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Abstract

Many empirical projects involve estimation with clustered data. While esti-
mation is straightforward, reliable inference can be challenging. Past research
has suggested a number of bootstrap procedures when there are few clusters. I
demonstrate, using Monte Carlo experiments, that these bootstrap procedures
perform poorly with fewer than eleven clusters. With few clusters, the wild
cluster bootstrap results in p-values that are not point identified. I suggest
two alternative wild bootstrap procedures. Monte Carlo simulations provide
evidence that a 6-point bootstrap weight distribution improves the reliability of
inference. A brief empirical example concerning education tax credits highlights

the implications of these findings.
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1 Introduction

Research often involves controlling for dependence within clusters. Clusters can be
regarded as a natural grouping of observations. Common examples of clusters are
students within classrooms, firms within industries, and individuals within states.
When the data are clustered OLS or ‘robust” means of inference are quite unreliable.
This problem occurs whenever there is strong correlation of independent variables
or error terms within a cluster or group. It is most severe whenever an independent
variable is invariant within a cluster, as discussed in Moulton| (1990). A very thorough
survey is provided by |Cameron and Miller| (2014)).

Issues of within cluster dependence have been of concern to applied researchers for
quite sometime, and packages such as Stata’s ‘cluster’ command are now common-
place within statistical analysis packages[T] These packages implement Cluster Robust
Variance Estimator (CRVE) routines and often work very well. However, problems
can occur when the data under analysis fail to meet the asymptotic requirements of
the CRVE. This frequently occurs when there are a small number of clusters in the
dataset, a result known since Bertrand, Duflo and Mullainathan| (2004) (BDM) and
Donald and Lang| (2007). With few clusters, the CRVE can result in p-values that
are, on average, too small resulting in type I errors occurring too frequently.

A common correction for the small clusters problem is to use a wild cluster boot-
strap, due to (Cameron, Gelbach and Miller| (2008) (CGM)E] This technique works
very well with an intermediate number of clusters; however, this paper demonstrates
that with few clusters the procedure results in p-values that are not point identified.
The appropriateness of the conventional wild cluster bootstrap increases with the
number of clusters. Yet, there are many real world problems where data sets contain
few clusters. For example, policy analysts in Australia and Canada often exploit vari-
ation across eight or ten regions, while others exploit variation between and within
regions in the United States. Alternatively, following [Thompson| (2011) clustering is
often accounted for in the time dimension, and many panel data sets have few time
periods.

This paper suggests two procedures when working with few clusters, considering

'Rogers| (1994) implemented cluster robust inference within Stata and has over 1980 citations
according to Google Scholar as of September, 2014.

2Cameron, Gelbach and Miller| (2008) has over 670 citations according to Google Scholar as of
September, 2014.



both enumerating the bootstrap samples and alternative bootstrap weight distribu-
tions. Enumeration involves systematically calculating all of the possible bootstrap
samples, and their associated t-statistics. Expanding the 2-point wild cluster boot-
strap to a 6-point distribution appears to perform well, even in settings with five
clusters.

Section [2| of this paper discusses the limitations of the 2-point wild cluster boot-
strap. Alternative bootstrap methods to account for the few clusters problem are
considered in section [3] Section [4] addresses the design and results of Monte Carlo
simulations which expose the limitations of existing techniques when properly calcu-
lated, and favor a new 6-point distribution. A brief empirical example applies these
procedures to an analysis of education related tax credits in section [ and section [0]

concludes.

2 Background on Methods to Deal With Within Clus-
ter Correlation

A data set can be considered clustered when there is a natural grouping of the obser-
vations. A common correction for clustered errors is to estimate standard errors using
a Cluster Robust Variance Estimator (CRVE) | General results in [White] (1984) on
covariance matrix estimation imply the consistency of this estimator based on three
assumptions:

Al. The number of clusters, G, goes to infinity.

A2. The degree of within-cluster correlation is constant across clusters.

