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Abstract

I investigate whether the popular Krusell and Smith algorithm used to
solve heterogeneous-agent economies with aggregate uncertainty and in-
complete markets is likely to be subject to multiple self-fulfilling equilibria.
In a benchmark economy, the parameters representing the equilibrium ag-
gregate law of motion are randomly perturbed 500 times, and are used as
the new initial guess to compute the equilibrium with this algorithm. In
a sequence of cases, differing only in the magnitude of the perturbations,
I do not find evidence of multiple self-fulfilling equilibria. The economic
reason behind the result lies in a self-correcting mechanism present in the
algorithm: compared to the equilibrium law of motion, a candidate one
implying a higher (lower) expected future capital reduces (increases) the
equilibrium interest rates, increasing (reducing) the savings of the wealth-
rich agents only. These, on the other hand, account for a small fraction of
the population and cannot compensate for the opposite change triggered
by the wealth-poor agents, who enjoy higher (lower) future wages and
increase (reduce) their current consumption. Quantitatively, the change
in behavior of the wealth-rich agents has a negligible impact on the de-
termination of the change in the aggregate savings, inducing stability in
the algorithm as a by-product.
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1 Introduction

This paper investigates whether the popular Krusell and Smith (KS) algorithm,
used to solve heterogeneous-agent economies with aggregate uncertainty and
incomplete markets, is likely to be subject to multiple Self-Fulfilling Equilibria
(SFE). This possibility arises because the equilibrium Aggregate Law of Mo-
tion (ALM) is unknown and needs to be computed through a guess-and-verify
iterative procedure. Crucially, the agents’ optimal decision rules have to be
calculated at each step of this fixed-point problem, but they in turn depend on
the ALM being tried. In principle, this process can lead to a complementarity
between the guess related to the agents’ perception of the evolution of future
prices and their implied choices.

This method was first proposed by Krusell and Smith (1998), and it has been
successfully applied to a wide variety of problems. Notable examples include
the pricing and allocation of risky and safe assets (Krusell and Smith (1997),
Pijoan-Mas (2007) and Storesletten et al. (2007)), the magnitude of welfare costs
due to business cycles (Castaneda et al. (1998), Mukoyama and Sahin (2006),
and Krusell et al. (2009)), fluctuations in frictional labor markets (Gomes et
al. (2001) and Nakajima (2012)), the determinants of fiscal policy (Heathcote
(2005)), and the analysis of rising wage inequality in a political economy frame-
work (Corbae et al. (2009)).

Where does the possibility of multiple SFE stem from? In the simplest
environment, households only choice concerns their savings. If postulating an
ALM for capital that is above (below) the equilibrium one leads to more (less)
resources being saved by the households in the aggregate, we would be in a sit-
uation displaying complementarity between the guessed aggregate dynamics of
capital and the resulting saving behavior. This instance could lead to multiple
SFE, and it has been acknowledged by Krusell and Smith (2006), who argued
for the absence of multiple SFE by analyzing a simple two-period model. Since
the uniqueness of the equilibrium is impossible to prove analytically, this paper
undertakes a systematic study on the subject with a numerically intensive proce-
dure, considering the full-blown version of their model, with both infinitely-lived
agents and preference heterogeneity.

My investigation is complementary to the analysis performed in Young (2005),
who assesses the robustness of the KS algorithm along several dimensions. In
particular, he argues for the absence of SFE by working with a version of the
model with heterogeneous beliefs. Unlike him, I rely on a Monte Carlo analysis
of the KS economy. Through appropriately designed perturbation experiments,
I do not find evidence supporting the existence of SFE such that the parame-
ters representing the ALM converge to different values, depending on the initial
guess. Most replications tend to cluster around two different values of the ALM,
and converge to ALM parameters that differ from the equilibrium one, but the
discrepancy is always quantitatively negligible. Furthermore, increasing the ac-
curacy of the numerical procedure until hitting a feasibility boundary due to
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the computational time reduces this difference by an order of magnitude.1 Al-
though it is difficult to disentangle the gap from the numerical error induced by
the discretization of the state space, the sampling variability arising from the
simulations and the convergence criteria, this finding makes the numerical error
the most likely culprit behind the differences between the postulated equilib-
rium ALM and the sequence of converged ALM’s found in the replications. In
terms of substance, even if one is willing to consider these alternative ALM’s as
different equilibria, the implied differences are always quantitatively minimal.

The findings show that, although the economy features a wealth distribution
with a fat right tail, the share of agents increasing their savings in response to
ALM’s that overpredict the future aggregate capital is well below 0.5%. In
particular, agents need to have accumulated no less than 100 and up to 300
times the average income for the negative income effect to start prevailing,
leading them to increase their savings. It follows that, in the aggregate, this
change is dominated by the reduction in savings of the vast majority of agents,
and multiple SFE are unlikely to arise.

The rest of the paper is organized as follows. Section 2 briefly presents the
model and the calibration. Section 3 discusses the role of the ALM in the KS
model. Section 4 outlines the perturbation experiments. Section 5 describes the
main results, while Section 6 concludes. Two Appendices report the complete
calibration and discuss in more detail the numerical methods used. Another
Appendix presents some additional results and a set of robustness exercises.

2 Model

The model is similar to the set-up in Krusell and Smith (1998) with preference
heterogeneity, except for the availability of unemployment benefits for workers
without a job. Following den Haan et al. (2010), I assume a budget-balanced
Unemployment Insurance (UI) scheme.

I consider a production economy with aggregate shocks in which agents face
different employment histories and self-insure by accumulating a single risky
asset. A borrowing constraint (b) potentially prevents agents from borrowing
the desired amount of resources in periods where they obtain a low income.

