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1 Introduction

An important contagion mechanism emerged in the recent subprime mortgage crisis: with

the rapid expansion of credit derivatives, financial institutions are interconnected through

an increasingly complicated financial network. Consequently, when one of the financial

institutions goes bankrupt, general uncertainty about the losses of other financial insti-

tutions in the network arises. This is because the complexity of the financial network

makes it difficult for market participants to assess these losses. As a result, market par-

ticipants can stop lending to one another; in other words, all the financial markets freeze.

This contagion mechanism played an important role in the recent crisis following Lehman

Brothers’ bankruptcy. Market participants stopped lending to one another, as they were

all perceived to have been exposed to some counterparty risk because of Lehman Brothers’

bankruptcy.

This paper establishes a formal model of this phenomenon. In our model, financial

institutions are interconnected through interbank loans.1 Meanwhile, these financial in-

stitutions are financing their long-term investments through short-term liabilities. As

a result, there is a maturity mismatch between their assets and liabilities, which could

potentially lead to bankruptcy of these institutions resulting from a lack of liquidity.

We demonstrate that, due to short-term creditor uncertainty about the interconnections

among these financial institutions, a negative shock to one financial institution can spread

to all the other financial institutions in the system, leading to systematic market freezes.

To illustrate the mechanism in the most transparent fashion, we assume that all fi-

nancial institutions are divided into an equal number of borrowers and lenders. Each

borrower is linked to a single lender, and each lender has only one borrower. (Later in the

paper this assumption can be modified in a more realistic fashion.) Short-term creditors

do not have perfect information about the financial institution lending network. Instead,

they believe that each lending institution could lend to each of the borrowing institutions

in the system with an even probability. This assumption introduces uncertainty about

interconnections among financial institutions into the model and plays a key role in our

contagion mechanism. In addition, we assume that a negative shock hits the long-term

investments of one of the borrowing institutions that we call the distressed institution.

1Here we alter the commonly understood definition of “interbank loans” and use it to refer instead to

financial transactions between any financial institutions that are not necessarily commercial banks.
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The shock spreads to the rest of the financial institutions in the following way:

First, the financial institution that has lent to the distressed institution may suffer a

loss because its interbank loans may default. Second, short-term creditors of the lending

institutions may charge a higher interest rate (we call this case a partial market freeze)

or even refuse to roll over their short-term loans (we call this case a complete market

freeze) because of their concern that the financial institution they are lending to may be

the one lending to the distressed institution and may thus fail to repay its debts. As

a result, the lending institutions may be forced to liquidate their long-term investments

and recall their interbank loans. Third, due to the interbank loan recall of the lending

institutions, the healthy borrowing institutions unaffected by the shock could incur a

loss. As a result, their short-term creditors may refuse to roll over their loans, forcing the

borrowing institutions to liquidate part or all of their long-term investments.

Our model produces the following major results:

First, depending on the magnitude of the negative shock to the distressed institution,

the severity of market freezes varies. When the negative shock is large enough, a sys-

tematic collapse can happen where complete market freezes occur in all the short-term

markets. When the negative shock is moderate, partial market freezes may occur to some

financial institutions. When the negative shock is low enough, a market freeze may not

happen at all.

Second, in our model, contagion occurs among financial institutions who need not be

interconnected through actual financial transactions. Instead, as long as a financial insti-

tution is perceived by the market to be connected to the distressed institution, it becomes

part of the contagion. Thus, our model reveals that short-term creditor uncertainty over

network structures can significantly increase the magnitude of contagion compared to a

situation where there is no short-term creditor uncertainty.

Third, our model reveals that a small loss to an individual financial institution can be

magnified through the contagion mechanism and can lead to a large social loss.

Fourth, we find that the maximum total social loss has a non-monotonic relationship

with the number of financial institutions in the network. This is because of the trade-off

between the number of financial institutions affected by contagion and the loss of each

affected institution when the number of institutions in the network increases. When the

number is small, complete market freezes are more common, leading to a higher loss
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for each individual institution. However, a small number of affected institutions lowers

the total social loss. When the number is large, partial market freezes tend to happen,

leading to a lower loss for each institution. However, a large number of affected institutions

increases the total social loss.

Moreover, our model produces the following major policy implications.

First, we examine the information policy of a central bank. In a perfect information

case where the central bank, because of its close cooperation with the prudential regulator,

can signal credibly to short-term creditors that there is only one distressed bank, we

find that contagion can be effectively prevented. The crucial assumption here is that

the markets are confident that the central bank is fully informed and credible. In an

imperfect information case where the central bank does not know for sure the identity

of the distressed institution, we find that more information provided by a central bank,

to reduce the number of financial institutions that might be connected to the distressed

institution, does not necessarily improve social welfare.

Second, we examine bailout policies and find that both direct guarantees for the dis-

tressed institution and injections of capital to all the lending institutions can alleviate

market freezes if the moral hazard problem is ignored.

Third, we examine the Lender of Last Resort (LOLR) policy and find that a central

bank loan with an interest rate lower than the prevailing market rate will lower the market

rate, and makes complete market freezes less likely.

Our paper is most closely related to Caballero and Simsek (2009) and Pritsker (2010),

two studies that examine financial contagion caused by uncertainty in an interconnected

financial system. However, both papers resort to the concept of Knightian uncertainty.

In addition, the basic setup of their models is quite different from ours. For example,

our model assumes that financial institutions finance their long-term investments through

both interbank loans and small short-term creditors. As a result, one of the important

theoretical contributions of our paper is to introduce a large creditor in the presence of a

continuum of small creditors to a Diamond and Dybvig bank run model. Consequently,

our model can provide insights into how the presence of a large creditor will affect bank

run dynamics.

Moreover, our paper contributes to the literature on financial contagion. The exist-

ing literature on financial contagion focuses mainly on two contagion mechanisms. The
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first works through herding behavior caused by information externalities.2 The second

contagion mechanism works through credit chains. That is, when financial institutions

are linked through financial transactions, a failure of one institution can spread to other

institutions in the link through balance-sheet effects, leading to a systematic failure.3 In

particular, our paper is closely related to the network literature, which studies how com-

plex financial networks cause contagion in a financial system through credit chains.4 Our

paper differs in that contagion in our model does not rely on the actual connection to

the distressed institution, but the perceived connection. This perceived connection arises

because short-term creditors cannot distinguish between lending institutions and their

different exposures to the distressed institution, due to their uncertainty over network

structures. This major difference originates from the introduction of incomplete infor-

mation, rather than complete information (as in the existing literature) about financial

interconnections. Our model demonstrates that the magnitude of contagion may be much

larger with short-term creditor uncertainty over bank exposures than without it. More

importantly, our model provides theoretical guidance for a central bank to tackle financial

contagion caused by short-term creditor uncertainty over network structures.

Note that contagion in our model does not rely on complex network structures, but

is caused by short-term creditor uncertainty about network structures. In our model, we

adopt a very simple financial network structure in which all banks are paired as borrower

and lender. This simple network structure is sufficient to convey the core contagion

mechanism in our model.

Finally, our paper also contributes to the literature on market freezes. Explanations for

market freezes in the existing literature include adverse selection caused by asymmetric

information, Knightian uncertainty, gambling for resurrection, and preemptive runs of

short-term creditors due to future rollover risk.5 In our model, market freezes in the

2The related work includes Chen (1997) and King and Wadhwani (1990) among many others.
3The related work includes Allen and Gale (2000), Dasgupta (2004), Kiyotaki and Moore (1997, 2002),

and Rochet and Tirole (1996) among many others. Besides these two major mechanisms, Kodres and

Pritsker (2002) study contagion between countries due to the portfolio re-balancing effect.
4There is a large body of literature on this topic that usually involves complex financial networks.

The related work includes Allen and Babus (2009), Allen et al. (2010), Anand et al. (forthcoming), and

Gai and Kapadia (2010, 2011) among many others.
5The related work includes Acharya et al. (2009), Bolton et al. (2011), Brunnermeier and Oehmke

(2009), Caballero and Krishnamurthy (2008), Diamond and Rajan (2011), Easley and O’Hara (2010),
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short-term financial markets are caused by asymmetric information: short-term creditors

cannot identify the lending institution actually connected to the distressed institution.

As a result, they will charge a higher interest rate to all the lending institutions, or even

refuse to roll over their loans. The major contribution of our paper is that we study

systemic market freezes. Our model studies a financial system with multiple financial

institutions and markets. As a result, our model reveals how market freezes spread from

one institution to the rest of the institutions in the system and from the short-term

financial market to the interbank loan market.

The rest of the paper is organized as follows. Section 2 describes the environment of

the model with imperfect information. Section 3 studies the special case with perfect infor-

mation. Section 4 characterizes the equilibrium of the model with imperfect information.

Section 5 generalizes the model from the two-connection case to the N -connection case.

Policy implications are examined in Section 6. Section 7 discusses possible extensions of

the paper. Section 8 concludes. All the proofs are given in the appendix.

2 The environment

This is a two-period model with three dates denoted by t = 0, 1 and 2. There are four

banks denoted by L1, L2, B1, and B2 respectively.6 Banks L1 and L2 are the lending

banks, and banks B1 and B2 are the borrowing banks with an interbank loan market

structure as follows:

and He and Xiong (2009) among many others.
6The word “bank” is used for convenience. It can be interpreted as a non-bank financial institution

as well.

5



x x

1L
2L

1B 2B

Figure 1: The interbank loan market structure. x is the position of interbank loans

that the lending bank makes to the borrowing bank.

2.1 Initial balance sheets

The balance sheets of the lending and borrowing banks at date 0 are as follows:

Table 1: Lending banks’ balance sheet

Lending banks’ balance sheet at t = 1

Interbank loan: x Deposit : D0 + x

Long-term Project: L Equity: e0

Table 2: Borrowing banks’ balance sheet

Borrowing banks’ balance sheet at t = 1

Deposit : D0 − x

Interbank loan: x

Long-term Project: L Equity: e0

From the above tables, we can tell that each lending bank has a total deposit of D0+x

and equity of e0.
7 On the asset side, each lending bank has an interbank loan of x and a

long-term project of L = D0+ e0. Each borrowing bank has a total deposit of D0−x > 0

7Note that here a “deposit” could be any short-term debt borrowed by a financial institution and

should not be interpreted literally as a deposit issued by a commercial bank.
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and equity of e0. In addition, they borrow an interbank loan of x. It is straightforward

to see that the size of the long-term project of each borrowing bank is also L = D0 + e0.

We assume that the long-term project will mature at date 2 with a net return rate of

R > 0. If it is liquidated at date 1, the liquidation technology is as follows. For y units

of date 2 output, the liquidation income at date 1 is

λy −
1

2
γy2

where 0 < λ < 1 and γ > 0 are constants. Note that 1
2
γy2 is convex, which captures the

increasing marginal liquidation cost. Moreover, note that y denotes date 2 output. Let l

denote the long-term project liquidated at date 1. Then y = (1+R)l, and the liquidation

income could also be written as

λl(1 +R)−
1

2
γ[l(1 +R)]2

We assume that the marginal liquidation income of λ−γy is positive for all the values

of y so that a bank will always earn positive income by liquidating an additional unit of

the project.