A3. Each cluster contains an equal number of observations.
Several authors have previously studied the performance of the CRVE when G is
small. Simulation results from Bertrand, Duflo and Mullainathan| (2004) and others
show that with 6 clusters CRVE rejection rates can be several times the desired size[f]

BDM propose a block bootstrap procedure as a means of improving test sizes, and

3Kloekl (1981) identified the problem of constant regressors within grouped data, though it was
popularized by |Liang and Zeger| (1986), Moulton| (1990)), and [Rogers| (1994). The problem was
considered in the Difference-in-Differences context by [Bertrand, Duflo and Mullainathan| (2004)) and
Donald and Lang| (2007). Recent work has been done by [Ibragimov and Muller| (2010)), [Imbens
and Kolesar| (2012) and [Brewer, Crossley and Joyce| (2013)). For a detailed survey on cluster robust
inference see |Cameron and Miller| (2014).

4Carter, Schnepel and Steigerwald| (2013)) relax assumptions A2 and A3 and derive a new asymp-
totic distribution for the test statistic. Imbens and Kolesar| (2012) also deal with violations of A3.
MacKinnon and Webb| (2014) study the finite sample properties when A3 is violated.



CGM suggest that with fewer than 30 clusters, the block bootstrap rejection rate is
too large. CGM propose the wild cluster bootstrap, a variant of the wild bootstrap
due to Wu (1986)E] The wild cluster bootstrap has many desirable features: each and
every observation in the original dataset is in each bootstrap sample exactly once,
and the structure of the error correlation within clusters is preserved. The procedure

for the wild cluster bootstrap is as follows. First consider the OLS regression model:
Yig = Bo + b1 Xig + wig. (1)

Imagine we are interested in calculating a wild cluster bootstrap-t p-value for ; in
equation . We can construct the p-value by first estimating the t-statistic, ¢, in
the original sample using cluster-robust standard errors. We then re-estimate the
equation by imposing the null hypothesis, to obtain the restricted estimates BO, 517
U;g. Then B iterations, or bootstraps, are performed. In each iteration a bootstrap

sample is generated from the bootstrap data generating process
y:g = BO + 51Xig + ﬁigvga (2)

where the i*" residual in group g, @, is multiplied by the bootstrap weight v,. In
general the bootstrap DGP should impose the null hypothesis, which in this case
would mean setting 3, = 0.

The difference between the wild cluster bootstrap and the conventional wild boot-
strap is that under the former the same v, is applied to all observations within the
same cluster, while the conventional wild bootstrap applies a v;, to each observation.
The bootstrap weight can take many forms. In each iteration, a bootstrap t-statistic
t% is generated using cluster-robust standard errors. After B iterations the bootstrap

p-value is then calculated by:

p*(f) = 2 min (%Z[(t;gf),%i[(t;%)), (3)

where I(.) is the standard indicator function[f]

®MacKinnon and Webb| (2014) propose using the wild cluster bootstrap for clusters of unequal
size. [Hagemann| (2014) proposes a wild cluster bootstrap for quantile regression.

6These p-values are equal tail p-values, while the enumeration p-values are symmetric p-values
calculated by (1/B) Zle I(|t;] >= I#)).



Simplifying, the DGP generates unique bootstrap samples solely as a function
of the transformed residuals. This procedure is based on the assumption that B
bootstrap samples, are drawn from an extremely large pool of potential bootstrap
samples. Inference on B depends on where ¢ falls in the sorted vector of bootstrap
t-statistics, t* =17, ..., t5. If our estimated t-statistic falls between the 90th and 91st
bootstrap t-statistic, then the p-value of this t-statistic is 0.180. When there is a large
number of potential samples, the generated set of bootstrap samples will contain few,
if any, repeated samples. Accordingly, the location of ¢ can be precisely identified,
and the resulting p-value is point identified.