Technology: The production side of the economy is modeled as a constant
returns to scale technology of the Cobb-Douglas form, which relies on aggregate
capital Kt and labor Lt to produce final output Yt = ztK

α
t L

1−α
t . The aggregate

shock takes only two values: zt = {zG, zB}, with zG = 1.01 > zB = 0.99. The
aggregate shock follows a symmetric first-order Markov chain, whose transition
matrix is reported in Appendix A, and it is such that booms and recessions
last the same number of periods. Capital depreciates at the exogenous rate
δ and firms hire capital and labor every period from competitive markets. The
agents’ time endowment is normalized to 1, and total labor services are Lt = lNt,

1When run on top-of-the-line workstations, each experiment takes more than two weeks to
complete. However, the different experiments can be run in parallel.
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namely they are the product of the employment rate Nt and l, the share of the
time endowment devoted to market activities. The first order conditions give
the expressions for the net real return to capital rt and the wage rate wt:

rt = αzt

(
Lt
Kt

)1−α

− δ, (1)

wt = (1− α) zt

(
Kt

Lt

)α
. (2)

Government: The government taxes the employed agents’ labor income at
rate τt to finance a budget-balanced UI scheme. Unemployed agents receive UI
benefits equal to a fixed replacement rate ρ of the going labor income. Since
labor supply is fixed, and the aggregate unemployment rate can only take two
values (ut = 0.04 when zt = zG and ut = 0.10 when zt = zB), the equilibrium
tax rate is τt = ρ(1−Nt)/Nt, with Nt = 1− ut. The transition matrix for the
employment opportunities is reported in Appendix A.

Households: Agents’ preferences are assumed to be represented by a time-
separable utility function U(.). Every household i ∈ [0, 1] chooses consumption
(ci,t) and future asset holdings (ai,t+1) to maximize expected discounted utility:

max
{ci,t,ai,t+1}∞t=0

E0

∞∑
t=0

βti,t
c1−γi,t − 1

1− γ

where E is the expectation operator. βi,t ∈ (0, 1) is the agents’ discount factor,
which varies over time according to the transition matrix reported in Appendix
A, and can take three different values, βi,t ∈ {βl, βm, βh}, with βl < βm < βh.
Agents can be employed, s = e, or unemployed, s = u. The employment prob-
abilities follow a first-order Markov process, depend on both the idiosyncratic
employment status s and on the aggregate state of the economy z. The related
transition matrix is reported in Appendix A. I use recursive methods to solve
the model, and the value function associated with this problem is denoted with
V (a, s, β, z,K). This represents the expected lifetime utility of an agent whose
current asset holdings are equal to a, whose current employment status is s,
whose current discount factor is β, facing the aggregate shock z, in an economy
with K units of aggregate capital. The Bellman equation is:
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V (a, s, β, z,K) = max
c,a′

{
c1−γ − 1

1− γ
+ βEβ′,s′,z′|β,s,zV (a′, s′, β′, z′,K ′)

}

s.t.

c+ a′ = (1 + r) a+ (1− τ)wl, if s = e

c+ a′ = (1 + r) a+ ρwl, if s = u

c ≥ 0, a′ ≥ b

lnK ′ = θ0,G + θ1,G lnK, if z = zG (3)

lnK ′ = θ0,B + θ1,B lnK, if z = zB (4)

Agents have to optimally set their consumption/savings plans. They enjoy
utility from consumption, and face some uncertain events in the future. Notice
that, according to the most parsimonious implementation of the KS algorithm,
the relevant state variable in the agents’ problem is just aggregate capital K,
rather than the whole current endogenous distribution over idiosyncratic states.
Hence, the agents forecast future prices relying on the (equilibrium) evolution
of the aggregate capital stock, the ALM being specified as the pair of equations
(3) and (4), which are commented upon in more detail in the following section.

The calibration of the model’s parameters is standard and they are presented
in Table 1.

[Table 1 about here]

Calibration: The calibration follows for the most part Krusell and Smith
(1998) and den Haan et al. (2010). The only differences pertain to the CRRA
parameter γ, the borrowing constraint b, and the discount factors {βl, βm, βh}.
While Krusell and Smith (1998) and den Haan et al. (2010) set γ = 1, I work
with γ = 2. Although my choice for this parameter is still well inside the range
of available estimates of the Intertemporal Elasticity of Substitution, compared
to the log case it implies a relatively stronger income effect. As it will be
discussed below, a higher γ increases the likelihood of SFE. Krusell and Smith
(1998) and den Haan et al. (2010) consider b = 0, namely the extreme case of
a no-borrowing constraint. I set b = −1.8 instead, for the time series average
of the share of households in debt to be approximately 10%, which is a more
empirically relevant value.2 As for the discount factors, I rely on the same

2The results with the alternative value b = 0 are both qualitatively and quantitatively very
similar to the ones of the baseline calibration, and are reported in an Appendix.
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transition matrix specified by Krusell et al. (2009), while I adjust the β’s to
match a wealth Gini index of 0.8 together with an average quarterly interest
rate of 1%.

