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Abstract

In the cointegrated vector autoregression (CVAR) literature, deterministic terms
have until now been analyzed on a case-by-case, or as-needed basis. We give a compre-
hensive unified treatment of deterministic terms in the additive model X; = vZ; + Y%,
where Z; belongs to a large class of deterministic regressors and Y; is a zero-mean
CVAR. We suggest an extended model that can be estimated by reduced rank regres-
sion, and give a condition for when the additive and extended models are asymptotically
equivalent, as well as an algorithm for deriving the additive model parameters from the
extended model parameters. We derive asymptotic properties of the maximum like-
lihood estimators and discuss tests for rank and tests on the deterministic terms. In
particular, we give conditions under which the estimators are asymptotically (mixed)
Gaussian, such that associated tests are y2-distributed.

Keywords: Additive formulation, cointegration, deterministic terms, extended model,
likelihood inference, VAR model.

JEL Classification: C32.

1 Introduction

The cointegrated vector autoregressive (CVAR) model continues to be one of the most com-
monly applied models in many areas of empirical economics, as well as other disciplines.
However, the formulation and modeling of deterministic terms in the CVAR model have
until now been analyzed only on a case-by-case basis because no general treatment exists.
Moreover, the role of deterministic terms is not always intuitive and is often difficult to
interpret. Indeed, Hendry and Juselius (2001, p. 95) note that “In general, parameter infer-
ence, policy simulations, and forecasting are much more sensitive to the specification of the
deterministic than the stochastic components of the VAR model.”
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In this paper we give a comprehensive unified treatment of the CVAR model for a large
class of deterministic regressors and derive the relevant asymptotic theory. There are two
ways of modeling deterministic terms in the CVAR model, and we call these the additive
and innovation formulations. In the additive formulation, the deterministic terms are added
to the process, and in the innovation formulation they are added to the dynamic equations.

1.1 The additive formulation

In this paper, we analyze the additive formulation. To fix ideas, let the p-dimensional time
series X; be given by the additive model,

HM . X, =Y, 4+~Z, t=1-k,...,—1,0,...,T, (1)
(L)Y, =¢, t=1,...,T,

where Z, is a multivariate deterministic regressor and

k-1

(z) = (1—2)I, —afz — ZFi(l — 2)7 (2)

is the lag-polynomial defining the cointegrated I(1) process Y;. Furthermore, ¢, isi.i.d. (0, Q),
Yo, ..., Y1 are fixed initial values. We let m = (a, 5,T'1,...,Tx_1) denote the parameters
in II(L) and let A = (m,) with true value A\g = (mg,7). Then A consists of freely varying
parameters, where «, 5 are p X r for some r < p. Throughout, we will use the Gaussian
likelihood function to derive (quasi-) maximum likelihood estimators (MLEs), but as usual,
asymptotic properties will not require normality. We also fix ) = €}y at the true value, which
is without loss of generality in the asymptotic analysis of the remaining parameters because
inference on (2 is asymptotically independent of inference on .

The advantage of the formulation in (1) is that the role of the deterministic terms for the
properties of the process is explicitly modeled, and the interpretation is relatively straight-
forward. One can, for example, focus on the mean of the stationary processes AX; and ' X,
for which we find from (1) that

E(AX;) =~vAZ, and E(8'X,) = 8'vZ;. (3)

Thus, v can be interpreted as a “growth rate”, and, moreover, 3+ can be more accurately
estimated than the rest of 7, because the information Zthl Z: 7] in general is larger than
Zthl AZ;AZ,. Note that if Z; contains the constant with parameter v; € RP, then the
corresponding entry in AZ; is zero and does not contain information about 7;, and we can
therefore only identify 3'7;.

When analyzing properties of the process, the following I(1) conditions are important,
see Johansen (1996, Theorem 4.2). Here, and throughout, for any p X s matrix a of rank
s < p we denote by a; a p x (p — s) matrix such that ¢/,a = 0, and for s < p we define
a=a(aa)™t

Assumption 1. The roots of detII(z) = 0 are either greater than one in absolute value or
equal to 1, thus ruling out seasonal roots. The matrices o and 3 are p X r of rank r, and for
I'=1,- Zf;ll Iy, we assume that det(a/,\ I'81) # 0, such that Y; is an I(1) process, 5'Y; is
a stationary 1(0) process, and C = 31 (o/\T'31) " o/ is well defined.
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It follows from Assumption 1, specifically det(a/, ') # 0, that (3,I"a ) has full rank,
see (51), and we use this property throughout. In the statistical analysis of the model 2%
in (1), we assume freely varying parameters. Thus, for example, o and § will be freely
varying p X r matrices. For the probability analysis of the data generating process, however,
we assume the conditions of Assumption 1. Thus, for instance, the true values of a and /3
will be of full rank, and the matrix C' is well defined because o/, I'5, has full rank when
evaluated at the true values. We can then find the solution of the model equations (1) for
Y;. The solution is given by the following version of Granger’s Representation Theorem,

t t—1
i=C) a+) Clai+A, (4)
=1 1=0

where A; depends on initial values of Y; and ’A; decreases to zero exponentially. The
representation for X, is therefore

t—1

t
X, =CY e+ Clai+1Zi+ A, (5)

=1 =0

which again illustrates the explicit role of the deterministic terms in the additive formulation.

The additive formulation has been analyzed by several authors, but each for very specific
choices of deterministic terms. For example, for Z; in model (1), Liitkepohl and Saikko-
nen (2000) and Saikkonen and Liitkepohl (2000a) consider a linear trend, Saikkonen and
Liitkepohl (2000b) and Trenkler, Saikkonen, and Liitkepohl (2007) consider a linear trend
together with an impulse dummy and a shift dummy, while Nielsen (2004, 2007) considers
a linear trend together with impulse dummies. In contrast, we give a unified analysis of
general deterministic terms.

1.2 The innovation formulation

The most commonly applied method of modeling deterministic terms in the CVAR model is
the innovation formulation, where the regression variables are added in the dynamic equation,

ie.,
k—1

AX, = af X+ ) DidXe i+ 92 + e, (6)
i=1
and the deterministic terms are possibly restricted to lie in the cointegrating space; see
Johansen (1996) for a detailed treatment of the case Z; = (¢,1)" or Rahbek and Mosconi
(1999) for stochastic regressors, Z;, in the innovation formulation. They point out that the
asymptotic distribution of the test for rank contains nuisance parameters, and that these
can be avoided by including the cumulated Z; as a regressor with a coefficient proportional
to a. We show below that starting with the additive formulation, the highest order regressor
automatically appears with a coefficient proportional to « in the innovation formulation,
and we find conditions for inference to be asymptotically free of nuisance parameters.
Under Assumption 1, the I(1) solution for the process X; in (6) is given by, see (4),

t—1

t
X, =C> (6+7Z)+ Y Cilermi + 7 Zi—i) + Ar. (7)
=1

1=0
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A model like (6) is easy to estimate using reduced rank regression, but it follows from (7)
that the deterministic terms in the process are generated by the dynamics of the model. We
see that the deterministic term in the process is a combination of the cumulated regressors in
the first term and a weighted sum of lagged regressors. Thus, for instance, an outlier dummy
in the equation (6) becomes a combination of a step dummy from the first term in the process
(7) and an exponentially decreasing function from the second term in (7), giving a gradual
shift from one level to another. A constant in the equation (6) becomes a linear function in
the process (7), see for instance Johansen (1996, Chapter 5) for a discussion of some simple
models and Johansen, Mosconi, and Nielsen (2000) for a discussion of a model with broken
trends and impulse dummies to eliminate a few observations just after the break. Thus, one
can use the innovation formulation to model the deterministic terms in the process by taking
into account the dynamics of the model.

Applications including broken trends and several types of dummy variables are also given
in, for example, Doornik, Hendry, and Nielsen (1998), Hendry and Juselius (2001), Juselius
(2006, 2009), and Belke and Beckmann (2015). An application using various dummies,
including a “volcanic function” dummy variable for modeling volcanic eruptions, is given
in Model V of Pretis (2015), see also Pretis et al. (2016) for the definition of the volcanic
function.

The remainder of the paper is organized as follows. In the next section we discuss
the structure of the regressors, derive the extended model, and consider identification and
estimation. In Section 3 we derive the asymptotic theory for the parameter estimators in
both the extended and additive models, and in Section 4 we derive and discuss tests on
the cointegrating rank and on the coefficients to the regressors. Finally, we conclude and
give some general recommendations in Section 5. The proofs of all results are given in the
appendix.

2 The regressors and the additive and extended models

Going back to the additive formulation of H% in (1), we find by applying II(L) on both
sides of (1) that H%? has the alternative formulation

k-1 k—1
Hfdd CAXy =af' X+ Z DAX s +yAZy — CYBIVZt—l - Z LivAZi i + ;. (8)

=1 i=1

From (8) it follows that maximum likelihood estimation and inference is not so straightfor-
ward as in the model with no deterministic terms, and this is the issue we want to address
in the present paper.

In the model equation (8) for X, the coefficients (v, —af'y, —I'17, ..., —T'x_17) all involve
~. These depend nonlinearly on the model parameters, so the model becomes a nonlinear
restriction in the usual linear CVAR model with k lags and an innovation formulation of the
deterministic term (AZ;, Z; 1, AZy 1, ..., AZy_jy1)-

A general technique for handling such nonlinear models consists of finding a larger model
where the estimation problem is easier to handle. As a simple special example of this
principle, consider a linear regression with autoregressive errors, i.e. X; = Y; + vZ;, where
Y; = pY;_1+¢; and g, isi.i.d. (0, 0?). The equation for X; is X; = pX; 1+vZ;—pyZs_1+€; and
maximum likelihood leads to non-linear least squares estimation. Now consider extending
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the model to X, = pX,_1 +7Z; + 1 Z;_1 + &; with p,~,y1, 02 freely varying. This extended
statistical model can be easily estimated by (linear) least squares, and asymptotic properties
of the estimators are derived under the assumption that the original (non-linear) model is
the data generating process. If we are interested in the original parameters, we can choose
the estimators of p,y from the extended model. Alternatively, we can use these (consistent)
estimators as starting values for an iteration to find the MLE.

