:

(i) The asymptotic distributions of T 1/2(α̂ − α0, Γ̂1 − Γ1,0, . . . , Γ̂k−1 − Γk−1,0) and (T (β̂ −
β0)′β̄0⊥,−T 1/2β′0(γ̂0 − γ0

0)NT0) are given in (41) and (42) in Theorem 6.
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(ii) For 1 ≤ v ≤ q and 0 ≤ i ≤ mv, the asymptotic distributions of T 1/2MT iv(γ̂
i
v − γi0v) are

given in terms of those of υ̂iv = (Υ̂iv −Υiv(π̂, γ0))MT iv, see (37) and (43), as follows,

T 1/2β′0(γ̂iv − γiv0)MT iv = −T 1/2ᾱ′0υ̂iv + oP (1), 1 ≤ i ≤ mv, (47)

T 1/2α′0⊥Γ0(γ̂iv − γiv0)MT,i+1,v = T 1/2α′0⊥υ̂i+1,v + oP (1), 0 ≤ i ≤ mv − 1, (48)

T 1/2 vec(γ̂se − γse0 ) = (
k∑
i=0

M i′
s ⊗ Φi0)−1T 1/2 vec(υ̂se). (49)

(iii) The distributions (47)—(49) are asymptotically independent of the distribution (41)
given above.

The main result in Theorem 8 is that the simple condition in Assumption 2 of including
enough differenced regressors in the additive model, implies that the additive and extended
core models are reparametrizations of each other (Theorem 4). This permits relatively
straightforward inference on the parameters of the additive model. Moreover, by Theorem
4, the asymptotic distributions of the MLEs of the parameters in the additive core model,
Hadd∗
r , given in Theorem 8, are the same as those for the same parameters in the full additive

model, Hadd
r .

Recall that the distribution in (42) is mixed Gaussian (MG), so that asymptotic inference
on β can be conducted using the χ2-distribution also in the additive model. Also note that
T 1/2α′0⊥υ̂i+1,v is asymptotically Gaussian, see (43), but T 1/2ᾱ′0υ̂iv is neither asymptotically
Gaussian nor mixed Gaussian. Thus, to use Theorem 8, for example, to test hypotheses
on the parameter γ0

v , the parameter needs to be divided into two components for which the
estimators have different convergence rates as in (42) and (48). This is discussed in detail
in Section 4.

3.7 Asymptotic distributions when m > n

If the condition that max1≤v≤qmv ≤ n in Assumption 2 is violated, inference in the additive
model becomes much more involved. To simplify the discussion, we consider the additive
(core) model for a univariate regressor Ut with order m, lag length k = 1, and n = 0, that is
γZt = γUt. The general case follows similarly, but with more complicated notation.
We now consider the asymptotic distributions when m > n, i.e., when Assumption 2 is

violated. The asymptotic theory for the extended model in Theorem 7 covers the case of
m > n, but the theory for the additive model in Theorem 8 does not. In the next theorem,
we compare inference in the two models in a simple case when m > n.

Theorem 9. Suppose Assumptions 1, 3, and 4 are satisfied, but Assumption 2 is violated,
and that the data is generated by (1) with λ = λ0. We consider the statistical model Hadd∗

r

in the special case n = 0, k = 1, and m = 1 and with the parameters λ = (π, γ). Then:

(i) The asymptotic distribution of T 1/2(α̂− α0) in (41) continues to hold.
(ii) The asymptotic distribution of

T 1/2ζ̂ =

(
T β̄′0⊥(β̂ − β0)

−T 1/2NT0(γ̂ − γ0)′β̂

)
,

or any linear combination of it, is not mixed Gaussian.
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(iii) The asymptotic distribution α′0⊥(γ̂ − γ0)NT1 is neither asymptotically Gaussian nor
mixed Gaussian and the same holds for any linear combination of it.

(iv) Finally, the asymptotic information matrix for ζ in the extended model is larger than
the asymptotic information matrix for ζ in the additive model, in the sense that the
difference is positive definite.

Note that when n < m, inference for α̂, Γ̂1, . . . , Γ̂k−1 in the additive model is asymp-
totically the same as for n ≥ m. This can be explained by the block-diagonality of the
information matrix for the parameters (α,Γ1, . . . ,Γk−1) and the remaining parameters, such
that inference on (α,Γ1, . . . ,Γk−1) can be conducted as if the remaining parameters were
known.
In order to explain what happens with the regression parameters in the additive model,

we decompose γ into β′γ and α′⊥γ. Note that for k = 1 we have Γ = Ip, so that α′⊥β⊥ has
full rank. The first parameter is estimated as the coeffi cient to Ut−1, and the contribution
to β′γ from the coeffi cient to ∆Ut is asymptotically negligible, whereas the parameter α′⊥γ
is estimated from the coeffi cient to ∆Ut. Thus the information in β′γ∆Ut is not used in the
additive model.
By extending the model, we replace the coeffi cient to ∆Ut by a freely varying parameter,

and can then exploit all the information in the data. This simplifies inference, and the cost
of a loss of effi ciency as measured by the ratio of the information matrices. More precisely,
the limiting asymptotic conditional variance of the mixed Gaussian distribution of ζ̂ in the
extended model is larger than the corresponding expression for the additive model, but the
interpretation of the limit distribution is entirely different in the two models.
The diffi cult inference problems in the additive model when Assumption 2 is violated

could possibly be solved by an application of the bootstrap along the lines of Cavaliere,
Rahbek, and Taylor (2012) and Cavaliere, Nielsen, and Rahbek (2015). However, enlarging
the model to have n ≥ m is a simple device to achieve simple inference as illustrated in
Examples 4, 5, and 6.

4 Hypothesis testing
We first give the asymptotic distribution of the test for cointegration rank and then discuss
tests on coeffi cients of deterministic terms. In both cases we work under Assumption 2 so
that the additive and extended models are reparametrizations of each other.