We assume that banks can access only one-period short-term deposits. Thus, they

will have to roll over their deposits at t = 1 if they invest in long-term projects at t = 0.

This assumption captures the maturity mismatch between assets and liabilities in a real

financial institution. Finally, we assume that both the lending banks and depositors are

risk neutral and expect at t = 0 that their lending will be repaid for sure. Thus, both the

interbank loan rate and deposit rate at t = 0 equal the riskless rate of zero.

One key assumption in our model is that banks L1 and L2 depositors know that banks

L1 and L2 are the lending banks and banks B1 and B2 are the borrowing banks. However,

they do not know who is lending to whom. As a result, from the perspective of the lending

banks’ depositors, there are two possible states. In one state, L1 is lending to B1 and L2

is lending to B2. In the other state, L1 is lending to B2 and L2 is lending to B1. The

depositors believe that each state could happen with an even probability. This assumption

introduces the short-term creditor uncertainty about the financial network structure into

our model.
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2.2 The timing of the model

At date 1, an unanticipated negative shock hits the long-term project of one of the bor-

rowing banks. Without loss of generality, let bank B1 be the one hit by the shock. As

a result, its net project return becomes R̂ = R − Rshock, where 1 + R̂ > 0. Here Rshock

measures the magnitude of the negative shock. We assume that the identity of the bank

hit by the shock is publicly known.

At date 1, after observing the shock to bank B1, depositors and banks make their

decisions in the following sequence.

First, the lending banks’ depositors decide whether to roll over their deposits to the

banks or not, and if they do, what interest rate (denoted as r̂) is required. Note that both

banks’ depositors believe with a 50% probability that their bank is the one lending to B1.

Second, the lending banks make their decisions. If their depositors are willing to roll

over their deposits, then the two lending banks will decide how many deposits to roll over

and how many deposits to repay. Banks may repay part of their deposits by (1) recalling

interbank loans and (2) liquidating the long-term project. We examine the general case

where banks can recall part of interbank loans or liquidate part of the long-term project.

We also assume that banks L1 and L2 aim at maximizing their net value at date 2, even

when the net value is negative. We believe that this assumption is realistic, because it

would be more difficult for a bank manager to find a new job following a more substantial

loss in his previous job. Thus, the manager has an incentive to minimize losses when the

bank is insolvent. Given this assumption, bank L1, which suffers the interbank loan loss,

will still have an incentive to roll over its deposits.

When depositors are unwilling to roll over their deposits, we assume that the lending

banks must meet withdrawal demand by recalling all the interbank loans and liquidating

the long-term project. The proceeds are equally shared by depositors.

Third, the borrowing banks’ depositors decide whether to withdraw their deposits or

not at date 1, after they observe the interbank loans recall decision of the lending banks.

Banks must use all available resources to repay recalled interbank loans and depositor

withdrawal. If resources are not enough to meet all the withdrawal demand from the

lending bank and depositors, then each withdrawer will receive a payment proportional

to his withdrawal amount. Creditors who do not withdraw will get nothing at date 2.

8



0 1 2

The initial balance
sheets of all the
banks are given.

A negative shock hits     .
All the players make their decision sequentially.
1. Depositors of              decide whether to roll over their deposits  or not

and the roll-over rate if they do.
2.             make their choices on interbank loan recall  and long-term project liquidation.
3. Depositors of              decide whether to roll over their deposits or not.

21 & LL

21 & LL

21 & BB

1B

Figure 2: The timeline

Note that here we assume that the lending banks cannot front run the borrowing banks’

depositors, but only make the interbank loan recall decision before the borrowing banks’

depositors.

Finally, at date 2, banks repay their debts. If a bank’s assets are not sufficient to

repay all the debts, then they will be allocated to creditors proportionally.

Figure 2 gives the timeline of this model.

Thus at date 1, there is a sequential game where the lending banks’ depositors move

first, the lending banks move second, and the borrowing banks’ depositors move last. In

this game, we assume that as long as the no-run equilibrium is a feasible Nash equilibrium,

depositors will choose not to run. That is, we rule out the equilibrium in which depositors

run at date 1 because of their self-fulfilling beliefs. Here we focus on “essential bank runs”

caused by economic fundamentals as in Allen and Gale (1998).

Next, we will examine a special case with perfect information where the identity of

bank L1 who has lent to bank B1 is publicly known. This simpler case will help us better

understand an imperfect information case where the identity of bank L1 is not publicly

known. Later in Section 4, we will return to the imperfect information case introduced

in this section.

3 A special case with perfect information

In this case, after the negative shock hits bank B1, only banks L1 and B1 are affected.

Banks B2 and L2 are unaffected. Without any uncertainty, each depositor either with-

draws his deposits at date 1 or rolls over his deposits at the riskless rate.

We use backward induction to find the subgame perfect Nash equilibrium as follows.
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First, given α, the proportion of interbank loans recalled by bank L1, bank B1 depositors

decide whether to withdraw their deposits at date 1 or not. Second, we find the optimal

proportion of interbank loans that bank L1 will recall after taking into account the best

responses of bank B1 depositors. This is conditional on bank L1 depositors not withdraw-

ing at date 1. Third, given bank L1’s optimal choice, bank L1 depositors decide whether

to withdraw their deposits at date 1 or not.

3.1 Optimal choices for bank B1 depositors

We start with bank B1 depositors, who move last in the sequential game. Let α denote

the proportion of bank L1’s interbank loans that is recalled. Given α, we need to first find

out whether bank B1 depositors will roll over their deposits or not. It turns out that the

key variable that determines the depositors’ decision is the net value of bank B1 at date

2, conditional on bank B1 depositor not running at date 1, which we denote by NV nr
B1

.

Given that NV nr
B1

≥ 0,

NV nr
B1

= (L− l(α))(1 + R̂)− [D0 − x+ (1− α)x] = (L− l(α))(1 + R̂)− (D0 − αx) (1)

where l is determined by

αx = λl(1 + R̂)−
1

2
γ[l(1 + R̂)]2 (2)

Equation (2) determines l, the units of the long-term project liquidated to repay the

recalled interbank loans of αx. Equation (1) gives the net asset value of bank B1 at date

2, which is its unliquidated long-term project return at date 2 minus its total liabilities

(unpaid interbank loans and deposits) at date 2.

Let α1 be the solution to Equation (1)=0. Thus, given that bank B1 depositors do

not withdraw at date 1, bank B1’s asset value at date 2 exactly covers its liabilities to

depositors and the remaining interbank loans when its interbank loan recall is α1x. We

have the following lemma:

Lemma 1. NV nr
B1

is strictly decreasing in α.

Proof: See the appendix. �

Lemma 1 implies that NV nr
B1

is positive when α < α1 and negative when α > α1. Thus

we have the following results.
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Lemma 2. (1) If α ≤ α1, bank B1 depositors will not withdraw their deposits at date 1.

(2) If α > α1, bank B1 depositors will withdraw at date 1.

Proof: See the appendix. �

3.2 Optimal choices for bank L1

Next, we move backward through the sequence to find out bank L1’s optimal choice of α,

conditional on its depositors not withdrawing at date 1. However, we need not consider

bank L1’s optimal choice conditional on its depositors withdrawing at date 1, because we

are confining our attention to “essential bank runs” in which depositors run a bank if, and

only if, a no-run equilibrium is infeasible. As a result, we need only to determine whether

a no-run equilibrium is feasible here or not. Note that given that bank L1 depositors roll

over their deposits, bank L1 will never liquidate its long-term project because liquidation

is costly. Thus, bank L1 needs only to choose the optimal level of α to maximize its net

value, given the best responses of bank B1’s depositors. We prove that in equilibrium,

bank L1 will recall either all or none of its interbank loans, even when it is allowed to

recall its interbank loans partially.

We define bank L1’s payoff from interbank loans as its date 2 value of total proceeds

from interbank loans. Thus, if bank L1 recalls αx of interbank loans at date 1, its payoff

from this proportion of interbank loans is αx(1 + r), where r is the interest rate charged

by depositors. Since r is zero in this perfect information case, the payoff equals the sum of

cash payments that bank L1 receives from bank B1 over dates 1 and 2. Let us denote the

value of bank B1 when its whole long-term project is liquidated at date 1 as VB1,liquidation.

Moreover, let α2 be the solution to

VB1,liquidation = λL(1 + R̂)−
1

2
γ(L(1 + R̂))2 = (D0 − x) + α2x = D0 − (1− α2)x (3)

Thus, when bank L1 recalls α2x of interbank loans and all the depositors withdraw

at date 1, bank B1 needs to liquidate all of its long-term project to repay its deposits

and bank L1’s recalled interbank loans. That is, bank B1 has no assets left for date 2.

As a result, when α > α2 and all of bank B1’s depositors withdraw at date 1, bank B1’s

liquidation value at date 1 is not enough to repay its liabilities and, thus, this amount

will be proportionally shared by bank L1 and the depositors.
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Payoff of the lending bank

Depositors of the
borrowing bank
do not run

Depositors of the borrowing
bank  run at date 1

Figure 3: The lending bank’s payoff from interbank loans in the case of α1 ∈ [0, 1]
and α2 > α1

It turns out that bank L1’s payoff from interbank loan recall depends crucially on α1

and α2. Note that α2 can be either lower or higher than α1. When the liquidation cost

is high (or λ is low and γ is high), α2 tends to be small. In addition, if α1 ≤ 1, we have

α2 ≤ 1.8

Lemma 3 summarizes bank L1’s payoff from interbank loan recall in a special case

where 0 ≤ α1 < α2 ≤ 1. Appendix A.5 gives a general proof about all the other cases

with different combinations of α1 and α2.

Lemma 3. Given that 0 ≤ α1 < α2 ≤ 1, bank L1’s payoff from interbank loans is a

constant of x when α ∈ [0, α1], is strictly decreasing in α when α ∈ (α1, α2], and is

strictly increasing in α when α ∈ (α2, 1]. Moreover, bank L1’s payoff has a downward

jump at α1 and is continuous at α2.

Proof: See the appendix. �

Figure 3 illustrates the results in lemma 3. The intuition behind the results is as

follows. When α ∈ [0, α1], bank B1 depositors do not run because bank B1 has enough

resources to repay its liabilities at date 2. Thus, the total payment to bank L1 is x. When

α ∈ (α1, α2], bank B1 depositors will run. However, because α < α2, bank B1 still has

positive resources left for date 2, but the resources are less than its liabilities. Thus bank

L1 will seize all bank B1’s remaining assets at date 2. In this case, when bank L1 increases

α, it is the equivalent of bank L1 liquidating its own long-term project at date 1, which is

costly by assumption. Thus bank L1’s payoff is decreasing in α. However, once α reaches

α2, bank B1 has no resources left for date 2. In this case, when bank L1 increases α, it will

8See the appendix for the proof.
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increase its share in the liquidation value of bank B1 at date 1. Thus, in this case, bank

L1’s payoff is increasing in α. At α1, there is a downward jump in bank L1’s payoff. This

is because, given that bank L1 recalls αx > α1x of its interbank loans, bank B1 depositors

switch from a no-run equilibrium to a run equilibrium, incurring additional liquidation

costs that lower bank L1’s date 2 payoff.