Extending model (8) in a similar way to the simple example above, leads to the problem
that the regressors Z; ; and AZ, ; for i = 0,...,k — 1 may be linearly dependent. As a
simple example of this, consider Z;, ; = (t — 1,1) with AZ, ; = (1,0)’ for ¢ > 0, which are
clearly linearly dependent. Such a linear dependence between the regressors has to be avoided
before the parameters can be estimated and the properties of the estimators derived. We
therefore first discuss a formulation of the regressors that allows an analysis of the additive
model and its extension.

2.1 Formulation of a class of regressors

If a univariate deterministic regressor U, has the property that it is linearly dependent on
some of its differences, i.e. .1, ;A'U; = 0 for all ¢, say, then U, is the solution to a linear
difference equation. A basis for the solution of such an equation is of the form a' " 7_ a;t’,
where « is a root of multiplicity p + 1 of Y1, ¢;a’ = 0, see Miller (1968). For a = 1 we
therefore get a polynomial, for a = —1 and p = 0 we get a seasonal (semi-annual) dummy
(=1), and for a = 4i,i =\/—1, we can find quarterly dummies. We do not deal with
exponential regressors Z; = a’, |a| > 1, because the asymptotic theory is different since the
Central Limit Theorem does not apply to sums of the form Y7 e,a’ for |a| > 1.

Thus, in the following we consider all regressors that are linearly independent of their
differences, but for regressors that are linearly dependent on their differences we only consider
a polynomial and seasonal dummies.

For asymptotic analysis, such as proving consistency of a regression coefficient, an impor-
tant property of a regressor is whether its information is divergent (in which case consistency
usually follows) or bounded (in which case consistency cannot be shown). For a general re-
gressor, Uy, the simple inequality (A™'U;)? < 2(A'U;)? + 2(A'U;_1)* shows that if the
information of A‘U, is bounded, then it is also bounded for A**'U,. On the other hand, if
the information of AU, is divergent then so is the information of A'U;. Thus, for a given
deterministic regressor these considerations motivate the following definition of the order of
a regressor.

Definition 1. For a univariate deterministic regressor U, we define the information as
Zthl UZ. If the information of U; diverges, we define the order of Uy as the largest integer i
for which the information of AU, diverges, i.e.

T
m =sup{i >0: Z(AiUt)2 — 00 as T — oo}. 9)

t=1

In particular, if the information of A'U; diverges for all i we define the order to be oc.
Finally, if the information of U; is bounded, we define the order to be m = —1.

Example 1. For a polynomial in ¢ of degree m, say P,,(t), we note that A™P,,(t) is a
constant which has diverging information, but A™**P,,(¢) = 0. Thus, the order (9) of the
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polynomial is equal to the degree, m. More generally, for the power function U; = t*, with
a € R and a > —1/2, the order of U, is m = [a + 1/2], where [z] denotes the integer part of
z. ¢

Example 2. For the impulse dummy Uy = 1}, where 1¢4) denotes the indicator function

for the event A, we find 3. (A'U,)* — ¢; for all i, so the order of U, is m = —1. In this case,
all differences A'U; are linearly independent. For the broken linear trend U, = (t — ty)™,

with 27 = max{0,z}, we see that all differences are linearly independent, but because
AU; = 1,41y satisfies Zthl(AUt)Q — o0 and Zthl(AQUt)Q = Zthl Ltmtgr1y = 1, the
order of U; in this case is m = 1. ¢

Example 3. For the semi-annual dummy U; = (—1)" (orthogonalized on the constant) we
have A'U; = (—2)"*1U,, so that 3./ (A'U;)? = 44T — oo for all i, and hence the order is
m = oo. Moreover, for the semi-annual dummy we find the linear dependence AU, = 2U; =
M,yU,. Similarly, for the quarterly dummy Uy = it + (—1)" +i* (also orthogonalized on the
constant) and U; = (Uyy, Uy 4—1, Ur4—2)" € R?, we find that AU, = MU, where

1 -1 0
My=|o0 1 -1]. (10)
1 1 2

The matrix M, has eigenvalues (2,1 +1i,1—i). In general, a seasonal dummy with s seasons
corrected for the constant is given by Uy, = 3°_! (€2™/*)! so setting U; = (Uyy, ..., Ury—ss1)’
we find the linear dependence AU, = M,U,, where the matrix M, has eigenvalues 1 — e?9/5
j=1,...,5s—1. ¢

The regressors considered are conveniently expressed in differences (rather than lags)
since these have natural interpretations in many cases. Furthermore, as both Definition 1
and the examples suggest, the sums of squares of differences of the regressors will typically
have different orders of magnitude, and hence different normalizations. We therefore define
the structure of regressors in terms of differences.

Definition 2. Let Uyy,...,Uy be linearly independent regressors with orders m, < oo for
v =1,...,q. Assume further that {A'U,,i > 0} are either linearly independent for all
i >0, or (for a polynomial) equal to zero for i > m,. Let Us.; be an (s — 1)-dimensional
seasonal dummy variable orthogonalized to the constant term. We define the multivariate
q-dimensional regressor Uy = (Ui, ..., Uy)' and consider the regressor defined as

Zy = (U, AU, ..., AU, U, ),
which is of dimension (n + 1)q+ s — 1. We decompose ~ correspondingly,

T=00 ) Y = (7, =0, m,
such that . . n
V2 =Y A DU+ User = D Y 1A Uit + 7 Useys (11)
i=0 v=1 =0
It is important to note that some of the components of Z; may be zero (if a polynomial

is differenced too many times), or more generally have bounded information if the order of
the component is less than n.
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2.2 Some reparametrizations of the additive model

To express the deterministic term in the additive model in terms of differences of U, we
expand II(z) around z = 1 and find the coefficients

[I(z) = @+ &1(1 — 2) + -+ Pp(1 — 2)*, & = (=1)'D(2)],—1/d!,
where ®; are functions of the dynamic parameters in 7. In particular, see (1),

k—1
Oy =—ap and & = af' + (I, = Y Ty) =apf +T. (12)

i=1

The deterministic term in the additive model equation, see (8) and (11), is then

n+k
(L)vZ, = Z B, ZVJN“U + YA Usey) = Y VA Uy + ToeUse, (13)
=0 7=0 =0
where we have introduced the coefficients Yo, Tq,..., Tpik, Tse depending on (m,7) and
given by
min{i,k} k
Ti=Tim) = Y, @ 0<i<n+k Y=Y &)y M. (14)

j=max{0,i—n}
In particular, we find
To(m,7) = ®o(1)7" = —af'y* and T1(m,7) = So(7)7" + P1(1)7° = —af'y! + (af +T)y°

We note that T is proportional to «, and define the parameter p' = &Yy = & ®¢y° = —3'1°.
It is then clear from (14) that, for given values of the dynamic parameter 7, the parameters
pand T = (Tq,..., Tpik, Tse) are linear functions of v, and for given S also linear functions
of m. In Theorem 1 we next give an algorithm for recovering the parameter v as a linear
function of the parameters Yo, Yq,..., Ty, T'T 11, Ty, for given values of 7.

Theorem 1. Let Assumption 1 be satisfied and consider the deterministic term in the addi-
tive model, TI(L)yZ;, and the parameter functions Yo, Y1,..., Toi, Lse, see (13) and (14).
Then, fori=20,...,n,

min{s,k} min{i+1,k}
Byt = —a/T; +& Z @y and o\ Ty =/ iy — ) Z Oy, (15)
j=1 =

which can be solved for v because (3, L) has full rank. Moreover,

vec(y Z M!® ®;) vec(T,.). (16)

The relations (15) show that, for a given value of 7, the parameters (7°,..., 7", 37

can be found recursively as an invertible linear function of (p, Yy,...,Y;) because (8,I"a )
has full rank, see Assumption 1. In particular, we can find 7 from

p=—B%"=aTyand o/, 7" = o/, 1. (17)

Note that the coefficients 'Y, 11, Y,i2..., Tphix are not needed to recover the coefficients

in 7.
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2.3 The extended model

Corresponding to the additive model H%? with regressors vZ;, we define the extended model
He* using (8) and the coefficients in (14) by

k-1 n+k
H™ AXy = (B Xia + pU) + Y TAX i+ Y TAU A+ TolUser +2, (18)

i=1 i=1

where the parameters in ¢ = (m, p, T) are freely varying. Thus p, T! are not in general
functions of 7, 7, but the additive model 1% in (8) is a submodel of the extended model H¢*!
in (18). For the true values, the relations (14) express the true value of the extended model
parameter, &y, as a function of the true value of the additive model parameter, Ay = (79, 7o)-

2.4 Comparison of the additive and extended models

We compare the additive and extended models in a simple case with lag length £ = 1 and a
univariate regressor, U;, with order m = 1, which can illustrate the role of the order and the
choice of n. The additive and extended models have the same dynamic parameters, («, 3),
and only differ in the choice of regressors and their coefficients. Because m = 1, U; and AU,
have diverging information, while A2U, has bounded information, see Definition 1. First
suppose we choose the deterministic term Z; = U; in the additive model, i.e. n = 0. The
additive model and associated extended model are given by

HY AXy = a(B X1 — B0 + (o + L)VAU, + &y, (19)
Hixt : AXt = 04(6/th1 + plUt) + TlAUt + &;. (20)

In this case the deterministic term in H% has p parameters, v, whereas H has r + p
parameters, (p, T1). Thus, the additive model is a genuine submodel of the extended model.
An analysis of inference in this model is given in Theorem 9.

If instead we choose the deterministic term vZ = y°U, + AU, i.e. n = 1, then we find

HM AX; = (B X1 — B'9°U) + ((af + L)7° — afyH) AU, + (af' + L)Y AU, + &,
(21)

Hiwt . AXt = 04(5/th1 + plUt) —+ TlAUt + TQAzUt + Et. (22)

Now the extended model has r + 2p parameters, (p, Y1, Ts), but Ty cannot be estimated
consistently, because A?U; has bounded information. This leaves p + r parameters, (p, T1),
for He**. The additive model has parameters 7° and 7!, but because A%U; has bounded
information, the only large-sample information comes from the coefficients 3'7° and (a3’ +
I,)7° — afB'~', in the sense that only these coefficients can be estimated consistently. We
can obviously recover 3'7° from the first coefficient and, using Theorem 1, we can find o/, 7"
as well as 3y! from the second coefficient. Thus, for large-sample inference, the additive
model also has p+ r parameters, (7°, 3'y!), which are in one-to-one correspondence with the
parameters (p, T1) from the extended model. This is an example of an additive model, where
n has been chosen greater than or equal to m = 1. In this case the models H% and He*
are reparametrizations of each other, if we remove regressors with bounded information, and
in that sense the models are asymptotically equal, see Theorem 4. An analysis of inference
in this model is given in Theorem 8.
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In either case, note that one can include the regressors with bounded information in the
estimation, but they automatically disappear in the asymptotic analysis, as we shall show
in Lemma 1 and Theorem 4.

