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Abstract

Inference using difference-in-differences with clustered data requires care. Previous
research has shown that, when there are few treated clusters, ¢ tests based on cluster-
robust variance estimators (CRVEs) severely over-reject, different variants of the wild
cluster bootstrap can either over-reject or under-reject dramatically, and procedures
based on randomization inference show promise. We study two randomization inference
(RI) procedures. A procedure based on estimated coefficients, which is essentially the
one proposed by Conley and Taber (2011), has excellent power but may not perform
well when the treated clusters are atypical. We therefore propose a new RI procedure
based on t statistics. It typically performs better under the null, except when there is
just one treated cluster, but at the cost of some power logs. Two empirical examples
demonstrate that alternative procedures can yield dramatically different inferences.
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1 Introduction

Inference for estimators that use clustered data, which in practice are very often difference-
in-differences estimators, has received considerable attention in the past decade. Cameron
and Miller (2015) provides a recent and comprehensive survey. While much progress has been
made, there are still situations in which reliable inference is a challenge. It is particularly
challenging when there are very few treated clusters. Past research, including Conley and
Taber (2011), has shown that inference based on cluster-robust ¢ statistics greatly over-
rejects in this case. MacKinnon and Webb (2017b) explains why this happens and why the
wild cluster bootstrap of Cameron, Gelbach and Miller (2008) does not solve the problem. In
fact, the wild cluster bootstrap either greatly under-rejects or greatly over-rejects, depending
on whether or not the null hypothesis is imposed on the bootstrap DGP.

Several authors have considered randomization inference (RI) as a way to obtain tests
with accurate size when there are few treated groups (Barrios, Diamond, Imbens and
Kolesar, 2012; Conley and Taber, 2011; Ferman and Pinto, 2015; Canay, Romano and
Shaikh, 2017). We focus on procedures like the one proposed by Conley and Taber which
use OLS estimates and are designed for samples with very few treated clusters, with many
control clusters, and clustering at the ‘state’ level.

RI procedures necessarily rely on strong assumptions about the comparability of the
control and treated groups. We show that, for any procedure based on estimated coefficients,
such as the Conley-Taber procedure, these assumptions necessarily fail to hold in certain
commonly-encountered cases. In particular, they fail to hold when the treated groups have
either more or fewer observations than the control groups. As a consequence, the procedure
can over-reject or under-reject quite severely if the treated groups are substantially smaller
or larger than the controls.

We are motivated by the many studies that use individual data, in which there is variation
in treatment across both groups and time periods. Such models are often expressed as
follows. If 7 indexes individuals, g indexes groups, and ¢ indexes time periods, then a classic
“difference-in-differences” (or “DiD”) regression can be written as

Yigt = o + Tigey + Digym + B TREAT 4 + €544, (1)
i=1,....N, g=1,..,G, t=1,...T

Here T, is a row vector of time dummies, D,y is a row vector of group dummies, and
TREAT,, is equal to 1 for observations that were in a treated group during a treated
period and zero otherwise.! There may of course be other regressors as well. The coefficient
of interest is 3, which shows the effect on treated groups in periods when there is treatment.
Following the literature, we divide the G groups into G treated groups and G control
groups in which no observations are treated, so that G = Gy + G;. We are concerned with
cases in which Gy is small and G| is not too small. For example, the procedures we discuss
might be viable for G; = 2 and Gy = 21, but not for G; = 3 and Gy = 3. Why this is so
will become apparent in Subsection 3.1.

Section 2 discusses cluster-robust variance estimation, and Subsection 2.1 shows why
it fails when there are few treated clusters. Section 3 introduces randomization inference.

Since there is a constant term, one group dummy and one time dummy must be omitted.



Subsection 3.1 describes the coefficient-based (Conley-Taber) approach to RI, Subsection
3.2 discusses the design of our Monte Carlo experiments, and Subsection 3.3 explores the
performance of coefficient-based RI with and without cluster heterogeneity. Subsection 3.4
then proposes an alternative RI procedure based on t statistics and examines theoretically
how its properties compare with those of the coefficient-based one. Unfortunately, neither
procedure can be expected to perform well when G is extremely small and the treated
clusters differ systematically from the controls.

The remainder of Section 3 presents a variety of simulation results. In Subsection 3.5,
we find, as the theory of Subsection 3.4 suggests, that none of the existing procedures yields
reliable inferences when groups vary in size and only one group is treated. However, the
new RI procedure based on t statistics always performs reasonably well when two or more
groups are treated. In Subsection 3.7, we find that fairly moderate differences between
the error variances for treated and control clusters can have severe effects on rejection
frequencies, especially for coefficient-based RI. However, we find in Subsection 3.8 that
coefficient-based RI can have substantially more power than ¢-based RI, or than existing
bootstrap procedures. Section 4 briefly discusses some alternative (non-RI) procedures
for which we present simulation results in Appendix A. Section 5 presents results for two
empirical examples, one based on Bailey (2010) and one based on Conley and Taber (2011),
and Section 6 concludes.

2 Inference with Few Treated Clusters

A linear regression model with clustered errors may be written as

(7 X, €
Yo X5 €2

y=|".|=XB+e=| . |B+ ]| .| E(e€)=9Q, (2)
Ya XG (e

where each of the G clusters, indexed by g, has N, observations. The matrix X and the
vectors y and € have N = Zngl Ny rows, X has k columns, and the parameter vector 3 has
k elements. OLS estimation of equation (2) yields estimates 3 and residuals €. As usual in
the literature on cluster-robust inference, we assume that

E(e€)) =Q, and E(ez€,) =0 for g # h,

/
g
where the €, are vectors with typical elements ¢;4, and the €2, are Ny x N, positive definite
covariance matrices. The N x N covariance matrix €2 is then

, O ... O
O Q ... O
O O ... Q¢

Because the elements of the €, are in general neither independent nor identically dis-
tributed, both classical OLS and heteroskedasticity-robust standard errors for 3 are invalid.



As a result, conventional inference can be seriously unreliable. It is therefore customary to
use a cluster-robust variance estimator, or CRVE. There are several of these, of which the
earliest may be the one proposed in Liang and Zeger (1986). The CRVE we investigate,
which we call CVy, is defined as:

G
(Gf(i\)f(]_vl_) pXX) (Z X;égé’ng> (X'X)™, (3)

9=1

where €, is the subvector of € that corresponds to cluster g. It yields reliable inferences
when the number of clusters is large (Cameron, Gelbach and Miller, 2008) and the number
of observations per cluster does not vary too much (Carter, Schnepel and Steigerwald,
2017; MacKinnon and Webb, 2017b). This is the estimator that is used when the cluster
command is invoked in Stata.” However, Conley and Taber (2011) and MacKinnon and
Webb (2017b) show that ¢ statistics based on (3) over-reject severely when the parameter
of interest is the coefficient on a treatment dummy and there are very few treated clusters.
Rejection frequencies can be over 80% when only one cluster is treated, even when the ¢
statistics are assumed to follow a t(G — 1) distribution, as is now commonly done based on
the results of Donald and Lang (2007) and Bester, Conley and Hansen (2011).

2.1 Cluster-Robust Variance Estimation

It is important to understand precisely why inference based on the CRVE (3) fails when
there are few treated clusters. The analysis in this subsection extends the one in MacKinnon
and Webb (2017b, Section 6), which applies to the pure treatment case, by allowing only
some observations in the treated clusters to be treated. Consider the following simplified
version of regression (2), in which the fixed effects have been omitted and the ¢ subscript
suppressed:

Yig = &+ Pdig + €. (4)

Here the treatment dummy d;, equals 1 for at least some of the observations in the first G
clusters, 0 for the remaining observations in those clusters, and 0 for all observations in the
last Gy = G — G clusters. Making equation (4) more complicated by adding fixed effects
or other additional regressors would not change anything important. The fundamental
problem, as we will see shortly, is that the residuals sum to zero over all treated observations.

Equation (4) may be rewritten in vector notation as y = at + fd + €, where y, ¢, d,
and € are N-vectors with typical elements y,g, 1, diy, and €;4, respectively, and 7 is assumed
to vary more rapidly than g. Then the OLS estimate of 3 is

(d—du)'y (d—di)e

f= (d—de)(d—dr) N(d—d2) )

where the second equality holds under the null hypothesis that 5 = 0, and d denotes the
sample mean of the d,,, that is, the proportion of treated observations.

2Expression (3) is not the only CRVE; see Bell and McCaffrey (2002), Imbens and Kolesar (2016), and
Young (2016). The best-known alternative to (3) will be discussed in Section 4. However, we do not
focus on it because it is not widely used, does not solve the problem discussed in this subsection, and is
computationally demanding to the point of being infeasible when any of the IV, is too large.
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The variance of /3 is evidently

(B — (d —du)'Q¥(d — du) _ (d —di)'Q(d — du)
Var(h) ((d—dey(d—duv))? N2d2(1 —d)? 9

where 2is an N x N block diagonal matrix with the N, x N, covariance matrices €2, forming
the diagonal blocks. From expression (3), the corresponding CRVE is

G

G(N—1) o _
(G —1)(N — k)N2d2(1 — d)? Z(dg —dug)'€s€y(dy — duy), (7)

g=1

Var(f) =

where d, is the subvector of d that corresponds to cluster g, and ¢, is an Ng-vector of 1s.
Thus expression (7) should provide a good estimate of Var(J3) if the summation provides a
good estimate of the quadratic form in (6). Unfortunately, this is not the case when there
are few treated clusters.