We assume that when bank L1 receives the same payoff from recalling different propor-

tions of interbank loans, it always chooses to recall the minimum proportion of interbank

loans. By considering all the possible combinations of α1 and α2, we arrive at the following

proposition:

Proposition 1. In a perfect information case, if α1 ≥ 0, bank L1 will not recall any

interbank loans, and bank B1 depositors will not withdraw at date 1. Otherwise, bank B1

depositors will withdraw at date 1, and bank L1’s optimal choice is to recall either no loans

(α = 0) or all the loans (α = 1).

Proof: See the appendix. �

The above result describes the optimal choice for bank L1 that maximizes its payoff

from interbank loans. The choice also maximizes bank L1’s asset value at date 2, condi-

tional on its depositors not running at date 1, which, denoted by V nr
L1

, is given by L(1+R)

plus its maximum payoff from interbank loans.

3.3 Optimal choices for bank L1 depositors

Given the maximum value of bank L1, bank L1 depositors then decide whether to with-

draw at date 1 or not. Following a similar argument as the one for the decisions of bank

B1 depositors, we arrive at the following proposition:

Proposition 2. If V nr
L1

≥ D0 + x, bank L1 depositors will not withdraw at date 1. The

optimal interbank loan recalling strategy of bank L1 and the corresponding best responses

of bank B1 depositors are characterized in proposition 1. If V nr
L1

< D0 + x, banks L1 and

B1 depositors will withdraw at date 1. Both banks B1 and L1 will be insolvent and thus

will be forced to liquidate all of their long-term projects at date 1.

Proof: See the appendix. �

13



4 Equilibrium in an imperfect information case

In this section, we study the imperfect information case where the identity of bank L1, who

has lent to the bank hit by the shock, is not publicly known. The imperfect information

case differs from the perfect information case in that the two lending banks’ depositors

will now make the same decisions about deposit withdrawing. This is because they cannot

identify the bank suffering a loss due to the shock to bank B1 and believe with a 50%

probability that their bank may suffer a loss. As a result, banks L1 and L2 face the same

decisions from their depositors and, consequently, banks L2 and B2 are also affected by

the shock to bank B1. In the perfect information case, however, they are not affected

at all. Thus, our model provides a contagion mechanism in which contagion spreads to

banks L2 and B2 because of uncertainty regarding the interconnections among financial

institutions.

4.1 Optimal choices for the lending banks

We start with the optimal choices for the lending banks when the market rate charged by

their depositors, r̂, is given. Our later analysis reveals that there are two possible cases.

In the first case, the lending banks’ depositors are willing to roll over their deposits and

ask for an interest rate of r̂ ≥ 0. When r̂ > 0, we call it a partial market freeze. In

the second case, there exists no r̂ at which the depositors are willing to roll over their

deposits. As a result, depositors of banks L1 and L2 will withdraw at date 1. We call this

case a complete market freeze.

When r̂ = 0, both lending banks behave the same as in the perfect information case

conditional on their depositors not withdrawing at date 1. That is, they will optimally

choose the proportion of interbank loans to recall, α, as characterized in section 3.2, and

will never liquidate any long-term projects.

When r̂ > 0, a lending bank will optimally choose the proportion of interbank loans

to recall, α, and the amount of the long-term project to liquidate, l. First, we define a

variable Z as the total resources that the lending bank collects to repay its depositors at

date 1, which is given by

Z = λl(1 +R)−
1

2
γ[l(1 +R)]2 + F (αx) (4)
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where λl(1+R)− 1
2
γ[l(1+R)]2 are the proceeds the bank receives from liquidating l of the

long-term project, and F (αx) is the proceeds the bank receives from recalling αx of its

interbank loans. When NV of the borrowing bank taking the interbank loans is positive,

or NV < 0 but Vliquidation > αx + D0 − x, F (αx) = αx. When for the borrowing bank,

NV < 0 and Vliquidation < αx+D0−x, F (αx) = αx
D0−x+αx

Vliquidation. Recall that Vliquidation

is the asset value of the borrowing bank after liquidating its entire long-term project at

date 1.

If Z < D0 + x, the lending bank will roll over a positive amount of D0 + x−Z > 0 of

deposits, and its net asset value is given by

NV = (L− l)(1 +R)− (D0 + x− Z)(1 + r̂) +H((1− α)x) (5)

where (L − l)(1 + R) is the proceeds the bank receives at date 2 from the unliquidated

long-term project, (D0+x−Z)(1+ r̂) is the repayment to depositors, and H((1−α)x) is

the proceeds from the remaining interbank loans. When NV of the borrowing bank taking

the interbank loans is positive, H((1− α)x) = (1 − α)x. When for the borrowing bank,

NV < 0 but Vliquidation > αx+D0−x, H((1−α)x) equals the asset value of the borrowing

bank at date 2. When for the borrowing bank, NV < 0 and Vliquidation < αx +D0 − x,

H((1− α)x) = 0.

If Z ≥ D0 + x, the bank chooses not to roll over any deposits, and its net asset value

is given by

NV = (L− l)(1 +R) + Z − (D0 + x) +H((1− α)x) (6)

It is difficult to give a general analytical solution to the above problem. We focus on

the more interesting case where Z < D0+x (that is, the lending bank chooses to roll over

a positive amount of deposits) in equilibrium. In this case, we find the following results:

Lemma 4. Given that in equilibrium r̂ > 0, and Z < D0 + x, we find that: (1) The

lending banks will liquidate their own projects if, and only if, 1 + r̂ > 1
λ
. (2) Given that

0 ≤ α1 < α2 ≤ 1, the optimal amount of recalled interbank loans, αx, can be chosen from

three local optimal points in the three regions of [0, α1], [α1, α2], and [α2, 1] respectively.

The bank will recall at least α1x of its interbank loans.

Proof: See the appendix. �
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4.2 Equilibrium interest rate

To find the equilibrium rate that the lending banks’ depositors will charge, recall that

the decision-making sequence is assumed as follows. First, depositors promise to roll over

their deposits at the rate of r̂. Second, the lending banks choose the optimal amount of

the long-term project to liquidate, the optimal amount of interbank loans to recall, and

the optimal amount of deposits to roll over. Let VL1
and VL2

denote the maximum asset

value at date 2 under the optimal choices of banks L1 and L2 respectively at a given level

of r̂. Let DL1
and DL2

denote the deposits that the two banks choose to roll over at a

given level of r̂. We described above the rules for the two lending banks to maximize the

net value at date 2 that determine VL1
, DL1

, VL2
, and DL2

at each given level of r̂. Note

that both V and D are functions of r̂ and are endogenously chosen by the banks. The

conditional probability that the deposits will be rolled-over by a bank is also endogenous.

For bank L2, the conditional probability is πL2
= DL2

/(D0 + x), and for bank L1, it is

πL1
= DL1

/(D0 + x).

An individual depositor of bank L1 or L2 knows that his bank will be good or bad

with a 50% probability. In addition, he will take into account the conditional probability

of his deposit being rolled over by the bank given that the bank is good or bad. Given

the market interest rate, a risk-neutral depositor will be willing to roll over his deposit if

his expected rate equals the riskless rate. If his expected rate is lower than the riskless

rate, he will withdraw at date 1. The general equation is

1 =
1

2

[

πgoodmin(
Vgood

Dgood

, 1 + r̂) + (1− πgood)

]

+
1

2

[

πbad min(
Vbad

Dbad

, 1 + r̂) + (1− πbad)

]

(7)

The left-hand side is the gross riskless rate, which is the payoff if the depositor with-

draws at date 1. The right-hand side is the expected return for promising to roll over the

deposit at r̂. With a 50% probability, the depositor’s bank is good. In this case, with

a probability of 1 − πgood, the bank will repay its depositor at date 1, and the depositor

receives 1 unit of payment; with a probability of πgood, his deposit is rolled over. In this

case, if 1+ r̂ is smaller than
Vgood

Dgood
, he will receive the promised payoff of 1+ r̂ for each unit

of his deposits at date 2. Otherwise, all the assets of the bank at date 2 are evenly allo-

cated to the remaining depositors, and the depositors receive the recovery rate of
Vgood

Dgood
.

A similar argument is applied to the second term when the bank is bad.

If Rshock is low enough that the depositors know that the bad lending bank can pay
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the riskless rate for sure (that is, Vbad

Dbad
≥ 1), then the good bank should also be able to

pay it. In this case, the depositors will simply charge the riskless rate of zero, that is,

r̂ = 0. This case is identical to the perfect information case where bank L1 depositors do

not run and offer to roll over the deposit at a zero interest rate.

For the remaining analysis, we will focus on the more interesting case where Rshock is

high enough such that Vbad

Dbad
< 1. We find that the equilibrium condition (7) allows for

two types of case for the good bank:
Vgood

Dgood
≥ 1 + r̂ and

Vgood

Dgood
< 1 + r̂. In the first case,

Equation (7) can be written as

1 =
1

2
[πgood(1 + r̂) + (1− πgood)] +

1

2

[

πbad

Vbad

Dbad

+ (1− πbad)

]

(8)

s.t 1 + r̂ ≤
Vgood

Dgood

(9)

In the second case, the condition can be written as

1 =
1

2

[

πgood

Vgood

Dgood

+ (1− πgood)

]

+
1

2

[

πbad

Vbad

Dbad

+ (1− πbad)

]

(10)

s.t 1 + r̂ >
Vgood

Dgood

(11)

In the special case where the banks choose not to roll over any deposits such that Dgood

or Dbad is zero, the corresponding πgood or πbad will be zero, and we define the term π V
D

as zero.

The above equations suggest the following steps for looking for the numerical solutions

of the equilibrium. Given a value for r̂, let Γ(r̂) denote the actual return rate that must

be received from the good bank in order to satisfy the equilibrium condition:

1 =
1

2
[πgood(1 + Γ(r̂)) + (1− πgood)] +

1

2

[

πbad

Vbad

Dbad

+ (1− πbad)

]

(12)

If for 1+ r̂ ≤
Vgood

Dgood
, we can find a value for r̂ such that Γ(r̂) = r̂, then an equilibrium exist.

In this case, the required rate is smaller than the maximum payment
Vgood

Dgood
that can be

paid by the good bank, so the actual payment is 1+r̂. Alternatively, if for 1+r̂ >
Vgood

Dgood
, we

find 1 + Γ(r̂) =
Vgood

Dgood
, then an equilibrium also exists. In this case, the required payment

1 + Γ(r̂) is equal to the maximum payment that can be paid by the good bank, and it

gives the depositors an expected net return rate of zero. We call the former case the type

I equilibrium, and the latter case the type II equilibrium. If for all the values of r̂, the
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required rate, 1 + Γ(r̂), is higher than 1 + r̂ or
Vgood

Dbad
, then an equilibrium r̂ will not exist,

and a complete market freeze will occur.

Note that in the above analysis, we use subscripts “good” and “bad” to denote the

good and bad lending banks. This is because a particular bank’s depositors do not know

whether their bank is good or not, and they only know the optimal actions that will be

taken by each type of bank. In our example reflecting the true state, the actual good

bank is L2 and the actual bad bank is L1. Thus, πgood, Vgood and Dgood equal the actual

values of πL2
, VL2

and DL2
, and πbad, Vbad and Dbad equal the actual values of πL1

, VL1

and DL1
.