In general H%¥ is a submodel of H!, but there is a special case where the two models
are the same, as given in the next theorem.

Theorem 2. Consider the polynomial regressors fi(t) = (t+i) ... (t+1)/i! for1 <i <m,t >
0 and fo(t) =1 fort > 0. Then Af;(t) = fi—1(t) so that the additive model has deterministic
term vZy = Y "o fm—i(t) and the corresponding extended model has deterministic term
ap fm(t) + >0 Yifmei(t), see (1) and (18). If Assumption 1 is satisfied, then the additive
model is a reparametrization of the extended model.

The regressor Z; = (fu(t), fn_1(t),..., fo(t))" in Theorem 2 is equivalent to the more
common regressor Z; = (t™,..., 1), in the sense that they span the same space of polyno-
mials. The form of Z; shows that we have chosen n = m in this case. The deterministic
term thus contains pm + r identified parameters, 7°, ..., 7™, /4™, in the additive model,
and the same number of identified parameters in the form of p, T,...,T,, in the extended
model. Theorem 1 shows that 4%, ..., v™ %, 3'4™ from the additive model can be determined
uniquely from p, Tq,..., T, from the extended model for a given value of 7. Thus, for this
choice of regressors, the additive model parametrized by A = (m,~%, ..., 4™ 34™) is the
same as the extended model parametrized by & = (7, p, T1,...,Y,,). With the choice of Z;
in Theorem 2, the models with m = 0 and m = 1 are analyzed in Johansen (1996, Chapter
5) as H*(r), Hi(r). Note that the result in Theorem 2 still holds if Z; were enlarged to
include also a seasonal dummy.

In general, of course, the additive model is not a reparametrization of the extended model.
In order to derive the simple result that the additive model and the extended model with
regressors with bounded information removed, are reparametrizations, we will need to make
the next assumption.

Assumption 2. For the regressor Z; = (U/,...,A"U,, U!

se,t
where m,, is the order of Uy, v=1,...,q, see Definition 2.

) we choose n > maxi<y<q My,

The important condition in Assumption 2 is that, for each regressor in the additive
model, one should also include its differences, as long as these differences have diverging
information. As an illustration of a situation with n = 0 but m = 1, in which Assumption
2 is violated, consider the following example.

Example 4. Consider the model X; = Y; + v(t — to)" and AY; = af'Y;_1 + &;, where
not including the step dummy associated with the broken trend function has the effect of
enforcing continuity (in ¢) of the deterministic term. From (19) and (20) we find the additive
and extended models,

Hy AXy = a(B' Xy — Byt = t0)") + (@B + L)y pste1y + &1,
Hiwt : AXt = 05(6/th1 + p(t — t0)+) + Ul{t2t0+1} + Et. ‘
We note that in this example, Assumption 2 would be satisfied by including a step

dummy, 1>y = A(t — to)™, in the additive model formulation. This is illustrated as
follows.
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Example 5. Continuation of Example 4. Suppose we include the missing step dummy;,
Litsto41y = A(t — to)*, in the additive model formulation such that X; =Y, + YOt —to)™ +

Y fest041) giving

H?dd CAX =a(f Xy BI’YO(t - t0)+) + ((045’ + [p)’YO - 045”)’1)1{t2to+1}
+ (B + Ip)Wll{t:toH} + &,
H  AXy =a(B' X1+ p(t — to)") + vr1lpstgr1y + Volgmies1y + €,

see (21) and (22). With this slightly larger additive model we have n = 1 and m = 1.
That is, by including the missing step dummy, 1{;>; 41, in the additive model, and hence
allowing the broken trend to have a discontinuity at the breakpoint, 5, Assumption 2 is now
satisfied. ¢

For the general case, we next discuss identification and estimation of the parameters
in the additive model, in the situation where we have included a polynomial regressor to
illustrate what happens with identification and estimation of the constant term.

2.5 Identification of the parameters in the extended and additive models

Consider the parameter ¢ = (7, p, T) in the extended model (18), where a polynomial re-
gressor Uy, is included and Uy, is of order m;. We assume that the zero regressors of the
polynomial, i.e. A'U;; = 0 for i > m4, have been removed together with their coefficients, so
that the remaining regressors are linearly independent (Definition 2). Therefore £ is iden-
tified, because if the likelihood functions for parameters ¢; and & are the same, then in
particular for the deterministic terms,

n+k n+k
a1 py U+ Y1lDUy + Ty soUses = a2phUp + 3 Yo AUy + Yo o Usey for all ¢,

i=1 i=1

such that & = &, because of linear independence of the retained regressors, except for «
and 3, where only their product is identified. A convenient normalization to identify 3, see
Johansen (1996, p. 179), is to assume that '3y = I,. This will be assumed throughout.

We next consider identification of the additive model (8) as a submodel of the extended
model (18). Identification of the additive model is a consequence of the following result,
which is based on Theorem 1. The result is formulated for the additive model with a
polynomial regressor to illustrate what happens to identification of the constant term, which
generates a zero regressor when differenced.

Theorem 3. Let Assumption 1 be satisfied. Let X\ = (m,7) be the parameters in the additive
model (8), which contains a polynomial P, = Uy, say, of order my, and assume that the
regressors AUy, = 0, i > my, have been removed together with their coefficients ~yi. Let & =
E(N) = (m,p,X), where p, T are defined by (14) and p' = &Yy, and assume the coefficients
Yi,i > my, corresponding to the polynomial have been removed. Then, for any set of
parameters Ao and \p,, h — 0, we find

E(An) — &(Xo) as h — 0 implies N\, — Ao, (23)
except for the constant term with coefficient v," if n > my, where we only find B’y —

mi

B/’Yl,o
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Identification of the additive model as a submodel of the extended model follows from
Theorem 3 because if (A1) = £(\g) then, choosing A, = A1, we find from (23) that A\; = Ao.
Thus, a special case of Theorem 3 implies identification of the parameters of the additive
model in the usual sense.

However, in anticipation of our proof of consistency, Theorem 3 proves the more general
result that & depends continuously on the parameter A\, which one could call “continuous
identification”. The function £()) is clearly a continuous function of all parameters. If A
denotes the parameter space for A and we let £(A) denote the image of A, then Theorem 1
shows that the function £ restricted to {(A) is invertible. What is shown in Theorem 3 is
that this inverse function is continuous on £(A).

The result in Theorem 3 thus shows continuous identification of v, with the exception
that, if n > m; (so that the constant term, A™ P, = A™ Uy, is included in the model), then
the coefficient to the constant term is only identified in the §-directions.

2.6 Estimation of the parameters in the extended and additive models

For estimation we continue to assume that the zero regressors A'U;; = 0, i > m,, have
been removed together with their coefficients, so that the remaining regressors are linearly
independent. Then maximum likelihood estimation of the parameters of the extended model
(18) can be conducted by reduced rank regression of AX; on (X; ;,U;) corrected for the
non-zero regressors. See Anderson (1951) and Johansen (1996, Chapter 6).

The additive model (8) has no simple closed-form estimation algorithm, but one can use a
numerical optimization algorithm to maximize the likelihood function, using that the model
is a submodel of the extended model subject to the restrictions (14). Starting values for
the iterations in the numerical optimization of the likelihood function can be found, using
Theorem 1, from parameter estimates of the extended model.

3 Asymptotic theory for parameter estimators

We first give some conditions on the regressors, which are needed for the asymptotic analy-
sis. We then discuss consistency of the parameter estimators and find their asymptotic
distribution, both for the additive model and the extended model.

3.1 Regressors with bounded information

In the application of the models it is useful to allow, for instance, impulse dummies like
Uyt = 11—, as a regressor to account for an outlier. However, for the asymptotic analysis,
regressors with bounded information will not give consistent estimation or asymptotically
Gaussian inference for their associated coefficients. That is, for any deterministic term
U,: with order m,, the coefficients to the regressors A‘U,;,i > m,, cannot be consistently
estimated because >, (AU,)? is bounded for i > m,, see Definition 1. We next prove
a result that allows us to disregard regressors with bounded information in the asymptotic
analysis of the model, in the sense that these regressors have no influence on asymptotic
inference for the remaining parameters.

Lemma 1. Let Zy; be stochastic or deterministic with diverging information, Z;szl Z% ER 00,

and let Zy be deterministic with bounded positive information, 0 < Zthl Z2 < c. Then

Y1 ZuZo P
(Eim Z5) VA 22012

11
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A consequence of Lemma 1 is that the limit of the information matrix normalized by its
diagonal elements will be asymptotically block diagonal, with one block corresponding to
regressors with bounded information. This is used to prove that the latter type of regressors
do not contribute to the asymptotic distribution of the remaining parameters. To this end,
we now define the additive and extended models where regressors with bounded information
have been removed, and subsequently we give the result.

Definition 3. Define H%* as the additive “core” model, given by H in (8), but where
regressors with bounded information have been removed. Similarly define HE™™ as the ex-
tended “core” model, given by HE" in (18), but where regressors with bounded information
have been removed.

Theorem 4. The asymptotic distribution of the MLEs in H* is the same as the asymptotic
distribution of the MLEs of the same parameters in H?, and the asymptotic distribution
of the MLEs in HE"™ is the same as the asymptotic distribution of the MLEs of the same
parameters in HE™ . Moreover, if Assumptions 1 and 2 are satisfied, then the models HE™
and H% are reparametrizations of each other.

There are two important results in Theorem 4. First, the asymptotic distributions of
the MLEs in the core models are the same as the asymptotic distributions of the MLEs of
the same parameters in the models that include the regressors with bounded information.
Consequently, we will therefore assume in the asymptotic analysis that all such regressors
and their coefficients have been removed. Second, under Assumptions 1 and 2, Theorem 4
shows that the two core models, He*™* and H4%* are reparametrizations of each other. That
is, in general H®' and H% are not reparametrizations as for polynomials, see Theorem 2,
but Assumption 2 is the important condition that allows us to establish that, asymptotically,
a result that parallels Theorem 2 holds for the core models.