The summation in expression (7) can be written as the sum of two summations, one for

the treated clusters and one for the controls. In both cases, a typical term is

d*(vheg)? + (dy€,)” — 2du € € d,. (8)
However, since d, = 0 for the control clusters, the second and third terms in (8) must vanish
for those clusters. Thus the summation in (7) becomes

G1 G
D (A (eheg)* + (dyéy)” — 2duégendy) +d* > (1hé,)”. (9)

g=1 g=G1+1

This expression is supposed to estimate the quadratic form in expression (6), which can be
written as

G1 G
Z(OZQL;QM +d, Qdy — 2du,Qd,) + d? Z L, Qe (10)
g=1 g=G1+1

Unfortunately, expression (9) estimates expression (10) very badly when Gy is small,
because the first summation in the former severely underestimates the first summation in
the latter. Consider the extreme case in which G; = 1. The treatment dummy must
be orthogonal to the residuals. Since d;; = 0 for g > 1, this implies that €d; = 0.
Therefore, the second and third terms in the first summation in expression (9) vanish. All
that remains is d2(¢}€;)%. The terms that are supposed to estimate the last two terms in
the first summation in expression (10) are missing.

This might not matter much if the last two terms in the first summation in (10) were
small. But, in most cases, the opposite must be the case. Both the remaining term in the
first summation and the entire second summation involve factors of d2, that is, the square
of the proportion of treated observations. Unless the first cluster is much larger than any of
the other clusters, and most of the observations in it are treated, d will typically be much
less than one half when G; = 1, and these terms will tend to be quite small. This analysis
explains why the CRVE (3) often produces standard errors that are too small by a factor of
five or more when there is just one treated cluster.



When two or more clusters are treated, the residuals for the treated observations will not
sum to zero for each treated cluster, but they must sum to zero over all the treated clusters.?
In consequence, the first summation in expression (9) must underestimate the corresponding
summation in (10). The first two terms in the former do not actually vanish, but they are
often much too small when G, is small. The problem evidently goes away as (G; increases,
provided the sizes of the treated and control clusters are not changing systematically, and
simulation results in MacKinnon and Webb (2017b) suggest that it does so quite quickly.

In this discussion, we have ignored the presence of fixed effects and other regressors in
the regression of interest. Taking these into account would greatly complicate the analysis.
However, it clearly would not change the basic result. The standard error of B is severely
underestimated because the residuals sum to zero over all the treated observations, and that
must be the case no matter how many other regressors there may be.

As we discuss in Section 4, expression (3) is not the only available CRVE, and other
procedures may well work better. However, there appears to be no way to avoid severely
underestimating the standard error of B when G is small. This provides the motivation to
consider alternative approaches, including randomization inference.

3 Randomization Inference

Randomization inference (RI) was first proposed by Fisher (1935) as a procedure for perform-

ing exact tests in the context of experiments. Rosenbaum (1996) mentions the possibility of

using randomization inference for group-level interventions. Monte Carlo tests are closely

related to randomization inference; see Dufour (2006). A formal theoretical treatment of RI

may be found in Lehmann and Romano (2008, Chapter 15). A more accessible discussion

focused on individual-level data is provided in Imbens and Rubin (2015, Chapter 5).
Imagine that we are interested in testing the sharp null hypothesis

Hy: E(Y|D; = 1) — E(Y)|D; = 0) =0,

where Y; is the outcome for individual ¢, D; = 1 indicates treatment, and D; = 0 indicates
no treatment. Under this null hypothesis, the missing potential outcomes are equal to
the observed outcome for each individual. That is, if there were no treatment effect, each
individual would have the same outcome with or without treatment. We could calculate a
test statistic for our original sample as

T = D—/Di:l - YD¢:0|7 (11)

where YDi:l and YDFO are the average outcomes for treated and untreated individuals,
respectively.

We can also calculate the test statistic (11) for any other random assignment of treat-
ments to individuals. For any re-randomization r, the test statistic would be

7 = Vot — Yool (12)

3See equation (A.2) and surrounding discussion in the online appendix of MacKinnon and Webb (2017b),
which studies a pure treatment model rather than a DiD model.



where D! denotes the re-randomized treatment assignment. We can repeat this process for
all possible re-randomizations, or for a subset of them. If it is reasonable to believe that
treatment was assigned at random, then it makes sense to compare 7 with the 7. If the null
hypothesis of no treatment effect is true, then 7 and the 7" must be drawn from the same
distribution. A randomization test simply compares 7 with the empirical distribution of the
7¥. If 7 is in one of the tails of that empirical distribution, then this is evidence against the
null hypothesis of no treatment effect.

In the context of cluster-robust inference, to be discussed in Subsections 3.1 and 3.4
below, we will randomize at the group level rather than the individual level. We therefore
let G denote the number of units and G; the number of treated units. The number of
possible re-randomizations is then Cg,, that is, the number of ways to choose G; out of G
units without replacement. One of these randomizations corresponds to the original sample.
If we omit it, we have S = ;Cg, — 1 re-randomizations that can be used to compute the 7.\

Suppose that we wish to reject when 7 is large in absolute value. Then we must compare
|7| with the |7¥|. It is natural to sort the latter from smallest to largest and see how
extreme |7| is relative to the sorted list. Equivalently, we can calculate a P value based on
the empirical distribution of the |7}|:

Z 7] > [71), (13)

CQ |

which is the proportion of re-randomizations for which 7.° is more extreme in absolute value
than 7. The test rejects at level a whenever p* < a. Of course, we could use a one-tailed
test instead if the null hypothesis were that the treatment does not have a positive effect.

An alternative approach that is more common in the RI literature is not to omit the
actual sample from the set of re-randomizations. The sorted list contains S + 1 = ¢Cg,
elements, one of which is equal to |7|. If c= S+ 1— [a(S +1)], where [-] denotes the largest
integer no larger than its argument, then element number ¢ of the sorted list, say |7'7~ )| can
be thought of as a critical value. The RI test is then defined as

0if 7] < |79
$(Y) =< a=a(S+1) -2 (|77 > |7]) if 7] = [ (14)
1if 7| > |79,

where Y denotes the sample, ¢(Y) = 1 denotes rejection, and ¢(Y) = 0 denotes non-
rejection. Theorem 15.2.1 of Lehmann and Romano (2008, Section 15.2) proves that, when
|7] and the || follow the same distribution, E(¢(Y')) = . In other words, the expectation
of the RI test ¢(Y') defined in (14) across all randomizations is equal to the level of the test.
The test is therefore exact.

Since 0 < a < 1, the middle outcome in (14), which occurs whenever |7| and |7'TC)]
coincide, can be interpreted as a probability. It is included because, otherwise, E(¢(Y)) # «
unless we make further assumptions about S. This outcome does not directly tell us either
to reject or not to reject, which seems unsatisfactory. However, we can decide whether or
not to reject by drawing a random number n from the U(0,1) distribution. If we reject



whenever 1 < a, the test always gives an answer and is still exact, but now it depends on
the random value of 1, which is also not entirely satisfactory. Because the middle outcome
occurs with probability 1/(S + 1), it can safely be ignored when S is large.”

There is also an important special case in which the middle outcome does yield a definitive
result. Suppose that (S + 1) is an integer. Then ¢ = (1 — a)(S + 1), and the summation
in the middle outcome equals «(S + 1) — 1, because that is the number of |77| that exceed
number (1 — «)(S 4+ 1) in the sorted list. This implies that the middle outcome is simply
equal to 1 in this case. Thus, when «(S + 1) is an integer, the test in (14) simplifies to

if |7 7'7»(6)
¢(Y>—{Of"<’ | (15)

1if 7] > |79

It is easy to see that this test must yield exactly the same result as a test based on (13),
because |77| > || if and only if |7| > |7\].
Writing the RI test as (15) suggests another way to compute the P value:

P = <1+ZH(17:\ > rr\)>. (16)

When (1 — a)(S + 1) is an integer, rejecting whenever p* < a must yield exactly the same
outcome as rejecting whenever p* < «. However, when (1 — «)(S + 1) is not an integer,
the two tests will yield different results. The one based on p* will over-reject, and the one
based on p*’ will under-reject. If rejection frequencies are plotted as a function of S for, say,
a = 0.05, they will form two sawtooth patterns, which meet at 0.05 for S = 19, S = 39,
and so on. The test based on p*' never rejects for S < 19 and never rejects more than 5%
of the time for any S, while the test based on P* never rejects less than 5% of the time.
See Racine and MacKinnon (2007, Figure 1). A modified version of the wild bootstrap to
overcome this problem is proposed in MacKinnon and Webb (2018b).

RI procedures are valid only when the distribution of the test statistic is invariant to the
realization of the re-randomizations across permutations of assigned treatments (Lehmann
and Romano, 2008, Section 15.2). It is therefore important to incorporate all available
information about treatment assignment in conducting the re-randomization (Yates, 1984).
For example, if the investigator knows that treatment was only assigned to units with
particular characteristics, then any re-randomization should also assign treatment only to
units with those characteristics. Of course, that may or may not feasible, depending on how
many such units there are and how much information about unit characteristics is available.

3.1 Randomization Inference based on Coefficients

Classic RI procedures were designed for treatment assigned randomly at the observation
level, as in the case of agricultural experiments. Extending them to DiD models was first
proposed in Conley and Taber (2011), which suggests two procedures for inference with
few treated groups. Both of them involve using information about the control groups to

4In writing (14), we have implicitly assumed that there can never be more than one value of |7*| that
equals ‘7'7(-C)|. The expression for the middle outcome would be more complicated without that assumption.



learn about the distribution of a test statistic. The I'* procedure is a form of randomization
inference. It involves constructing an empirical distribution by randomizing the assignment
of groups to “treatment” and “control” and using this distribution to conduct inference. Of
the two procedures, I'* is more attractive, because it can be used whether or not Gy > G,
and because it often has better size properties in the Monte Carlo experiments reported in
the paper. The procedure we now discuss is very similar to I'*.