CGM present evidence that the wild cluster bootstrap-t method is preferable to
several alternative bootstrap methods, and allows for reliable inference with as few
as five clusters. However, when the number of clusters is small, so is the number of
unique bootstrap samples for the method advocated by CGM. As I now show, this
makes reliable inference difficult. With few clusters, the number of unique potential
bootstrap samples is rather small, as bootstrap samples depend on the choice of a
bootstrap weight distribution. Two well-known distributions are the Rademacher and
the Mammen, both of which contain only two points. With these distributions, v,
from equation ([2)) is set to one of two values with a given probability, p.[]

Cameron, Gelbach and Miller| (2008) recommend the Rademacher weights, as do
Davidson, Monticini and Peel (2007) and |Davidson and Flachaire| (2008). Accordingly,
there are only 2¢ possible bootstrap samples, where G is the number of groups. The
number of unique absolute value t-statistics is only 267!, see Appendix |A|for a proof
of this result. When G is large, this is not a problem as the vector will contain mostly
unique t-statistics. When G is small problems arise since ¢ and the various other
unique values of ¢7 will be found multiple times in the vector. For example, when G
= 5 there are only 32 unique bootstrap samples; if B = 999 one will be drawing 999
samples from a set of only 32 unique samples.

The CGM procedure incorrectly treats the B t-statistics as B unique values.
Having many repeated t-statistics leaves open the possibility that ¢ = ¢* multiple
times. When 2 is small we cannot perform conventional inference. This limitation
comes as a result of the inability to point-identify where ¢ falls within the sorted
vector of bootstrap t-statistics. When using the Rademacher distribution, one of the

possible bootstrap t-statistics, ¢}, is equal to the t-statistic, t. When 2¢ is small, this

"The Rademacher distribution is defined as: vy = £1 with probability 0.5.



will be observed within the vector of t*, almost surely. If £ is found multiple times
within the vector, then the p-value would not be a point but would instead be an
interval from the first occurrence of £ to the last occurrence of t. For example, if
B = 999 and in 31 replications t* = ¢ then ¢ would appear in the sorted vector 31
times, such as ¢ = %0, --» t100- In this case, the p-value would be the interval from
0.140-0.200. Figure [1] plots the observed spread between the first occurrence p-value
and the last occurrence p-value for different numbers of clusters from Monte Carlo
simulations. The figure shows that the p-values occupy a wide interval when there
are few clusters, with the width shrinking as the number of clusters increases. This
wide interval makes it quite difficult to assess significance at conventional levels.

2G71

The 29~ unique t-statistics map into unique p-values. With few clusters

these p-values will be intervals. An appropriate inference procedure should result in
2¢-1 unique p-values across Monte Carlo simulations. CGM instead chose to estimate
the p-value as being point identified at the midpoints of these intervals. In simulations
discussed later in this paper, the CGM procedure with G = 5 resulted in 199 p-values
across 50,000 replications rather than the 16 unique p-values.

When using a bootstrap method where the empirical distribution of ¢* has few
elements, one can calculate these elements systematically, or enumerate them, rather
than trying to estimate the distribution through resampling.ﬁ However, inference
using only 2971 t-statistics will be limited. The enumeration procedure for estimating
a p-value is quite similar to the wild cluster bootstrap procedure discussed above.
While the wild bootstrap picks v, at random from a distribution, enumeration selects
v, methodically. A benefit when 2¢ is small is that it is feasible to calculate all
possible t-statistics. After G is sufficiently large, say 12, the computational burdens
make full enumeration unattractive. Similarly, with very small values of G one could
enumerate all the p-values resulting from the 6-point distribution proposed in section
This is considered in the empirical application in section [}

The p-value from this procedure is different than a conventional p-value. These
p-values are drawn from a discrete, as opposed to a continuous, distribution where
the p-value belongs to the set {1/2¢71 2/26¢-1  (26-1 —1)/26-1 2G=1/2G=1} For
example, if |f| = |t5|, with G’ = 5 the p-value is 2/6, but not 0.125, since it could have

alternatively been 1/16 or 3/16. The discrete nature of these p-values makes conven-

8This procedure was alluded to in Efron’s seminal bootstrap paper in (1979 and mentioned in
Davidson and Flachaire| (2008) specifically in the context of the (non-cluster) wild bootstrap.



tional significance levels less meaningful. The p-value of 2/6 spans from 0.0625—0.125
and so straddles the 10% level. With enumeration, inference is based on the data and
the properties of the bootstrap weight distribution, and not on resampling noise.
Enumeration will generate unique t-statistics; however, the limitation of having only

2G-1 t_statistics from which to conduct inference leaves much to be desired.