4.3 The equilibrium

Based on the above analysis, the equilibrium in the imperfect information case can be

characterized as follows.

Proposition 3. An equilibrium r̂ exists when (1) given r̂, the two lending banks maximize

their net asset value at date 2, V −D(1 + r̂), by optimally choosing the amount of long-

term projects to liquidate and the proportion of interbank loans to recall, and (2) given the

expected optimal choices of the lending banks, r̂ satisfies either Equations (8) and (9) or

Equations (10) and (11). If the required rate Γ(r̂) is always higher than r̂ or VL2
/DL2

−1,

then an equilibrium with a solution to r̂ does not exist. In this case, the lending banks’

depositors will not roll over their deposits.

We call the case with a positive equilibrium r̂ a partial market freeze and the case

where the lending banks’ depositors refuse to roll over any deposits a complete market

freeze.

From propositions 1 and 3, we derive the following implications.

Corollary 1. If r̂∗ > 0 or if r̂∗ does not exist, R̂ must be so low that for bank L1, α1 < 0,

and bank B1 depositors run at date 1 in equilibrium.

Proof: See the appendix. �
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4.4 Numerical examples

In this section, we provide numerical examples to illustrate the model with imperfect

information. In the numerical examples throughout this paper, we will use the same

baseline parametrization in which e0 = 0.08, L = 1, D0 = L − e0 = 0.92, R = 0.05,

λ = 0.92, γ = 0.4, and x = 0.6. Note that here we do not intend to calibrate the

economy. Instead, we use the numerical examples to illustrate the qualitative results of

our model. We let e0 be 0.08 to ensure that the capital/assets ratio equals the capital

adequacy ratio of 8% required by Basel Accords. We let λ = 0.92 and γ = 0.4 in

order that an entirely liquidated project is worth approximately 70% of its unliquidated

value. Note that changes of these parameter values will not affect our qualitative results.

Nonetheless, the choice of the values of two key parameter, e0 and x, does affect the

magnitude of contagion greatly. We tend to find more severe contagion with a lower e0

or a higher x.

Our examples produce the following major results:

First, there may exist multiple equilibria in which the lending banks’ depositors charge

different interest rates. We focus on the equilibrium with the smallest interest rate, which

implies that contagion is, at the very least, as severe as our results reveal.

Second, the severity of market freezes increases in the magnitude of the negative shock

to the distressed bank, B1. The lending banks’ depositors charge the riskless rate of zero

when Rshock is lower than a threshold level. Afterwards, they start to charge a positive

interest rate that is increasing in Rshock. When Rshock is high enough, equilibrium interest

rates may not exist, and depositors may refuse to roll over their deposits at all.

Third, contagion spreads as follows: First, bank L1 may suffer a loss because of its

interbank loans to troubled bank B1. Second, the lending banks’ depositors may charge

a positive interest rate or even refuse to roll over their deposits because they suspect that

their lending bank may lend to bank B1 and incur a loss. Third, the healthy borrowing

bank, B2, may suffer a loss because its lending bank L2 may recall its interbank loans

when facing a higher rollover rate or even a withdrawal of its depositors. In the worst case

scenario, a systematic bank run occurs in which all the banks are run by their depositors

and are forced to liquidate all of their long-term projects.
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4.4.1 Equilibrium market rate given Rshock

We first present a benchmark case at Rshock = 0.32 to illustrate how the equilibrium

interest rate charged by the lending banks’ depositors is determined. Figure 4 shows the

result. Here panel (b) is a closeup of part of panel (a) for a clearer presentation.

Here the movement of Γ(r̂) is determined by the optimal choices of banks L1 and L2

on interbank loan recall and long-term project liquidation that consequently determine

variables such as DL1
, VL1

, DL2
, VL2

, πL2
, πL1

,
VL2

DL2

, and
VL1

DL1

. The details about the

optimal choices of banks L1 and L2 and about the determination of Γ(r̂) are given in

appendix B.
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Figure 4: Determination of the equilibrium interest rate charged by the lending

banks’ depositors at Rshock = 0.32

In the example, we have both type I and type II equilibria. In the type I equilibrium,

Γ(r̂) crosses the 45 degree line below
VL2

DL2

− 1. More specifically, Γ(r̂) = r̂ = 0.1080 <
VL2

DL2

− 1 = 0.1287. In the type II equilibrium, Γ(r̂) crosses
VL2

DL2

− 1 below the 45 degree

line. More specifically, Γ(r̂) =
VL2

DL2

− 1 = 0.1285 < r̂ = 0.1544.

A partial market freeze occurs in this example. Appendix B shows that at the equilib-

rium r̂, banks L1 and L2 liquidate part of their own long-term projects. Bank L1 recalls

all its interbank loans, and bank L2 recalls part of its interbank loans.

4.4.2 Equilibrium market rate with different levels of Rshock

Figure 5 shows how equilibrium outcomes change when Rshock varies from 0 to 1.04.
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Figure 5: How equilibrium outcomes vary in Rshock

Panel (a) of figure 5 illustrates how the equilibrium market rate, r̂∗, varies in Rshock.

It turns out that when Rshock ≤ 0.2018, r̂∗ = 0. This is because Rshock = 0.2018 is the

maximum shock at which bank L1 can still make the full promised payment to depositors

at the riskless rate.

When Rshock > 0.2018, NVL1
< 0. This implies that

VL1

DL1

< 1, and, consequently, r̂∗

becomes positive. In general, r̂∗ is increasing in Rshock when Rshock > 0.2018, because

a higher Rshock leads to a higher loss of bank L1 from interbank loans to bank B1 and,

consequently, a lower
VL1

DL1

.

An upward jump of r̂∗ occurs at Rshock = 0.2538 where r̂∗ = 0.0518. This is because

bank L1 starts to recall all of its interbank loans and uses the proceeds to repay its
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depositors. This will lead to a lower return rate for the remaining depositors,
VL1

DL1

. So

depositors will charge a higher rate to compensate for the expected loss. When Rshock <

0.2538, bank L1 recalls no interbank loans.

At r̂∗ = 1
λ
−1 = 0.087 (with Rshock = 0.2912), both banks L1 and L2 start to liquidate

their long-term projects. When Rshock > 0.3494 (r̂∗ > 0.1296), there exists no equilibrium

r̂, implying a complete market freeze to banks L1 and L2. In this case, a systematic

collapse occurs: depositors of all the banks (including banks B1 and B2) withdraw at

date 1. In addition, all the banks completely liquidate their long-term projects. Banks

L1 and L2 also recall all of their interbank loans.

Note that when Rshock = 0.2018 where r̂∗ becomes positive, bank L2 starts to recall

αL2

1 = 0.8344 of its interbank loans to repay its depositors. Inefficiency arises here because

as long as α ≤ αL2

1 , bank B2 depositors do not run, and the private cost of bank L2 to

recall interbank loans is zero. As a result, bank L2 will always recall αL2

1 x of interbank

loans when the market rate r̂∗ > 0. However, because of the liquidation cost incurred

by bank B2 due to bank L2’s interbank loan recall, the social cost of bank L2’s recall is

positive. Bank L2 will not internalize the liquidation cost because it is borne by bank

B2. Thus, at the social level, there is too much liquidation. We find this result important

because it reveals one source of liquidity shortage and inefficiency during financial crises.

When facing higher financial costs during a crisis, creditors start to recall loans from

solvent borrowers, regardless of the high social costs of doing so.

So, contagion in our model occurs as follows. After a shock hits bank B1, contagion

spreads from bank B1 to the lending banks: the lending banks face a partial or complete

market freeze. The market freeze induces the lending banks to raise liquidity by recalling

their interbank loans to the borrowing banks, leading to contagion spreading from the

lending banks to other solvent borrowers and forcing those borrowers to liquidate part or

all of their long-term projects. In the worst case scenario, a systematic bank run occurs

in which all the banks are run by their depositors and are forced to liquidate all of their

long-term projects.
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5 The general case of N connections

5.1 Equilibrium

Now we extend the model to a more general case where bank B1 is connected to N lending

banks. Assume that there are N pairs of banks. A pair of banks includes one lending

bank and one borrowing bank. We still call the bank that lends to bank B1 bank L1.

The remaining N − 1 lending banks are called L2-type banks and the remaining N − 1

borrowing banks are called B2-type banks. Figure 6 gives the interbank loan market

structure.
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x x x x

1L 2L

1B 2B

2

2L
1

2

-N
L

2

2B
1

2

-N
B

Figure 6: The interbank loan market structure with N pairs of banks. x is the

position of interbank loans that the lending bank makes to the borrowing bank.

The sole difference between the 2-pair and N -pair cases is that the expected return to

all the lending banks’ depositors who roll over their deposits now changes to:

1 =
N − 1

N

[

πL2
min(

VL2

DL2

, 1 + r̂) + (1− πL2
)

]

+
1

N

[

πL1
min(

VL1

DL1

, 1 + r̂) + (1− πL1
)

]

(13)

That is, all the lending banks’ depositors believe, with a probability of N−1
N

, that

their bank is a L2-type bank, and, with a probability of 1
N
, that their bank is a L1-

type bank. This difference will lead to different equilibrium market rates for the lending

banks. However, all the previous analysis about the optimal decisions of the lending and

borrowing banks in the 2-pair case under a given r̂ can be applied to the N -pair case, and

we can find the equilibrium in a similar way.
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5.2 A numerical example

Here we give numerical examples to illustrate the model, using the same baseline parametriza-

tion.

The major results that we find are as follows. (1) At each given level of Rshock, the

equilibrium interest rate charged by the lending banks’ depositors is decreasing in N . This

is because the probability of being a bad bank assigned by the lending banks’ depositors

to their bank is decreasing in N . Complete market freezes disappear when N is high

enough. (2) There may exist a non-monotonic relationship between the total liquidation

cost and N at a given level of Rshock. This relationship is caused by the tradeoff in the

liquidation cost when N increases: on one hand, a higher N alleviates market freezes,

inducing a lower liquidation cost for an individual bank; on the other hand, contagion

spreads to more banks with a higher N , inducing a higher aggregate liquidation cost.

(3) A small shock to an individual bank can lead to a huge social welfare loss through

contagion.

Figure 7 shows how r̂∗ changes in Rshock for N = 2, 3, 4, 5, and 6. r̂∗ becomes positive

for all the Ns when Rshock exceeds 0.2018. Because 1
N
, the ex ante probability that a

lending bank is bank L1, is decreasing in N , the required rate Γ(r̂) is also lower for the

same Rshock when N becomes larger. As a result, r̂∗ is lower for a higher N at the same

level of Rshock. In our example, a complete market freeze for the lending banks occurs

when N = 2, 3, and 4, after Rshock reaches 0.3494, 0.6198, and 0.8549 respectively. When

N > 4, no complete market freeze occurs at any level of Rshock.

Figure 8 shows the long-term project liquidation for each type of bank when N changes

from 2 to 4. Panel (a) of figure 8 illustrates how the total liquidation of bank B1 changes

in Rshock at different levels of N . In our numerical example, bank L1 follows a trigger

strategy in which it recalls all of its interbank loans if and only if Rshock is higher than

a threshold level. This threshold level is higher with a larger N . This is because, given

Rshock, when N is higher the market rate tends to be lower, which reduces the incentive

of bank L1 to recall its interbank loans and repay its depositors at date 1.