Numerical Methods: Since there are several techniques used to solve the
KS economy, it is worthwhile to present the actual computational methods I
rely on. Following the taxonomy of den Haan (2010), I use a hybrid procedure:
a projection approach to solve for the individual policy rules, coupled with
stochastic simulation techniques to solve for the ALM. In particular, for the
household problem I use a time iteration procedure on the set of Euler equations,
guessing the future saving functions, and solving for the current ones with a
bi-linear interpolation scheme in the (a,K) dimensions.3 I look for the policy
functions such that the residuals of the Euler equations are (close to) zero at the
asset grid points. It follows that for all possible combinations of state variables
I need to solve a non-linear equation. To get the optimal policy functions, I
compute the first order conditions with respect to a′ and through the envelope
condition I obtain a set of Euler equations, whose unknowns are the policy
functions, a′(a, s, β, z,K). I start from a set of guesses, a′(a, s, β, z,K)0, and
keep on iterating until a fixed point is reached, i.e. until two successive iterations
satisfy the criterion that the maximum distance between two iterations is less
than 10−7 at all possible combinations of states. The ALM parameters are
considered as converged when the maximum difference between the sum of all
their distances between two iterations (in absolute value) is less than 10−5.
The aggregate dynamics are computed by simulating a large sample of 30, 000
individuals for 5, 000 periods, with the first 1, 000 periods being discarded as
a burn-in. Given the common finding by practitioners in the field that there
is a fair amount of non-linearity in aggregate capital, at the simulation stage
I perform a polynomial interpolation of the decision rules in the K dimension.
Differently, in the individual capital dimension I rely on a linear approximation
scheme.

3 The ALM in the Krusell and Smith (1998)
model

As for the ALM, the system (3) and (4) specifies its functional form. Following
Krusell and Smith (1998), and most of the papers thereafter, I use a log-linear
specification.

Let Θ denote the vector of four parameters θj,z representing the ALM, with
Θ∗ referring to their equilibrium values. Θ∗ is obtained by guessing a Θg, solving
and simulating the model under this guess, computing an update Θg′ as the
parameter estimates of OLS regressions on the simulated data, and repeating

3This method is fairly similar to the one thoroughly described in Maliar et al. (2010) and
proved to be more stable than the relatively common value function iteration scheme with
cubic spline interpolation, used for example by Krusell and Smith (1998), Krusell et al. (2009)
and Young (2010). For more details, see the Appendix and chapter 17 in Judd (1998).
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these steps until the four parameters in Θ converge. For the economy under
study, the values of Θ∗ are reported in the system (5).4 Notice that zt stands
for the time-t aggregate shock, while Kt stands for aggregate capital, and that
there are two parameters (an intercept θ0,zt and a slope θ1,zt) per aggregate
shock.


lnKt+1 = θ∗0,G + θ∗1,G lnKt = 0.072901 + 0.971442× lnKt, for zt = zG = 1.01

lnKt+1 = θ∗0,B + θ∗1,B lnKt = 0.064744 + 0.972626× lnKt, for zt = zB = 0.99

(5)
Can this algorithm display SFE? Figure 1 shows the differential response of

savings for selected household types, under two different specifications of the
ALM. The solid line plots the saving function for the equilibrium ALM, while
the dashed line for an alternative ALM, obtained by increasing θ∗0,G and θ∗0,B
until the implied forecasted aggregate capital is approximately 1% higher than
its equilibrium counterpart.5

[Figure 1 about here]

It is clear from the figure that asset-rich and asset-poor households react dif-
ferently to the perturbation of the equilibrium ALM. In particular, rich agents
increase their savings, while poor ones reduce them. The onset of a comple-
mentarity between the ALM and individual savings is indeed a possibility, and
it crucially depends on both the strength of the individual responses and the
shape of the wealth distribution. This is why I focus on the KS economy with
preference heterogeneity. Only in this case is the economy able to match a
wealth Gini index of 0.8. Not only this is a desirable feature in a model of
endogenous wealth accumulation, but I am also making sure that the model
delivers an empirically plausible mass of wealth-rich individuals, affecting the
likelihood of the above mentioned complementarity.

To further investigate this issue, I conduct a sequence of experiments where
the four parameters in Θ∗ are perturbed randomly. Each θ∗j,z is multiplied by
the realization of a random variate, drawn from independent uniform distribu-
tions, whose supports are set to different ranges in the sequence of experiments.
The range of the perturbations is progressively increased, from ±1% to ±25%,
to allow for a deteriorating quality of the initial guess. Finally, the ALM is
updated until it converges again and the procedure is repeated several times,
with different initial perturbations.

4It goes without saying that the computed Θ∗ could be only one of the potentially many
equilibria, and that from the perspective of the perturbation experiment it just represents a
candidate solution. With some abuse of language, sometimes I am going to refer to Θ∗ as the
equilibrium ALM, and denote it as ALM∗.

5All the saving functions are for employed agents (s = e), during a boom (z = zG), and
with an aggregate capital close to its time average computed in the simulations (K = 12).
The saving functions for other combinations of state variables are qualitatively similar to the
ones reported.
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Loosely speaking, this Monte Carlo procedure mimics the actual steps that
researchers follow in their search for the equilibrium ALM.6 As some authors
point out, a good initial guess for the ALM is often crucial to the success of
the procedure. A sensible choice is represented by the ALM computed for the
corresponding economy with complete markets. Here I take a different route,
to subject the KS algorithm to a thorough stress test. In this regard, before
presenting the details of the Monte Carlo procedure, it is worthwhile discussing
some general aspects of the perturbation experiment, and how it relates to the
literature.

In order to implement the perturbation experiment, it is necessary to identify
a candidate equilibrium ALM. This is done in a preliminary step, by solving the
model and obtaining Θ∗. This solution, compared to the sequence of solutions
that will be obtained in the perturbation experiments, does not satisfy any
additional requirements. By their nature, perturbations are a local concept,
and can only be performed around some specific candidate solution, namely the
ALM∗ obtained from one initial run of the KS algorithm. Although ALM∗ is
by no means exceptional, in the presence of multiple SFE the outcome of the
Monte Carlo experiments should consists of ALM parameters clustered around
several quantitatively distinct values of Θ∗.