Up to this point, we have not said much about the test statistic 7 on which randomization
inference is based. One approach, which is the one taken in Conley and Taber (2011), is to
use a coefficient estimate as the test statistic. We now propose a simple coefficient-based
RI procedure, which we call RI-3, for the DiD model (1). It is not identical to the T'*
procedure of Conley and Taber (2011), but it is much simpler to describe, and it seems to
yield extremely similar results. The principal difference between the RI-8 and I'* procedures
is that the former explicitly uses the OLS estimate B from equation (1), while the latter
uses a quantity that is not identical to B but is extremely highly correlated with it. For the
Georgia Hope example of Merit Scholarships analyzed in Subsection 5.2, the correlation is
greater than 0.9999.

The RI-f procedure works as follows:

1. Estimate the DiD regression model (1) to calculate 3, the coefficient of interest

2. Generate a (preferably large) number of 3 statistics to compare 3 with.

e When GG; = 1, assign a group from the GGy control groups as the “treated” group
g* for each repetition, re-estimate the model using the observations from all G
groups, and calculate a new coefficient, /%, indicating randomized treatment.
Repeat this process for all G control groups. Thus the empirical distribution of
the 3¢ will have Gy elements.

e When GG; > 1, sequentially treat every set of (G; groups except the set actually
treated, re-estimate equation (1), and calculate a new 8. There are potentially
¢Cq, — 1 sets of groups to compare with. When this number is not too large, ob-
tain all of the 3* by enumeration.” When it exceeds an upper limit, B, picked on
the basis of computational cost and with the property that a(B+ 1) is an integer
so as to ensure that p* = p*, choose the comparators randomly, without replace-
ment, from the set of potential comparators. Thus the empirical distribution will
have min(¢Cqg, — 1, B) elements.

3. Compute either the P value p* defined in (13) or the P value p*’ defined in (16). Recall
that p*’ > p*.

In the context of the DiD model (1), one important practical issue is how to assign
treatment years for the re-randomizations. The treated clusters are numbers 1 through Gy,

5The number of comparators can easily be too large. For example, if G = 50 and G; = 4, there are
230,299 possible re-randomizations.



for which treatment begins in periods t{, t3,..., t(,, respectively.® Let the clusters chosen
for treatment in each re-randomization be numbered 1%, 2% ... G7. For example, 1* might
denote cluster 11, 2* might denote cluster 8, and so on. It is natural to assign starting year
tjl to cluster j*. However, since both orderings are arbitrary, there is more than one way to
do this. We considered two of them.

In the first procedure, the original clusters are ordered from smallest to largest, so that
Ny < N;... < Ng,, and the clusters chosen for each re-randomization are ordered in the
same way, so that Nj» < Np«... < Ng». Thus the smallest cluster for each re-randomization
is “treated” for the same years as the smallest actual treated cluster, the second-smallest
for the same years as the second-smallest actual treated cluster, and so on. In the second
procedure, the re-randomized clusters are not ordered in any way, so the assignment of years
of treatment is random. In several experiments, we found very little to choose between the
two procedures. All the results we report below are for the first procedure, because it is
slightly easier to implement.

When treatment is randomly assigned at the individual level, the invariance of the distri-
bution of B to re-randomization follows naturally. However, if treatment is assigned instead
at the group level, which is almost always the case for difference-in-differences, it may be
hard to argue that assignment was random. Unless the units are indistinguishable, random-
ization inference is not appropriate when assignment is not random. Moreover, the extent to
which clusters are heterogeneous can affect how close the distribution is to being invariant.

The RI-B procedure evidently depends on the strong assumption that B and the 3 all
follow the same distribution. But that cannot be the case if the coefficients for some clusters
are estimated more efficiently than for others. This may occur whenever the clusters are
heterogeneous. As we will demonstrate in Subsection 3.3, several types of heterogeneity can
substantially affect the reliability of inference based on RI-5. The most readily observable
type of heterogeneity, which is very likely to occur with individual data in a wide variety of
contexts, is variation in cluster sizes, and we therefore focus on it.

It is possible to interpret RI-$ and the procedures proposed in Conley and Taber (2011)
as testing a joint null hypothesis of no treatment effect and random assignment. However,
since the treated clusters are observed, we want to make inferences conditional on them.
Even if treatment actually were assigned at random (which seems unlikely in many contexts
where DiD is used, such as assessing the effects of policy changes at the jurisdiction level), the
RI-8 procedure is potentially either over-sized or under-sized conditional on which clusters
were actually treated. In Subsection 3.3, we attempt to see just how serious these size
distortions are likely to be.

3.2 Design of the Monte Carlo Experiments

In the next subsection, and in several later ones, we report results of a number of Monte
Carlo experiments that study the performance of various inferential procedures, including
ones not based on randomization inference, when the number of treated clusters is small
and clusters are heterogeneous. In this subsection, before we report any results, we describe

SHere we implicitly assume that, for all treated clusters, treatment begins at some point in time and
never ends. This is also what we assume in our simulation experiments. However, it is easy to extend the
procedures we discuss to handle situations in which treatment has an end date as well as a start date.
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the model and experimental design.

The model we use is a simplified version of the DiD model (1) with no group fixed effects.
In the data generating process, the €;, are normally distributed and generated by a random
effects model at the group level. The correlation between any two error terms that belong
to the same cluster is p.” Each observation is assigned to one of 20 “years”, and the starting
year of “treatment” is randomly assigned to years between 6 and 16. The null hypothesis,
which was maintained in most of the experiments, is that g = 0.

In most experiments, we assign N total observations unevenly among G clusters using
the following formula:

N = [ exp(v9/G)
T X ew0/6)

where [z] means the integer part of . The value of Ng is then set to N — Zngll Ngy. The key
parameter here is v, which determines how uneven the cluster sizes are. When v = 0 and
N/G is an integer, equation (17) implies that N, = N/G for all g. As ~ increases, however,
cluster sizes vary more and more.®

Most experiments have G = 40, although some have G = 20. These numbers were chosen
so that, when G; = 1, the number of re-randomizations is either 39 or 19, which ensures
that the two P values (13) and (16) are identical. For randomization inference procedures
with G = 40, the number of randomizations is as follows: 39 for G; = 1; 40Cy — 1 = 779 for
G1 = 2; and 999 for G; > 3. The number of Monte Carlo replications in most experiments
is 100,000. Rejection frequencies are calculated at the 1%,5%, and 10% levels, although
only the 5% rejection frequencies are reported.

, g=1,....G—1, (17)

3.3 Performance of RI-5 when Cluster Sizes Vary

As we saw in Subsection 3.1, the RI-3 procedure cannot be expected to work perfectly if
the treated clusters do not have the same characteristics as the control clusters. We focus
initially on what happens when cluster sizes differ systematically. Specifically, we treat
either 1 or 3 clusters from a set of 40 unbalanced clusters, with N = 4000 and cluster sizes
determined by equation (17) with v = 2. In each case, we plot three distributions of A,
which were obtained by kernel density estimation using 1,999,999 replications. One of these
is the unconditional distribution, for which the treated clusters are selected at random from
all 40 clusters. The other two are conditional distributions, for which the treated clusters
are selected at random either from clusters 1-10 (the smallest clusters) or from clusters 31-40
(the largest clusters).

Figure 1 presents these results. The left panel of the figure shows densities for G; = 1,
and the right panel shows densities for G; = 3. It is evident that, in each case, the two
conditional distributions differ from the unconditional one. When small clusters are treated,

"We did not include group fixed effects in the model partly to save computer time and partly because, if
they were included, they would completely explain the random effects, effectively eliminating intra-cluster
correlation. Because the model did include time fixed effects, the DGP did not include time random effects.

8Many of our experiments have 4000 observations and v = 2. In these experiments, the sizes of the 40
clusters are: 32, 33, 35, 37, 39, 41, 43, 45, 47, 50, 52, 55, 58, 61, 64, 67, 71, 75, 78, 82, 87, 91, 96, 101, 106,
112, 117, 123, 130, 136, 143, 151, 158, 167, 175, 184, 194, 204, 214, and 246.
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Figure 1: Conditional and Unconditional Distributions of B
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the distribution has a lower peak and is more spread out. When large clusters are treated,
it has a higher peak and is less spread out. Notice that, although all distributions are less
spread out when (G; = 3 than when G; = 1, the differences between the conditional and
unconditional ones are essentially the same in both cases.

Figure 1 highlights a subtle difference between ex-post and ex-ante analysis. Imagine
that you were to conduct an experiment in which treatment was randomly assigned to a
single cluster. This is the setting of the left panel in Figure 1. Imagine also that you were
given only the values of B and the 37, but did not know which cluster was actually treated.
In this case, even if the clusters were quite heterogeneous, the expected rejection frequency
of the RI-f test for the null of no treatment effect would be a, because any particular cluster
has an equal chance of being treated. Without knowledge of which cluster is treated, both
B and all the 5} are drawn from the “all clusters” distribution in the figure.