Panel (b) of figure 8 illustrates how the total liquidation of B2-type banks changes in

Rshock at different levels of N . The liquidation of B2-type banks jumps at two threshold

levels of Rshock. When Rshock reaches the first threshold level such that r̂∗ > 0, L2-type

banks start to recall αL2

1 x = 0.8344x of their interbank loans. As a result, each B2-type
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Figure 7: How r̂∗ changes in Rshock when bank B1 is connected to N lending banks.

bank will be forced to liquidate the long-term project to repay them. When Rshock reaches

the second threshold level (it does not exist when N = 5 and 6), a complete market freeze

occurs, and L2-type banks are forced to recall all of their interbank loans. Note that in a

perfect information case, B2-type banks are unaffected, and there is no liquidation.

Panel (c) of figure 8 illustrates how the total liquidation of bank L1 and L2-type

banks changes in Rshock at different levels of N . Both bank L1 and L2-type banks start

to liquidate their long-term projects when Rshock is so large that r̂∗ > 1
λ
− 1 = 0.087, and

are forced to liquidate all their long-term projects when a complete market freeze occurs.

Note that in a perfect information case only bank L1 will liquidate its long-term project

when Rshock reaches a threshold level.

It turns out that at a given level of Rshock, the aggregate liquidation may have a

non-monotonic relationship with N . This non-monotonic relationship is caused by the

tradeoff in long-term project liquidation when N increases. On one hand, as we showed

in figure 7, a higher N induces a lower r̂∗, necessitating less liquidation of an individual

bank’s long-term project. On the other hand, the total liquidation of long-term projects

may increase because more banks are involved in the contagion.

Figure 9 gives a numerical example at Rshock = 0.88 to illustrate the non-monotonic

relationship between N and total liquidation and the associated liquidation cost of long-

term projects. Here we exclude bank B1 in order to focus on the social cost caused

purely by contagion. In this example, a complete market freeze occurs at N = 2, 3
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Figure 8: Long-term project liquidation of different types of banks when N ≤ 6

and 4 with imperfect information and also occurs with perfect information. However, no

complete market freeze occurs at N = 5 and 6 with imperfect information. As a result,

the aggregate liquidation of all the banks except bank B1 is 2N −1 when N ≤ 4, which is

strictly increasing in N . The total liquidation cost is given by 0.3045× (2N − 1), because

the cost of liquidating a healthy bank’s entire project is 0.3045. However, at N = 5,

there is a downward jump of the aggregate liquidation because, in this case, bank L1 and

L2-type banks are not run by their depositors. All the lending banks will liquidate a small

amount of their long-term projects (0.01) because r̂∗ > 1
λ
−1 = 0.087. In addition, L2-type

banks will recall αL2

1 x = 0.8344x of their interbank loans, forcing all the B2-type banks

to liquidate 0.6006 of their long-term projects. Thus the total liquidation is 2.452. The

associated liquidation cost is around 0.52. When N ≥ 6, only B2-type banks will liquidate
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their long-term projects to meet the interbank loan recall from L2-type banks. As a result,

the total liquidation is given by 0.6006 × (N − 1), and the associated liquidation cost is

given by 0.13× (N −1), where 0.13 is the liquidation cost incurred by each B2-type bank.

Note that as long as r̂∗ > 0, L2-type banks will recall αL2

1 x = 0.8344x of their interbank

loans, inducing the liquidation of B2-type banks’ long-term projects.

Note that the liquidation cost in an imperfect information case could be much higher

than that in a perfect information case (N = 1), implying that contagion due to short-

term creditor uncertainty about financial structures could greatly magnify the total loss

across the whole financial system.

0 5 10 15 20
0

2

4

6

8

10

12

N

(a) total liquidation

0 5 10 15 20
0

0.5

1

1.5

2

2.5

N

(b) total liquidation cost

Figure 9: Total liquidation and the associated liquidation cost caused by contagion

with different Ns at Rshock = 0.88. (Bank B1 is excluded. N = 1 represents the

perfect information case.)

In our numerical examples, we set parameters at intermediate values. We can raise

the probability of a complete market freeze and, consequently, the contagion cost, if we

use more extreme parameter values. In particular, we find that if we lower the equity

level e0 of banks, the probability of a complete market freeze increases. For example, if

we decrease e0 to 0.04, then a complete market freeze happens even when N = 6.

6 Policy implications

In this section, we explore the policy implications of our model. We examine three major

policies: the information policy, the bailout policy, and the LOLR policy.
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6.1 Information policy

Contagion in our model is caused by uncertainty. Because depositors do not know the

identity of the exposed lending bank, they infer that all lending banks could be exposed

to the distressed bank. As a result, they may run on all the lending banks, inducing

runs on the healthy borrowing banks too. If we can reveal the identity of the exposed

lending bank, then we can prevent market freezes from spreading to the healthy lending

and borrowing banks.

Thus, our model demonstrates that it is critical for a central bank to keep track of the

financial network structure and, in a time of crisis, reveal this structure to the market in

a credible way. During a financial crisis, the banks perceived by the market to possibly be

insolvent will have difficulty in credibly identifying themselves as solvent to the market,

even though they have private information about their solvency. As a result, if the central

bank can credibly identify the solvent banks, contagion can be eliminated. Moreover, no

other central bank interventions such as bailouts and central bank loans are needed, and

consequently no moral hazard problem will arise.

Note that it is important that the central bank is credible when it identifies the solvent

banks: it must have a reliable record in supervising financial institutions. Meanwhile, the

capability of a central bank to keep track of the financial network structure is greatly

affected by different financial market structures. A sophisticated financial system with

thousands of financial institutions, such as in the US, is obviously much more challenging

than a simple financial system with a few major financial institutions, such as in Canada

and Australia. Our model shows that a more competitive financial market, with all

the benefits originating from perfect competition, may suffer the disadvantage of greater

opacity (through the contagion caused by opacity) during a financial crisis, compared to

a more concentrated banking system.

It is interesting to examine a case where a central bank can help reduce the uncertainty

about the identity of the distressed lending bank, but does not have perfect information.

In this case, less uncertainty does not necessarily improve social welfare. We demonstrated

previously that the total liquidation cost is not a monotonic function of N , the number

of possible distressed lending banks. A central bank can reduce the number of possible

candidates by providing information about the economic fundamentals of healthy banks.

However, as long as it cannot identify all the healthy banks, more information may lead
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to more long-term project liquidation and lower social welfare. For example, suppose that

initially there are N lending banks perceived by the market as being the ones that might

lend to the distressed bank. The central bank identifies one of them as healthy, so that

the number of possible candidates for the distressed lending bank is reduced to N − 1.

Because the probability for each lending bank to be distressed now increases, a market

freeze may be more severe. In an extreme case, no complete market freeze occurs to the

lending banks with N candidates, but a complete market freeze occurs to the lending

banks with N − 1 candidates. In this case, the social cost could be much higher with less

uncertainty.

Next we will examine the case where the central bank does not have perfect information

about the financial network structure. In this case, they will resort to a bailout policy or

LOLR policy to alleviate contagion.

6.2 Bailout policy

6.2.1 Guaranteeing bank B1’s debt

In our model, contagion originates from bank B1, which is hit by a negative shock. A

straightforward way to prevent contagion is to remove the originator; that is, to bail out

bank B1 by using taxpayers’ money to pay the losses of bank B1’s creditors. As a result,

the bank lending to B1 is saved and the contagion is stopped. In our simple model, this

method is effective and easy to implement. However, we have not taken into account the

moral hazard caused by this policy, which is what makes the central bank reluctant to

use this policy in reality.9

6.2.2 Injecting capital into the lending banks

The central bank can alleviate market freezes by buying preferred shares or stock issued

by the lending banks. Suppose that the preferred stock injected into each bank is sufficient

for bank L1 to meet the promised payment to depositors at a zero interest rate at date

2. The market interest rate will be zero. As a result, bank L1 will optimally choose a

9In the recent subprime mortgage crisis, the US government refused to bail out Lehman Brothers due

to the concern of moral hazard, which led to severe market freezes in the financial system right after

Lehman Brothers’ bankruptcy.
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proportion of its interbank loans to recall, conditional on its depositors not withdrawing at

date 1. (We analyzed this situation in the perfect information case.) Note that although

the central bank buys preferred shares in the N lending banks, only the preferred shares

in bank L1 will suffer a loss. So in our case, when N increases, the initial funds that

the central bank needs to inject into the banks will increase, but the actual loss that the

central bank incurs will remain constant. This is limited to the loss of bank L1 that equals

the loss due to interbank loan x, minus the loss that can be absorbed by bank L1’s own

capital. So as N increases, the actual cost of saving the banks does not increase, while

the cost of not saving the banks (i.e., the cost of liquidating healthy banks’ long-term

projects) could increase, creating a stronger incentive for a central bank to inject capital

into all the banks. Of course, here we ignore moral hazard and the controversy associated

with the nationalization of the banking industry.

The advantage of this policy, compared to directly bailing out bank B1, is that the

central bank will use less taxpayers’ money to bail out the financial system. The central

bank need not pay all bank B1’s creditors, and the loss to bank L1 is absorbed first by

bank L1’s capital. In this sense, the moral hazard problem is less severe under this policy

than under the policy of direct bailout.

6.3 LOLR policy

In this section, we examine the central bank policy of emergency liquidity assistance,

also known as the LOLR policy. LOLR policy discussions often cite the classic book

by Bagehot (1873) in which he summarized the LOLR policy as a central bank lending

freely against good collateral at a higher interest rate. According to Freixas and Rochet

(2004), the classic Bagehot rules can be criticized on two grounds: (1) it is impossible

for a central bank to distinguish between illiquidity and insolvency as a LOLR (see,

e.g., Goodhart (1999)), and (2) with a well-functioning interbank loan market, the open

market operation of central banks is enough to maintain an efficient market, rendering the

LOLR policy unnecessary (see, e.g., Goodfriend and King (1988)). As Freixas and Rochet

(2004) observed, although the classic Bagehot rules might have been considered obsolete,

the current crisis has revealed that we do not have well-established rules to replace LOLR

policies.

Our paper establishes a model to study aspects of the LOLR policy. This model
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produces the following major results:

First, a central bank has to implement LOLR only when it does not have perfect infor-

mation about a financial network structure and cannot differentiate between solvent and

insolvent banks. Our previous analysis on information policy indicates that central bank

interventions are not needed if the central bank can credibly reveal perfect information

about the financial network structure.10 This result is consistent with Goodhart (1999),

who argues that when the central bank becomes the LOLR to a commercial bank, it must

be because the commercial bank is under the suspicion of insolvency, but the central bank

cannot know for sure whether this suspicion is valid or not.

Our model demonstrates that, with imperfect information, both insolvent and solvent

lending banks may face market freezes, and short-term lending contagion spreads from

lending banks to solvent borrowing banks through the process of interbank loan recall.

This gives the central bank the role of LOLR in order to improve social welfare. Losses

will be inevitable for the central bank because it cannot distinguish between insolvent

and solvent lending banks. However, as our model reveals, the total social loss incurred

as a result of contagion without the LOLR policy is much higher, compared to the cost

incurred by the LOLR policy.11

Second, we find that given that the central bank has no better information than market

participants, the optimal LOLR policy should be to lend freely at the riskless interest rate.