Perhaps, the paper closest to mine is Giusto (2014). Even though a perturba-
tion approach is shared by both contributions, the ultimate goal of the analysis,
the underlying motivation, and its actual implementation are remarkably dif-
ferent. Where Giusto (2014) addresses the issue of stability of the equilibrium
under learning, studying the implications of the latter for wealth inequality
and aggregate dynamics, my contribution aims at quantifying potentially many
SFE. Consequently, his perturbations represent an accurate approximation of a
Jacobian, while mine do not, because they are intentionally designed to lead to
initial guesses that are far from Θ∗ (to capture the fact that a researcher might
start the quest for the equilibrium ALM with a poor guess) and to span a very
wide parameter region. Finally, the benchmark KS model without preference
heterogeneity he focuses on is less prone to SFE, because in the baseline KS
economy wealth concentration is very low, leading to a negligible mass of agents
having a response in their savings going in the same direction as the forecasted
change in Kt+1.

4 The Perturbation Experiment

The procedure used to check for the existence of SFE is:

1. For a given calibration, solve the benchmark economy and store the vector

6Several other aspects of the computational framework are usually fine-tuned with a trial
and error approach: the choice of the grids, Horvath (2012), the specification of the number of
moments needed to accurately forecast the future endogenous state variables, Young (2005),
and the functional forms of the forecasting rules, Storesletten et al. (2007). As these additional
features are less controversial, I focus on the parameters of the ALM.
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of four parameters Θ∗ =
[
θ∗0,G, θ

∗
1,G; θ∗0,B , θ

∗
1,B

]
representing the equilib-

rium ALM.

2. Choose a grid X = {x1, x2, ..., xn} for the perturbation factor x.

3. Set x = x1.

4. Perturb the four parameters by drawing four random variates from a uni-
form distribution with support [−x%,+x%].

5. Check that the new candidate ALM satisfies a requirement of non-explosive
dynamics. If not, discard the perturbation.

6. Given the guesses Θg =
[
θg0,G, θ

g
1,G; θg0,B , θ

g
1,B

]
, solve the households prob-

lem, simulate the economy and update the ALM parameters with a weighted
average between the current guess and the parameters resulting from state-
dependent OLS regressions on the simulated data.

7. Iterate until convergence of each of the four parameters in Θ and store
them.

8. Repeat the procedure 500 times.

9. Move to the next case for x and redo the whole sequence of steps.

In a first batch of experiments, I set n = 4 and X = {1, 2, 3, 4}. In particular,
in these experiments all the parameters in Θ∗ share the common perturbation
factor x.

In another batch of experiments, I still set n = 4, but I change the pertur-
bation scheme. For three out of the four parameters the perturbation factor is
set to a very small value x = 0.1, so that the initial guesses for these param-
eters are always extremely close to their equilibrium ALM values. Differently,
the support of the perturbation factor for the remaining parameter is set to a
very large value.7 This corresponds to [−10%,+10%] for θ∗1,G and θ∗1,B , and to

[−25%,+25%] for θ∗0,G and θ∗0,B .8

The outcomes of these procedures are distributions of the converged param-
eters, obtained by perturbing in a systematic way the equilibrium ones.

7This does not imply that only the markedly perturbed parameter varies in these exper-
iments, as in the iterations towards the ALM convergence the regressions on simulated data
induce changes in the other parameters as well.

8Some experimentation showed that wider supports resulted in several cases either being
discarded for not meeting the non-explosive dynamics restriction, or leading to a collapse in
the ALM after some iterations. These instances do not represent an issue for the perturbation
experiment, as a researcher would throw them away and try the model’s solution with a
different guess.
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5 Results

This section first examines the characteristics of the distributions of the con-
verged ALM parameters, then it discusses why the results do not support the
existence of multiple SFE, casting the analysis in terms of income, substitution
and human wealth effects. Finally it provides a quantitative assessment of the
individual wealth thresholds for the income effect to start dominating. A de-
tailed explanation of the economic mechanisms at work is presented, linking the
KS algorithm to an economic analysis of the agents saving behavior.

5.1 SFE are not likely

Tables 2 and 3 report a set of statistics of the distributions of the converged
ALM, after having randomly perturbed Θ∗ 500 times. Table 2 considers the
four sets of experiments where all four parameters are perturbed together, while
Table 3 considers another four cases where only one parameter is perturbed by
a sizable amount, while the others are de-facto kept at their equilibrium values.

[Table 2 about here]

The statistics reported are the minimum, maximum, mean, median and
standard deviation for each converged ALM parameter in the sequence of 500
perturbations. By inspecting their values, it is apparent that there is no evi-
dence of multiple SFE. The range of the converged parameters is always tiny,
and each parameter differs from its counterpart in Θ∗ by 10−5, at worse. In
particular, the equilibrium value for the first parameter is θ∗0,G = 0.0729005,
while its widest range combining the four experiments is [0.0728934, 0.0729091].
Similarly, θ∗1,G = 0.9714424, while its widest range is [0.9714390, 0.9714451],
θ∗0,B = 0.0647444, while its widest range is [0.0647389, 0.0647549], and θ∗1,B =

0.9726256, while its widest range is [0.9726213, 0.9726277].9

Also when considering even poorer guesses, with one of the parameters being
perturbed wildly, the values in Table 3 do not alter the picture: all the parame-
ters converge in a neighborhood of the equilibrium ones, and the related ranges
are only marginally wider.