Unfortunately, it is unrealistic except from an ex-ante perspective to assume that the
investigator knows nothing about which cluster was treated. From an ex-post perspective, we
almost always do know which cluster is treated. With heterogeneous clusters, the expected
rejection frequency conditional on the cluster that is actually treated will not be . In the
experiment considered in the left panel of the figure, imagine that the treated cluster happens
to be one of the 10 smallest ones. In this case, B will be drawn from the corresponding
conditional distribution (the red dashed line in the figure). However, the 39 8 coefficients
will be drawn from the unconditional distribution (the solid blue line in the figure), but
with the treated cluster omitted. These distributions are clearly not the same. In practice,
the difference between the distributions of B and 3 can be even more severe, as will be
discussed below.

Even if an experiment is designed in such a way that treatment is random, anyone hoping
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Figure 2: Rejection Frequencies for RI-3 Tests
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to do ex-post analysis should condition on the treated cluster. Even if the treatment were
randomly assigned initially, both panels of Figure 1 strongly suggest that, conditional on the
assignment of cluster(s) to treatment, the RI-S procedure will not yield a test that rejects
a% of the time. We will see shortly see that this is indeed the case.

Since researchers always know the sizes, and usually the identities, of the clusters that
are treated, it generally makes no sense to pretend that treatment assignment is unknown.
Failing to condition on what the researcher knows about the treated and control clusters
inevitably results in unreliable inference. Ferman and Pinto (2015) eloquently makes this
point in the context of aggregate (panel) data.

For the RI-3 procedure, the 3 are always drawn from the unconditional distribution.
However, unless treatment really is assigned at random and nothing is known about the
treated clusters, B may actually be drawn from a conditional distribution like the ones in
Figure 1. This suggests that RI-5 will over-reject when the treated clusters tend to be small
and under-reject when they tend to be large. To investigate this phenomenon, we perform
40 experiments, with G = 40, N = 4000, and v = 2. In eight of the experiments, the
treated clusters are drawn at random from all 40 clusters. In the other 32 experiments, they
are drawn from clusters 1-10, 11-20, 21-30, or 31-40. In each case, the number of treated
clusters (G varies from 1 to 8.

Figure 2 shows rejection frequencies for tests at the .05 level based on the RI-5 procedure
for these 40 experiments. As expected, the procedure works perfectly in the unconditional
case where the treated clusters are chosen at random from the entire set of clusters, subject
to the small experimental errors to be expected with 100,000 replications. However, it
over-rejects noticeably when the treated clusters are chosen from numbers 1-10, and slightly
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Figure 3: Rejection Frequencies for Asymptotic and Bootstrap Tests
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for numbers 11-20. In contrast, it under-rejects moderately for numbers 21-30, and quite
noticeably for numbers 31-40. Thus the smaller/larger the treated clusters are relative to
the entire set, the more prone is the procedure to over-/under-reject.

One interesting feature of these experiments is that the performance of RI-3 varies only
a little with GG;. This contrasts sharply with both bootstrap and asymptotic procedures for
cluster-robust inference, which typically perform extremely badly when G; = 1 but then
improve rapidly as Gy increases. However, these procedures are much less sensitive to the
relative sizes of the treated and control clusters.

Several existing procedures that are not based on randomization inference are discussed
in Section 4, and simulation results for them are presented in Appendix A. We present a
few results for the same experiments as Figure 2 here to highlight the contrast between
the RI-f test, on the one hand, and existing asymptotic and bootstrap tests, on the other.
Figure 3 shows rejection frequencies for what is still by far the most commonly used testing
procedure, which is simply to compare a ¢ statistic based on the CRVE (3) with the ¢(G —1)
distribution. Note that the vertical axis has been subjected to a nonlinear transformation in
order to show all the results on the same graph. As the analysis in Subsection 2.1 implies, the
conventional procedure over-rejects very severely when G; = 1, because the CRVE standard
error for B is much too small. The over-rejection becomes less severe as (G increases, but
the test rejects at least 8.5% of the time even when G; = 8.

The figure also shows rejection frequencies for two forms of wild cluster bootstrap test,
which will be discussed in Section 4. One of these (WCR, where the bootstrap DGP is
based on restricted estimates) was proposed in Cameron, Gelbach and Miller (2008), and
both were shown to be asymptotically valid in Djogbenou, MacKinnon and Nielsen (2017).
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Figure 4: Rejection Frequencies for RI-3 tests when G; =1
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However, MacKinnon and Webb (2017b) showed theoretically that WCR, will under-reject
very severely when G is small and WCU (where the bootstrap DGP is based on unrestricted
estimates) will over-reject very severely. That is exactly what is observed in Figure 3.

For clarity, Figure 3 only shows results for the relatively extreme cases in which the
treated clusters are chosen from numbers 1-10 and numbers 31-40. Except for WCR, where
for 2 < G; < 4 the omitted results lie between the ones shown in the figure, the omitted
results are very similar to the ones that are shown.

It is evident from Figures 2 and 3 that RI-3 always works very much better than any
of the other procedures when (G; < 2. This is true even for the extreme cases in which the
treated clusters are drawn from numbers 1-10 or 31-40 and RI-5 does not work particularly
well. For G; > 4, however, WCR typically works better than RI-3, except of course for the
case in which all clusters are potentially treated, where RI-f works perfectly. For G; > 5,
even WCU works better for the extreme cases than RI-5 does.

The error terms in the DGP used to generate all the simulation results presented in this
section are normally distributed. Additional results for a DGP with lognormally distributed
error terms, which display a great deal of positive skewness, are presented in Appendix B.
It will be seen that the distribution of the error terms matters, but none of the principal
findings is overturned.

The experimental results presented so far necessarily depend on various features of the
DGP. One important feature is the distribution of cluster sizes and the position of the
treated cluster(s) within it. The next set of experiments focuses on the case of G; = 1
(which is by far the cheapest to study, allowing us to use 400,000 replications). In it, the
distribution of cluster sizes is changed by varying . Figure 4 shows rejection frequencies
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Figure 5: Rejection Frequencies for RI-3 tests when G; =1
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for the RI-f procedure when GG; = 1 and G = 20. The horizontal axis shows the rank of the
treated cluster, ordered from smallest to largest. There are five curves, which correspond
to five values of 7. Each point on a curve represents a rejection frequency for a different
treated cluster.

When v = 0, the RI-f tests work perfectly, except for simulation error. This must be
the case, because the clusters are homogeneous when v = 0, so that the distributions of B
and 3* must be the same. When v > 0, however, the rejection frequencies depend on which
cluster is treated. As expected, the tests over-reject when the treated cluster is small and
under-reject when it is large. Both over-rejection and under-rejection become more severe
as 7y increases.

Figure 5 performs two similar exercises with v = 2.5, so that the ratio of the largest
to smallest cluster sizes is nearly 11. In the left panel, N is fixed at 5000, and p varies
across the curves. In this case, the problem of over-rejection and under-rejection becomes
less severe as p becomes larger. In the right panel, p = 0.05, and the sample size N varies
across the curves. In this case, the problem of over-rejection and under-rejection becomes
less severe as N increases. Both of these results could have been predicted from the fact
that, for the model we are using, the ratio of the information provided by two clusters of
different sizes is decreasing in both p and N. Thus the distributions of B vary less across
the rank of the treated cluster as either p or N increases.

The key message from Figures 4 and 5 is that RI-5 can overreject or underreject much
more severely than it does in Figure 2. This is most likely to happen when the treated
cluster(s) are very much smaller or larger than the average cluster, when there is not much
intra-cluster correlation, and when the sample size is fairly small.
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3.4 Randomization Inference based on ¢ Statistics

Randomization inference does not have to be based on coefficient estimates. It can instead
be based on any sort of test statistic, as Imbens and Rubin (2015, Chapter 5) points out. An
obvious alternative to RI-/3 is an RI procedure based on cluster-robust ¢ statistics. Instead
of comparing B to the empirical distribution of the 37, we compare the actual ¢ statistic ¢,
which equals B divided by the square root of the appropriate diagonal element of the CRVE
(3), to the empirical distribution of the ¢, which are computed in the same way for each of
the 5*. This is similar to one of the procedures studied in Young (2015). We will refer to
this procedure as “t statistic randomization inference,” or RI-¢ for short.

It seems plausible that randomization inference should perform better under the null
hypothesis when it is based on ¢ statistics than when it is based on coefficients, because
the former are asymptotically pivotal (that is, invariant to any unknown parameters or
other unknown features of the DGP) and the latter are not. Djogbenou, MacKinnon and
Nielsen (2017) proves formally that ¢4 is asymptotically distributed as N(0, 1), and therefore
asymptotically pivotal, under certain regularity conditions.

For the DiD model, however, these conditions imply that G and G; must both tend to
infinity together. This suggests that the distribution of ¢35 may be far from standard normal
when (7 is small. In fact, as we now demonstrate, B and tg do not behave in the usual
way as G becomes large when (G; = 1. This suggests that RI-5 and RI-¢ are likely to yield
similar (and not always accurate) inferences when G = 1, but that inferences based on the
latter should improve as (G; increases.

To see what happens when G; = 1 as G — 00, we need to make a few assumptions.
In particular, we assume that N is proportional to G, and that N,/N is O(1/G) for all g.
These assumptions rule out extreme cases in which the first cluster either never becomes
small relative to the entire sample as G — oo or becomes small faster than other clusters do.
We also assume that, for treated clusters, the number of treated observations is, on average,
proportional to N,. If G; were allowed to vary with G instead of being held fixed, these
assumptions would satisfy the more formal regularity conditions of Djogbenou, MacKinnon
and Nielsen (2017).