This policy can effectively stop complete and partial freezes and achieve maximum social

welfare. Moreover, we find that any LOLR policy with limited lending at a rate lower

than the prevailing market rate will generally alleviate market freezes and improve social

welfare.

We make a simple extension of our basic model with N = 2. More specifically, we

assume that (1) the central bank provides loans up to L̄CB to each of the lending banks,

10Note that this result is reached in our model where contagion is caused solely by uncertainty in

the financial network structure. In reality, contagion may be caused by other mechanisms, such as the

actual financial interconnections, and central bank interventions may still be necessary even with perfect

information.
11Note that we do not take into account moral hazard here. But, as argued by Goodhart (1999), there

is always a tradeoff between “preventing panic now” and “inducing riskier activity later.” When systemic

risk is high, it is impossible for the central bank to eschew the LOLR policy together because of the

concern of moral hazard.
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at a fixed interest rate rCB ≥ 0, (2) L̄CB is small so that the lending banks will still need

to borrow from the market, and (3) the lending banks will choose to borrow from the

market when the market rate r̂ ≤ rCB. As a result, only when r̂ > rCB, will the banks

borrow from the central bank, and the amount will be L̄CB. We make assumption (2)

because if L̄CB is large enough to cover all the liquidity need of the banks, then the banks

may borrow only from the central bank, and the equilibrium market rate may not exist.

We want to focus on the more interesting and realistic case where both lending banks still

need to borrow from the market in addition to their central bank loans so that we can

analyze how central bank lending will affect the market rate.

We find the equilibrium market rate using a similar method to the case without central

bank lending. Proposition 4 gives the results.

Proposition 4. At a given level of r̂ > rCB, with central banking lending, both lending

banks’ optimal choices on interbank loan recall and long-term project liquidation are the

same as without central bank lending. In addition, for both lending banks, the maximum

return rate that can be paid on deposits becomes higher, leading to a lower required rate

Γ(r̂) for any given deposit rollover probabilities of the lending banks.

Proof: See the appendix. �

We find that, in general, central bank loans at an interest rate lower than the prevailing

market rate will lead to a higher maximum return for both good and bad banks, inducing

the following two effects. First, the higher maximum rate from the good lending bank will

reduce the probability of a complete market freeze. As explained before, for an equilibrium

market rate to exist, the required rate, Γ(r̂), cannot be higher than the maximum return

rate of the good bank. The good bank having a higher maximum rate means that this

condition can be satisfied for more values of r̂, and an equilibrium is more likely to exist.

Second, the higher maximum rate from the bad lending bank will reduce the required

rate, Γ(r̂). This is because when the bad bank is insolvent, all its remaining assets are

allocated to creditors, and the actual return rate is equal to the maximum rate. With a

higher return rate from the bad lending bank, the depositors will charge a lower required

rate, Γ(r̂), to compensate for the expected loss.

However, central bank loans also lead to a lower deposit rollover probability for both

good and bad lending banks, inducing a higher required rate, Γ(r̂). To see this, note that

the good lending bank tends to have more cash resources than the bad one, because it
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can recall more interbank loans from its healthy borrowing bank. By the same token, it

tends to borrow less than the bad bank. As a result, when both lending banks reduce

their deposits by the same amount, L̄CB, the percentage drop in πgood is larger than that

of πbad. This effect will raise the required rate, Γ(r̂), because there is a relatively larger

probability that deposits will be rolled over by the bad lending bank.

We find that as long as the amount borrowed from the market is not extremely small

(so that πgood is not extremely small), the overall effect of central bank loans is to lower

equilibrium market rates. Thus, in general, central bank lending at a rate lower than the

prevailing market rate tends to alleviate market freezes and contagion. The equilibrium

market rate tends to be lower, and a complete market freeze is less likely to happen.

Below we provide a numerical example with the same baseline parametrization to

illustrate the effects. We set L̄CB = 0.25 and rCB = 0. Figure 10(a) compares the results

with and without central bank lending at Rshock = 0.32. Here the case without central

bank lending is the same as in figure 4. We can see that with central bank lending, the

curve of the required rate, Γ(r̂), shifts downward and crosses the 45 degree line at a lower

equilibrium rate. The equilibrium rate without central bank lending is r̂∗ = 0.1264, while

the equilibrium rate with central bank lending is r̂∗ = 0.1. In addition, the constraint

imposed by the maximum return from the good bank L2 is now shifted up. Note that

this curve is independent of the level of Rshock, because the action of the good bank L2

depends only on r̂. This implies that the required rate, Γ(r̂), is more likely to be below

this curve, and a complete market freeze is less likely to happen.

Figure 10(b) shows the result for different values of Rshock. For values of Rshock that

lead to a positive r̂ in the case without central bank lending, the equilibrium rate is now

lower with central bank lending. In addition, for values of Rshock that lead to the non-

existence of equilibrium rates in the case without central bank lending, an equilibrium

rate now exists. That is, for those values of Rshock, a partial market freeze now replaces

a complete one.

In the above example, we focus on the more realistic case where the lending banks still

need to borrow from the market. However, theoretically, the policy that minimizes the

liquidation of assets and the associated social cost would be for the central bank to lend at

the riskless rate and to meet all the liquidity need of the lending banks. Intuitively, if the

lending banks can borrow enough liquidity from the central bank at the lowest possible
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Figure 10: The effect of central bank lending on the market equilibrium rate when

L̄CB = 0.25 and rCB = 0.

rate, then they will not liquidate their own assets. The good lending bank will not need

to recall any interbank loans, and the bad lending bank will have the weakest incentive to

recall its interbank loans. Consequently, long-term asset liquidation is minimized. This

also implies that the liquidation cost will be higher when the central bank lends less or

charges a higher rate.

7 Interpretations and extensions of the model

In our model we assume that there are equal numbers of paired borrowers and lenders.

This is an extreme assumption to make the game theoretical analysis symmetrical and

relatively easy to solve. But we can reinterpret the model to allow for more realistic

network credit exposures.

First, assume that the model describes a distressed bank and a group of identical

creditor banks that are aggregated into one representative creditor bank. Then we could

treat the remainder of the lending banks as institutions that are known to have been

creditors of the distressed bank in the past; but short-term creditors are uncertain about

their current exposures to the distressed bank. In this interpretation, the other banks

have no exposure to the distressed bank, but could suffer a complete or partial freeze
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because of short-term creditor doubt.

Second, we can add a further group of institutions that are widely known to short-

term creditors as having no exposure to the distressed bank. This group are immune to

a freeze.

Third, one can think of this as a domestic banking system embedded in an international

banking system. It is easy to reinterpret our model in a situation where a domestic banking

system and domestic short-term money markets are potentially exposed to international

credit risks through domestic bank exposures to international credit risks. Although only

a subset of domestic banks may be vulnerable, domestic money markets may fear that

there are undisclosed exposures.

A critical aspect of our model is that short-term creditors do not have accurate in-

formation about the network of bank exposures. We could create a richer theory if we

allow short-term creditors to acquire additional information by observing some signals.

For instance, in the current model, we implicitly assume that borrowing from the cen-

tral bank does not change depositors’ beliefs. A possible extension is to allow banks’

borrowing activities to reveal information about their asset quality. As a result, banks

may use central bank loans as a signaling tool, and it would be interesting to find out

what the optimal central bank loan policy would be after this informational effect is taken

into account. For example, central banks may have an incentive to hide the identity of

the borrowing banks, if depositors believe that all the banks borrowing from the central

bank are insolvent. In this case, borrowing from the central bank will greatly increase a

bank’s cost of borrowing from the market, resulting in a lower than socially optimal level

of borrowing from the central bank.

8 Conclusions

This paper studies contagion and systemic market freezes caused by uncertainty regarding

interconnections in the financial system. Our model demonstrates that a negative shock

to an individual financial institution can spread to other financial institutions because

of creditor uncertainty about the interconnections among the financial institutions. This

can lead to partial or complete market freezes affecting all the financial institutions.

Our model reveals that, because of the uncertainty regarding interconnections, all the
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financial institutions perceived by the market to be connected to the distressed institution

can be involved in the contagion, even when they have no actual connection to it. Thus,

our model shows that the magnitude of contagion could be greatly magnified because

of short-term creditor uncertainty about interbank exposures in the financial system.

Policy implications are also explored in our paper. Using our model, we find that it

is crucial for a central bank to keep accurate information about the financial network

structure in order to prevent contagion in a financial crisis. Moreover, given that the

central bank does not have perfect information, better information provided by the central

bank to market participants to refine their beliefs about interbank exposures does not

necessarily improve social welfare. This is because the number of lending institutions

involved in the contagion has a non-monotonic relationship with the social losses caused

by the contagion. If we are to ignore moral hazard, (a) bailout policies guaranteeing the

debts of the financial institution hit by the shock, and (b) capital injections to all the

lending financial institutions are two policies that can check the contagion. The LOLR

policy can also effectively alleviate market freezes by lowering market rates and reducing

the incidence of complete market freezes.

A Proofs

A.1 Proof of lemma 1

Using (1), we get

∂NV nr
B1

∂α
= −(1 + R̂)

∂l

∂α
+ x (14)

Using (2), we get

∂α

∂l
=

λ(1 + R̂)− γl(1 + R̂)2

x
⇒

∂l

∂α
=

x

λ(1 + R̂)− γl(1 + R̂)2
≥

x

λ(1 + R̂)
(15)

Thus

∂NV nr
B1

∂α
< −(1 + R̂)

x

λ(1 + R̂)
+ x = −(

1

λ
− 1)x < 0 (16)

since λ < 1. �
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A.2 Proof of lemma 2

Proof of result (1): Given lemma 1, when α < α1, NV nr
B1

is positive, implying that bank

B1 is able to repay all the liabilities. Given that other depositors roll over their deposits,

each depositor does not have an incentive to deviate. Thus, all the bank B1 depositors

rolling over their deposits is a Nash equilibrium. Since we assume that whenever a no-run

equilibrium is feasible, depositors will choose this equilibrium, the no-run equilibrium is

the equilibrium.

Proof of result (2): Given lemma 1, when α > α1, NV nr
B1

is negative. Thus, bank B1

is unable to repay all the liabilities at date 2, given that all the depositors withdraw at

date 2. We first prove that a no-run equilibrium is not feasible. Note that when α > α1,

a depositor receives less than 1 unit of the good at date 2 for each unit of the deposit.

Suppose that an individual depositor deviates to withdrawing at date 1. Given that bank

B1’s asset value is positive at date 2, he will receive 1 unit of the good by withdrawing at

date 1. In this case, a depositor is better off by withdrawing at date 1. Given that bank

B1 has no assets left at date 2, a depositor will receive nothing by withdrawing at date 2,

while withdrawing at date 1 will yield a positive payment. Thus, in this case, a depositor

is also better off by withdrawing at date 1. Thus we prove that a no-run equilibrium is

not feasible.