4.1 Test of cointegration rank

We consider the extended model (18) for r = p, and regressors with bounded information
removed,

Hext∗
p : ∆Xt = ΠXt−1 + Υ0Z0t +

k−1∑
i=1

Γi∆Xt−i + Υ1Z1t + εt. (50)

The likelihood ratio test for rank r or Π = αβ′, where α and β are p× r matrices, is denoted
LR(Hext∗

r |Hext∗
p ). By Theorem 4, the asymptotic distribution of LR(Hext∗

r |Hext∗
p ) is the same

as that of LR(Hext
r |Hext

p ) in the full model. For the general class of models and deterministic
terms considered, we can provide a unified result for the asymptotic distribution of the test
of cointegration rank, and this is given next.
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Theorem 10. Under Assumptions 1— 4, the asymptotic distribution of the test of cointe-
grating rank in either the extended core model, Hext∗

r , or in the additive core model, Hadd∗
r ,

is given by

−2 logLR(Hext∗
r |Hext∗

p )
D→ tr{〈εα⊥ , G|Z1〉 〈G,G|Z1〉−1 〈G, εα⊥|Z1〉},

where εα⊥,t = (α′0⊥Ω0α0⊥)−1/2α′0⊥εt is i.i.d. (0, Ip−r). By Theorem 4, the statistics LR(Hext
r |Hext

p )
and LR(Hadd

r |Hadd
p ) have the same asymptotic distribution as LR(Hext∗

r |Hext∗
p ).

Note that the limit distribution of the rank test depends on the type of regressors and
needs to be simulated for the various cases. However, it does not depend on the values of
the regression parameters, i.e. the rank test is asymptotically similar with respect to the
regression parameters, see Nielsen and Rahbek (2000). This is a consequence of starting
from the additive formulation with n ≥ max1≤v≤qmv, and deriving the extended model from
the additive model. In the innovation formulation (6), this is not the case, see for example
the analysis of the model with an unrestricted constant term in Johansen (1996, Chapter
13.5).

4.2 Tests of hypotheses on deterministic terms

We consider inference on the coeffi cients γiv, 0 ≤ i ≤ mv ≤ n, in the additive model under
Assumption 2. It follows from Theorems 6 and 8 that the limit distribution of γ̂iv − γiv0

naturally decomposes in two parts, and we therefore split the hypothesis γiv = 0 into a test
that β′γiv = 0 and a test that α′⊥Γγiv = 0 assuming β′γiv = 0 (since the matrix (β,Γ′α⊥) has
full rank under Assumption 1, see Theorem 1). It appears natural first to investigate if γ0

v ,
i.e. the coeffi cient of Uvt, is zero. If we cannot reject that it is zero, then we can proceed to
test that the coeffi cient of ∆Uvt is zero, that is, test the hypothesis γ1

v = 0, assuming γ0
v = 0,

etc. Thus we can apply the asymptotic distributions in Theorems 7 and 8 as in Theorem 11
to test recursively that γiv = 0, provided we assume that γjv = 0, 0 ≤ j < i.
Under Assumption 2 the additive and extended core models are reparametrizations (The-

orem 4). Therefore, estimation of the unrestricted model can be performed by reduced rank
regression of ∆Xt on (X ′t−1, Z

′
0t)
′ corrected for lagged ∆Xt and the regressors Z1t, where

Z0t = Ut, see (25) and Section 2.6. Under the hypothesis β′γ0
v = 0, the parameters can be

estimated in the same way by reduced rank regression, but removing Uvt from Z0t. Finally,
if both β′γ0

v = 0 and α′⊥Γγ0
v = 0, so that γ0

v = 0, the estimation can also be performed by
reduced rank regression, but replacing Uvt with ∆Uvt in Z0t and removing ∆Uvt from Z1t.

Theorem 11. Let Assumptions 1—4 be satisfied. Then:

(i) In the additive core model, Hadd∗
r , the likelihood ratio test for the hypothesis ρ′v =

−β′γ0
v = 0 is asymptotically χ2(r)-distributed.

(ii) In the additive core model, Hadd∗
r , with mv ≥ 1, the likelihood ratio test for the hypoth-

esis α′⊥Γγ0
v = 0, given that ρ′v = 0, is asymptotically χ2(p− r)-distributed.

(iii) In the additive core model, Hadd∗
r , with mv ≥ 1, the likelihood ratio test for the joint

hypothesis, γ0
v = 0, is asymptotically χ2(p)-distributed.

(iv) By Theorem 4, the same results hold in the additive model, Hadd
r .
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5 Conclusions
We define the CVAR model with additive deterministic terms and derive the corresponding
innovation formulation which is nonlinear in the parameters. This additive model is extended
to a model which is linear in the coeffi cients of the deterministic terms and hence allows
estimation by reduced rank regression. A general class of regressors is defined and for each
regressor its order. This setup allows a discussion of the relation between the innovation
formulation of the additive model and its extension.
A simple condition for when the additive and the extended model are (asymptotically)

identical is given. The condition, given as Assumption 2, is that for each regressor in the
additive model one should also include its differences, as long as they have diverging infor-
mation. If this recommendation is not followed, asymptotic inference is considerably more
complicated. For example, when the regressor is a polynomial or power function, say ta for
some a > −1/2, the recommendation is to include (at least) m = [a + 1/2] differences of
ta, which seems like a natural thing to do. Indeed, not doing so seems quite strange in most
circumstances. On the other hand, for the broken trend function, (t− t0)+, it may in fact be
reasonable to exclude the first difference, 1{t≥t0+1}, when insisting on continuity of the trend
function as in Example 4. However, the recommendation is to include the first difference
anyway, even if it is believed to be zero, because including it leads to simple inference, see
Examples 5 and 6.
We derive the asymptotic distribution of the rank test in both the additive and the

extended models, and show that both are similar with respect to the regression parameters.
The asymptotic distribution of the parameter estimates is found to be a mixture of a Gaussian
distribution and a mixed Gaussian distribution, and finally we show how it can be applied
to test that the regression coeffi cients are zero.