Example 6. Continuation of Examples 4 and 5. It is seen that the two models in Ex-
ample 5 are not reparametrizations as for polynomials, see Theorem 2, but the coefficient
vy is associated with a regressor with information Zthl lft:to = L and hence does not
contribute to the asymptotic analysis (Lemma 1). That is, by including the missing step
dummy, 1g>441), in the additive model, and hence allowing the broken trend to have a
discontinuity at the breakpoint, t3, Assumption 2 is now satisfied and the two models in
Example 5 are asymptotically equivalent in the sense that their respective core models are
reparametrizations of each other, see Theorem 4. ¢

3.2 Partition and normalization of regressors with diverging information

In the following we consider only the core models, H®** and H%%* based on the arguments in
Theorem 4. That is, we remove regressors U,; with bounded information and assume, without
loss of generality, that all components U,,; have m, > 0, and we discard the regressors A‘U,;
with ¢ > m,. We then find that the deterministic term in the extended model (18),

n+k q

q
« Z p;th + Z Z TivAith + TSEUSE,t7 (24)
v=1

1=1 v=1

can be replaced—without changing the results of the asymptotic analysis—by

OéIO,ZOt -+ TIZR, (25)

12
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where Zy, = U; and Zy; are the regressors with diverging information including the seasonal
dummies, ‘
Zyy = (A'Uy, 1 <i <min{n +k,m,}, 1 <o < g UL,), (26)

and where the corresponding freely varying coefficients are
P =—37"and Y' = (YTs,1 <i<min{n+k,m,},1 <v < q;Vy). (27)

We note that Z1; may be empty, in which case the remainder of the analysis is easily simplified
accordingly. We also note that the true values py and T} are both functions of (7, 70), see
(14).

The asymptotic analysis is based on the behaviour of suitable product moments. We
therefore introduce the notation for product moments of sequences U, V;, Wy, t =1,..., T,

T
UV)p =T V],

t=1

and for the residuals of U, corrected for W,
(U W) = Uy = (U, W)y (W, W) W
Product moments of residuals are denoted
(U VIW) e = (UIW), (VIW)p = (U V)p = (U W) (W, W) (W, V)

When the limit as 7" — oo of a product moment exists, we use the notation (U, V), — (U, V).

Next, for the asymptotic analysis we need the following normalizations of the regressors
and a mild condition to rule out asymptotically multicollinear regressors. For a regressor
with diverging information, i.e. A'U,, with i < m,, we introduce the normalization Mr;,.
The normalizations of Zy and Zy; are then given by the diagonal matrices

NTO = diag(MTOvv 1 S v S Q),
Nri = diag(Mrip, 1 <i <my, 1 <v < gl ),

where ¢;_1 is an (s — 1)-vector of ones, because the s — 1 seasonal dummies need no normal-
ization. This defines the normalized regressors

ZOTt = N;OIZOt and Zth = NEIIZM. (28)

Assumption 3. The normalizations satisfy My T~? — 0 and My} Mriy1, — 0 and the
asymptotic information matriz for the normalized regressors is nonsingular, i.e. satisfies

(Zr)- (22 ), = ((2)(Z)) = -

Example 7. The nonsingularity condition in Assumption 3 rules out asymptotically multi-
collinear regressors, and is easily satisfied in practice. As an example of what is ruled out,
consider the regressor U; = (t + lgy>¢o41), ¢t + Lg>4,-13)" and suppose n = m = 1 such that
Zoy = Uy, Z1y = AUy, see Definition 2 and (26). We normalize by Mrpg, = T and My, = 1
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and find Zopiry) — (v,v) and Zipir) — (1,1), such that the limit in (29) is singular. In
this case, one could choose instead U; = (¢ + > to+1)s Lesto—1) — 1{t2t0+1})’, which spans the
same space, but T 'Upp,; — (v,0) and AUjr,; — (1,0)’, such that we can discard the second
component and find Zyrir,] — v, Zi7rry) — 1, which gives rise to consistent estimation with
a non-singular asymptotic information matrix. ¢

Finally, for a sequence &, which is i.i.d. (0, 2), we define the Brownian motion W as the
weak limit of the partial sum of ;; that is, for S; = 22:1 g; we define W, from

(Tv]

T8, = T7V2Y e 2 We(v). (30)

Of course, W. can be considered as W. = Q'/2B, where B is standard Brownian motion,
but we find that using W, is a simpler notation. For the asymptotic analysis we make the
following high-level assumption, for which primitive sufficient conditions are well-known.

Assumption 4. The following limits as T — oo exist and the convergences hold jointly,

TY2 (Zip, &) =T V2N IS Zyel 2 (Zg,e) for j=0,1,
TV (Zip,Sia)y =T 2N SO0 23S, 5 <Z3a We. > f07’J' =0,1,
T2 <St—17 8>T = T3 Z:{:l St—lg:f f() <W67 8)

Again, we use (Z;,¢), for example, as the notation for the limit of a product moment,
because simple expressions in terms of stochastic integrals are not possible for all regressors.
Examples of the limits in Assumption 4 are given next.

Example 8. Let U, = (¢, (t — to)")" with AU, = (1,1>¢+13)". Then Mpo, = T and
Mr1, = 1 and we note that .MT’Z-%JT_V2 — 0 and ME&UMT1U — 0, reflecting that the order of
the regressor in this case decreases when differenced. We define

u(v) = lim Urry = lim NT_OIUT,,] = (v,(v—19)"),

U(V) hrn AUT (Tv] = hl’Il NTl AUTZ/ (1, 1{V>V0})/'

T—oo

For this example we find the limits, as T" — oo,

(Ur, AU 1 =T 'S (T (AU — fo v)u(v)dv = (U,AU),
TYV2 (Up, €) =725 T el D fo v)d = (U,e), ¢
T_1/2 <UT7 St—1>T = T_3/2 Zthl T_lUt 2—1 _> fo V dV - <U7 We> :

The previous example illustrates a relatively simple regressor, which when appropri-
ately normalized has a limit, u(v), in Ls. In this case, the limit of the product moment
TY2 (Up, ), for example, can be expressed as a stochastic integral of u(v) with respect to
Brownian motion, W.. However, such simple limit expressions are not always possible, as
the following example shows.



The CVAR model with general deterministic terms

Example 9. Let Uy, = (—1)" be a seasonal dummy variable. Then, as T' — oo,

T
TV (Use,€)p = T2 Usere) = N(0,Q) = (Use, €)

t=1

T
T_1/2 <St—17 Use)T = T_3/2 Z St_lUse’t - OP(T_l)’

t=1

where we note that (Us, €) is not a stochastic integral involving a limit of U, ; because U,
does not converge in Ls. ¢

3.3 Consistency of parameter estimators

Because we have eliminated regressors with bounded information by the above arguments,
see in particular Theorem 4, from this point onwards the asymptotic analysis will focus
on the additive and extended core models, H%* and H™, see (8), 18), and Definition
3. The parameters of the additive core model, H%%* are given by A\ = (7,v) with true
value \g = (m, Vo), and the parameters of the extended core model, H*  are given by
£ = (m, p, T1) with true value & = (7o, po, ¥5) = (7m0, —By70, T (70,7%0))-

Let 6 denote a parametrization of the conditional mean, e.g. A or £&. Then, for this
parametrization, the negative (quasi-) log-likelihood function is, apart from a constant term,

Z (31)

where we have set {2 = Q (without loss of generality for asymptotic inference on the remain-
ing parameters) and ¢,(f) are the residuals, which are defined for the additive and extended
(core) models as

l\DI»—t

HE s ey (A) = AX, — (B X1 — B9 Zo) ZF AXy i = THm 2, (32)
k—1
Hfzt* . 5t(§) — AXt — OZ(B,Xt—l —+ P,ZOt) — Z FiAXt_i - Tltha (33)

i=1

see (1) and (18). The MLEs of A and ¢ are then defined as A = argminy L(\) and £ =
arg ming L(&), respectively. The latter can be obtained by reduced rank regression, but the
former requires numerical optimization, see Section 2.6.

To prove consistency, we use the fact that both the additive and extended models can be
expressed as nonlinear submodels of a linear regression model. The Gaussian log-likelihood
function in the linear regression model is quadratic and therefore the level curves are ellipses.
This means that, for any ellipse, the log-likelihood is smaller outside the ellipse than all values
inside the ellipse. This simple fact can be used to prove consistency for a nonlinear submodel,
as in the following result from Johansen (2006, Lemma 16, p. 114), which we will apply.

15
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Lemma 2. Consider the regression model y, = ¢'z;+¢,, where &, is i.i.d. (0,$), with stochas-
tic or deterministic regressors, and let ¢ = <(7) be a continuously identified parametrization
of a submodel. We define the estimator 7 as the minimizer of

T
{1 Y (v — s(7)'20) (g — s(7)'20)'}.
t=1
If the information diverges in probability for all components of z;, that is,

T
P <wmin(zt ) 22y) > A) — 1 forall A>0asT — oo,

where wmin () denotes the smallest eigenvalue of the argument, then 7 exists with probability
converging to one and is consistent as T — o0o.

Consistency of the continuously identified parameters in both the additive and extended
core models thus follows from Theorems 3 and 4 because we only include regressors with
divergent information.