[Table 3 about here]

The same results can be appreciated visually from the kernel density esti-
mates of the distributions of the converged parameters, reported in Figure 2.
Interestingly, the densities are found to be bimodal. The plots show that each
converged parameter tends to cluster around two distinct values. There are two
possible interpretations for this outcome: a) these are genuinely two separate

9As for the parameters converging to the boundaries of their support, for a subset of them
I restart the procedure, using their values as the new initial guesses. Since they converge to
values closer to Θ∗, this constitutes further evidence that these cases are most likely due to
the numerical approximation.
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equilibria, or b) the clustering is induced by the numerical error. Given the
microscopic size of the gap between the two values, it is safe to speculate that
these differences are induced by the convergence criteria. In particular, using
a finer grid for individual capital together with tighter convergence criteria for
both the policy functions and the ALM, led on average to a decrease in the in-
terquartile range by a factor of 5, and to a decrease in the interval between the
10th and 90th percentiles by a factor of 6.10 Under the SFE interpretation, these
values should have remained fairly constant, because the gap between the two
modes shouldn’t have shrunk considerably. Nevertheless, even if these were two
distinct SFE, quantitatively the discrepancy is so minimal that it doesn’t have
any discernible effect on the outcomes of interest. The business cycles statistics,
correlations among endogenous variables, time series behavior of prices, Gini
coefficients of wealth, percentages of households in debt, and ergodic distribu-
tions of aggregate capital are all virtually identical to the ones obtained with
Θ∗.11

[Figure 2 about here]

It is worthwhile to consider the economic reason behind the absence of mul-
tiple SFE. Fundamentally, this result lies in a self-correcting mechanism present
in the algorithm. Compared to the equilibrium ALM, a candidate one implying
a higher (lower) expected future capital reduces (increases) the equilibrium in-
terest rates, increasing (reducing) the savings of the wealthy agents only. These,
on the other hand, account for a small fraction of the population and cannot
compensate for the opposite change triggered by the poor agents, who enjoy
higher (lower) future wages and increase (reduce) their current consumption.
Quantitatively, the change in behavior of the wealth-rich agents has a negligible
impact on the determination of the change in the aggregate savings, inducing
stability in the algorithm as a by-product.

Given the simple market structure that is typically assumed in this class
of models, with competitive markets there is a known relationship between the
value of aggregate capital and the equilibrium prices, namely equations (1) and
(2). This is one of the reasons underlying the effectiveness of the algorithm: for
the agents to accurately predict the future prices, instead of using the whole
endogenous distribution over the state variables (an infinite dimensional ob-
ject), they use only a finite number of its moments (typically just the mean),
contributing to deliver the celebrated approximate aggregation result.

Mechanically, postulating parameters for the ALM that are above the equi-
librium ones leads the agents to believe that more capital will be available in all
future periods. Consequently, a higher future capital reduces the future inter-
est rates and increases the future wages. As usual, these changes trigger three

10For example, in the first experiment, the values for θ∗0,G interquartile range changed from

2.3× 10−5 to 4.6× 10−6, while the 10th-90th interval changed from 3.8× 10−5 to 5.3× 10−6.
11Some experimentation with different calibrations (e.g., log preferences) led to similar re-

sults. It is worth mentioning that a systematic study wasn’t always possible in those alterna-
tive cases, because of the tendency for the ALM to diverge or collapse with some perturbations.

11



different effects affecting the intertemporal motive of savings: a human wealth
effect, through increased wages from equation (2), and income and substitution
effects, through decreased interest rates from equation (1). Furthermore, there
is a complex response of precautionary savings: higher wages and UI benefits
make the borrowing constraint less likely to be binding, while lower interest rates
make the already accumulated wealth a less effective instrument to smooth con-
sumption in the bad states of the world. The change in precautionary savings
can go either way, but it is typically found to be quantitatively small.12 Whether
the individuals increase or decrease their savings (compared to their behavior
under the equilibrium ALM) depends on their accumulated wealth, the fraction
of income they obtain from capital and the relative change in prices.

All agents experience the three effects mentioned above, and the overall re-
sponse of their savings depends on which ones dominate (assuming that the net
effect on precautionary savings is always unimportant). As argued already, in
principle there is indeed the possibility of multiple SFE. Because of consump-
tion smoothing, wealthy individuals increase their savings, as lower interest rates
decrease their future income, leading them to save more in the current period.
Only for this class of agents the negative income effect more than compensates
the sum of the human wealth and substitution effects. In contrast, poor in-
dividuals will enjoy higher wages and unemployment benefits in the future, a
positive human wealth effect, which together with the substitution effect drives
their savings down. For this class of agents, the sum of the human wealth and
substitution effects more than offsets the negative income effect. Theoretically, it
is hard to state whether in the aggregate the increased savings of the first group
will more than compensate the decreased savings of the second one, namely
to sign unambiguously the relative strengths of the human wealth, income and
substitution effects. What makes this hard is finding the threshold value for
accumulated wealth such that the negative income effect starts dominating, to-
gether with the related mass of agents that are above them. Furthermore, there
are several such thresholds, one for each possible combination of state variables
(with the exception of individual wealth). These are presented in the next sub-
section, also showing how they are affected by changes in two key parameters,
the CRRA coefficient γ and the borrowing constraint b. Quantitatively it turns
out that, for a plausible calibration of the model, these thresholds are more than
100 times higher than the average aggregate income, its value being 1.13. Since
the share of agents holding such high wealth levels is well below 0.5%, multiple
SFE are not likely to arise in this model. These considerations should suggest
that in the KS economy there is a self-correcting mechanism with respect to
wrong guesses in the ALM, because the human wealth effect, the income effect
for agents in debt, and the substitution effect, move the aggregate savings in
the opposite direction.

12Just like in Krusell and Smith (1998), I find that the aggregate capital (averaged over time)
is higher in the incomplete markets economy compared to its complete markets counterpart
by approximately 2%. This represents a measure of the importance of precautionary savings
in the aggregate wealth. Moreover, in the economy with the no-borrowing assumption, the
capital stock increases by only a further 0.32%.