A Appendix: proofs of results
A.1 Proof of Theorem 1

The two results in (15) follow from (14) when multiplying by ᾱ′ and α′⊥, respectively, using
Φ0 = −αβ′ and Φ1 = αβ′ + Γ. It follows from

(β,Γ′α⊥)′(β, β⊥) =

(
β′β 0
α′⊥Γβ α′⊥Γβ⊥

)
, (51)

and Assumption 1 that α′⊥Γβ⊥ has full rank, and hence that also (β,Γ′α⊥) has full rank,
so that the relations in (15) can be solved for γi. To solve for γse, we let (ωj, vj), j =
1, . . . , s − 1, be the eigenvalues and eigenvectors of Ms. It is clear from (14) that Υse is
a linear function of γse, and we want to show that this function is non-singular, that is,
that Υse =

∑k
i=0 Φiγ

seM i
s = 0 implies γse = 0. To see this, post-multiply by vj and use

M i
svj = ωijvj, such that

0 = Υsevj =
k∑
i=0

Φiγ
seM i

svj =

k∑
i=0

Φiω
i
jγ

sevj = Π(1− ωj)γsevj.

Now ωj = 1 − e2πij/s, j = 1, . . . , s − 1, see Example 3, such that Π(1 − ωj) = Π(e2πij/s),
which by Assumption 1 has full rank, such that γsevj = 0 for all j and hence γse = 0. The



The CVAR model with general deterministic terms 23

definition of Υse is therefore

vec(Υse) = (
k∑
i=0

M i
s ⊗ Φi) vec(γse),

where
∑k

i=0M
i
s ⊗ Φi is of full rank. The solution is then given by (16).

A.2 Proof of Theorem 2

The result ∆fi(t) = fi−1(t) follows from the identity

(t+ i) · · · (t+ 1)− (t− 1 + i) · · · t = (t+ i) ((t− 1 + i) · · · (t+ 1))− ((t− 1 + i) · · · (t+ 1)) t

= ((t− 1 + i) · · · (t+ 1)) (t+ i− t) = ((t− 1 + i) · · · (t+ 1)) i

after division by i!.
The additive formulation of model (1) with Zt = (fm(t), . . . , f0(t))′ has n = m and

deterministic term

Π(L)γZt =
k∑
i=0

Φi∆
i

m∑
j=0

γjfm−j(t) =
k∑
i=0

m∑
j=0

Φiγ
jfm−j−i(t)

=
m∑
s=0

Υsfm−s(t) = αρ′fm(t) +
m∑
s=1

Υsfm−s(t),

where the penultimate equality follows because ∆jfm(t) = 0 for j > m.

A.3 Proof of Theorem 3

The proof follows from Theorem 1 because ξ(λ) determines λ as a linear, and hence contin-
uous, function except for α′⊥Γγm1

1 (in the case n ≥ m1).

A.4 Proof of Lemma 1

For T1 ≤ T , we decompose the numerator as
T∑
t=1

Z1tZ2t =

T1∑
t=1

Z1tZ2t +
T∑

t=T1+1

Z1tZ2t,

and evaluate the second term using the Cauchy-Schwarz inequality,

|
T∑

t=T1+1

Z1tZ2t| ≤ (

T∑
t=T1+1

Z2
1t)

1/2(

T∑
t=T1+1

Z2
2t)

1/2 ≤ (

T∑
t=1

Z2
1t)

1/2(

∞∑
t=T1+1

Z2
2t)

1/2.

Because
∑T

t=1 Z
2
2t ≤ c, it follows that, for all ε > 0 and T1 suffi ciently large, we have

|
T∑

t=T1+1

Z1tZ2t|(
T∑
t=1

Z2
1t)
−1/2 ≤ (

∞∑
t=T1+1

Z2
2t)

1/2 ≤ ε/2.

Finally, because
∑T

t=1 Z
2
1t

P→ ∞, we can choose T so large that, for any (fixed) T1 and any
δ > 0, we have

|
T1∑
t=1

Z1tZ2t|(
T∑
t=1

Z2
1t)
−1/2 ≤ ε/2

with probability greater than 1− δ, which completes the proof.
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A.5 Proof of Theorem 4

Lemma 1 shows that, for both the additive and the extended models, the limit of the infor-
mation matrix normalized by its diagonal elements is asymptotically block diagonal. One
block corresponds to the coeffi cients of the regressors with bounded information and another
corresponds to the parameters in the core model. This implies that the asymptotic distrib-
utions of the MLEs in the core models are the same as the asymptotic distributions of the
MLEs of the same parameters in the full models.
Under Assumptions 1 and 2, the core models, Hext∗

r and Hadd∗
r , have the same number of

parameters. For the core model Hext∗
r , see (27) the parameters are, apart from π and Υse,

the rq +
∑q

v=1mv parameters collected in

(ρ,Υi1, . . . ,Υi,mv , 1 ≤ v ≤ q). (52)

For the core model Hadd∗
r , the parameters are, see (11), apart from π and Υse, the pq +∑q

i=1(p(mv − 1) + r) parameters collected in

(γ0, γ1
v , . . . , γ

mv−1
v , β′γmv

v , 1 ≤ v ≤ q). (53)

Theorem 1 shows how (52) can be recovered from (53) and vice versa. Thus, the core models
are reparametrizations of each other.