3 Alternative Bootstrap Methods

It is possible to find an alternative bootstrap weight distribution which expands the
number of points. I propose a 6-point distribution, which mimics features of the
Rademacher distributionf] The first four moments of the ‘ideal’ distribution are
0,1,1,1. It is not possible to satisfy all of these moment Conditions.m The Rademacher
distribution has the first four moments of 0,1,0,1 and the Mammen has the first four
moments of 0,1,1,2. The candidate distribution will be symmetric, have the first three
moments of 0,1,0, and a fourth moment not much larger than I.E The candidate 6-

point distribution I consider is:

Vg =—1/=,—\/=,—\/ =\ =/ =,/ = w.p.
g 2 Va2 Va2 Va2 Va2 Vg P

The fourth moment of this distribution is 7/6.

There exists the temptation to add additional points to the distribution to increase

(4)

=

the potential number of bootstrap samples, but there are two concerns about doing
so. The weights will ideally be distinct from one another, as weights of 0.99 and
1.01 will result in very similar bootstrap samples and t-statistics. Given this desire,
and restrictions on the first two moments, the inclusion of additional points will
often increase the fourth moment. As a limiting case, I consider using the Normal

distribution where v, ~ N(0,1). Drawing from the Normal allows for infinite possible

9Previous simulations, not included in this paper, have shown the Rademacher distribution to be
preferable to the Mammen distribution.

19T thank Professor James MacKinnon and Professor Russell Davidson for bringing this to my
attention.

1Tt is not possible to match the first four moments of the Rademacher distribution, if we impose
a restriction that two of the points are 1 and —1. The candidate distribution will then have 6-
points of the form —A,—1,—B, B,1, A each selected with equal probability. The imposition of
symmetry means that the first and third moments will be 0. It is then a matter of trying to satisfy
the second and fourth moment conditions. Rearranging these moment conditions results in the
following equation: A2+ B2+ 1% = A*4 B*41%. This is only satisfied when A and B are 0,1, 0r — 1,
which does not result in a 6-point distribution.



bootstrap samples.m

The main benefit of adding additional points to the bootstrap weight distribution
is that the number of potential bootstrap samples increases exponentially. For in-
stance, in moving from a 2-point distribution to a 6-point distribution the number of
bootstrap samples increases from 2¢ to 6, or from 32 to 7776 when G = 5. The sym-
metry of the distribution results in the number of unique absolute value t-statistics
being (6“)/2. Monte Carlo simulations using this method with G' = 5 resulted in 200
unique p-values across 50,000 replications. In contrast to the 2-point results, these

p-values are a result of unique t-statistics.

4 Monte Carlo Evidence

4.1 Description of Simulations

To enhance comparability with previous results, I follow the simulation procedure in
section IV.A of Cameron, Gelbach and Miller| (2008). Data are generated using

Yig = Bo + Biig + uig
or (5)

Yig = Bo + B1(2g + 2ig) + (€5 + €ig),

with zg, 2, €4, €4 €ach an independent draw from N(0,1). We can think of z, as a
group specific component of x;, and ¢, as the group level error. The presence of ¢,
introduces correlation amongst the error terms. Alternatively, z;, is the idiosyncratic
component of x;,, while ¢, is the idiosyncratic component of the error term.

The number of observations per group, NNy, is set to 30 for all simulations. I
perform 50,000 replications, and each of the bootstrap exercises uses 399 bootstraps.
In generating y;4, I set 31 = 1 and test the hypothesis that 3, = I.H

2Mammen| (1993) considered two continuous distributions that are not considered in this paper
since simulation results in [MacKinnon| (2014) show them to be inferior to the Normal distribution.
Liuf (1988) proposes two continuous distributions, one using draws from a gamma distribution and
the other using a mixture of normals. These were both chosen to satisfy the third moment restriction,
thus the fourth moment must > 2, see |MacKinnon| (2014). For this reason these distributions are
not considered in this paper.