12



5.2 When does the Income Effect dominate?

In order to quantify the relative strength of the negative income effect, I consider
the response of the saving functions to a change in the ALM for all household
types in all possible exogenous states. The first crucial property of the saving
functions under the two specifications of the ALM is that they cross only once.
Hence, these intersections represent the thresholds for individual capital such
that the negative income effect is stronger than the other (combined) effects
previously discussed.

[Figure 3 about here]

In particular, Figure 3 plots the intersections between the policy functions
computed under the equilibrium ALM and under the same 1% perturbation
considered in Figure 1. Namely, the four panels display the thresholds where the
income effect starts dominating, plotted as a function of aggregate capital, for all
household types, and combinations of idiosyncratic and aggregate shocks. Each
panel focuses on a specific (s, z) pair, showing the thresholds for all preference
types. As it is apparent from the figure, these thresholds for the prevalence of
the income effect are very similar in the four panels. The employment status
and the aggregate shock have a relatively minor role in shaping them, while the
discount factor and the aggregate capital have a more pronounced effect. The
thresholds show a clear decreasing behavior in the former and an increasing one
in the latter. At the average aggregate capital, the least patient households have
thresholds that are approximately 26% higher than the corresponding figures
for the most patient ones. The effect of aggregate capital is fairly linear, with
an average slope that varies between 0.89 and 0.92, depending on the preference
type, and combination of exogenous states.

As the figure suggests, it is improbable for the income effect to dominate in
the aggregate, making the onset of a complementarity between the postulated
ALM and aggregate savings not plausible. The most intuitive way of explaining
this conclusion is as follows. Along an equilibrium, aggregate capital fluctuates
around its long run average of 12. Under the equilibrium ALM, the aggregate
shocks do not move the aggregate capital very far away from this value, the
minimum value in the simulation being 7.3% lower than the long-run average,
and the maximum one being 8.9% higher. Hence, from the figure we appreciate
that the corresponding income effect thresholds are between 187 and 236, de-
pending on the household type. By inspecting the simulated panel data, agents
need to have wealth holdings that are greater than 145 to belong to the top 1%.
Moreover in a number of cross sections I considered, the actual percentage of
households above their corresponding threshold is between 0.32% and 0.35%.
Since they account for a negligible fraction of the population, and the response
of their savings is not very conspicuous, it is highly unlikely for SFE to occur.

[Figure 4 about here]
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Additional results related to the thresholds’ response to some parameter
changes are provided. In particular, changing the borrowing limit from b = −1.8
to b = 0 doesn’t lead to large changes in the thresholds, whose variation is
between 0.1% and 1.1%. As expected, changes in the CRRA parameter have a
first order effect, because they influence the consumption smoothing motive. As
reported in Figure 4, a fairly small drop in the CRRA, from γ = 2 to γ = 1.75,
brings about large responses in the thresholds. At the long-run average for
aggregate capital, the increases in the individual assets needed for the income
effect to prevail are between 53 and 73. Similar to the benchmark economy,
in a number of cross sections I considered, the percentage of households above
their corresponding threshold in this case is between 0.21% and 0.25%. It goes
without saying that larger drops in the CRRA lead to even stronger responses
and to lower shares of households with such large wealth holdings. As a final
remark, preference homogeneity would decrease the magnitude of the negative
income effect, making the occurence of SFE even less likely.

6 Concluding remarks

Several algorithms tackling economies with heterogeneous agents and aggre-
gate shocks have been recently developed, and their relative performance is
discussed in den Haan (2010). The simplicity of the KS procedure, together
with its successful implementation in many (and diverse) applications, make
it often the method of choice. This paper has showed that a potential threat
to this methodology, multiple SFE, does not appear to be a relevant problem
for a canonical version of the incomplete markets model with aggregate shocks
and preference heterogeneity. However, it is not straightforward that this result
will hold in substantially more complicated models, with several endogenous
variables appearing in the specification of the ALM. Researchers applying this
method should provide further evidence on the absence of multiple SFE: con-
sidering large systematic perturbations to the equilibrium ALM, as done here,
is now feasible for a large set of models solved with the KS algorithm.
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Parameter Value Target

β - Rate of time preference {0.9858, 0.9894, 0.9930} Average wealth Gini ≈ 0.8, average r ≈ 1%
γ - CRRA 2.0 Micro estimates on the IES
δ - Capital depreciation rate 0.025 Average investment share of output ≈ 26%
α - Capital share 0.36 Capital share of output = 36%
b - Borrowing limit −1.8 Average share of households in debt ≈ 10%
l - Labor supply 0.3271 Share of market time (time endowment = 1)
ρ - UI replacement rate 0.40 Average UI replacement rate

Table 1: Calibration.
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Equilibrium ALM Min Max Mean Median S.d.×1000
Perturbation Range: ±1%
θ∗0,G 0.072893 0.072909 0.072901 0.072901 0.00254