A.6 Proof of Theorem 5

We can express both the additive model (8) and the extended model (18) as nonlinear
submodels of a linear regression model as follows. Because we have normalized β on β′β̄0 =
Ir, we can define θ = β̄′0⊥(β−β0) such that β = β0 +β0⊥θ. Then the extended model (18) is

∆Xt = αβ′0Xt−1 + αθ′β′0⊥Xt−1 + αρ0′Z0t +
k−1∑
i=1

Γi∆Xt−i + Υ1Z1t + Υ2Z2t + εt,

which is a submodel of the linear regression model

∆Xt = α(β′0Xt−1) + φ(β′0⊥Xt−1) + ψZ0t +
k−1∑
i=1

Γi∆Xt−i + Υ1Z1t + Υ2Z2t + εt (54)

defined by the restrictions φ = αθ′, ψ = αρ0′, and the remaining parameters being the same
in the two models. From Theorem 3 it follows that, because α0ρ

0′
h → α0ρ

0′
0 and α0θ

′
h → α0θ

′
0

implies θh → θ0 and ρ0
h → ρ0

0, the extended model is continuously identified in the larger
linear regression model (54). Similarly, the additive model is continuously identified in the
extended model and hence in the larger linear regression model. The result now follows
immediately from Theorems 3 and 4.

A.7 Proof of Theorem 6

The likelihood is given in (31) with εt(θ) replaced by the residuals εt(α∗, ζ, υ), see 40).
Derivatives of εt: At the true values, (α∗, ζ, υ) = (α∗0, ζ0, υ0) = (0, 0, 0), we find the

derivatives

Dα∗εt(α
∗
0, ζ0, υ0; dα∗) = −(dα∗)Y ∗t ,

Dζεt(α
∗
0, ζ0, υ0; dζ) = −α0(dζ)′GTt,

Dυεt(α
∗
0, ζ0, υ0; dυ) = −(dυ)Z1Tt.
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Score and information: We denote the score function with respect to α∗, for example,
in the direction dα∗ as Sα∗ = Dα∗ logL(α∗0, ζ0, υ0; dα∗). The information with respect to α∗

and ζ, for example, is similarly denoted by Iα∗ζ = D2
α∗ζ logL(α∗0, ζ0, υ0; dα∗, dζ). Then the

scores are

T−1/2Sα∗ = − tr{Ω−1
0 (dα∗)T 1/2 〈Y ∗, ε〉T}

D→ − tr{Ω−1
0 (dα∗) 〈Y ∗, ε〉}, (55)

T−1/2Sζ = − tr{Ω−1
0 α0(dζ)′T 1/2 〈GT , ε〉T}

D→ − tr{Ω−1
0 α0(dζ)′ 〈G, ε〉}, (56)

T−1/2Sυ = − tr{Ω−1
0 (dυ)T 1/2 〈Z1T , ε〉T}

D→ − tr{Ω−1
0 (dυ) 〈Z1, ε〉}, (57)

and the diagonal elements of the information are

T−1Iα∗α∗ = tr{Ω−1
0 (dα∗) 〈Y ∗, Y ∗〉T (dα∗)′}+ oP (1)

P→ tr{Ω−1
0 (dα∗)Σstat(dα

∗)′}, (58)

T−1Iζζ = tr{Ω−1
0 α0(dζ)′ 〈GT , GT 〉T (dζ)α′0}+ oP (1)

D→ tr{Ω−1
0 α0(dζ)′ 〈G,G〉 (dζ)α′0}, (59)

T−1Iυυ = tr{Ω−1
0 (dυ) 〈Z1T , Z1T 〉T (dυ)′}+ oP (1)

D→ tr{Ω−1
0 (dυ) 〈Z1, Z1〉 (dυ)′}.

There is one non-zero off-diagonal element,

T−1Iζυ = tr{Ω−1
0 α0(dζ)′ 〈GT , Z1T 〉T (dυ)′}+ oP (1)

D→ tr{Ω−1
0 α0(dζ)′ 〈G,Z1〉 (dυ)′},

and the following are asymptotically negligible,

T−1Iα∗ζ = tr{Ω−1
0 (dα∗) 〈Y ∗, GT 〉T (dζ)α′0}+ oP (1)

P→ 0, (60)

T−1Iα∗υ = tr{Ω−1
0 (dα∗) 〈Y ∗, Z1T 〉T (dυ)′}+ oP (1)

P→ 0.

Because the information is asymptotically block diagonal, α̂∗ and (ζ̂ , υ̂) are asymptotically
independent, and we consider inference separately for α∗ and (ζ, υ).
The asymptotic distribution of T 1/2α̂∗: By the usual Taylor expansion of the likelihood

equations, we find that the equation for the asymptotic distribution of T 1/2α̂∗ is given by

tr{Ω−1
0 (dα∗) 〈Y ∗, Y ∗〉T (T 1/2α̂∗)′} = − tr{Ω−1

0 (dα∗)T 1/2 〈Y ∗, ε〉T}+ oP (1) for all dα∗,

and hence
ΣstatT

1/2α̂∗′ = −T 1/2 〈Y ∗, ε〉T + oP (1),

which by the Central Limit Theorem gives the result in (41).
The asymptotic distribution of T 1/2(ζ̂ , υ̂): Similarly, we find the equations for determining

the limit distribution of (ζ̂ , υ̂),

〈GT , GT 〉T (T 1/2ζ̂)α′0Ω−1
0 α0 + 〈GT , Z1T 〉T (T 1/2υ̂)′Ω−1

0 α0 = −T 1/2 〈GT , ε〉T Ω−1
0 α0 + oP (1),

(61)

〈Z1T , GT 〉T (T 1/2ζ̂)α′0Ω−1
0 + 〈Z1T , Z1T 〉T (T 1/2υ̂)′Ω−1

0 = −T 1/2 〈Z1T , ε〉T Ω−1
0 + oP (1).