Consider again the simplified DiD model (4). Under the null hypothesis, the parameter
estimate B is given in equation (5), which can be rewritten as

B = (Z de, —d Z L eg> (18)

When G = 1, the first summation here reduces to d€;, which is Op(Nll/Q). The second
summation is O(N;/N)O,(N/2) = O,(N;/N*/?). Since N; < N, it must be the case that
Nl/2 > N, /Nl/2 Therefore, taking account of the first factor in (18), which is O(1/Ny), we

conclude that § = O, (N _1/2).
Now consider the denominator of the ¢ statistic when G; = 1. From (9), this is simply
the square root of

N2(11_ J)Q- <L1€1 + ZL egé > = (N_Q)OP(N) _ Op(N_1)7 (19)
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because the second term inside the parenthesis is the leading-order one. The ¢ statistic itself
is therefore Op(Nl/szl/Q). Thus, for any given sample with N fixed, the ¢ statistic itself,
like 3, is O,(N; /).

We conclude from this analysis that both RI procedures will tend to over-reject when N;
is small and under-reject when N; is large. In the former case, both B and tz will tend to
be more variable than the 3% and ¢7 with which they are being compared, because Nfl/Q is
larger than N;*_l/Q for most of the other clusters. In the latter case, by the same argument
in reverse, both B and tz will tend to be less variable than the 3} and t; with which they
are being compared. Thus neither RI procedure can possibly provide valid inferences when
(G = 1 and the treated cluster is larger or smaller than the controls.

The case of G; =1 is the most extreme one. As (G increases, we would expect the
distribution of ¢ eventually to lose any dependence on the sizes of the treated clusters,
because the statistic is asymptotically pivotal. In contrast, the distribution of B will continue
to depend on the sizes of the treated clusters. Thus we would expect the behavior of the
two RI procedures to become less and less similar as Gy increases in cases with unbalanced
clusters where neither of them yields valid inferences when G = 1.

The failure of both RI-g and RI-¢ when (G is small and cluster sizes vary, and of the
former even when (57 is not small, is a consequence of the fact that B and t3 depend on d,
which is not invariant across re-randomizations. As such, it is not surprising that both
randomization inference procedures fail with unbalanced clusters, as the simulation results
in Subsections 3.3 (above) and 3.5 (below) demonstrate. The more treated observations
the treated clusters have (at least up to about half the sample size), the more efficiently
should be estimated.” Thus, except perhaps when Gy = 1, we would expect randomization
inference based on coefficient estimates to perform less well than randomization inference
based on t statistics when the treated clusters are unusually large or small.

Conley and Taber (2011) originally suggested their T* procedure, which is similar to
RI-3, for use either with aggregate data or with individual data that have been aggregated
into time-cluster cells. It seems to be a weaker assumption that ﬁ and the § follow the
same distribution in those cases than in the case of individual data. Nevertheless, this
assumption is still a very strong one. Variations across clusters in the number of underlying
observations per cell, in the values of other regressors, or in the variances of the error terms
may all invalidate this crucial assumption.'’ In contrast, t5 and the t* can be expected to
follow approximately the same distribution whenever G; and G are not too small.

3.5 Performance of RI-¢t when Cluster Sizes Vary

As in Figure 1, and using results from the same simulations, we first plot conditional and
unconditional distributions of t5 in Figure 6. Results for G; = 1 are again shown in the
left panel and results for G; = 3 in the right panel. When G; = 1, the two conditional
distributions are once again quite different from the unconditional distribution. This will

Tt is difficult to be precise about this, because efficiency will also depend on intra-cluster correlations
and the values of other regressors.

OFerman and Pinto (2015) shows that aggregation of unbalanced clusters introduces heteroskedasticity in
the aggregate data. When either large or small clusters are treated, this causes problems for randomization
inference that are very similar to the ones with individual data.
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Figure 6: Conditional and Unconditional Distributions of ¢
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inevitably lead to the same inference problems as before, with RI-¢ over-rejecting when small
clusters are treated and under-rejecting when large clusters are treated.

In contrast, the right panel of Figure 6, in which G; = 3, does not look much like the
left panel. There are still some differences between the conditional distribution and the
unconditional ones, but they are much less evident than they were in Figure 1. Moreover,
and this is somewhat surprising, both of the conditional distributions are less spread out
than the unconditional one. This suggests that RI-¢ may tend to under-reject for G; > 1
even when the treated clusters are relatively large.

To compare the performance of RI-¢ and RI-3, the experiments of Figure 2 are repeated
using the former procedure instead of the latter. The results are shown in Figure 7. As
must be the case, the RI-t procedure works perfectly (except for experimental error) when
all clusters are potentially treated. As the analysis of Subsection 3.4 implies, it overrejects
somewhat when the smallest clusters are treated and G; = 1, but not as much as RI-3. It
also overrejects slightly in that case when GG; = 2. However, as Figure 6 suggests, it actually
underrejects in every other case. RI-t clearly outperforms RI-5 when either the smallest or
the largest clusters are treated, but there is not much to choose between the two procedures
when intermediate clusters (numbers 11-20 or 21-30) are treated.

3.6 Varying the Number of Clusters

Our findings in Subsections 3.3 and 3.5 are not dependent on the total number of clusters
being fairly small. Figure 8 shows what happens when G increases from 20 to 100 by
increments of 10, with N = 100G and G; = G/10 in each case. As in many of our
experiments, 7 = 2, which implies that the largest cluster is between about 7.2 (when
G = 20) and 8.9 (when G = 100) times as large as the smallest one. In the left panel, the
treated clusters are drawn from the lower half of the distribution. In the right panel, they
are drawn from the upper half. The lackluster performance of RI-3 is seen to be almost
unrelated to the number of clusters in both cases. In the left panel, RI-5 always over-rejects
moderately, and in the right panel it always under-rejects quite substantially. In both panels,
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Figure 7: Rejection Frequencies for RI-t Tests
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RI-t works noticeably better than RI-3, but it too does not improve as GG increases.

The figure also shows rejection frequencies for the WCR bootstrap. As in Figure 3, it
under-rejects extremely severely when G, and hence also Gy, is small. The problem goes
away more rapidly as G increases when the treated clusters are relatively large, as the
theory in MacKinnon and Webb (2017b, Section 6) implies. In both panels; WCR, works
very well indeed for the largest values of G and ;. Thus the figure illustrates a major
difference between the wild cluster bootstrap and randomization inference. The bootstrap
may work badly in small samples, but it is asymptotically valid under quite weak conditions.
In contrast, if randomization inference is not valid in finite samples, it is typically not valid
asymptotically either.

There is one feature of Figure 8 that requires comment. For G = 20 with G; = 2, the
value of S for the two RI procedures is 189. This number does not satisty the condition that
(B + 1) x .05 be an integer. Therefore, the two RI P values (13) and (16) yield different
results. The rejection frequencies we report in the figure for G = 20 are the average of the
ones for the two P values. They are essentially what would have been obtained if we had
used the procedure involving a random number 7 discussed between equations (14) and (15)
to determine the outcome of the test whenever (13) and (16) yield conflicting results.

3.7 RI Procedures with Heteroskedasticity across Clusters

In the experiments reported so far, the distributions of @ and the corresponding ¥, and of
t3 and the corresponding ¢y, can only differ across clusters when cluster sizes vary. However,
this is not the only possible reason for those distributions to differ. Another possibility is
that the error terms of the treated clusters may have larger or smaller variances than those
of the controls. For simplicity, suppose there are just two variances, with the ratio of the

20



Figure 8: Rejection Frequencies when G and GG; Vary Together
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ones for the treated and control clusters equal to \2

Consider the extreme case in which G; = 1. From equation (18), it is evident that the
larger is the variance of the error terms for the treated cluster, the larger will be the variance
of B . This follows from the fact that the first summation within the large parentheses, which
depends on those error terms, is proportional to A. The variance of ¢z must also be increasing
in A in this case, because the second summation within the large parentheses in (19) is the
leading-order one. Therefore, the cluster-robust standard error underestimates the true
standard error of 3 more and more severely as A becomes larger.

To investigate this phenomenon, we perform an additional set of experiments in which
the standard error for the treated clusters is A times the standard error for the controls. We
would expect over-rejection when A > 1 and under-rejection when A\ < 1. As G increases,
we expect the problem to go away for RI-¢ but not for RI-£.

Figure 9 shows rejection frequencies for the RI-5 and RI-t procedures for a DiD model
with 40 equal-sized clusters and 4000 observations. Results are shown for three values of A,
namely, A = 2.0, A = 1.25, and A = 0.5. As expected, both procedures over-reject when
A > 1 and under-reject when A < 1. When G; = 1, both the over-rejection for A = 2.0 and
the under-rejection for A = 0.5 are very severe. In this case, they are identical for RI-3 and
RI-t for all three values of A.

As (57 increases, the performance of RI-¢ initially improves quite quickly, while that of
RI-5 improves very slowly. However, the rate of improvement for RI-t slows down greatly
as (& increases. It still over-rejects noticeably for G; = 8 when A = 2.0 and it under-
rejects noticeably when A\ = 0.5.!' The size distortions in Figure 9 are much more severe

HUsing a different experimental design, Canay, Romano and Shaikh (2017, Appendix) also studies the
performance of a Conley and Taber (2011) procedure (and several other tests) when the treated clusters
have greater variance than the untreated ones. They find even more severe over-rejection for A = 2.0 than
we do.
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Figure 9: Rejection Frequencies with Heteroskedasticity
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than in previous figures, which suggests that heteroskedasticity associated with treatment
status may be a serious impediment to valid randomization inference. This might occur, for
example, if treatment caused individual outcomes to become more or less variable.