Theorem 5. Suppose Assumptions 1 and 3 are satisfied. In the extended core model Hewt
see Definition 3 and (18), with parameter &, the MLE & exists with probability converging to

one and é ER 0. Similarly, in the additive core model H, see Definition 3 and (8), with

parameter X\, the MLE \ exists with probability converging to one and 5 Ao-

3.4 Asymptotic distribution of estimators

Letting ITy(L) denote the characteristic polynomial with the true values 7y inserted, we first
note that the residuals (33) for the extended model are

€t(f) = H(L)Xt - OéP/ZOt - Tlth = H(L)Y; + H(L>’YOZt - ap/ZOt - Tlth
= (II(L) — Io(L))Y; + (L)yoZ — ap' Zoy — Y Zyy + €. (34)
The deterministic term in (34) is
H(L>’YoZt - Oé,OIZOt - Tlth = —OC(BI’Y(()) + /)/>Z0t - (Tl - Tl(ﬂ', ’Yo))th- (35)

The stochastic term in the residuals in (34) is, using the normalization 3 = [y + /BOLB(I) (B
ﬁO)a

k—1

(T(L) = TTo(L))Y; = —(a — ) 851 — (B — Bo) Bor B Yeor — Y (T = Tig) AY; 4, (36)

i=1
see (2), where we note in particular that, from (4) and (30),
T71/266L5/[TV] = T71/2B(’)¢COS[TV] + op(1) E B0, CoWe(v)

as T' — oo.
We simplify the notation by defining new parameters to account for the parameters that
actually appear in (35) and (36) and to account for different normalizations. After deriving
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their asymptotic distributions, we use those to derive the asymptotic distributions of the
MLEs of the extended model parameters £ = (7, p, T!) and the additive model parameters
A = (m,7). Thus, a convenient device for deriving the asymptotic distributions of £ and A is
to define

7125y, T2 —
Gro= (T ) = (T ) e = (0T )N 30

as well as

*

o =(a—ag, 't —Tig,..., D1 —Tho1p) and Y = (Y160, AY, ,...,AY 1), (38)
with ¥ = Var(Y)) and
T 7, %) = (Ti(m, %), 1 < i < min{n + &k, my}; Tee(m,70)). (39)
These definitions yield a simple expression for the residuals,
e, ¢, v) = =¥ — al'Gry — V21 + &4, (40)

and it is clear that there is a simple one-to-one relation between the parameters ¢ = (7, p, T!)
and (a*, (,v) such that (a*,(,v) are freely varying parameters. By an analysis of the like-
lihood function (31) corresponding to &,(a*, ¢, v) in (40), we can prove the following result,
from which we will subsequently derive the asymptotic distribution of the estimators in the
extended and additive models.

Theorem 6. Suppose Assumptions 1, 3, and 4 are satisfied and that the data is generated
by (1) with A\ = \g. We consider the statistical model HE*™ and the parameters (a*,(,v),
see (37) and (38). Then the asymptotic distributions of the MLEs (&*,(,0) based on (31)
and (40) are given by

Tl/Q@* B) pr(r+(k71)q) (07 E;fét ® QU) ’ (41)
TV2E 2 (G, C12) Gzl ), (42)
T2 B (e, Z1) (%, Z1>_1 + g (a, G| 21) (G, G|Zl>_1 (G, 20 (%, Zl>_1 ’ (43)

where the convergences hold jointly and eq; = (pQy o) "ty Qy 'es. Furthermore, the dis-
tribution (41) is asymptotically independent of the distributions (42) and (43).

The distribution in (42) is mixed Gaussian (MG), and an important consequence is
that asymptotic inference on 3 can be conducted using the y2-distribution. However, the
distribution in (43) is not MG, although we can obtain asymptotic Gaussianity for the
linear combinations &/, © = &', (Y* — Y (#,7))Nry or afy 0 = afy, (TP — T, 7)) N1, using
Slutsky’s Theorem.

3.5 Asymptotic distribution of the parameters in the extended model

We now apply Theorem 6 to derive the asymptotic distribution of the MLEs of the parameters
in the extended core model, He*™*. By Theorem 4, these are the same as those of the MLEs
of the same parameters in the full extended model, H".

17
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Theorem 7. Suppose Assumptions 1, 3, and 4 are satisfied and that the data is generated by
(1) with A = \g. We consider the statistical model HE™™ and the parameters & = (m, p, T1).
Then:

(i) The asymptotic distribution of T*/*(6—ag, Ty =Ty, . . Fk 1—Lk_10) is given in (41)
in Theorem 6, and the asymptotic distribution of TBOL(B Bo) follows from (42).

(it) For p' = (py,....pg), ¢ = (C1,(3)" defined in (37), G = (215, (), and 1 < v < g,
the expansions

Py = Pho = —(B = Bo)'75s = B30 = 780) = —(TV2C 851700 T " + (T2 o) Mg, T
(44)
shows that the asymptotic distribution of p— po, suitably normalized, follows from (42),
and is mized Gaussian.
(i) For 1 < v < q and 1 < i < m,, the asymptotic distribution of Y;, — Livo = Lip —
Y (m0,Y0) consists of two terms,

Tm — Yo = (Tl/%w)T*lmMTfii + (T1/2Tm(7AT — T, ’Yo))Tfl/Q; (45)

see (37). The asymptotic distribution of TV/?0y, is given in (43), and, replacing B by
Bo, the asymptotic distribution of T*/?>Y;, (& —mo,v0) depends only on that of &*, which
is Gaussian and given in (41), and the two terms on the right-hand side of (45) are
asymptotically independent.

The asymptotic distributions in parts (ii) and (iii) of Theorem 7 both depend only on
the largest term. That is, in part (ii) the asymptotic distribution depends on the relation
between the normalizations 7! and My, T~'/? as well as the value of the parameter 3}, 73,
whereas in part (iii) it depends on the relation between T~*/2M! and T~*/2. Haldrup (1996)
encounters a similar problem of different limit behaviour of estimators in the context of a
Dickey-Fuller regression with a slope coefficient.

3.6 Asymptotic distribution of the estimators in the additive model

Under Assumption 2, the extended and additive core models are reparametrizations of each
other, see Theorem 4. Thus, in this case we have that T* = Y!(r,~), such that

TH#,4) = THF %) = THE A = %0). (46)

We use this fact, together with the simple one-to-one relation between the parameters in
the extended core model, &, and the parameters in Theorem 6, and the one-to-one relation
between £ and A(§) in Theorem 1 to derive the asymptotic distribution of the maximum
likelihood estimator for the additive model, which we here denote A = A(€), from the results
in Theorem 6.

Theorem 8. Suppose Assumptions 1-j are satisfied and that the data is generated by (1)
with A\ = X\g. We consider the statistical model H** and the parameters A = (m,v). Then:

(i) The asymptotic distributions of TY2(& — ag, Ty — T, ) T 10) and (T(5 —
Bo) BoL, —TY235(3° — 43)Nro) are given in (41) and (42) in Theorem 6.

18
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(i) For 1 <v <gq and 0 <i <m,, the asymptotic distributions of TY2 Mriy(32 —~5,) are
given in terms of those of Uy = (Tiv — Yoo (7, 70)) Mriy, see (37) and (43), as follows,

TY2B34(3h — vio)Mriw = —T"2a405, + op(1), 1 < < my, (47)
Tl/zO‘gLFO(’% - ’VZO)MT,HLU = Tl/zafu@iﬂ,v +op(1), 0<i <m, — 1, (48)
k
T2 vec(* = 75%) = (O MY ® i) T2 vec(Dye). (49)
1=0

(iii) The distributions (47)-(49) are asymptotically independent of the distribution (41)
given above.

The main result in Theorem 8 is that the simple condition in Assumption 2 of including
enough differenced regressors in the additive model, implies that the additive and extended
core models are reparametrizations of each other (Theorem 4). This permits relatively
straightforward inference on the parameters of the additive model. Moreover, by Theorem
4, the asymptotic distributions of the MLEs of the parameters in the additive core model,
He44*  oiven in Theorem 8, are the same as those for the same parameters in the full additive
model, H%.

Recall that the distribution in (42) is mixed Gaussian (MG), so that asymptotic inference
on /3 can be conducted using the y2-distribution also in the additive model. Also note that
T2 i1, is asymptotically Gaussian, see (43), but T/2a)0;, is neither asymptotically
Gaussian nor mixed Gaussian. Thus, to use Theorem 8, for example, to test hypotheses
on the parameter 72, the parameter needs to be divided into two components for which the
estimators have different convergence rates as in (42) and (48). This is discussed in detail
in Section 4.

3.7 Asymptotic distributions when m > n

If the condition that max;<,<,m, < n in Assumption 2 is violated, inference in the additive
model becomes much more involved. To simplify the discussion, we consider the additive
(core) model for a univariate regressor U; with order m, lag length k£ = 1, and n = 0, that is
~vZy = vU;. The general case follows similarly, but with more complicated notation.

We now consider the asymptotic distributions when m > n, i.e., when Assumption 2 is
violated. The asymptotic theory for the extended model in Theorem 7 covers the case of
m > n, but the theory for the additive model in Theorem 8 does not. In the next theorem,
we compare inference in the two models in a simple case when m > n.

Theorem 9. Suppose Assumptions 1, 3, and 4 are satisfied, but Assumption 2 is violated,
and that the data is generated by (1) with A\ = \g. We consider the statistical model H*%*
in the special case n =0, k =1, and m = 1 and with the parameters A\ = (m,~). Then:
(i) The asymptotic distribution of T'?(& — ap) in (41) continues to hold.
(i) The asymptotic distribution of
TV = ( TG, (5 —Bo) )
—T"2Npo(5 —7)'5 )’

or any linear combination of it, is not mized Gaussian.
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(i1i) The asymptotic distribution ag, (¥ — vo)Nr1 is neither asymptotically Gaussian nor
mixed Gaussian and the same holds for any linear combination of it.

(iv) Finally, the asymptotic information matriz for ¢ in the extended model is larger than
the asymptotic information matrixz for ¢ in the additive model, in the sense that the
difference is positive definite.

Note that when n < m, inference for d,f‘l, - ,fk,l in the additive model is asymp-
totically the same as for n > m. This can be explained by the block-diagonality of the
information matrix for the parameters («,I'y,...,Tx_1) and the remaining parameters, such
that inference on (a,T'y,...,T'x_1) can be conducted as if the remaining parameters were
known.

In order to explain what happens with the regression parameters in the additive model,
we decompose 7 into 3y and o’ y. Note that for k = 1 we have I' = I, so that o/, 3, has
full rank. The first parameter is estimated as the coefficient to U;_;, and the contribution
to 'y from the coefficient to AU, is asymptotically negligible, whereas the parameter o/, y
is estimated from the coefficient to AU;. Thus the information in f'yAU; is not used in the
additive model.

By extending the model, we replace the coefficient to AU, by a freely varying parameter,
and can then exploit all the information in the data. This simplifies inference, and the cost
of a loss of efficiency as measured by the ratio of the information matrices. More precisely,
the limiting asymptotic conditional variance of the mixed Gaussian distribution of é’ in the
extended model is larger than the corresponding expression for the additive model, but the
interpretation of the limit distribution is entirely different in the two models.

The difficult inference problems in the additive model when Assumption 2 is violated
could possibly be solved by an application of the bootstrap along the lines of Cavaliere,
Rahbek, and Taylor (2012) and Cavaliere, Nielsen, and Rahbek (2015). However, enlarging
the model to have n > m is a simple device to achieve simple inference as illustrated in
Examples 4, 5, and 6.