(62)

Pre-multiplying (62) by 〈GT , Z1T 〉T 〈Z1T , Z1T 〉−1
T , post-multiplying by α0, and subtracting

the result from (61) we find

〈GT , GT |Z1T 〉T (T 1/2ζ̂)α′0Ω−1
0 α0 = −〈GT , ε|Z1T 〉T Ω−1

0 α0,

which implies (42) and inserted into (62) gives (43).
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A.8 Proof of Theorem 7

First note that Hext∗
r with the parameters ξ is a simple one-to-one reparametrization of Hext∗

r

with the parameters (α∗, ζ, υ). Thus, these parametrizations have the same likelihood and
the MLEs of ξ can easily be found from those of (α∗, ζ, υ) and vice versa.
Proof of (i): The result for the dynamic parameters π = (α, β,Γ1, . . . ,Γk−1) follows

directly from (41) and (42) by the definitions of α∗ and ζ, see (37) and (38).
Proof of (ii): Using ρ′v = −β′γ0

v and the definition of ζ = (ζ ′1, ζ
′
2)′ in (37), we find the

expansion (44). This expansion shows that the limit is a linear combination of the elements
of the limit of ζ̂, and hence mixed Gaussian, see (42).
Proof of (iii): The expansion (45) follows directly from the definition of υ̂iv in (37).

Clearly the limit of the first term, T 1/2υ̂iv, is given in (43). Because β̂ converges at rate T
(super consistency), see (42), we can replace β̂ by β0 in the second term, T 1/2Υiv(π̂−π0, γ0),
without changing the asymptotic properties. Hence, T 1/2Υiv(π̂ − π0, γ0) becomes a linear
combination of T 1/2α̂∗, see (38), and is therefore asymptotically Gaussian. Asymptotic
independence of the two terms follows because the limits in (42) and (43) are independent,
see Theorem 6.

A.9 Proof of Theorem 8

Under Assumption 2, the extended and additive core models are reparametrizations of each
other, see Theorem 4. Moreover, the simple one-to-one relation between the parameters in
the extended core model, ξ, and the parameters in Theorem 6 then show that in fact the
additive core model and the extended core model parametrized by (α∗, ζ, υ) are reparame-
trizations. Hence, they have the same likelihood and the MLEs of the parameters of the
additive model can be found directly from the MLEs in Theorem 6 using Theorem 1.
Proof of (i): First, β′0(γ̂0 − γ0

0)NT0 = β̂′(γ̂0 − γ0
0)NT0 + oP (1) by Slutsky’s Theorem and

consistency of β̂. Under Assumption 2 it follows from Theorem 4 that β̂′(γ̂0 − γ0
0)NT0 =

−(ρ̂′ + β̂′γ0
0)NT0 = ζ̂ ′2, where ζ = (ζ ′1, ζ

′
2)′, see (37). The results for the dynamic parameters

π = (α, β,Γ1, . . . ,Γk−1) and for β′0(γ̂0 − γ0
0)NT0 then follow directly from (41) and (42) by

the definitions of α∗ and ζ, see (37) and (38).
Proof of (ii): Again, by Slutsky’s Theorem and consistency of β̂ it follows that T 1/2β′0(γ̂iv−

γiv0)MT iv = T 1/2β̂′(γ̂iv − γiv0)MT iv + oP (1) and T 1/2α′0⊥Γ0(γ̂iv − γiv0)MT,i+1,v = T 1/2α̂′⊥Γ̂(γ̂iv −
γiv0)MT,i+1,v + oP (1). Next, we note that, under Assumption 2, υ̂iv = (Υ̂iv − Υiv(π̂, γ0)) =
Υiv(π̂, γ̂ − γ0) by (46) and Theorem 4. By Theorem 1, applied to (π̂, γ0) and (π̂, γ̂), we then
find that β̂′(γ̂iv − γiv0) for i = 1, . . . ,mv and α̂′⊥Γ̂(γ̂iv − γiv0) for i = 0, . . . ,mv − 1 can be
expressed in terms of υ̂iv as

T 1/2β̂′(γ̂iv − γiv0)MT iv = −T 1/2̂̄α′0Υiv(π̂, γ̂ − γ0)MT iv + T 1/2̂̄α′ min{i,k}∑
j=1

Φ̂j(γ̂
i−j
v − γi−jv0 )MT iv

= −T 1/2̂̄α′Υiv(π̂, γ̂ − γ0)MT iv + oP (1)

= −T 1/2̂̄α′υ̂iv + oP (1) = −T 1/2ᾱ′0υ̂iv + oP (1)

using that M−1
T,i−j,vMT iv → 0 for j = 1, . . . ,min{i, k} (by Assumption 3) and using Slutsky’s
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Theorem again for the final equality. Similarly, for i = 0, . . . ,mv − 1,

T 1/2α̂′⊥Γ̂(γ̂iv − γiv0)MT,i+1,v =T 1/2α̂′⊥Υi+1,v(π̂, γ̂ − γ0)MT,i+1,v

− T 1/2α̂′⊥

min{i+1,k}∑
j=2

Φ̂j(γ̂
i+1−j
v − γi+1−j

v0 )MT,i+1,v

=T 1/2α̂′⊥Υi+1,v(π̂, γ̂ − γ0)MT,i+1,v + oP (1)

=T 1/2α̂′⊥υ̂i+1,v + oP (1) = T 1/2α′0⊥υ̂i+1,v + oP (1)

because M−1
T,i−j+1,vMT,i+1,v → 0 for j = 2, . . . ,min{i + 1, k,mv}. This proves (47) and (48).

Finally, (49) follows directly from vectorization of (14) and noting that
∑k

i=0 M
i′
s ⊗ Φ0i is

invertible by Theorem 3.
Proof of (iii): That (47)—(49) are asymptotically independent of (41), is shown in Theo-

rem (6).

A.10 Proof of Theorem 9

Proof of (i): Because k = 1 and n = 0 we have Ut = Zt, γ0 = γ, and

εt(λ) = ∆Xt − α(β′Xt−1 − β′γZt−1)− γ∆Zt.