3.8 Power of Alternative Procedures

One possible drawback of RI-¢, and of every other procedure based on asymptotic t statistics,
is that the denominator of the ¢ statistic adds noise, and noise inevitably reduces power.
Because the CRVE (3) can be a rather inefficient estimator when G is small, the loss of
power is potentially substantial. In this subsection, we investigate this issue by conducting
a set of Monte Carlo experiments in which G = 20,40, or 80 with G; = 3, 6, or 12 treated
clusters, respectively. All clusters are the same size, with N, = 50 for all g. This ensures
that the RI procedures have the correct size under the null.

We vary the true value of 5 between 0 and 1 and plot the power functions of RI-f3, RI-,
and the WCR bootstrap in Figure 10. As expected, the power of all procedures increases
with the number of clusters, and the differences between them diminish. However, RI-§
evidently has substantially higher power than RI-t. Its power advantage is clearly evident
even when G = 80, which is a relatively large number of clusters.

The WCR bootstrap underrejects quite severely when G = 20 and G; = 3, so it is not
surprising that it has substantially less power than RI-t in that case. However, it performs
very well under the null in the other two cases, and it still has slightly less power than
RI-t. This suggests that it may be desirable to use RI-¢ rather than WCR when G is not
particularly small, whether or not all clusters are the same size.

Of course, in cases where RI-3 over-rejects under the null, it will appear to have an
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Figure 10: Power of Alternative Tests with Equal-Sized Clusters
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even greater power advantage than it does in Figure 10. However, even in cases where RI-S
under-rejects under the null, it may have more power than RI-¢ for large enough values of 3.
We found this in some experiments that we do not report.

4 Other Inferential Procedures

It has been known for some time that detecting treatment effects reliably when very few
clusters are treated is extremely difficult unless one is willing to make uncomfortably strong
assumptions about the error terms (for example, that they are uncorrelated within each
cluster). Many procedures for tackling this difficult problem have therefore been proposed.
In this section, we briefly discuss a number of these procedures. Simulation evidence for
some of them is presented in Appendices A and B.

4.1 Bootstrap Methods

The wild cluster bootstrap was proposed in Cameron, Gelbach and Miller (2008). The
key feature of this bootstrap method is that there is one drawing of an auxiliary random
variable for each cluster, instead of one per observation as for the ordinary wild bootstrap.
Every residual in cluster g is multiplied by the same auxiliary random variable, say vy,
when generating each bootstrap sample. In all our experiments, we draw the v; from the
Rademacher distribution, which takes the values —1 and +1 with equal probability.
MacKinnon and Webb (2017b, Section 6) explains why the wild cluster bootstrap fails
when the number of treated clusters is small. The WCR bootstrap, which imposes the null
hypothesis on the bootstrap DGP, leads to severe under-rejection, as was seen in Figures 3
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and 8. In contrast, the WCU bootstrap, which does not impose the null hypothesis, leads
to severe over-rejection, as can be seen in Figure 3. When just one cluster is treated, WCU
over-rejects almost as much as using CRVE ¢ statistics with the ¢(G — 1) distribution. This
is unfortunate, because it is easy to use WCU to form studentized bootstrap confidence
intervals, but they tend to under-cover severely when there are few treated clusters.

Recently, MacKinnon and Webb (2018a) suggested using the ordinary wild bootstrap to-
gether with cluster-robust standard errors, and Djogbenou, MacKinnon and Nielsen (2017)
proved that doing so is asymptotically valid. The WR (for restricted) and WU (for unre-
stricted) versions of this procedure can work remarkably well when cluster sizes are equal.
In addition, they are essentially unaffected by heteroskedasticity at the cluster level. How-
ever, like RI-3, they are very sensitive to variable cluster sizes. Moreover, unlike RI-S,
they are also sensitive to variation in the number of treated observations per cluster, which
often occurs in a DiD context. Some evidence about the performance of WR is presented
in Appendix A; WU performs very similarly in most cases.

A very different bootstrap procedure, usually called the pairs cluster bootstrap, was
suggested by Bertrand, Duflo and Mullainathan (2004). In this procedure, each bootstrap
sample is obtained by resampling all of the data at the cluster level. Thus each bootstrap
sample contains G clusters, some of them repeats, and the sample size varies across bootstrap
samples unless all clusters are the same size. The number of treated clusters also varies
across bootstrap samples and may even be zero for some of them when G, is small for the
actual sample. Simulation results for this procedure are presented in MacKinnon and Webb
(2017a). When G; = 1, the pairs cluster bootstrap over-rejects extremely severely, about
the same as WCU, but it can perform quite well when neither G nor G is too small.

4.2 Bias Correction and Degrees-of-Freedom Methods

Carter, Schnepel and Steigerwald (2017) discusses the asymptotic properties of the CRVE
(3) when the number of observations per cluster is not constant. It shows that, when clusters
are unbalanced, a sample typically has an effective number of clusters, G* which is less than
G (sometimes very much less). Simulations in MacKinnon and Webb (2017b) show that
using critical values based on G* can work fairly well when intermediate numbers of clusters
are treated. However, when very few clusters are treated in the DiD context, it can either
over-reject or under-reject. We consider the performance of what we call the ¢(G*) procedure
in some of our simulation experiments.

Alternative degrees-of-freedom corrections, in some cases based on alternative CRVEs,
have also been proposed in Bell and McCaffrey (2002), Imbens and Kolesar (2016), and
Young (2016). The first two of these papers propose procedures that use an alternative
CRVE, which we call CV,, that is analogous to the HCo; HCCME discussed in MacKinnon
and White (1985). It requires finding the inverse symmetric square root matrix M;gl/ ? for
each of the N, x N, diagonal blocks My, of the N x N matrix Mx =1— X(X'X) ' X".
The Ng-vector of residuals for each cluster is then premultiplied by Mgz,l/ ?_ Doing so has
the effect of inflating the residuals, thereby increasing the cluster-robust standard errors.
However, this is computational demanding. For the cases we study, simply computing CV,
is much more costly than using either randomization inference or the wild cluster bootstrap.

As we illustrate in Appendix A, using CV, rather than CV; leads to substantially less
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over-rejection when G is small. However, it still yields rejection rates that are much too
high. The procedures of Bell and McCaffrey (2002) and Imbens and Kolesar (2016) com-
bine CV, with estimated degrees-of-freedom parameters, the computation of which can be
extremely demanding.'> When G is small, these parameters also tend to be small. In
consequence, the critical values can be very much larger than the ones from the ¢(G — 1)
distribution that are conventionally used.

A much less computationally demanding procedure was proposed in Young (2016). It
starts with the CV; CRVE (3), then inflates each diagonal element by a factor (which
is different for every coefficient) that is designed to offset its downward bias, and finally
computes an alternative degrees-of-freedom parameter that is conceptually similar to the
one in Bell and McCaffrey (2002). In MacKinnon and Webb (2018a), we found that Young’s
procedure tends to yield rejection frequencies that are quite similar to the ones from the
Imbens-Kolesar procedure. We present a number of results for it in Appendix A.

4.3 Methods that Use Different Estimates of [

We consider a large number of inferential procedures in this paper. In order to keep the
results manageable, we restrict our experiments to methods based on OLS estimation of
equation (2). However, several methods that use other estimates have also been proposed.

Building off results in Donald and Lang (2007), Ibragimov and Miiller (2016) studies the
generalized Behrens-Fisher problem of comparing the means of two groups with different
unknown covariance matrices. The paper focuses on differences in means for treated and
control groups and proves that appropriately constructed ¢ tests for these differences follow
asymptotic distributions with degrees of freedom equal to min(Go, G1) — 1. When G; = 1,
this number is 0, which implies that the Ibragimov-Miiller procedure is inapplicable when
there is only one treated group. The procedure is primarily designed for the pure treatment
case, but the paper also discusses how to extend it to a DiD model with a common treatment
start date. However, it does not explain how to deal with models in which treatment starts
at different dates, as in all of our experiments. We therefore do not attempt to study the
performance of this procedure.

Canay, Romano and Shaikh (2017) proposes a related procedure which requires a match-
ing of treated clusters to control clusters. In their general framework, (G; is small and G is
large. When both Gy and G, are small, the required matching is not easily accomplished,
and the paper recommends the procedure of Tbragimov and Miiller (2016). The former pro-
cedure has power at the 5% level that is always strictly less than one when the minimum
of Gy and G is less than 5, because there are too few re-randomizations. Since the RI-S
and RI-t procedures are most attractive for cases with GG; < 4, and do provide consistent
tests even when GG = 1, it is not interesting to compare them with the procedure of Canay,
Romano and Shaikh (2017).

A very different procedure is proposed by Abadie, Diamond and Hainmueller (2010). Like

2We ran into computational difficulties when we attempted to compute these parameters for G; = 1.
We were able to compute them for G; > 1, but at great computational cost. Even for the rather modest
sample sizes in our experiments (often just 4000), the procedure of Imbens and Kolesar (2016) was many
times more expensive than any of the randomization inference or bootstrap procedures. MacKinnon and
Webb (2018a) provides evidence on how the cost of this procedure, and others, varies with the sample size.
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the RI procedures, it bases inference on an empirical distribution generated by perturbing
the assignment of treatment. However, the procedure differs substantially from the ones
considered in this paper, because it constructs a “synthetic control” as a weighted average of
potential control groups, based on the characteristics of the explanatory variables for these
groups. This results in both a different estimate of the “treatment effect” and a different P
value. For this reason, we do not study the synthetic controls approach in this paper.