θ∗1,G 0.971439 0.971445 0.971442 0.971442 0.00099

θ∗0,B 0.064741 0.064755 0.064748 0.064749 0.00420

θ∗1,B 0.972621 0.972627 0.972624 0.972624 0.00172

Perturbation Range: ±2%
θ∗0,G 0.072894 0.072909 0.072901 0.072901 0.00244

θ∗1,G 0.971439 0.971445 0.971442 0.971442 0.00095

θ∗0,B 0.064739 0.064754 0.064747 0.064747 0.00425

θ∗1,B 0.972622 0.972628 0.972624 0.972624 0.00174

Perturbation Range: ±3%
θ∗0,G 0.072895 0.072909 0.072901 0.072900 0.00242

θ∗1,G 0.971439 0.971444 0.971442 0.971443 0.00094

both θ∗0,B 0.064742 0.064754 0.064747 0.064744 0.00434

θ∗1,B 0.972622 0.972627 0.972624 0.972626 0.00178

Perturbation Range: ±4%
θ∗0,G 0.072896 0.072906 0.072901 0.072900 0.00238

θ∗1,G 0.971440 0.971444 0.971442 0.971443 0.00093

θ∗0,B 0.064742 0.064753 0.064747 0.064744 0.00421

θ∗1,B 0.972622 0.972627 0.972625 0.972626 0.00173

Table 2: Results - 500 perturbations, per perturbation range; all ALM pa-
rameters are perturbed by independent random draws from a uniform dis-
tribution. The Equilibrium ALM is: θ∗0,G = 0.0729005, θ∗1,G = 0.9714424,
θ∗0,G = 0.0647444, θ∗0,G = 0.9726256.
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Equilibrium ALM Min Max Mean Median S.d.×1000
Perturb. Range for θ0,G: ±25%
θ∗0,G 0.072893 0.072911 0.072901 0.072901 0.00212

θ∗1,G 0.971438 0.971445 0.971442 0.971442 0.00082

θ∗0,B 0.064742 0.064757 0.064748 0.064749 0.00413

θ∗1,B 0.972621 0.972627 0.972624 0.972624 0.00169

Perturb. Range for θ1,G: ±10%
θ∗0,G 0.072892 0.072906 0.072900 0.072899 0.00149

θ∗1,G 0.971440 0.971446 0.971443 0.971443 0.00058

θ∗0,B 0.064739 0.064753 0.064745 0.064744 0.00303

θ∗1,B 0.972622 0.972628 0.972626 0.972626 0.00124

Perturb. Range for θ0,B: ±25%
θ∗0,G 0.072894 0.072909 0.072901 0.072899 0.00298

θ∗1,G 0.971439 0.971445 0.971442 0.971443 0.00117

θ∗0,B 0.064740 0.064753 0.064748 0.064744 0.00403

θ∗1,B 0.972622 0.972627 0.972624 0.972626 0.00165

Perturb. Range for θ1,B: ±10%
θ∗0,G 0.072892 0.072910 0.072903 0.072904 0.00235

θ∗1,G 0.971439 0.971446 0.971442 0.971441 0.00092

θ∗0,B 0.064740 0.064763 0.064750 0.064752 0.00358

θ∗1,B 0.972618 0.972627 0.972623 0.972623 0.00146

Table 3: Results - 500 perturbations, per perturbation range; only one ALM
parameter is perturbed by a random draw from a uniform distribution.The
Equilibrium ALM is: θ∗0,G = 0.0729005, θ∗1,G = 0.9714424, θ∗0,G = 0.0647444,
θ∗0,G = 0.9726256.
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Figure 1: Differential response of savings for selected household types, Equilib-
rium ALM (solid line) Vs. Perturbation = 1% (dashed line). ALM∗+1% stands
for a perturbation to the equilibrium ALM∗ such that the forecasted aggregate
capital is 1% higher than under ALM∗.
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Figure 2: Kernel density estimates of the 500 converged parameters Θ∗. Each
column refers to the four ALM parameters in a specific perturbation experi-
ment, while each row refers to a specific ALM parameter in the sequence of
perturbation experiments.
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Figure 3: Individual capital thresholds such that the negative income effect
starts dominating.

22



 150

 200

 250

 300

 350

 400

 8  10  12  14  16

Aggregate Capital

Panel 1: Employed Workers in Recessions

βl
βm
βh  150

 200

 250

 300

 350

 400

 8  10  12  14  16

Aggregate Capital

Panel 2: Employed Workers in Booms

βl
βm
βh

 150

 200

 250

 300

 350

 400

 8  10  12  14  16

Aggregate Capital

Panel 3: Unemployed Workers in Recessions

βl
βm
βh  150

 200

 250

 300

 350

 400

 8  10  12  14  16

Aggregate Capital

Panel 4: Unemployed Workers in Booms

βl
βm
βh

Figure 4: Response of individual capital thresholds to a change in the CRRA
parameter: γ = 1.75.
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Appendix A - The Complete Calibration

The transition matrix of the individual shocks, conditional on the aggregate
ones, is (each entry refers to the probability πz,z′;s,s′):

π (z, z′, s, s′) =


πG,G;u,u πG,G;u,e πG,B;u,u πG,B;u,e

πG,G;e,u πG,G;e,e πG,B;e,u πG,B;e,e

πB,G;u,u πB,G;u,e πB,B;u,u πB,B;u,e

πB,G;e,u πB,G;e,e πB,B;e,u πB,B;e,e



=


0.292 0.583 0.094 0.031
0.024 0.851 0.009 0.116
0.031 0.094 0.525 0.350
0.002 0.123 0.039 0.836



The transition matrix for the preference heterogeneity is:

π (β, β′) =

 0.995 0.005 0.000
0.000625 0.99875 0.000625

0.000 0.005 0.995


The transition matrix of the aggregate shocks is:

π (z, z′) =

[
0.875 0.125
0.125 0.875

]
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Appendix B - Computation
• All codes were written in the FORTRAN 95 language, relying on the In-

tel Fortran Compiler, build 11.1.048 (with the IMSL library). They were
compiled selecting the O3 option (maximize speed), and without auto-
matic parallelization. They were executed on two 64-bit workstations,
running Windows 7 Professional Edition (either natively or as a virtual
machine in CentOS 6.5), with an Intel i7 − 2600k Quad-core processor
clocked at 4.6 Ghz or an Intel Xeon E5− 2687Wv2 Octo-core processor
clocked at 3.4 Ghz.