Furthermore, α′0⊥Γ0β0⊥ = α′0⊥β0⊥ and γ − γ0 can be decomposed as

γ − γ0 = α(β′α)−1β′(γ − γ0) + β⊥(α′⊥β⊥)−1α′⊥(γ − γ0). (63)

We define ζ ′2 = −β′(γ − γ0)MT0 and φ′ = T 1/2(α′⊥β⊥)−1α′⊥(γ − γ0)MT1 as well as α∗ =
α− α0, Y

∗
t = β′0Yt−1, see (37) and (38). The corresponding likelihood is then based on

εt(α
∗, ζ, φ) = −α∗Y ∗t − αζ ′GTt − α(β′α)−1ζ ′2M

−1
T0MT1Z1Tt − β⊥φ′Z1Tt + εt,

see (40). We note that ζ2 appears in two places, but M−1
T0MT1 → 0, and therefore the term

ζ ′2M
−1
T0MT1Z1Tt disappears in the asymptotic analysis of the score and information, because

it is dominated by the term αζ ′GTt.
Mimicking the analysis in the proof of Theorem 6, we find at the true values, α∗0 = 0, ζ0 =

0, φ0 = 0, the derivatives

Dα∗εt(α
∗
0, ζ0, φ0; dα∗) = −(dα∗)Y ∗t ,

Dζεt(α
∗
0, ζ0, φ0; dζ) = −α0(dζ)′GTt − α0(β′0α0)−1(dζ2)′M−1

T0MT1Z1Tt = −α0(dζ)′GTt + o(1),

Dφεt(α
∗
0, ζ0, φ0; dφ) = −β0⊥(dφ)′Z1Tt.

The limits of the scores for α∗ and ζ are therefore given in (55) and (56), and for φ we find

T−1/2Sφ = − tr{Ω−1
0 β0⊥(dφ)′T 1/2 〈Z1T , ε〉T}

D→ − tr{Ω−1
0 β0⊥(dφ)′ 〈Z1, ε〉}.

The limits of the information matrix blocks Iα∗α∗, Iζζ , and Iα∗ζ are given in (58), (59), and
(60), respectively, and for φ we find

T−1Iφφ = tr{Ω−1
0 β0⊥(dφ)′ 〈Z1T , Z1T 〉T (dφ)β′0⊥}+ oP (1)

D→ tr{Ω−1
0 β0⊥(dφ)′ 〈Z1, Z1〉 (dφ)β′0⊥},

T−1Iα∗φ = tr{Ω−1
0 (dα∗) 〈Y ∗, Z1T 〉T (dφ)β′0⊥}+ oP (1)

P→ 0,

T−1Iζφ = tr{Ω−1
0 α0(dζ)′ 〈GT , Z1T 〉T (dφ)β′0⊥}+ oP (1)

D→ tr{Ω−1
0 α0(dζ)′ 〈G,Z1〉 (dφ)β′0⊥}.
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Thus, the only difference compared with the extended model is the factor β0⊥, which comes
from estimating φ = (α′0⊥β0⊥)−1α′0⊥(γ − γ0) as the coeffi cient to ∆Zt. It is seen that the
limit information is block-diagonal corresponding to α∗ and (ζ, φ), such that the asymptotic
distribution of T 1/2α̂∗ = T 1/2(α̂− α0) is as given in (41) in Theorem 6.
Proof of (ii): We find the equations for determining the limit distribution of the MLE

T 1/2(ζ̂ , φ̂), but compared with (61) and (62) there is now an extra factor β0⊥ in (65),

〈G,G〉 (T 1/2ζ̂)α′0Ω−1
0 α0 + 〈G,Z1〉 (T 1/2φ̂)β′0⊥Ω−1

0 α0
D→− 〈G, ε〉Ω−1

0 α0, (64)

〈Z1, G〉 (T 1/2ζ̂)α′0Ω−1
0 β0⊥ + 〈Z1, Z1〉 (T 1/2φ̂)β′0⊥Ω−1

0 β0⊥
D→− 〈Z1, ε〉Ω−1

0 β0⊥. (65)

Eliminating T 1/2φ̂ from (64), we find the right-hand side

−〈G, ε〉Ω−1
0 α0 + 〈G,Z1〉 〈Z1, Z1〉−1 〈Z1, ε〉Ω−1

0 β0⊥(β′0⊥Ω−1
0 β0⊥)−1β′0⊥Ω−1

0 α0.

If we condition on G, or equivalently on α′0⊥Wε, the right-hand side is Gaussian with mean
proportional to

E(〈Z1, ε〉Ω−1
0 β0⊥|α′0⊥Wε) = 〈Z1, ε〉α0⊥(α′0⊥Ω0α0⊥)−1α′0⊥β0⊥ 6= 0. (66)

Thus, the limit distribution of T 1/2ζ̂ is not mixed Gaussian, and the same holds for any
linear combination of T 1/2ζ̂.
Proof of (iii): If we eliminate T 1/2ζ̂ from the equations (64) and (65), we find that the

right-hand side becomes

〈Z1, G〉 〈G,G〉−1 〈G, ε〉Ω−1
0 α0(α′0Ω−1

0 α0)−1α′0Ω−1
0 β0⊥ − 〈Z1, ε〉Ω−1

0 β0⊥.

Conditional on G this distribution has mean −E(〈Z1, ε〉Ω−1
0 β0⊥|α′0⊥Wε), see (66), and the

limit distribution of T 1/2φ̂ is neither Gaussian nor mixed Gaussian, and the same holds for
any linear combination.
Proof of (iv): From (61) and (62) we find the equations to determine the limit distribution

of the MLE in the extended model T 1/2(ζ̂ , υ̂),

〈G,G〉 (T 1/2ζ̂)α′0Ω−1
0 α0 + 〈G,Z1〉 (T 1/2υ̂)Ω−1

0 α0
D→− 〈G, ε〉Ω−1

0 α0,

〈Z1, G〉 (T 1/2ζ̂)α′0Ω−1
0 + 〈Z1, Z1〉 (T 1/2υ̂)Ω−1

0
D→− 〈Z1, ε〉Ω−1

0 ,

and from these we find that the limit of the information matrix for (ζ, υ) in the extended
model is, (

α′0Ω−1
0 α0 ⊗ 〈G,G〉 Ω−1

0 α0 ⊗ 〈G,Z1〉
α′0Ω−1

0 ⊗ 〈Z1, G〉 Ω−1
0 ⊗ 〈Z1, Z1〉

)
=

(
Iextζζ Iextζυ

Iextυζ Iextυυ

)
,

say. In the additive model, the limit of the information matrix for (ζ, φ) is, see (64) and
(65), (

α′0Ω−1
0 α0 ⊗ 〈G,G〉 α′0Ω−1

0 β0⊥ ⊗ 〈G,Z1〉
β′0⊥Ω−1

0 α0 ⊗ 〈Z1, G〉 β′0⊥Ω−1
0 β0⊥ ⊗ 〈Z1, Z1〉

)
=

(
Iaddζζ Iaddζφ

Iaddφζ Iaddφφ

)
.