Two other procedures that we do not investigate require much stronger assumptions
about the error terms than the assumptions in (2). Ferman and Pinto (2015) proposes a form
of RI procedure, which requires users to estimate a pattern of cross-cluster heteroskedasticity.
Brewer, Crossley and Joyce (2018) proposes a feasible GLS procedure, which requires users
to estimate autocorrelation.

5 Empirical Examples

In this section, we consider two empirical examples. In the first of them, G; = 2, so that
randomization inference may be expected to work well if the treated clusters are not atypical,
but other methods can be expected to work poorly. In the second, G; = 10, so that many
methods should work well. We include the second example because it was used in Conley
and Taber (2011).

5.1 Birth Control Pills

Bailey (2010) examines the relationship between the introduction of the birth control pill
and the decrease in fertility in the United States since about 1957. The paper uses state-by-
state variation in “Comstock laws,” which prohibited, among other things, the advertising
and sale of the birth control pill. The practice of using these laws to restrict the sale of
birth control pills was essentially ended by the U.S. Supreme Court’s 1965 Griswold v.
Connecticut decision. Part of the analysis in Bailey (2010) shows that women in states with
sales restrictions on the birth control pill were indeed less likely to have taken the pill by
1965. The analysis employs a DiD regression using data on married, white women from the
National Fertility Surveys for the years 1965 and 1970. The women come from 47 states,
and clustering is done at the state level.

Bailey estimates a probit regression in which the dependent variable is an indicator
variable that equals 1 in 1965 or 1970 if the respondent had ever taken the birth control
pill by that year. The key regressors are an indicator variable Salesban that equals 1 if
the state had a sales ban on the birth control pill in 1960, and Salesban interacted with
a dummy variable D1970 for observations from 1970. Estimated coefficients and standard
errors for these two regressors are presented in her Table 2, Column 1. Other regressors
include D1970, three regional dummies, an indicator variable equal to 1 if the state had a
physician exemption to the sales ban, and each of these variables interacted with D1970.

There is no real need to use a probit model in this case. Because all regressors are
indicator variables, and the mean of the dependent variable (which is 0.515) is far from the
limits of 0 and 1, using OLS inevitably produces results almost identical to the probit ones.
In fact, the probit ¢ statistics for Salesban and SalesbanxD1970 are —2.76 and 1.46, and
the OLS ones are —2.71 and 1.37; these are all based on cluster-robust standard errors.'?

13 Although we attempted to use the same sample as Bailey, our sample has 6929 observations, and hers
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Prior to the “Griswold” decision, several states repealed their previously existing sales
bans. In particular, Illinois and Colorado repealed their Comstock laws in 1961. It is of
interest to ask whether women in these early-repeal states were more or less likely to use
the pill than women in other states with a sales ban. We therefore created an indicator
variable rep61 equal to 1 for those two states and added rep61xD1965 and rep61xD1970
to the base specification. Results for the four coefficients of interest are shown in Table 1.

Table 1: Effects of Sales Ban and Early Repeal, Full Sample
Coef. Std. Err. CR t-stat RI-G p* RI-t p*

Salesban  —0.042 0.016 —2.677
SalesbanxD1970 0.029 0.027 1.059
rep61xD1965  —0.125 0.023 —5.432 0.063 0.056
rep61xD1970  —0.043 0.029 —1.488 0.615 0.445
Young p CSSp IM Coef. IMp WRp* WCR p*
Salesban 0.019 0.034 0.035 0.028
SalesbanxD1970 0.184 0.318 0.366 0.320
rep61xD1965 0.028 0.059 —0.338 0.221 0.021 0.546
rep61xD1970 0.315 0.322 0.338 0.221 0.638 0.458

Notes: Outcome variable is whether respondent had ever taken the birth control pill. The sample is women
from 47 states, 23 of which had a sales ban. rep61 = 1 for individuals in Illinois and Colorado. Standard

errors are clustered at the state level.

Taken at face value, the cluster-robust ¢ statistic for rep61xD1965 in column 3 of Table 1
appears to be telling us that living in an early-repeal state very significantly lowered the
probability of using the pill in 1965. However, because there are only two such states,
the analysis of Section 2.1 suggests that this ¢ statistic is probably much too large. In
contrast, the WCR bootstrap (based on B = 99,999) yields a P value of about 0.55, which
the analysis of MacKinnon and Webb (2017b) suggests is probably much too conservative.
Thus the cluster-robust ¢ statistic and the bootstrap P value yield wildly contradictory
results, which could have been expected before even computing them, and are therefore of
no real use in this case.

We also compute two randomization inference P values for each regressor involving
rep6l. Because G = 47, the value of S is (47 -46)/2 — 1 = 1080. We report RI P values
computed using equation (16), because they are slightly more conservative than ones based
on equation (13). The two RI procedures yield results that are very similar to each other,
with P values just a little greater than .05. Although the RI P values do not entirely resolve
the uncertainty about whether the coefficient on rep61xD1965 is significant, they at least
yield sensible results that could not have been predicted in advance.

P values for other procedures discussed in Section 4 are also reported. The ones for the
procedure of Young (2016) and the ones based on the effective degrees of freedom proposed

has 6950. We are unable to explain this minor discrepancy. Bailey does not explicitly report ¢ statistics.
Calculating them from coefficients and standard errors reported to only two decimal places, her ¢ statistics
are similar enough to our probit ones that they could actually be equal.
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in Carter et al. (2017) give broadly similar results. Moreover, these P values are quite
similar to the WR P values and the RI P values (where they exist). Specifically, all of
the P values for rep61xD1965 are below 0.10 (except for WCR), while all of the P values
for rep61xD1970 are well above 0.10. We also calculate P values and coefficient estimates
using the procedure in Ibragimov and Miiller (2016). One limitation of this procedure is
that, although standard difference-in-differences analysis allows for year-specific treatment
effects, the IM procedure always estimates these coefficients to be the negative of one another
when there are only two periods.

One way to investigate the robustness of these results is to limit attention to the 23 states
that had sales bans in 1960. This reduces the sample size to 3780 observations and requires
us to drop the variables Salesban and SalesbanxD1970. Results for the two coefficients of
interest are shown in Table 2.

Table 2: Effects of Early Repeal, Sales Ban Sample
Coef. Std. Err. CR t-stat RI-g p* RI-t p*

rep61xD1965  —0.120 0.024 —4.917 0.040  0.079
rep61xD1970  —0.046 0.032 —1.445 0.316  0.289

Young p CSS p  IM Coef. IMp WRp* WCRp*
rep61xD1965 0.032 0.062 —0.336 0.225  0.029 0.439
rep61xD1970 0.316 0.326 0.336 0.225  0.641 0.460

Notes: Outcome variable is whether respondent had ever taken the birth control pill. The sample is women
from 23 states which had a sales ban. rep61 = 1 for individuals in Illinois and Colorado. Standard errors
are clustered at the state level.

The results in Table 2 are very similar to the ones in Table 1. The most noticeable
difference is that the RI-S P value is now just 0.040, while the RI-¢t P value is almost
exactly twice as large. Since these are based on S = (23 -22)/2 — 1 = 252, they would have
been noticeably smaller (0.036 and 0.075, respectively) if we had used equation (13) rather
than equation (16) to compute them. Tt is difficult to understand why early repeal would
have reduced pill use in 1965. The RI-g P value suggests that there is stronger evidence
against the null than does the RI-t P value. However, the results in Figure 2 suggest that
RI-t should be more reliable than RI-{.

The Young P and CSS P values again give results that are quite similar both to one
another and to the RI P values. The WR and WCR bootstrap P values exhibit the same
pattern as in Table 1. The WCR P value is quite large because there are only two treated
clusters, while the WR one rejects the null at the 5% level for the D1965 coefficient, but
it provides little evidence against the null for the D1970 coefficient. We again calculate IM
coefficients and P values, but the coefficients are negatives of one another by construction
and thus not meaningful.

Although the results in Tables 1 and 2 are not entirely definitive, randomization inference
certainly yields results that are much more plausible, and much less predictable, than using
either cluster-robust ¢ statistics or the wild cluster bootstrap. Moreover, these P values are
consistent with those from the Young and CSS procedures, and the ordinary wild bootstrap.

28



5.2 Merit Scholarships

In this subsection, we consider an empirical example studied in Conley and Taber (2011). It
deals with the impact of state-level merit scholarships initiated during the 1989-2000 period.
These programs generally offered scholarships for students to attend college in their home
state conditional on being above some academic threshold. The details differ state by state,
but they are not important for our purposes.

Conley and Taber (2011) attempts to determine whether the 10 merit scholarships that
were in operation by the end of 2000 had any impact on college enrollment by estimating
the following DiD regression using data from 1989-2000:

college;, = [y + fimerit;s; + Bamale;s; + Szblack;s + B4 asian;s

51 12
+ Z v statel, + Z Spyeart 4 ;.
j=2 k=2

Here college,,, is the outcome of interest, a binary indicator for whether individual 7 in
state s and year t was enrolled in college, and the treatment variable merit;y; equals 1 if
state s offered a merit scholarship in year t. The remaining variables are all binary indicator
variables. The dataset has N = 42,161 observations taken from all states, including the
District of Columbia, so that G = 51.

Table 3: Effect of Merit Scholarships on College Enrollment
Coef. Std. Err CR t-stat RI g p* RItp*

merit 0.034 0.013 2.654 0.117 0.034
Young p  CSS p WR p* WCR p*
merit 0.018 0.071 .030 0.021

Notes: Outcome variable is whether individual had ever enrolled in college. Sample is 42,161 individuals
from all 50 states and DC. Merit = 1 for individuals in the 10 states with merit scholarships in the relevant
treatment years. Standard errors are clustered at the state level.