13] base my simulations off code provided by Douglas Miller, which is available at: http://www.
econ.ucdavis.edu/faculty/dlmiller/statafiles/bs_example.do


http://www.econ.ucdavis.edu/faculty/dlmiller/statafiles/bs_example.do
http://www.econ.ucdavis.edu/faculty/dlmiller/statafiles/bs_example.do

The rejection rates are estimated across replications as

R
Z (p} < 0.05),

where R is the number of replications, and pj is the bootstrap p-value from the gt
replication. & is then compared to the true size of the test, a = 0.05.

In total, seven different rejection rates are compared across a variety of asymp-
totic and bootstrap procedures. Table [1| describes the simulations. Designs 1-3 use
asymptotic procedures and designs 4-7 use bootstrap procedures. Design 1 uses t-
statistics calculated with OLS standard errors, while design 2 uses CRVE standard
errors. Both assume the t-statistics are distributed normally. Design 3 uses CRVE
standard errors, but the t-statistics are assumed to follow a t-distribution with G-1
degrees of freedom["] Design 4 generates p-values using the wild cluster bootstrap
with v, drawn from the 2-point Rademacher distribution, the test recommended by
CGMI™| Design 5 generates p-values with v, drawn from N(0,1). Design 6 uses v,
drawn from the 6-point distribution proposed in equation . Finally, design 7 gener-
ates p-values by enumerating the Rademacher wild bootstrap t-statistics, for G < 10.

The results of the Monte Carlo experiments are discussed below.

4.2 Simulation Results

Table 2| presents results for G = 5 to G = 10 in the top panel and results for
G = 15 to G = 30 in the bottom panel.@ The panels show the severe problem
of ignoring the clustered nature of the data. Tests using OLS standard errors give
rejection rates of nearly 50%. Calculating CRVE standard errors and using tests 2
and 3 performs much better. Assuming that the t-statistics are normally distributed
results in severe overrejection when there are very few clusters. The assumption that
the t-statistics follow a t-distribution with G — 1 degrees of freedom substantially
improves the size of the test, but overrejection still occurs with very few clusters.

For G =5 to 10 the rejection rates for the wild cluster bootstrap-t with Rademacher

14This distribution is both recommended by |Donald and Lang (2007) and Bester, Conley and
Hansen| (2011)), and is the default within the Stata ‘cluster’ command.

T5CGM use the average value for which ¢ = t*, while T use the max value. The difference is
negligible when G is large, but significant when G is small, see figure

16The simulation standard errors, which range from 0.0008 to 0.0022, are not shown to save space.



weights appear deceivingly reliable. The empirical application in section |5|shows that
the CGM procedure can result in a p-value that is quite different than the underlying
enumerated p-value. The results for G > 15 do not suffer from this problem.

The top panel of Table [2| shows the results of simulations in which the number
of clusters is small. The wild bootstrap with Normal weights performs fairly well,
though it is outperformed in most cases by the 6-point wild bootstrap. The 6-point
distribution works well. Even when G = 5, it is only moderately oversized with a
rejection rate of 0.070, versus 0.097 for CRVE with the T'(4) distribution.

As mentioned previously, the enumerated p-values are interval rather than point
identified. Two rejection frequencies are calculated for these p-values, one using the
lower bound, and one using the upper bound. The wide differences in these two
rejection frequencies are to be expected, as illustrated in figure ] When G = 5 the
upper bound never rejects at the 5% level since 1/16 is above that threshold. The
lower bound rejects far too often. The upper and lower bound rejection frequencies
converge as G increases. Even with 10 clusters the lower bound enumeration rejection
frequencies are higher than those from the 6-point distribution.

The bottom panel of table 2| shows the results when the number of clusters ranges
from 15 to 30. In general, the various bootstrap methods work better than the analytic
methods. The wild bootstrap with Normal weights is outperformed by both the 2-
point and 6-point wild bootstrap. The wild bootstrap with the 6-point distribution

dominates the wild bootstrap with the 2-point distribution in most cases.