We note that the left factors in the information matrix for (ζ, φ) satisfy the relation

α′0Ω−1
0 α0 − α′0Ω−1

0 β0⊥(β′0⊥Ω−1
0 β0⊥)−1β′0⊥Ω−1

0 α0 = α′0β0(β′0Ω−1
0 β0)−1β′0α0 > 0.
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This has the consequence that

Iaddζζ − Iaddζφ (Iaddφφ )−1Iaddφζ

= α′0Ω−1
0 α0 ⊗ 〈G,G〉 − α′0Ω−1

0 β0⊥(β′0⊥Ω−1
0 β0⊥)−1β′0⊥Ω−1

0 α0 ⊗ 〈G,Z1〉 〈Z1, Z1〉−1 〈Z1, G〉
> α′0Ω−1

0 α0 ⊗ 〈G,G〉 − α′0Ω−1
0 α0 ⊗ 〈G,Z1〉 〈Z1, Z1〉−1 〈Z1, G〉

= α′0Ω−1
0 α0 ⊗ 〈G,G|∆Z〉 = Iextζζ − Iextζυ (Iextυυ )−1Iextυζ ,

where the inequality means that the difference is positive definite, almost surely. It follows
that the asymptotic conditional variance of ζ̂ in the additive model is larger than that of ζ̂
in the extended model because

AsV ar(ζ̂add) = (Iaddζζ − Iaddζφ (Iaddφφ )−1Iaddφζ )−1 < (Iextζζ − Iextζυ (Iextυυ )−1Iextυζ )−1 = AsV ar(ζ̂ext),

almost surely.

A.11 Proof of Theorem 10

Normalization of parameters and an auxiliary model : We introduce the p × r matrix β0 of
rank r, decompose Π as

Π = Πβ̄0β
′
0 + Πβ̄0⊥β

′
0⊥,

and define the auxiliary hypothesis

H = {Πβ̄0⊥ = 0 and β′0(γ0 − γ0
0) = 0}.

We note that under the assumptions in H, Π = αβ′0 for α = Πβ̄0, such that

H = {Π = αβ′0 and β
′
0(γ0 − γ0

0) = 0}.

Thus, if β∗ = (β′, β′γ0)′ then

Hext∗
p ∩H = Hext∗

r ∩ {β∗ = β∗0}.

To facilitate the analysis of the test for rank, we introduce the extra hypothesis H in
models Hext∗

p and Hext∗
r , see Lawley (1956) for an early application of this idea or Johansen

(2002, p. 1947) and Johansen and Nielsen (2012, p. 2699) for applications to the (fractional)
CVAR model. We then find

LR(Hext∗
r |Hext∗

p ) =
maxHext∗r

LT (ξ)

maxHext∗p
LT (ξ)

=
maxHext∗p ∩H LT (ξ)

maxHext∗p
LT (ξ)

/
maxHext∗r ∩{β∗=β∗0} LT (ξ)

maxHext∗r
LT (ξ)

.

That is, instead of the rank test statistic, we analyze the ratio of two test statistics,

LR(Hext∗
r |Hext∗

p ) =
LR(H|Hext∗

p )

LR(β∗ = β∗0 |Hext∗
r )

. (67)

Analysis of LR(H|Hext∗
p ): We apply the formulas (35) and (36) for Hext∗

p , using α−α0 =
(Π− Π0)β̄0, to find

−Π(L)(γ − γ0)Zt = Π(γ0 − γ0
0)NT0Z0Tt −Υ1(π, γ − γ0)NT1Z1Tt,

(Π(L)− Π0(L))Yt = −α∗Y ∗t − T 1/2Πβ̄0⊥T
−1/2β′0⊥Yt−1,
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where α∗ and Y ∗t are given in (38). Defining

ζ ′ = (T 1/2Πβ̄0⊥,Π(γ0 − γ0
0)NT0) and GTt =

(
T−1/2β′0⊥Yt−1

Z0Tt

)
, (68)

we then obtain the residuals

εt(ξ) = −α∗Y ∗t − ζ ′GTt −Υ1(π, γ − γ0)NT1Z1Tt + εt,

see also (40). This shows that the likelihood for Hext∗
p is maximized by regression of εt on

(GTt, Y
∗
t , Z1Tt), and the maximized likelihood function becomes

−2T−1 logLmax(Hext∗
p ) = log det 〈ε, ε|GT , Y

∗, Z1T 〉T = log det 〈ε, ε|GT , Z1T 〉T + oP (1)

because 〈ε, Y ∗〉T = OP (T−1/2). The hypothesis H is just ζ = 0, and we find similarly

−2T−1 logLmax(Hext∗
p ∩H) = log det 〈ε, ε|Y ∗, Z1T 〉T = log det 〈ε, ε|Z1T 〉T + oP (1).