Next we prove that all the depositors withdrawing at date 1 is actually a Nash equi-

librium. Given that all the other depositors choose to withdraw at date 1, and bank B1’s

asset value is 0 at date 2, an individual depositor is strictly better off withdrawing at date

1. In this case, bank B1’s resources, which are strictly positive, will be proportionally

allocated to depositors. Given that bank B1’s asset value is positive at date 2, then bank

B1 must have enough resources to meet the withdrawal at date 1. Thus, withdrawing at

date 1 will yield a payoff of 1 unit of the good. This is no worse than the payoff from

withdrawing at date 2, which is no greater than 1 unit of the good. This means that a

depositor has no incentive to deviate from the strategy of withdrawing at date 1. Thus

we prove that withdrawing at date 1 is a Nash equilibrium. �

A.3 Proof of α2 ≤ 1 given α1 ≤ 1

We prove this result by contradiction. We show that if α2 > 1, then α1 > 1.
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The meaning of α2 > 1 is that the liquidation value of B1 at date 1 is more than

enough to meet the withdrawal of bank B1’s depositors and bank L1, given that bank L1

recalls all of its interbank loans. Thus we have

VB1,liquidation = λL(1 + R̂)−
1

2
γ(L(1 + R̂))2 > (D0 − x) + x = D0 (17)

The meaning of α1 > 1 is that when bank L1 recalls all of its interbank loans at date

1, bank B1 still has enough assets to meet the withdrawal of its depositors at date 2.

Thus we have

x = λl(1 + R̂)−
1

2
γ(l(1 + R̂))2 (18)

NV nr
B1,α=1 = (L− l)(1 + R̂)− (D0 − x) > 0 (19)

A simple transformation of (19) gives us (L− l)(1 + R̂) + x > D0.

Given (17), if we prove that (L− l)(1+ R̂)+x > D0, then we prove that NV nr
B1,α=1 > 0

and, consequently, α1 > 1. Using (17), it is equivalent to proving that (L− l)(1+R̂)+x >

VB1,liquidation = λL(1 + R̂)− 1
2
γ(L(1 + R̂))2. The proof is as follows. Using (17) and (18),

we get

(L− l)(1 + R̂) + x− VB1,liquidation

= (L− l)(1 + R̂) +

[

λl(1 + R̂)−
1

2
γ(l(1 + R̂))2

]

−

[

λL(1 + R̂)−
1

2
γ(L(1 + R̂))2

]

= (1 + R̂)(1− λ)(L− l) + (L2
− l2)

1

2
γ((1 + R̂))2 > 0 (20)

This is because L > l, 1 > λ and 1 + R̂ > 0. Thus we prove that if α2 > 1, then α1 > 1.

So, by contradiction, if α1 ≤ 1, then α2 ≤ 1.

The intuition behind this result is as follows. When α2 > 1, the liquidation value of

B1 at date 1 is more than enough to meet the liquidity demands from both its depositors

and bank L1, even when bank L1 recalls all of its interbank loans. Now suppose that bank

L1 still recalls all of its loans, but the depositors wait until period 2. Then the bank’s net

asset value is definitely higher than in the previous case where depositors withdraw at

date 1 and, consequently, is more than enough to meet the withdrawal of depositors. This

is because with a zero interest rate, depositors still withdraw the same amount at date

2. Since liquidation is costly, the assets that otherwise must be liquidated to meet the

withdrawal of depositors at date 1 can now be carried over to date 2, implying that bank
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B1’s assets at date 2 must be more than enough to meet the withdrawal of its depositors.

This means that NV nr
B1,α=1 > 0, and by definition, α1 > 1, which means that α1 ≤ 1 is

impossible. So, by contradiction, when α1 ≤ 1, we must have α2 ≤ 1. �

A.4 Proof of lemma 3

Let Π denote the total payoff of bank L1 from its interbank loans in terms of date 2 value.

Thus we have the following results.

First, when α ∈ [0, α1], bank B1 has enough resources at date 2 to repay all its

creditors. Thus, we have

Π = αx+ (1− α)x = x (21)

Second, when α ∈ (α1, α2], we have

Π = αx+ (L− l)(1 + R̂) (22)

αx+D0 − x = λl(1 + R̂)−
1

2
γ[l(1 + R̂)]2 (23)

It turns out that

∂Π

∂α
= x− (1 + R̂)

∂l

∂α
(24)

Using (23), we have

∂l

∂α
=

x

(1 + R̂)(λ− γ(1 + R̂)l)
(25)

Thus we have

∂Π

∂α
= x−

x

λ− γ(1 + R̂)l
< 0 (26)

because, by assumption, λ < 1 and λ−γ(1+ R̂)l > 0. As a result, 0 < λ−γ(1+ R̂)l < 1.

When α ∈ [α2, 1], we have

Π =
αx

αx+ (D0 − x)
(λL(1 + R̂)−

1

2
γ[L(1 + R̂)]2) (27)

It is straightforward to see that Π is strictly increasing in α.
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Note that there is a downward jump in Π at α1, because (L−l)(1+R̂) < (1−α)x. This

jump is caused by the liquidation cost incurred by the withdrawal of bank B1’s depositors

at date 1.

In addition, Π is continuous at α2, that is, Π(α ∈ (α1, α2], α = α2) = Π(α ∈ (α2, 1], α =

α2). Note that by definition, α2x + (D0 − x) = λL(1 + R̂)− 1
2
γ[L(1 + R̂)]2. As a result,

Π(α ∈ (α1, α2], α = α2) = Π(α ∈ (α2, 1], α = α2) = α2x. �

A.5 The proof of bank L1’s payoff from interbank loans with

different combinations of α1 and α2

Appendix A.4 gives bank L1’s payoff when 0 ≤ α1 < α2 ≤ 1. The following points

elaborate on all the other possible cases.

First, α1 ∈ [0, 1] and α2 ≤ α1. In this case, when α ∈ [0, α1], bank L1’s payoff, Π, is

given by (21). This is because when α ≤ α1, a no-run equilibrium is feasible for bank B1,

and bank B1 is solvent and able to repay all its creditors at date 2. When α ∈ [α1, 1],

bank L1’s payoff is given by (27), which we proved is strictly increasing in α. This is

because when α > α1, bank B1 depositors will withdraw at date 1. In addition, bank B1

has no assets left at date 2 since α > α1 > α2.

Note that given that α1 ∈ [0, 1], bank L1’s payoff from its interbank loans is maximized

at α = 0. This is because, given that α1 ∈ [0, 1], a no-run equilibrium is always feasible

for bank B1 at α = 0.

Second, α1 > 1. In this case, bank L1’s payoff, Π, is given by (21) over α ∈ [0, 1]. This

is because bank B1’s net value at date 2 is positive even when bank L1 recalls all of its

interbank loans. Thus, bank B1 depositors will not withdraw at date 1 for all α ∈ [0, 1].

Third, α1 < 0. In this case, bank B1 does not have enough resources to repay its

liabilities at date 2, even when bank L1 does not recall any interbank loans at date 1. So

bank B1 depositors will always withdraw at date 1 for α ∈ [0, 1]. In the case of α2 ∈ (0, 1],

when α ∈ [0, α2], bank L1’s payoff is given by (22), which we proved is strictly decreasing

in α. When α ∈ [α2, 1], bank L1’s payoff is given by (27), which we proved is strictly

increasing in α. As a result, bank L1’s payoff is maximized either at α = 0 or at α = 1.

In the case of α2 ≤ 0, bank L1’s payoff is given by (27) over α ∈ [0, 1], which we proved
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is strictly increasing in α and is maximized at α = 1.12 Figure 11 illustrates the above

results. �

1a2a0 1

Payoff of the lending bank

Depositors of the
borrowing bank
do not run

Depositors of the
borrowing bank
run at time 1

(a) 0 ≤ α1 ≤ 1, α2 < α1

0 1

Payoff of the lending bank

Depositors of the borrowing bank
do not run at time 1

(b) α1 > 1

2a0 1

Payoff of the lending bank

Depositors of the borrowing bank
run at time 1

(c) α1 < 0, α2 > 0

0 1

Payoff of the lending bank

Depositors of the borrowing bank
run at time 1

(d) α1 < 0, α2 ≤ 0

Figure 11: The lending bank’s payoff from interbank loans in other cases

A.6 Proof of proposition 1

When α1 ≥ 0, bank B1 has enough resources to meet all the liabilities at date 2 at α = 0.

Thus at α = 0, bank B1 depositors will coordinate for the no-run equilibrium, and bank

L1 receives the maximum payoff from its interbank loans, x. So α = 0 produces the

first best allocation. When α1 < 0, bank B1 does not have enough resources to meet its

liabilities at date 2, even when bank L1 does not recall any interbank loans (α = 0). Thus,

bank B1 depositors will withdraw at date 1 for any α. Our previous analysis reveals that

bank L1’s payoff is first strictly decreasing, and then strictly increasing (when α2 < 0, it

will be strictly increasing over the whole region). So the optimal solution is either α = 0

or α = 1. �

A.7 Proof of proposition 2

This argument is similar to lemma 2. Given that V nr
L1

≥ D0 + x, the no-run equilibrium

is feasible. Given that other depositors do not run, an individual depositor will not run.

Given that V nr
L1

< D0 + x, since liquidation is costly, VL1,liquidation < V nr
L1

< D0 + x. As a

result, a no-run equilibrium is not feasible. Given that other depositors do not withdraw

at date 1, an individual depositor will always be better off by withdrawing at date 1,

because he will receive 1 unit of the good by withdrawing at date 1 and will receive less

than 1 unit of the good by withdrawing at date 2. Moreover, a run equilibrium is actually

12Note that for α1 < 0, we need only to consider the case where α2 ≤ 1, because we prove that if

α1 ≤ 1, then α2 ≤ 1 (see Appendix A.3).
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a Nash equilibrium: Given that other depositors run, an individual depositor will get

nothing if he withdraws at date 2. While withdrawing at date 1 will yield a positive

payoff of VL1,liquidation/(D0 + x). So withdrawing at date 1 is a Nash equilibrium.

We prove that when bank L1 depositors run, bank B1 depositors will always run as

follows. If bank B1 depositors do not run, bank L1 depositors will never run. This is

because when bank B1 depositors do not run, bank B1 must have been solvent at date 2,

implying that bank L1 will receive full repayments of x at date 2. As a result, bank L1 will

not incur any losses, and bank L1 depositors will be fully paid at date 2. Thus a no-run

equilibrium is feasible for bank L1. Thus we can infer that when bank L1 depositors run,

bank B1 depositors must run as well. �

A.8 Proof of lemma 4

If the lending bank collects goods at date 1 by liquidating its long-term project, the

marginal cost of 1 unit of goods in terms of date 2 goods is at least 1
λ
. So the lending

bank is always worse off by liquidating the long-term project to reduce the amount of rolled

over deposits when 1+r̂ < 1
λ
. More specifically, the optimal liquidation of a lending bank’s

own long-term project is determined as follows. Suppose the bank liquidates l units of its

long-term project to repay deposits. The associated payoff is

[λl(1 +R)−
1

2
γ(l(1 +R))2](1 + r̂) + (L− l)(1 +R) (28)

The first term is debt reduction achieved by using the liquidated goods to repay deposits,

and the second term is the value of the unliquidated long-term project. The first order

derivative of the payoff w.r.t l is (1+R)[(λ−γl(1+R))(1+r̂)−1]. When at l = 0, λ(1+r̂) <

1, we have the corner solution of l = 0. When at l = L, (λ− γL(1 + R))(1 + r̂) > 1, we

have the corner solution of l = L. Otherwise, we have the interior solution of l =
λ− 1

1+r̂

γ(1+R)
.