5 Empirical Application

This section evaluates the effectiveness of a set of public finance experiments, known
as graduate retention programs, to illustrate the practical application of the methods
developed. Beginning in approximately 2006, these policies offered generous tax cred-
its to new graduates with post-secondary degrees. The credits were conditional on
residency within a given province. This section analyses the impact of these programs
within the Atlantic Provinces of Canadal”]

Although the programs were designed solely to retain graduates, I instead study
the effects of the programs on a number of educational outcomes. The availability

of such credits could affect the decision to enroll in post-secondary education, the

17 Four provinces have introduced these programs: Nova Scotia, New Brunswick, Manitoba, and
Saskatchewan. A more detailed analysis of these programs can be found in |Webb| (2013).
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decision to drop out of post-secondary education, and the residency decision. The
impact of these programs on these decisions is investigated using a linear difference-
in-differences estimator within the Atlantic Provinces. These provinces are ideally
suited for analysis as there are two treated provinces and two control provinces. The
analysis is conducted using public use data from Statistics Canada’s Labour Force
Survey (LFS)[¥|

The analyzed outcomes are University Graduate, College Graduate, University or
College Graduate, University or College Dropout, University Student, College Stu-
dent, and University or College Student.@ The sample contains observations from
individuals living in the Atlantic provinces for the years 2000-2012. For the gradu-
ation and dropout outcomes, the sample is restricted to those aged 22-29, while the
sample is extended to those 17-29 for the student outcomes. The means of these vari-
ables for the various pre and post, treatment and comparison groups can be found in
Table (3).

The estimation is conducted using a linear difference-in-differences equation, of

the following form:

Yistm = ¢ + Barp * [[ProvGRPs,, * YearGRP 5]

(6)
+ PROV, + YEAR; + MONTH,,, + AGE;stm, + €istm-

The data varies along four dimensions, as the outcome variable Yy, contains an
observation for individual i, in province s, in year ¢, in month m. In the equation
there is a set of province dummy variables PROV, a set of year dummy variables
YEAR, a set of month dummy variables MONTH, and a set of age dummies AGE.
The coefficient of interest is Sgrp which will capture the marginal impact for those
individuals living in a province offering a credit, in a year in which a retention credit
was available. This variable will be equal to one for individuals in Nova Scotia in
2006-2012 and individuals in New Brunswick in 2005-2012, and zero otherwise.

8The LFS is a monthly survey of over 50,000 Canadian households, on labour market and eco-
nomic outcomes. Respondents are surveyed in waves, with each wave lasting for six months. Obser-
vations from a given month have responses from individuals in six overlapping waves.

9A]l of these outcomes are binary, and equal to one if the individual has obtained that level of
education or is of that educational status. For example, University Graduate is set equal to one if the
individual has graduated from university, and is set equal to zero otherwise. Similarly, University
Student is set equal to one for individuals currently enrolled in a university program, and is set equal
to zero otherwise. For the analysis, all variables are multiplied by 1000 to make the coefficients more
comparable.

11



The estimates of equation (6]) can be found in Table (). The implication of these
estimates depend on what procedure is used for inference. The table presents the
estimated coefficients along with both asymptotic and bootstrap based p-values. The
asymptotic p-values are based on procedures 1, 2, and 3 from the Monte Carlo simu-
lations. The bootstrap p-values are based on procedures 4, 6, and 7 from the Monte
Carlo simulations. Additionally, for both the Rademacher and 6-point distributions,
both bootstrap p-values and enumerated p-values are calculated.@

If one were to use OLS standard errors, then one would infer that four out of the
seven coefficients were statistically significant at the 5% level. Conversely, if one were
to use the CRVE standard errors, one would infer that two were statistically signifi-
cant using a Normal distribution, and only one was significant using a ¢-distribution.
Finally, if one were to rely on the wild cluster bootstrap, only one coefficient is sta-
tistically significant at the 10% level.

The table also highlights the difference between the 2-point and the 6-point distri-
butions. The table shows three p-values each for both the Rademacher distribution
and the 6-point distribution, namely the bootstrap p-value (with B = 999) and the
upper and lower bound of the enumerated p—value.@ The Rademacher p-values show
that with only four clusters the width of the intervals for the enumerated p-values
are quite large. Conversely, with the 6-point distribution the width of the p-value
intervals are quite small. With the 6-point distribution all of the bootstrap p-values
are within one or two percentage points of the enumerated intervals. However, with
the Rademacher distribution, in some cases the bootstrap p-value can be greater than
seven percentage points away from the enumerated intervals. With few clusters the
bootstrap approximates the empirical distribution quite well when using the 6-point
distribution, but it fails to do so when using the Rademacher distribution.