It follows from

〈ε, ε|GT , Z1T 〉T = 〈ε, ε|Z1T 〉T − 〈ε,GT |Z1T 〉T 〈GT , GT |Z1T 〉−1
T 〈GT , ε|Z1T 〉T

and 〈ε, ε|Z1T 〉T
P→ Ω0 that

−2 logLR(H|Hext∗
p ) = tr{Ω−1

0 T 1/2 〈ε,GT |Z1T 〉T 〈GT , GT |Z1T 〉−1
T T 1/2 〈GT , ε|Z1T 〉T}+ oP (1)

D→ tr{Ω−1
0 〈ε,G|Z1〉 〈G,G|Z1〉−1 〈G, ε|Z1〉}. (69)

Analysis of LR(β∗ = β∗0 |Hext∗
r ): The hypothesis we want to test here involves only β

and γ0, and because inference on α∗ is asymptotically independent of inference on (β, γ0),
we can assume that α∗ = α∗0 = 0 for the asymptotic analysis of this statistic. We now find
for β = β0 + β0⊥β̄

′
0⊥(β − β0) that

−Π(L)|α∗=α∗0(γ − γ0)Zt = α0β
′(γ0 − γ0

0)NT0Z0Tt −Υ1(π, γ − γ0)NT1Z1Tt,

(Π(L)− Π0(L))|α∗=α∗0Yt = −α0(β − β0)′β̄0⊥β
′
0⊥Yt−1.

We define GTt as above, see (68), and define

ζ ′ = (T 1/2(β − β0)′β̄0⊥, β
′(γ0 − γ0

0)NT0),

and note that the hypothesis β = β0 and β′γ0 = β′0γ
0
0 is again ζ = 0. We then find

Hext∗
r : εt(ξ) = −α0ζ

′GTt −Υ1(π, γ − γ0)NT1Z1Tt + εt.

We split the residuals by multiplying by α′Ω0 = (α′0Ω−1
0 α0)′α′0Ω−1

0 and α′0⊥ into

α′Ω0εt(ξ) = −ζ ′GTt − α′Ω0Υ
1(π, γ − γ0)NT1Z1Tt + α′Ω0εt,

α′0⊥εt(ξ) = −α′0⊥Υ1(π, γ − γ0)NT1Z1Tt + α′0⊥εt.
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The errors α′Ω0εt and α′0⊥εt are independent and both sets of residuals are analyzed by
regression, and we find

−2T−1 logLmax(Hext∗
r ) = log det

〈
α′Ω0ε, α

′
Ω0
ε|GT , Z1T

〉
T

+ log det 〈α′0⊥ε, α′0⊥ε|Z1T 〉T
and

−2T−1 logLmax(Hext∗
r ∩ {ζ = 0}) = log det

〈
α′Ω0ε, α

′
Ω0
ε|Z1T

〉
T

+ log det 〈α′0⊥ε, α′0⊥ε|Z1T 〉T .

The test of β∗ = β∗0 in Hext∗
r , using

〈
α′Ω0ε, α

′
Ω0
ε
〉−1

T

P→ α′Ω0Ω0αΩ0 = (α′0Ω−1
0 α0)−1, is

−2 logLR(β∗ = β∗0 |Hext∗
r )

= tr{α′0Ω−1
0 α0T

1/2
〈
α′Ω0ε,GT |Z1T

〉
T
〈GT , GT |Z1T 〉−1

T T 1/2
〈
GT , α

′
Ω0
ε|Z1T

〉
T
}+ oP (1)

D→ tr{Ω−1
0 α0(α′0Ω−1

0 α0)−1α′0Ω−1
0 〈ε,G|Z1〉 〈G,G|Z1〉−1 〈G, ε|Z1〉}. (70)

Analysis of LR(Hext∗
r |Hext∗

p ): By (67), the test for rank r converges to the difference
between (69) and (70), i.e.,

−2 logLR(Hext∗
r |Hext∗

p )
D→ tr{(Ω−1

0 −Ω−1
0 α0(α′0Ω−1

0 α0)−1α′0Ω−1
0 ) 〈ε,G|Z1〉 〈G,G|Z1〉−1 〈G, ε|Z1〉}.

Using the identity Ω−1
0 − Ω−1

0 α0(α′0Ω−1
0 α0)−1α′0Ω−1

0 = α0⊥(α′0⊥Ω0α0⊥)−1α′0⊥ and defining
εα⊥,t = (α′0⊥Ω0α0⊥)−1/2α′0⊥εt, we obtain the result.

A.12 Proof of Theorem 11

Proof of (i): We find from Theorem 7(ii) that ρ̂′v − ρ′v0, suitably normalized, is mixed
Gaussian. Hence, the likelihood ratio test for β′γ0

v = −ρ′v = 0 is a χ2(r) test.
Proof of (ii): We test the hypothesis that α′⊥Γγ0

v = 0 using the statistic α̂′⊥Γ̂γ̂0
v , assuming

that β′0γ
0
v0 = −ρ′v0 = 0. Under the null that also α′0⊥Γ0γ

0
v0 = 0, we find that γ0

v0 = 0 because
(β0,Γ

′
0α0⊥) has full rank by Assumption 1, and it follows that α̂′⊥Γ̂γ̂0

v = α̂′⊥Γ̂(γ̂0
v−γ0

0v). From
Slutsky’s Theorem and consistency of π̂ (Theorem 5), we then find

T 1/2α̂′⊥Γ̂(γ̂0
v − γ0

v0)MT1v = T 1/2α′0⊥Γ0(γ̂0
v − γ0

v0)MT1v + oP (1).

The asymptotic distribution of the first term on the right-hand side is found from (48) in
Theorem 8 and (43) in Theorem 6,

T 1/2α′0⊥Γ0(γ̂0
v − γ0

v0)MT1v = T 1/2α′0⊥υ̂1v + oP (1)
D→ −α′0⊥ 〈ε, Z1〉 〈Z1, Z1〉−1A

for a suitable selection matrix A. This limit is Gaussian so that T 1/2α̂′⊥Γ̂(γ̂0
v − γ0

v0)MT1v is
asymptotically Gaussian, and hence the likelihood ratio test for α′⊥Γγ0

v = 0 is asymptotically
χ2(p− r).
Proof of (iii): Follows trivially from (i) and (ii).
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