4 Hypothesis testing

We first give the asymptotic distribution of the test for cointegration rank and then discuss
tests on coefficients of deterministic terms. In both cases we work under Assumption 2 so
that the additive and extended models are reparametrizations of each other.

4.1 Test of cointegration rank

We consider the extended model (18) for r = p, and regressors with bounded information

removed,
k—1

HE™ AX, =TIX, o+ Y%+ Y TiAX i+ Y 2y + & (50)
i=1
The likelihood ratio test for rank r or Il = a/3’, where o and 3 are p X r matrices, is denoted
LR(H{*™|H™). By Theorem 4, the asymptotic distribution of LR(H™*|H:™) is the same
as that of LR(H;™|Hs™) in the full model. For the general class of models and deterministic
terms considered, we can provide a unified result for the asymptotic distribution of the test
of cointegration rank, and this is given next.



The CVAR model with general deterministic terms 21

Theorem 10. Under Assumptions 1- 4, the asymptotic distribution of the test of cointe-
grating rank in either the extended core model, H*", or in the additive core model, H*,
s given by

—2log LR(HE ™ [HE™) 2 tr{(ea, , G Z1) (G, G| Z1) 7 (G ea, | Z1) ),

where e, + = (afy, Qogr ) "V2a) & isi.i.d. (0,1,_,). By Theorem J, the statistics LR(H™ [ H)
and LR(H|HI) have the same asymptotic distribution as LR(H™*[HE™™).

Note that the limit distribution of the rank test depends on the type of regressors and
needs to be simulated for the various cases. However, it does not depend on the values of
the regression parameters, i.e. the rank test is asymptotically similar with respect to the
regression parameters, see Nielsen and Rahbek (2000). This is a consequence of starting
from the additive formulation with n > max;<,<, m,, and deriving the extended model from
the additive model. In the innovation formulation (6), this is not the case, see for example

the analysis of the model with an unrestricted constant term in Johansen (1996, Chapter
13.5).

4.2 Tests of hypotheses on deterministic terms

We consider inference on the coeflicients fyf}, 0 <i<m, <n, in the additive model under
Assumption 2. Tt follows from Theorems 6 and 8 that the limit distribution of 4! — ~%,
naturally decomposes in two parts, and we therefore split the hypothesis 7/ = 0 into a test
that 57! = 0 and a test that o/, Iy} = 0 assuming 'y’ = 0 (since the matrix (5, ) has
full rank under Assumption 1, see Theorem 1). It appears natural first to investigate if 72,
i.e. the coefficient of U, is zero. If we cannot reject that it is zero, then we can proceed to
test that the coefficient of AU, is zero, that is, test the hypothesis v} = 0, assuming 7% = 0,
etc. Thus we can apply the asymptotic distributions in Theorems 7 and 8 as in Theorem 11
to test recursively that 7/ = 0, provided we assume that 7/ =0, 0 < j < 1.

Under Assumption 2 the additive and extended core models are reparametrizations (The-
orem 4). Therefore, estimation of the unrestricted model can be performed by reduced rank
regression of AX; on (X[_,,Z(,) corrected for lagged AX; and the regressors Z;, where
Zot = Uy, see (25) and Section 2.6. Under the hypothesis 3'7° = 0, the parameters can be
estimated in the same way by reduced rank regression, but removing U,; from Zj. Finally,
if both 7% = 0 and o/, T} = 0, so that 72 = 0, the estimation can also be performed by
reduced rank regression, but replacing U,;, with AU, in Zy, and removing AU,; from Z;,.

Theorem 11. Let Assumptions 1-/4 be satisfied. Then:

(i) In the additive core model, H, the likelihood ratio test for the hypothesis pl =
—B'v% = 0 is asymptotically x*(r)-distributed.
(ii) In the additive core model, H2*  with m, > 1, the likelihood ratio test for the hypoth-
esis o/, Ty = 0, given that pl, = 0, is asymptotically x*(p — r)-distributed.
(iii) In the additive core model, H  with m, > 1, the likelihood ratio test for the joint
hypothesis, v° = 0, is asymptotically x*(p)-distributed.
(iv) By Theorem 4, the same results hold in the additive model, H.
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5 Conclusions

We define the CVAR model with additive deterministic terms and derive the corresponding
innovation formulation which is nonlinear in the parameters. This additive model is extended
to a model which is linear in the coefficients of the deterministic terms and hence allows
estimation by reduced rank regression. A general class of regressors is defined and for each
regressor its order. This setup allows a discussion of the relation between the innovation
formulation of the additive model and its extension.

A simple condition for when the additive and the extended model are (asymptotically)
identical is given. The condition, given as Assumption 2, is that for each regressor in the
additive model one should also include its differences, as long as they have diverging infor-
mation. If this recommendation is not followed, asymptotic inference is considerably more
complicated. For example, when the regressor is a polynomial or power function, say t* for
some a > —1/2, the recommendation is to include (at least) m = [a + 1/2] differences of
t*, which seems like a natural thing to do. Indeed, not doing so seems quite strange in most
circumstances. On the other hand, for the broken trend function, (¢t — )", it may in fact be
reasonable to exclude the first difference, 154,41}, when insisting on continuity of the trend
function as in Example 4. However, the recommendation is to include the first difference
anyway, even if it is believed to be zero, because including it leads to simple inference, see
Examples 5 and 6.

We derive the asymptotic distribution of the rank test in both the additive and the
extended models, and show that both are similar with respect to the regression parameters.
The asymptotic distribution of the parameter estimates is found to be a mixture of a Gaussian
distribution and a mixed Gaussian distribution, and finally we show how it can be applied
to test that the regression coefficients are zero.

A Appendix: proofs of results
A.1 Proof of Theorem 1

The two results in (15) follow from (14) when multiplying by @’ and o/, , respectively, using
by = —af’ and ¢; = af’ +T'. Tt follows from

600600 = (s s, ) (51)

’ ’ o Tp o I8 )7
and Assumption 1 that o/, '8, has full rank, and hence that also (8,I"a, ) has full rank,
so that the relations in (15) can be solved for 7*. To solve for v*¢, we let (w;,v;),j =
1,...,s — 1, be the eigenvalues and eigenvectors of M. It is clear from (14) that Y. is
a linear function of 7*¢, and we want to show that this function is non-singular, that is,
that T,, = Zf:o ®,v*M! = 0 implies v** = 0. To see this, post-multiply by v; and use
Miv; = wiv;, such that

k k
0= Tsevj = Z (I)i’}/seMsin = Z @iw;’ysevj = H(l — (Uj)’ysel)j.
=0 1=0

Now w; = 1 —e¥i/s j =1,... 5 — 1, see Example 3, such that II(1 — w;) = II(e*"/%),
which by Assumption 1 has full rank, such that v*“v; = 0 for all j and hence v*¢ = 0. The
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definition of T, is therefore

vec(Yse) = (Z M; ® ;) vec(7*),

i=0

where Zf:o M! ® ®; is of full rank. The solution is then given by (16).

A.2 Proof of Theorem 2

The result Af;(t) = fi—1(t) follows from the identity

(i) (E+1) — (=140 t=(t+) (=140 E+1) = ((t—1+0)-- (t+1))t
=((t—14d)---t+1)(t+i—t)=((t—14+4)---(t+1))i

after division by i!.
The additive formulation of model (1) with Z; = (f.(¢),..., fo(tf)) has n = m and
deterministic term

Ms

;7 frnji(t)

k
LyvZy = Zq)AlZ’YfmJ Z

=0

= Z Tsfm_5<t> = Oép,fm(ﬂ + Z Tsfm—s<t)a

s=1

Su
o

where the penultimate equality follows because A f,,(t) = 0 for j > m.
A.3 Proof of Theorem 3

The proof follows from Theorem 1 because £(\) determines A as a linear, and hence contin-
uous, function except for o/, I'y"* (in the case n > my).

A.4 Proof of Lemma 1

For T} < T, we decompose the numerator as

Z T Zo = Z T Zo + Z ZiZons

t=T1+1
and evaluate the second term using the Cauchy-Schwarz mequahty,

T T T o
3 maml (Y ANNY AR (S ANY AR
t=T1+1 t=Ti+1 t=Ti+1 T

Because Zle Z3, < ¢, it follows that, for all € > 0 and T} sufficiently large, we have

| Z Zy Zoy|( ZZ (Y )P <2
t=T1+1 t=T1+1

Finally, because 3,_, Z12lt — 00, we can choose T' so large that, for any (fixed) 77 and any

0 > 0, we have
T T
> ZuZal () Z5) 7V < €)2
t=1 t=1

with probability greater than 1 — ¢, which completes the proof.
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A.5 Proof of Theorem 4

Lemma 1 shows that, for both the additive and the extended models, the limit of the infor-
mation matrix normalized by its diagonal elements is asymptotically block diagonal. One
block corresponds to the coefficients of the regressors with bounded information and another
corresponds to the parameters in the core model. This implies that the asymptotic distrib-
utions of the MLEs in the core models are the same as the asymptotic distributions of the
MLESs of the same parameters in the full models.

Under Assumptions 1 and 2, the core models, H¢*** and H%* have the same number of
parameters. For the core model H"™* see (27) the parameters are, apart from 7 and Y,
the rq + >"7_, m, parameters collected in

(0, Yis oo, Timy, 1 <v <q). (52)

For the core model H%?  the parameters are, see (11), apart from 7 and T,., the pg +

¢ (p(my, — 1) + r) parameters collected in

(Y7, B 1 < v < g). (53)

Theorem 1 shows how (52) can be recovered from (53) and vice versa. Thus, the core models
are reparametrizations of each other.

A.6 Proof of Theorem 5

We can express both the additive model (8) and the extended model (18) as nonlinear
submodels of a linear regression model as follows. Because we have normalized 3 on 3’3, =
I, we can define 0 = /3| (5 — o) such that 5 = By + 5. 6. Then the extended model (18) is
k-1
AX; = aB) X1+ al' By, Xi 1 + ap” Zy + Z DiAXy i + Y 2y + T2 2oy + &4,
i=1
which is a submodel of the linear regression model
k-1
AX; = a(ByXi—1) + &8y Xi—1) + V2o + Z DiAX i+ T 2y + Y2 2oy + & (54)
i=1
defined by the restrictions ¢ = o, 1) = ap”, and the remaining parameters being the same
in the two models. From Theorem 3 it follows that, because app) — agpd and agb), — o)
implies 0, — 6y and p) — pJ, the extended model is continuously identified in the larger
linear regression model (54). Similarly, the additive model is continuously identified in the
extended model and hence in the larger linear regression model. The result now follows
immediately from Theorems 3 and 4.