The p-values for the University Graduate coefficient are particularly illuminating.
If one were to rely on the Rademacher bootstrap p-value, then one would infer that
this coefficient is not statistically significant at the 5% level. Conversely, if one were
to rely on the 6-point bootstrap p-value, then one would infer that the coefficient is
statistically significant at the 5% level. When using either the Rademacher or the

6-point distribution, both the bootstrap p-value and the enumerated p-value result

20 As there are only four clusters in this example, it is sensible to enumerate the 6-point distribution.
21The number of bootstraps was chosen to be in line with what an empirical researcher might
normally choose.

12



in the same inference. The enumerated Rademacher p-value spans the interval from
0%-12.5% and thus is not significant at the 5% level, while the enumerated 6-point
p-value spans the interval from 4.2%-4.3% and thus is significant at the 5% level. The
magnitude of the coefficient suggests that the share of university graduates declined

by 11.229/1000, while the goal of the programs was to increase the share of graduates.

6 Conclusion

When data are grouped or clustered, reliable inference is a challenge. With a small
number of clusters, rejection rates using cluster robust standard errors can be far too
large. The wild cluster bootstrap technique works well when there are few clusters.
When there are very few clusters, the 2-point Rademacher bootstrap weight distribu-
tion results in bootstrap p-values which are not point identified. With five clusters,
the p-values are intervals with a width of 0.0625. T propose a new 6-point distribu-
tion which allows for improved inference with few clusters. Monte Carlo evidence
suggests that this distribution works well with any number of clusters. An empir-
ical application shows that with very few clusters the wild cluster bootstrap using
the Rademacher distribution fails to approximate the empirical distribution, but the

bootstrap approximates it quite well using the 6-point distribution.

13
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Figure 1. Estimated Differences From Three Different P-values
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Notes: A is the difference between the maximum p-value and the mean p-value. B is
the difference between the maximum p-value and the minimum p-value. Differences
are calculated with 999 bootstraps using Rademacher weights.
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Table 1: Design of Monte Carlo Simulations

Design Standard t-statistic Bootstrap

# Description Error distributed as Weights

1 OLS OLS N(0,1) -

2 Cluster ~ N CRVE N(0,1) -

3 Cluster ~ T CRVE T(G-1) -

4 Wild Cluster - Rademacher  CRVE - Rademacher

5 Wild Cluster - Normal CRVE - ~ N(0,1)

6 Wild Cluster - 6-point CRVE - 6-point equation
7 Enumeration - Rademacher =~ CRVE - Rademacher

Table 2: Results from Monte Carlo Study with Different Numbers of Clusters
Number of Groups (G)

5 6 7 8 9 10
1 OLS ~ N(0,1) 0.471 0.478 0.483 0.485 0.488 0.488
2 CRVE ~ N(0,1) 0.210 0.185 0.168 0.154 0.143 0.134
3 CRVE~T(G-1) 0.097 0.098 0.096 0.094 0.092 0.089
4  Wild 2pt Boot *0.037  *0.053 *0.056 *0.056 *0.055 *0.054
5 Wild N(0,1) Boot 0.072 0.070 0.072 0.072 0.071  0.069
6 Wild 6pt Boot 0.070  0.067 0.063 0.061 0.057 0.056
7 Enum. Lower Bound  0.118 0.095 0.084 0.068 0.062 0.060
7 Enum. Upper Bound  0.000 0.059 0.067 0.061 0.058 0.058
Number of Groups (G)
15 20 25 30
1 OLS ~ N(0,1) 0.489 0.495 0.490 0.496
2 CRVE ~ N(0,1) 0.105 0.093 0.083 0.081
3 CRVE ~t(G—-1) 0.080 0.075 0.069 0.070
4  Wild 2pt Boot 0.050  0.050 0.047  0.048
5 Wild N(0,1) Boot 0.065 0.063 0.059 0.059
6 Wild 6pt Boot 0.052  0.052  0.049  0.049