Thus we prove result (1).

A lending bank’s decision of α can be analyzed in a similar way to the perfect informa-

tion case. Figure 12 illustrates the intuition behind this decision. In the general case, we

can still separate α into three regions of [0, α1], (α1, α2], and [α2, 1]. The reactions of the

borrowing banks’ depositors given α are the same as in the perfect information case. The

payoff for the lending bank is different, however, because the interest rate for deposits is

now 1 + r̂.
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bank run at date 1

Figure 12: An example of the lending bank’s payoff from recalling αx of interbank
loans under imperfect information

Let Πi be the total payoff from interbank loans in terms of date 2 value. Note when

the market rate r̂ is positive, the bank will use the recalled money to repay its deposits.

Thus, in terms of date 2 value, the payoff from the recalled interbank loans of αx equals

the proceeds from the recall multiplied by 1+ r̂. When α ∈ [α2, 1], Π
i = αx

αx+(D0−x)
(λL(1+

R̂) − 1
2
γ[L(1 + R̂)]2)(1 + r̂). It is strictly increasing in α. So the local optimal point in

the region of [α2, 1] is at α = 1.

When α ∈ [0, α1],

Πi = (1− α)x+ αx(1 + r̂) (29)

The first term on the right-hand-side is the payoff from the remaining interbank loans

at date 2. The second term means the withdrawal of αx reduces the date 2 debts by

αx(1+ r̂). Since the payoff is increasing in α, the local optimal point is α1, implying that

the bank will recall at least α1 of its interbank loans.

When α ∈ (α1, α2],

Πi = αx(1 + r̂) + (L− l)(1 + R̂) (30)

αx+D0 − x = λl(1 + R̂)−
1

2
γ[l(1 + R̂)]2 (31)

In this case, the borrowing bank’s depositors will run, and the lending bank owns all the

remaining assets of the borrowing bank. It turns out that

∂Πi

∂α
= x(1 + r̂)−

x

λ− γ(1 + R̂)l
(32)

Thus, when 1 + r̂ > 1
λ−γ(1+R̂)l

, Πi is strictly increasing in α. Otherwise, it is strictly

decreasing in α. Note that l is strictly increasing in α. Let l(α1) and l(α2) denote the
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liquidated long-term project at α1 and α2 respectively. Given that l(α1) ≥
λ− 1

1+r̂

γ(1+R̂)
, Πi

is always strictly decreasing in α ∈ (α1, α2]. Given that l(α2) ≤
λ− 1

1+r̂

γ(1+R̂)
, Πi is always

strictly increasing in α ∈ (α1, α2]. Given that l(α1) <
λ− 1

1+r̂

γ(1+R̂)
< l(α2), Π

i is concave when

α ∈ (α1, α2], and there is an optimal level of α ∈ (α1, α2) that maximizes Πi. Thus we

prove result (2).

Similar to the perfect information model, other cases with different combinations of

α1 and α2 are simply special examples of our case above. We can find these payoffs in a

similar way as we did for the perfect information model. �

A.9 Proof of corollary 1

From proposition 1, we know that if α1 ≥ 0, bank B1 will have enough resources to

repay all the debts and bank L1 will get the full payment of x from its interbank loans.

The assumption is if bank L1 has not suffered any loss, it should be able to repay all its

debts at the riskless rate. Since the bad lending bank can repay the riskless rate with no

uncertainty, the riskless rate is the equilibrium rate. Conversely, if the equilibrium rate

is not the riskless rate, then it must be the case that α1 < 0, so that bank B1 depositors

will run given any choice of α by bank L1. �

A.10 Proof of proposition 4

When r̂ ≤ rCB, the banks borrow only from depositors, so their decisions are the same as

in the case without central bank lending. When r̂ > rCB, the two banks will borrow L̄CB

from the central bank first and then borrow at r̂ on the market. Remember that without

central bank lending, bank L1 will recall the optimal proportion of α(r̂) of interbank loans

and liquidate l(r̂) of its long-term project to maximize its net asset value at date 2, which

is given by

H((1− α)x) + (L− l)(1 +R)− (D0 + x− Z)(1 + r̂) (33)

With central bank lending, bank L1’s net asset value changes into

H((1− α)x) + (L− l)(1 +R)− (D0 + x− Z − L̄CB)(1 + r̂)− L̄CB(1 + rCB) =

H((1− α)x) + (L− l)(1 +R)− (D0 + x− Z)(1 + r̂) + L̄CB(r̂ − rCB) (34)

44



which is Equation (33) plus a constant L̄CB(r̂ − rCB). This implies that the solutions of

α and l are the same as those for Equation (33). The decision of bank L2 can be proved

similarly.

Because the solutions of α and l are still the same, the assets at date 2, denoted as V ′,

will be the same as in the case without central bank lending, V ′ = V . With central bank

lending, the cash used to repay deposits will be increased by L̄CB. Let D′ = D − L̄CB

denote the deposits that are rolled over. At date 2, each unit of date 1 deposit will

turn into 1 + r̂ units, and the total outstanding debt of the lending bank will become

D′(1 + r̂) + L̄CB(1 + rCB). The maximum return rate for each unit of date 1 deposit

will be V
D′(1+r̂)+L̄CB(1+rCB)

(1 + r̂). Without central bank lending, the maximum rate is
V

D(1+r̂)
(1 + r̂) = V

D
. When rCB < r̂, we have

V

D′(1 + r̂) + L̄CB(1 + rCB)
(1 + r̂) >

V

D′(1 + r̂) + L̄CB(1 + r̂)
(1 + r̂) =

V

D′ + L̄CB

=
V

D
(35)

so the maximum return rate becomes higher.

The required rate is decided according to

1 =
1

2

[

π′

good(1 + Γ(r̂)) + (1− π′

good)
]

+
1

2

[

π′

bad

Vbad(1 + r̂)

D′

bad(1 + r̂) + L̄CB(1 + rCB)
+ (1− π′

bad)

]

(36)

where D′ = D−L̄CB and π′ = D′/(D0+x) for each type of bank. If we take π′

good and π′

bad

as given, then the higher maximum return rate from the bad bank, Vbad(1+r̂)

D′

bad
(1+r̂)+L̄CB(1+rCB)

>
Vbad

Dbad
, will lead to a lower Γ(r̂). �

B Numerical examples: optimal choices for banks L1

and L2 and the determination of Γ(r̂)

Panels (a) and (b) of figure 13 illustrate the optimal choices of banks L1 and L2 on

interbank loan recall and long-term project liquidation at Rshock = 0.32 for different

levels of r̂. At this Rshock level, bank L1 always chooses to recall all the interbank loans

from bank B1 for any r̂ ≥ 0. Bank L2 will always recall αL2

1 x = 0.8334x of interbank

loans when r̂ > 0, where αL2

1 is determined by our previous analysis on α1. Both L1 and

L2 start to liquidate long-term projects when 1 + r̂ > 1
λ
≈ 1.087. Given the parameter
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Figure 13: Optimal choices of banks L1 and L2 at Rshock = 0.32
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values in our numerical example, l =
λ− 1

1+r̂

γ(1+R)
(because 1

λ
< 1 + r̂ < 1

λ−γL(1+R)
) is strictly

increasing in r̂.

Panels (c) and (d) of figure 13 illustrate how V and D of the lending banks change in

r̂. For both banks L1 and L2, a downward jump of V and D occurs when r̂ changes from

zero to positive. For bank L1, when r̂ = 0, the bank is indifferent between keeping the

proceeds from recalling the interbank loan and using the proceeds to repay its depositors.

We assume that the bank will keep the proceeds. When r̂ > 0, the bank will use the

proceeds to repay its depositors at date 1, causing a downward jump of both VL1
and

DL1
. Similarly, when r̂ becomes positive, bank L2 will recall αL2

1 x of the interbank loan

and use the proceeds to repay its depositors, causing a downward jump of VL2
and DL2

.

When 1+ r̂ > 1
λ
, V and D decrease in r̂. This is because, as r̂ becomes higher, the banks

will liquidate more long-term projects to repay its depositors at date 1.

Panel (e) of figure 13 illustrates how V
D

changes in r̂. When r̂ turns from zero to

positive, the repayment to depositors by bank L2 will cause
VL2

DL2

to jump upward, while

the repayment to depositors by bank L1 will cause
VL1

DL1

to jump downward. This is because

in this example, at r̂ = 0, we have
VL2

DL2

> 1 and
VL1

DL1

< 1. It is straightforward to show

that V−Z
D−Z

is strictly increasing in Z when V
D

> 1, and is strictly decreasing in Z when
V
D

< 1, where Z is the cash used to repay the depositors, with 0 < Z < min(V,D). So

here repaying the depositors increases the maximum rate available to bank L2 depositors,

but reduces the maximum rate available to bank L1 depositors. When 1 + r̂ < 1
λ
, both

VL2

DL2

and
VL1

DL1

remain constant. When 1 + r̂ > 1
λ
, both

VL2

DL2

and
VL1

DL1

are decreasing in r̂.

This is because the marginal cost of liquidating long-term projects is increasing, and a

decrease in one additional unit of V leads to a less and less decrease in D.

Panel (f) of figure 13 illustrates how π changes in r̂. There is a downward jump in

both πL1
and πL2

when r̂ turns positive, caused by the repayment to depositors explained

before. Except for the jump at r̂ = 0, both πL2
and πL1

remain constant when 1+ r̂ ≤
1
λ
.

When 1+ r̂ > 1
λ
, both πL2

and πL1
are decreasing in r̂, because both banks liquidate more

long-term projects to repay their depositors.

Next we give a detailed explanation for the movement of Γ(r̂) in figure 4. The equi-

librium condition of Γ(r̂) (Equation (12)) can be written as

1 =
1

2
[πL2

(1 + Γ(r̂)) + (1− πL2
)] +

1

2

[

πL1

VL1

DL1

+ (1− πL1
)

]
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Γ(r̂) has a small upward jump when r̂ turns positive. As we explained before, when r̂

turns positive, there is a downward jump in both πL2
and πL1

. A lower probability that

deposits will be rolled over by the good bank, πL2
, will induce a higher Γ(r̂), while a lower

πL1
will induce a lower Γ(r̂). In addition, the maximum rate from the bad bank

VL1

DL1

is

lower, while the maximum rate from the good bank
VL2

DL2

is higher. The lower
VL1

DL1

will

induce a higher Γ(r̂), but the higher
VL2

DL2

has no effect on Γ(r̂). This is because, as long

as
VL2

DL2

> 1 + r̂, depositors receive only the promised interest rate of 1 + r̂ from the good

bank. The overall effect is a small upward jump in Γ(r̂). When 0 < r̂ < 1
λ
, Γ(r̂) remains

constant because there are no changes in the choices of the two banks. When r̂ > 1
λ
,

Γ(r̂) is increasing in r̂. This is because banks start to liquidate their long-term projects,

incurring liquidation costs. As a result,
VL1

DL1

decreases, causing depositors to require a

higher interest rate, Γ(r̂), from the good bank to compensate for the higher expected loss

to the bad bank.
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