The original paper presents estimates of 31, along with several different confidence in-
tervals, in Column C of Table II. The table reports that Bl = 0.034, along with a 95%
CRVE confidence interval of [0.008, 0.059]. We calculate several alternative P values and
present the results in Table 3. Although it is not explicitly reported, we calculated the P
value for the test of 51 = 0 based on the ¢(50) distribution to be 0.010. However, using a
method that essentially inverts RI-5 P values, the paper estimates a 95% confidence interval
for 3; of [—0.003, 0.093]."* Thus, unlike the conventional CRVE confidence interval, the
Conley-Taber 95% confidence interval contains 0.

We use the Conley-Taber data and modify their Stata code to conduct inference on 3
using both RI-8 and RI-t." With 9999 randomizations and symmetric P values, we obtain

The procedure searches separately for both the upper and lower limit of the confidence interval, by
re-randomizing treatment amongst 10 of the 51 states.
15We thank the authors for making their code and data easily available.
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an RI-t P value of 0.032 and an RI-# P value of 0.117. Like the Conley-Taber confidence
interval, the RI-5 P value fails to reject the null at the 5% level. In contrast, our RI-t P
value of 0.032 suggests that there is a statistically significant effect at the 5% level.

We also calculate the WCR. P value for 8; = 0, based on B = 99,999 bootstraps. It is
0.021, which is quite similar to the RI-¢t P value. With 10 treated states, the WCR P value
should be quite reliable. The WR P value, which should also be reliable, is very similar.
We also calculate Young and CSS P values. The former rejects the null at the 5% level,
and the latter rejects it at the 10% level.'® In view of these results and the fact that, in
all our Monte Carlo experiments, the RI-¢ procedure tended to be slightly under-sized, but
quite close to 5%, we conclude that the merit scholarship programs did have a statistically
significant impact.

6 Conclusion

We compare several new and existing procedures for inference with few treated clusters in the
context of difference-in-differences, focusing on two methods that are based on randomiza-
tion inference (RI). There are four main findings, some of which were obtained theoretically
for a simple model in Subsection 3.4, and all of which were confirmed by simulation results
in various subsections of Section 3 and in Appendices A and B.

The first result is that none of the procedures we study works well when there are very few
treated clusters and those clusters are atypical in terms of either the number of observations
or the variance of the error terms. The second is that both RI procedures appear to work
well when the treated clusters are typical. In an ex ante sense, they work perfectly when
the treated clusters are chosen at random. The third is that, when the number of treated
clusters (G1) equals 1, RI-¢, the RI procedure based on t statistics, performs very similarly
to RI-f3, the one based on coefficient estimates. However, the performance of RI-t tends to
improve as (7 increases, at least up to a point, while that of RI-8 may or may not improve.
We never encountered a case where RI-¢ performs really badly for G; > 3. The fourth result,
which makes sense theoretically, is that RI-5 tends to have substantially more power than
RI-t or other procedures based on cluster-robust standard errors.

The performance of all the procedures we study depends in a complicated way on G,
(G1, the sizes of the treated and control clusters, and the number of treated observations
within the treated clusters. This suggests that the best procedure to use will depend on the
specific dataset under analysis. Accordingly, prudent empirical researchers would benefit
from conducting their own small-scale Monte Carlo experiments using the values of G, Gy,
and the IV, found in their dataset, in addition to plausible values of p.

6We are unable to calculate IM P values here as treatment starts at different years.
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Appendix A: Simulation Results for Additional Methods

In this appendix, we present simulation results for several of the alternative procedures
discussed in Section 4. Figure 11 reports additional results for three of the five experiments
initially reported in Figures 2 and 3. To keep the figure readable, rejection frequencies are
shown only for the case in which all groups are treated and for the two extreme cases in
which groups 1-10 (the smallest ones) and groups 31-40 (the largest ones) are treated.

In the left panel, it is evident that the restricted wild cluster bootstrap (WCR) almost
never rejects when G; < 2 and under-rejects severely for G; = 3, except when the largest
clusters are treated. These results are explained in MacKinnon and Webb (2017b, Section 6).
They are caused by dependence between the actual ¢ statistic and the bootstrap ¢ statistics.
The left panel of Figure 11 also shows rejection frequencies for the ordinary restricted wild
bootstrap (WR). For G; < 4, WR works considerably better than WCR, except when
G7 = 1 and the smallest clusters are treated, although its performance is far from perfect.
For G; > 5, however, WCR works a bit better than WR. For larger values of G, the results
for WR appear to be much more sensitive to the size of the treated clusters than the results
for WCR. Broadly similar results are reported in MacKinnon and Webb (2018a).

The right panel of Figure 11 reports rejection frequencies for two procedures that use
standard errors which differ from the usual ones based on CV; and also use critical values
based on calculated degrees of freedom that are smaller (often very much smaller) than
G — 1. The procedure called ¢y in the figure is due to Young (2016), and the one called
tik is due to Imbens and Kolesar (2016); see Subsection 4.2. The former procedure is very
inexpensive to compute, but the latter is extremely expensive. Results for it (which are
not available for G; = 1) are therefore based on only 20,000 replications. In the figure, the
performance of ¢y is usually a bit better than that of t;x. For G; > 4, the ty procedure
generally works quite well.

If we compare the results in Figure 11 with those in Figures 2 and 3, we see that, for
Gy > 4, all of the alternative procedures outperform RI-5 when either the smallest or largest
groups are treated. Several of them also outperform RI-¢ for some or all of the same cases.
Of course, both RI procedures work perfectly when all groups are treated, and they typically
work better than most of the alternative procedures when G; < 2.

The procedures considered in the right panel of Figure 11 both differ in two ways from
the usual one. Two procedures that each differ in only one way are to use standard errors
based on CV, together with the usual ¢(G — 1) critical values, and to use ordinary CV;
standard errors together with critical values based on the effective degrees of freedom G*
suggested by Carter, Schnepel and Steigerwald (2017). Figure 12 shows rejection frequencies
for these two procedures for the same three cases as Figure 11. Using CV, works quite a
bit better than using CVy, but it still over-rejects substantially even for the largest values
of Gi. In contrast, using t(G*) critical values works remarkably well, especially when all
groups or the largest ones are treated and G; > 4.

In Figure 9, we showed that heteroskedasticity at the cluster level severely impacts the
performance of RI-5. RI-t also performs very badly when G; = 1, but it improves rapidly as
(G increases. In Figure 13, we report results of the same experiments for the two restricted
bootstrap tests. The ordinary wild bootstrap (WR) works very much better than the wild
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Figure 11: Rejection Frequencies for Alternative Procedures
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cluster bootstrap (WCR) in these simulations. Moreover, WR always performs very much
better than the two RI procedures. Its only defect is that it underrejects moderately when
Gy =1, as the theory of MacKinnon and Webb (2018a) predicts.

In Figure 14, we report results of the same experiments for ¢y and ¢(G*). These proce-
dures perform much less well with heteroskedasticity and constant cluster sizes than they did
in Figures 11 and 12 with homoskedasticity and variable cluster sizes. Note the nonlinear
scale of the vertical axis. We do not report results for ¢;x because it is extremely expensive
to compute.'” When G is small, there are considerable differences between the performance
of ty and t(G*). With G; = 1 and A = 2.0, both procedures severely over-reject. With
G7 = 1 and A = 0.5, both procedures severely under-reject. Interestingly, when G; = 2
and A\ = 1.25, the ¢(G*) procedure rejects nearly 11% of the time, while the ¢y procedure
rejects only 0.4% of the time. Neither of these procedures offers an improvement over RI-¢
for G; < 2.

Appendix B: Simulation Results with Lognormal Errors

For all of our experiments up to this point, the error terms have been normally distributed.
In this appendix, we report some additional results in which the error terms are instead
lognormal, rescaled to have mean 0 and variance 1. These errors are strongly skewed to the
right. Not surprisingly, this affects the performance of all the procedures.

Figure 15 shows rejection frequencies for RI-3 and RI-¢ for the extreme cases in which
either groups 1-10 or groups 31-40 are treated. RI-t performs more or less the same as it
did in Figure 7, but RI-f performs noticeably worse that it did in Figure 2, at least for
larger values of G;. Of course, when all groups are treated, both procedures continue to
work perfectly, and we do not show those results.

"For a different DGP that also involves heteroskedasticity, MacKinnon and Webb (2018a, Figure 13)
reports results for both ¢y and 1k, and they are quite similar.
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Figure 12: Rejection Frequencies for Alternative Procedures
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Figure 13: Rejection Frequencies for Wild Bootstrap Procedures with Heteroskedasticity
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Figure 14: Rejection Frequencies for Alternative Procedures With Heteroskedasticity
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Figure 15: Rejection Frequencies for RI Procedures With Lognormal Errors
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Figure 16: Rejection Frequencies for Alternative Procedures With Lognormal Errors
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Figure 16 shows rejection frequencies for the two restricted wild bootstrap tests in the
left panel and for ¢ty and ¢(G*) in the right panel. These may be compared with the results
in Figure 11. There are a number of differences between the two figures. Notably, WCR now
rejects between about 5.7% and 5.9% of the time even for the largest values of G, and WR
rejects noticeably more than that. However, the overall shapes of the rejection frequency
curves as functions of G; are quite similar in the two figures.

All of the tests that we examine in this paper are two-tailed. If we had studied one-tailed
tests, we would have found the effect of skewed error terms to be much greater. When the
error terms are heavily right-skewed, upper-tail tests tend to reject much less often than
symmetric tests, and lower-tail tests much more often.
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