Notes: Rejection frequencies estimated with 50,000 replications and 399 bootstraps
(Boot). * - estimate is not accurately calculated.
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Table 3: Variable Means from Labour Force Survey

Provinces Provinces
without GRP with GRP
Pre Post Pre Post Sample

LFS

University Graduate 15.9%  20.2% 20.0% 22.7% 22-29
College Graduate 40.7%  39.0% 37.6% 35.0% 22-29
University or College Graduate 57.4%  59.5% 58.2% 58.1% 22-29
University or College Dropout  10.2%  10.0%  9.9% 10.4% 22-29
University Student 14.7%  15.7% 13.5% 14.7% 17-29
College Student 6.9% 78%  5.1%  5.6% 17-29
University or College Student  21.6%  23.5% 18.5% 20.3% 17-29

Sample: LFS data from years 2000-2013, ages 17-29, unless otherwise noted.
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Table 4: Coeflicient Estimates and P-values from Various Procedures

University Graduate

College Graduate

University or College Graduate
University or College Dropout
University Student

College Student

University or College Student

University Graduate

College Graduate

University or College Graduate
University or College Dropout
University Student

College Student

University or College Student

University Graduate

College Graduate

University or College Graduate
University or College Dropout
University Student

College Student

University or College Student

coeff
—11.229
—5.494
—15.708
9.088
—0.188
2.998
2.810

coeff
—11.229
—5.494
—15.708
9.088
—0.188
2.998
2.810

coeff
—11.229
—5.494
—15.708
9.088
—0.188
2.998
2.810

Asymptotic p-values

OLS CRVE CRVE
N(0,1)  N(0,1) HG—1)
0.002 0.000 0.028
0.207 0.724 0.747
0.000 0.231 0.317
0.001 0.034 0.124
0.935 0.973 0.975
0.059 0.385 0.449
0.284 0.596 0.633

Rademacher p-values
boot enum-L enum-U

0.059 0.000 0.125
0.677 0.625 0.750
0.574 0.375 0.500
0.441 0.375 0.500
0.936 0.875 1.000
0.532 0.375 0.500
0.828 0.625 0.750

6-point p-values
boot enum-L enum-U

0.039 0.042 0.043
0.726 0.728 0.730
0.524 0.523 0.525
0.401 0.421 0.423
0.980 0.971 0.972
0.576 0.583 0.585
0.726 0.719 0.721
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A Proof of 2¢~! Unique Absolute Value t-statistics

Recall that a bootstrap sample is generated by:
yi = XB+a, (7)

where 4} is the Hadamard product wowv;, and v; is the vector of draws of the bootstrap
weights. The Rademacher weights are —1 and +1, so every possible v; is equal to
—1ow; for some i # j. These two bootstrap weight draws will generate the following
bootstrap samples: y; = XB +uowv; and y; = XB + wowj;. Since v; = —1ov; we can
rewrite y as y; = X0 —uow;.

We then test the null hypothesis 57, 57 = /3, and calculate t-statistics of the form:

(X'X) ' X"y — B,

Wl 1/2

The denominator in equation is constant for either ¢ or 7, as X and n — k are

(8)

invariant and w;u; = uju; because u; = —1 0 u;.
Let us consider the numerator in equation , where we have an expression in

terms of 37 and S,. If we start with the expression:
(X'X) " X'ys — B,
using the identity that y; = X3 + @ o v; we get the following,
(X'X)'X"(XB +dov;) — B
With a little algebra we get:

(X' X)X (XB+aowv)—f,
—(X'X) ' X'XB+ (X' X)X (wov) — B,
=B — B, + (X'X) ' X'(o ;).

Because the bootstrap samples impose the null hypothesis, B = B,. The numerator
then simplifies to:
(X' X) ' X' (@ ovy).
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Since v; = —1 o v;, the numerator for the t-statistic of 57 will be the negative of
the numerator for the t-statistic of 3. The t-statistics are equal in absolute value,
because the denominators are also the same. If we reverse the sign on the weight
vector v; we reverse the sign of the t-statistic, but preserve the magnitude. Thus the
2¢ unique bootstrap samples will only result in 26~ unique t-statistics in absolute

value.
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