A.7 Proof of Theorem 6
The likelihood is given in (31) with &;(6) replaced by the residuals e;(a*, (, v), see 40).
Derivatives of €;: At the true values, (a*,(,v) = (g, o, v0) = (0,0,0), we find the
derivatives
Doe(ag, Co, vo; da™) = —(da™) Y,
Deer(ag, Go, vo; dC) = —ao(d¢) Gy,
Dyei(ag, Co, vo; dv) = —(dv) Zury.
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Score and information: We denote the score function with respect to o, for example,
in the direction da* as Sy« = Dy log L(ag, (o, vo; da*). The information with respect to o
and (, for example, is similarly denoted by I« = Di*c log L(ag, Co, vo; da*,dC). Then the
scores are

T 280 = —te{Qy (da*) TV (Y*, )} 2 — tr{Q;  (da*) (Y*, &)}, (55)
T728, = —tr{Q Yo (dC) TY? (G, €) ) 2 — tr{Q5 o (dC) (G &)}, (56)
T_1/2SU = - tr{Qal(dv)T1/2 <Z1T7 €>T} g - tr{Qal(dU) <Zl7 €>}7 (57)

and the diagonal elements of the information are
T e = tr{Q5 1 (da*) (Y*,Y*) (do*)'} + 0p(1) = tr{Q5 " (de*) Sytar (d®)'}, (58)
T I = tr{Q5 o (dC) (G, Gr)y (dC) iy} + 0p(1) = t2{Q5  ap(dC) (G, G) (dQ)ap}, (59)
T Ly = tr{Q (dv) (Zur, Zur) 7 (dv)'} + 0p(1) = t{Qq " (dv) (Z1, Z1) (dv)'}.

There is one non-zero off-diagonal element,

T, = {5 ao(dC)' (G, Zir)y (dv)'} + 0p(1) 2 {5 a0(d0)' (G Z1) (dv)'},
and the following are asymptotically negligible,
T Lov¢ = {5 (da”) (Y, Gr) ()i} + 0p(1) 0, (60)
T ey = tr{Q  (do®) (Y, Zy1)y (d0)'} + 0p(1) 2 0.
Because the information is asymptotically block diagonal, &* and (5 ,0) are asymptotically
independent, and we consider inference separately for o* and (¢, v).

The asymptotic distribution of T'/?6*: By the usual Taylor expansion of the likelihood
equations, we find that the equation for the asymptotic distribution of T%/24* is given by

tr{ Qg (da*) (Y*, V), (TYV?&*)} = — tr{Qy H(da*)TY?* (Y* &), } + 0p(1) for all da*,
and hence
SaaT?6" = =TY2(Y* &) + op(1),

which by the Central Limit Theorem gives the result in (41).
The asymptotic distribution of TY2(¢,0): Similarly, we find the equations for determining
the limit distribution of ((, ),

<GT, GT>T (Tl/Qé)Oé{)QU_IOJO + <GT, ZIT> <T1/2 ) Q Qp = —T1/2 <GT, €>T Qal()éo + Op(l),
(61)

(Zvr, o) (T2 + (Zur, Zar)p (TY20) Q5 = =T (Zip, €)1 5 + 0p(1).
(62)

Pre-multiplying (62) by (Gr, Zi7), (Zir, Zir)y', post-multiplying by g, and subtracting
the result from (61) we find

(Gr, Grl Zir)p (TP a0 = = (G, €| Zar) Q5
which implies (42) and inserted into (62) gives (43).
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A.8 Proof of Theorem 7

First note that He"* with the parameters ¢ is a simple one-to-one reparametrization of H"*
with the parameters (a*, (,v). Thus, these parametrizations have the same likelihood and
the MLEs of ¢ can easily be found from those of (a*,{,v) and vice versa.

Proof of (i): The result for the dynamic parameters © = (o, 3,T'1,...,[x_1) follows
directly from (41) and (42) by the definitions of a* and (, see (37) and (38).

Proof of (ii): Using p!, = —'7? and the definition of ¢ = ({{,¢)" in (37), we find the
expansion (44). This expansion shows that the limit is a linear combination of the elements
of the limit of ¢, and hence mixed Gaussian, see (42).

Proof of (iii): The expansion (45) follows directly from the definition of ¥ in (37).
Clearly the limit of the first term, T/20;,, is  given in (43). Because A converges at rate T’
(super consistency), see (42), we can replace 3 by B, in the second term, T2, (% — mo, 7o),
without changing the asymptotic properties. Hence, TV/%Y;,(# — 7y, 70) becomes a linear
combination of T'/24*, see (38), and is therefore asymptotically Gaussian. Asymptotic
independence of the two terms follows because the limits in (42) and (43) are independent,
see Theorem 6.

A.9 Proof of Theorem 8

Under Assumption 2, the extended and additive core models are reparametrizations of each
other, see Theorem 4. Moreover, the simple one-to-one relation between the parameters in
the extended core model, &, and the parameters in Theorem 6 then show that in fact the
additive core model and the extended core model parametrized by (a*,(,v) are reparame-
trizations. Hence, they have the same likelihood and the MLEs of the parameters of the
additive model can be found directly from the MLEs in Theorem 6 using Theorem 1.

Proof of (i): First, 8)(3° —A9)Npo = 5/(3° — 49) N + op(1) by Slutsky’s Theorem and

consistency of B. Under Assumption 2 it follows from Theorem 4 that B (7% = W) Npo =
(p + 49Ny = ¢, where ¢ = (¢, ¢, see (37). The results for the dynamic parameters
= (a,5,I,... ,Fk,l) and for B5(5° — ~13) Nz then follow directly from (41) and (42) by

the definitions of o* and ¢, see (37) and (38).

Proof of (ii): Again, by Slutsky’s Theorem and consistency of 3 it follows that 7/2 B (38—
’7v0>MTw = Tl/QBI('V»U VUO)MTW + op(1) and Tl/zO‘OJ_F0<7v 7v0)MT7z+17U = T2 F(fyv -
Yio)Mriv10 + op(1). Next, we note that, under Assumption 2, 0;, = (Tw — Yiu(m,7)) =
Ty (7,4 —0) by (46) and Theorem 4. By Theorem 1, applied to (7, 70) and (7r 4), we then
find that 8'(5% — ~i,) for i = 1,...,m, and aLF(% yi,) for i = 0,. — 1 can be
expressed in terms of ¥;, as

min{s,k}
TY2B (3] — yig) Mriy = —T"280 T3 (7,4 — 30) Mriw + T8 Y 853077 — 740" ) Mo
j=1
= —T"26"Y, (7,4 — 70) Mriv + 0p(1)
= —TY2q v, + op(1) = —T1/2aovw + op(1)

using that ]\4TZ1 joMriy — 0for j =1,... ,min{i, k} (by Assumption 3) and using Slutsky’s

26
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Theorem again for the final equality. Similarly, for : =0,...,m, — 1,
TY26/ T'(3 = vio) 1o =T"2&) i o(7, 4 — Y0) Mt
min{i+1,k}
- Tl/zdl Z ®; (%H 7 %Z;H j)MT,H—l,v
j=2

_Tl/z@lTiH (T4 = 0)Mriy10 + 0op(1)
=T /204ﬂ91+1 v +op(l) = T1/2aE)J_®i+1,v +op(1)
because My | ir1wMriv1e — 0 for j =2,... min{i + 1,k,m,}. This proves (47) and (48).
Finally, (49) follows directly from vectorization of (14) and noting that Zf:o M! @ @ is
invertible by Theorem 3.
Proof of (ii1): That (47)—(49) are asymptotically independent of (41), is shown in Theo-
rem (6).

A.10 Proof of Theorem 9
Proof of (i): Because k = 1 and n = 0 we have U; = Z;, 7° = v, and
€t<)\> = AXt — Oé(/B thl - 6 Vthl) — "}/AZt

Furthermore, ag, I'ofo. = af, Bo. and v — vy can be decomposed as

v =70 = a(B'a) B (v = 70) + BL(e/ B1) ML (v = 70)- (63)

We define ¢, = —f'(y — 1) Mg and ¢ = TY?(e/ B1) "'/, (v — 7o) Mpy as well as o =
a— g, Yy = B)Y; 1, see (37) and (38). The corresponding likelihood is then based on

5t(04*7 ¢, ¢) = _OZ*Y? - OéC/GTt - 04(5 ) C2 Mleth ﬁLleZth + &4,

see (40). We note that ¢, appears in two places, but MT_0 M7y — 0, and therefore the term
CéMT_OlMTl Z17y disappears in the asymptotic analysis of the score and information, because
it is dominated by the term a('Gry.