• On either machine, the replications take more than 15 days to complete.
Notice that 500 equilibria have to be computed, and typically from 13
to 19 iterations on the ALM are needed to find each equilibrium.

• In the actual solution of the model I need to discretize the continuous
state variables a and K (the employment status s, the preference hetero-
geneity β, and the aggregate productivity shock z are already discrete).
For the household assets a I rely on an unevenly spaced grid, with the
distance between two consecutive points increasing geometrically. This
is done to allow for a high precision of the policy rules at low values
of a, where the change in curvature is more pronounced. In order to
keep the computational burden manageable, I use 75 grid points on the
household assets space, the lowest value being the borrowing constraint
b and the highest one being a large value amax = 400. In the aggregate
capital dimension K, I use an evenly spaced grid over the [3, 27] interval.
I use 25 points, which are far more than the typical 4-6. However, in the
iterative process on the ALM parameters and for extreme initial guesses,
the simulations do visit regions of the state space that are very far from
the support of the ergodic equilibrium distribution, causing convergence
issues when using a coarse grid. Finally, the polynomial approximation
at the simulation stage in the K dimension is of degree 24, and it is
implemented with the routine polint in Press et al. (2002).

• The main differences between my Euler equation procedure and the one
outlined in Maliar et al. (2010) pertain to what is considered the un-
known of the Euler equations. In their formulation, the unknown is fu-
ture wealth entering only in the formula for current consumption. In
mine, the unknown is future wealth entering in the formulas for both
current and future consumption. It follows that, unlike me, they never
have to deal with the solution of a non-linear equation. This feature also
leads to differences in how the borrowing constraint is dealt with. Fi-
nally, I potentially allow for extrapolation, although I make sure that in
the simulations of the benchmark economy there are no agents close to
the upper bound for individual wealth.

25



• More formally, the Euler equation approach I rely on is such that, given
the current guess for the policy function a′(a, s, β, z,K)n, at each point
in the state space the unknown I need to solve for is a′n+1:

[
(1 + r) a+ ys − a′n+1

]−γ ≥
βEβ′,s′,z′|β,s,z

[
(1 + r′) a′n+1 + ys′ − a′

(
a′n+1, s

′, β′, z′,K ′
)
n

]−γ
where

ys = (1− τ)wl, if s = e;

ys′ = (1− τ ′)w′l, if s′ = e;

ys = ρwl, if s = u;

ys′ = ρw′l, if s′ = u.

• It is now understood that I keep on iterating until a fixed point is reached,
i.e. until two successive iterations satisfy:

Sup
a
|a′(a, s, β, z,K)n+1 − a′(a, s, β, z,K)n| < 10−7, ∀s,∀β,∀z,∀K.

• An alternative, and perhaps more intuitive, way of describing the solu-
tion method is to consider it as an application of weighted residuals/finite
elements methods. The weighting function is the Dirac delta function,
which involves (degenerate) weights of 1 at the grid points and of zero
at all other values in an element. Since the basis functions are assumed
to be linear, the (global) solution for the saving functions is represented
by a number of coefficients equal to the number of grid points in the
individual wealth dimension, multiplied by the number of points for the
other state variables. It follows that the optimal policy functions are
exact (up to the convergence criterion) at the grid points.
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Appendix C - Additional Results
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Figure 5: Kernel density estimates of the 500 converged parameters Θ∗. Each
column refers to the four ALM parameters in a specific perturbation experi-
ment, while each row refers to a specific ALM parameter in the sequence of
perturbation experiments.
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Equilibrium ALM Min Max Mean Median S.d.×1000
Perturbation Range: ±1%
θ∗0,G 0.073146 0.073161 0.073152 0.073153 0.00237

θ∗1,G 0.971366 0.971372 0.971369 0.971369 0.00091

θ∗0,B 0.065527 0.065539 0.065533 0.065535 0.00395

θ∗1,B 0.972345 0.972350 0.972348 0.972347 0.00395

Perturbation Range: ±2%
θ∗0,G 0.073146 0.073159 0.073152 0.073153 0.00230

θ∗1,G 0.971367 0.971372 0.971369 0.971369 0.00089

θ∗0,B 0.065527 0.065538 0.065532 0.065531 0.00403

θ∗1,B 0.972346 0.972350 0.972348 0.972348 0.00165

Perturbation Range: ±3%
θ∗0,G 0.073148 0.073159 0.073152 0.073151 0.00226

θ∗1,G 0.971367 0.971371 0.971369 0.971370 0.00087

θ∗0,B 0.065527 0.065537 0.065532 0.065529 0.00401

θ∗1,B 0.972346 0.972350 0.972348 0.972349 0.00165

Perturbation Range: ±4%
θ∗0,G 0.073147 0.073158 0.073152 0.073151 0.00227

θ∗1,G 0.971367 0.971371 0.971369 0.971370 0.00087

θ∗0,B 0.065527 0.065538 0.065532 0.065529 0.00403

θ∗1,B 0.972346 0.972350 0.972348 0.972349 0.00166

Table 4: Robustness (b = 0) - 500 perturbations, per perturbation range; all
ALM parameters are perturbed by independent random draws from a uniform
distribution. The Equilibrium ALM is: θ∗0,G = 0.07315561, θ∗1,G = 0.97136796,
θ∗0,G = 0.06553407, θ∗0,G = 0.97234717.
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Figure 6: Robustness (b = 0) - Kernel density estimates of the 500 converged
parameters Θ∗. Each column refers to the four ALM parameters in a specific
perturbation experiment, while each row refers to a specific ALM parameter in
the sequence of perturbation experiments.
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Figure 7: Robustness (b = 0) - Individual capital thresholds such that the
negative income effect starts dominating.
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