Mimicking the analysis in the proof of Theorem 6, we find at the true values, o = 0, () =
0, g = 0, the derivatives

Da*Et(OZS, CO» ¢0; dOé*) = _(da*)Yt*7
Deei(agy, Co, do; dC) = —ap(dC) Gry — an(Byan) ™ (dCa) Mpg Mr1 Zire = —ap(dC) Gy + o(1),
D¢€t(043> Go, Po; d¢) = —foL (dCb)/Zth-

The limits of the scores for a* and ¢ are therefore given in (55) and (56), and for ¢ we find
T728, = — te{Qy Bo1 (dd) TV (Zip,€)p} > — tr{ Q0 Bo1 (do)' (Z1, )}

The limits of the information matrix blocks Io«q+, I¢¢, and I« are given in (58), (59), and
(60), respectively, and for ¢ we find

T sy = tr{Q " Bor (do) (Zir, Zir)y (do) 5, } + 0P(1) B te {601 (d9)' (Z1, Z1) (d) By, ),
T ey = tr{Qg(da*) (Y™, Zyg)p (d) By, } + 0p(1) = 0,
T ey = tr{Q o (dC) (G, Zur)y (d9) By, } + op(1) 2 tr{Q L ao(dC) (G, Z1) (d) By, }-



The CVAR model with general deterministic terms

Thus, the only difference compared with the extended model is the factor [y, which comes
from estimating ¢ = (o, Bo1) tag, (¥ — 70) as the coefficient to AZ,. Tt is seen that the
limit information is block-diagonal corresponding to a* and (¢, ¢), such that the asymptotic
distribution of T'/24* = TY/2(& — ay) is as given in (41) in Theorem 6.
Proof of (ii): We find the equations for determining the limit distribution of the MLE
TV%((, ¢), but compared with (61) and (62) there is now an extra factor By, in (65),
(G,G) (T1/2§)ag§251a0 + (G, Z,) (TY?$) ), Q5 g D (G, e) Q5 g, (64)
(71, G) (TV2C) a5 Bor + (71, Z0) (TV20) 3y 105 for = — (Z1,€) Q" Bor. (65)
Eliminating 7/2¢ from (64), we find the right-hand side
— (G, ) Qg + (G, Z1) (Z1, Z1) ™ (Zh,€) Q57 Bor (851 % Bor) ™56, o

If we condition on G, or equivalently on ag, W,, the right-hand side is Gaussian with mean
proportional to

E((Z1,€) Qg ' Borlag, We) = (Z1, ) aor (g, Qoaor) " ag  for # 0. (66)

Thus, the limit distribution of 7%/2C is not mixed Gaussian, and the same holds for any
linear combination of T/ 25’ .

Proof of (iii): If we eliminate T%2( from the equations (64) and (65), we find that the
right-hand side becomes

<Zl7 G> <G7 G>71 <G7 6) Qala()(aE)QalaO)_laE)QalﬂOL - <Z17 5> leﬁm-

Conditional on G this distribution has mean —E({Z,¢) Q5" BoL|ah, W), see (66), and the
limit distribution of T'2¢ is neither Gaussian nor mixed Gaussian, and the same holds for
any linear combination.
Proof of (iv): From (61) and (62) we find the equations to determine the limit distribution
of the MLE in the extended model T%/2((, ),
(G, G) (T2 a5 g + (G, Za) (TY?0)Q5  ag = — (G €) Qg e,
(Z1,G) (TY20)ap 5t + (21, Z0) (TV?0)05 " B — (Zy,e) O,
and from these we find that the limit of the information matrix for (¢,v) in the extended
model is,
a0 ® (G.G) Nla® (G, Z1) \ _ [ I Ig!
Q' ®(Z1,G) e (Z,z) )\ I OIE )T
say. In the additive model, the limit of the information matrix for (¢, ¢) is, see (64) and
(65),
Ozf)lelao ® (G, G) a{)QallBOl ® (G, Z4) _ ]ggd ]ggd |
B, Qg a0 @ (Z1,G) By Qg Por ® (21, Zh) Ig?d I;;‘j,d

We note that the left factors in the information matrix for ((, ¢) satisfy the relation

Qo — Qg BoL (B5. Qo  Bor) B Qg o = g Bo(B0  Bo) ! By > 0.

28
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This has the consequence that
add add ( Tadd\—1 radd
LG = 1857 (156°) 15
= 0 " @ (G, G) — g€ Bor (8512  Bor) B Q% oo @ (G, Z20) (Zy, Z0) ™ (24, G)
> ahQ5tay @ (G, G) — Q5o @ (G, Zy) (21, Z4) (24, G)
= ai" a0 ® (G, GIAZ) = I — I (152t It

VU

where the inequality means that the difference is positive definite, almost surely. It follows
that the asymptotic conditional variance of  in the additive model is larger than that of ¢
in the extended model because

AV ar(Gaa) = (T = TG 130 < (12t = T I 7 1) ™ = AsVar(Cn),
almost surely.
A.11 Proof of Theorem 10

Normalization of parameters and an auziliary model: We introduce the p x r matrix fy of
rank r, decompose II as

1T = T30y + B0 By 1
and define the auxiliary hypothesis
H = {15 = 0 and 3;(7" —79) = 0}.
We note that under the assumptions in H, II = a3 for a = I15,, such that
H = {1l = af; and Fy(7* —75) = 0}.
Thus, if 8* = (5, 5'7°) then
Mt 0 = M 0 {8 = B

To facilitate the analysis of the test for rank, we introduce the extra hypothesis H in
models H;;It* and He"™ see Lawley (1956) for an early application of this idea or Johansen
(2002, p. 1947) and Johansen and Nielsen (2012, p. 2699) for applications to the (fractional)
CVAR model. We then find

HlaXngt* LT (f) maxH;xth LT (5) maXHﬁzt*m{B*:ﬁg} LT (é)

LR ext* ext* — —
(HT’ ’Hp ) maX'Hth* LT(&) maX'Hgmt* LT(&) maX’ngt* LT(é)

That is, instead of the rank test statistic, we analyze the ratio of two test statistics,

LR(H|Hext*)
LR Hixt* Heact* — P .
( | P ) LR(ﬁ* — 68'7.{59075*)
Analysis of LR(H|H;*): We apply the formulas (35) and (36) for H5™", using o — g =
(H — Ho)ﬁg, to find

~TI(L)(y = v0)Z: = U(Y° = ) NroZore — Y (m, v — 7o) Nr1 Zare,
(II(L) — To(L))Y; = —a*Y, = TG T 64, Yy,

(67)
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where o and Y,* are given in (38). Defining
/ 12117 0_ .0 T-250, Y,
¢ = (T 11Bo1, II(v" = 79) Nro) and Gy = Zory ) (68)

we then obtain the residuals
Et(f) = —Of*Yt* - CIGTt - Tl(Wﬁ - ’YO)Nleth + &,

see also (40). This shows that the likelihood for H¢™* is maximized by regression of ¢; on
(Gre, Yy, Zi1t), and the maximized likelihood function becomes

—2T" 108 Linax(H;™) = logdet (e, ¢|Gr, Y™, Zir)y = logdet (¢,e|Gr, Zir)y + op(1)
because (¢, Y*), = Op(T1/2). The hypothesis H is just ¢ = 0, and we find similarly
—2T7110g Linax(Hy™ N'H) = log det (e, e|Y™, Zi7) 7 = log det (e, €| Zir) 1 4 0p(1).
It follows from
(e.€|Gr, Zir)y = (e, €| Z1r)p — (e, Gr|Zi7) 1 (G, Gr| Zi7) 7' (G €| Zar)
and (e, e|Zi7) L, Qo that

—2log LR(H|H;™) = tr{Qy ' T"? (e, Gr| Zur)y (Gr, Grl Zar)y TV? (Gr, el Zur) 1} + op(1)
= tr{Q5 1 (e, G| 21) (G, G| 21) 7 (Gel 41) }- (69)

Analysis of LR(5* = B5|HE™™): The hypothesis we want to test here involves only /3
and 7°, and because inference on o* is asymptotically independent of inference on (3,~Y),
we can assume that a* = of = 0 for the asymptotic analysis of this statistic. We now find

for 8 = By + Bor By, (B — Bo) that

_H(L) ar=ap (’Y - ’YO)Zt = 0405'(70 - ’Yg)NToZOTt - Tl(m Y= ’YO)NT1Z1Tt>
(II(L) — o(L)) a*:agyt = —ao(B - ﬁo)/ﬁuﬁ()ﬂ/}—l-

We define G, as above, see (68), and define
C/ = (T1/2(6 - 60)/601_75/(70 - 78)NT0)7

and note that the hypothesis 3 = 8y and 3’7" = 5} is again ¢ = 0. We then find

H™ s ey(€) = =o' Gy — T,y — Y0) N1 Ziry + .

1

We split the residuals by multiplying by g, = (apfl ag) Q" and o, into

ag,ee(€) = —C'Gr — alg, T,y — 70) N1 Zire + g e,
Oéfui?t(f) = _OCE)LTI(E Y — %) N1 Zire + Oéfut?t-

30
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The errors ag e; and g, &; are independent and both sets of residuals are analyzed by
regression, and we find

—2T 1108 Linax(H;™) = log det (ag, e, g, €| Gr, Zir),, +log det (af, €, af, €| Zir)
and
—2T7 1108 Linax(H;™ N {¢ = 0}) = log det (g &, agy el Zir) . + log det (o €, o, €| Zar) -
The test of 8* = 5 in HE™™, using (af €, a§20€>;1 5 g, Qocvg, = (g ag) 7Y, s
—2logLR(8" = B3| ;™)
= tr{apQy ' aoT"? {0 &, Grl Zur) . (Gr, Gr| Zar)y TV? (G, cigel Zar )y} + op(1)
Dt {5 Yoo (ol g o) Qe (e, GI1Z1) (G, G Z:) TG, e| Z4)). (70)

Analysis of LR(H;™*|Hs**): By (67), the test for rank r converges to the difference
between (69) and (70), i.e.,

~2log LR(HE™HE™) 2 tr{(951 05 a0 (005 a0) a5 ™) (6. G| 21) (G, G122) ™ (G, el 24)).

Using the identity Q5" — Q5 ao(ahQ o) tahQt = aoi(ah, Qoapr) e, and defining
.+ = (), Qoo ) Y2al | &4, we obtain the result.

A.12 Proof of Theorem 11

Proof of (i): We find from Theorem 7(ii) that p) — pl,, suitably normalized, is mixed
Gaussian. Hence, the likelihood ratio test for /70 = —pl = 0 is a x*(r) test.

Proof of (ii): We test the hypothesis that o/, T7? = 0 using the statistic dlf’yﬂ , assuming
that G750 = —pho = 0. Under the null that also ag, oy = 0, we find that v, = 0 because
(Bo, Thvg1 ) has full rank by Assumption 1, and it follows that &/, ['4? = &, T'(4% —+2,). From
Slutsky’s Theorem and consistency of 7 (Theorem 5), we then find

Y28, T(3) — 790) Mr1o = T 20y, To(30 — 15%) M1, + op(1).

The asymptotic distribution of the first term on the right-hand side is found from (48) in
Theorem 8 and (43) in Theorem 6,

TY2a) To(30 — 2%) M1, = T2l 01, + 0p(1) 2 —ah, (e, Z1) (Z1, Z) " A

for a suitable selection matrix A. This limit is Gaussian so that 724/ T'(5° — %) My, is
asymptotically Gaussian, and hence the likelihood ratio test for o/, 70 = 0 is asymptotically
X*(p—r).

Proof of (iii): Follows trivially from (i) and (ii).
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