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1 Introduction

Economists formulate approximation models to capture the effects or factors supported by
the empirical data. However, different approximation models usually yield different empirical
results, which give rise to model uncertainty. There are two popular approaches for dealing
with model uncertainty: model selection and model averaging.

Model selection is a procedure through which the best model is selected from a set of
approximation models. This procedure generally involves calculating a criterion function for
all of the approximation models and ranking them accordingly. One of the most widely used
criterion functions is the Akaike information criterion (AIC) proposed by Akaike (1973).
There are multiple versions of the AIC, the simplest of which is composed of a log-likelihood
maximum and a penalty term. A popular alternative to AIC is the Bayesian information
criterion (BIC) developed by Schwarz (1978). BIC is constructed similarly to AIC, but
with a stronger penalty for complexity. There are other methods based on various criteria.
Examples of these methods include the Mallows Criterion (Mallows’ Cp) by Mallows (1973),
the prediction criterion by Amemiya (1980), and the focused information criterion (FIC) by
Claeskens and Hjort (2003).

Model averaging is an alternative to model selection. Instead of selecting a single “win-
ning” model, model averaging calculates the weighted average of a set of approximation
models. Barnard (1963) first mentioned the concept of “model combination” in a paper
studying airline passenger data. Leamer (1978) proposed the basic paradigm for Bayesian
model averaging (BMA). Buckland, Burnham and Augustin (1997) suggested using expo-
nential AIC estimates as model weights and proposed the model average AIC (MA-AIC).
There is an increasing focus on BMA in current literature (Draper (1995), Raftery, Madigan
and Hoeting (1997), Kass and Raftery (1995), etc.); for a literature review on this topic, see
Hoeting, Madigan, Raftery and Volinsky (1999).

However, applying BMA can sometimes be difficult due to the “prior set-up” required:
before using the BMA approach, researchers need to assign prior probability distributions
to the parameters of each model and prior probabilities to each model. The correct and
efficient assignment of these prior values can be controversial in the field of economics,
although some recent applied works may provide guidance: see Sala-i-Martin, Doppelhofer
and Miller (2004), Ley and Steel (2009), Liu and Maheu (2009) and Wright (2009).

Least squares model averaging is an alternative to BMA. Hansen (2007) proposed the
Mallows model average (MMA) method based on the original Mallows criterion. An im-
plementation of MMA in forecast combination was made in Hansen (2008). Hansen (2009)
extended MMA to regressions with a possible structural break. Another extension was made
to autoregression with a near unit root in Hansen (2010). Most of these works are based on
homoskedastic error terms. Hansen and Racine (2011) proposed a jackknife model averag-
ing (JMA) that considers heteroskedastic error settings. One limitation of MMA in Hansen
(2007) is that the approximation models must be strictly nested in a way that depends on
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the ordering of regressors. In response to Hansen (2007), Wan, Zhang and Zou (2010) proved
that the optimality of MMA holds for continuous model weights with non-nested models.

There are alternatives to model selection and model averaging. Fan and Li (2001) stud-
ied penalized likelihood estimators. Knox, Stock and Watson (2004) proposed the empirical
Bayes estimator. There is also a considerable amount of literature that concentrates on
general-to-specific (GETS) modeling. The foundations of GETS modeling have been devel-
oped over last several decades; see Hendry (1976, 1980, 1983), Gilbert (1986), Pagan (1987),
Hoover and Perez (1999) and Hendry and Krolzig (1999). Campos, Ericsson and Hendry
(2005) provide an overview of, and selected bibliography regarding, GETS modeling.

In this paper, we propose a model average estimator with empirical weights computed
through numerical minimization of a model average prediction criterion (MAPC). Our crite-
rion can be seen as a model averaging version of the original prediction criterion proposed by
Amemiya (1980). We prove that the MAPC estimator is asymptotically optimal in the sense
of achieving the lowest possible mean squared error, which applies both to nested and to
non-nested approximation models. We divide the regressors into two groups: the “core” re-
gressors, which are of primary interest to us and are included in every approximation model;
and the “potential” regressors, which are of marginal interest to us and are included in some
but not all approximation models. For statistical inference, we derive asymptotic tests for
single hypotheses and joint hypotheses on the core average coefficients. To improve the finite
sample performance, we also consider bootstrap tests. In simulation experiments the MAPC
estimator is shown to have significant efficiency gains over existing model selection and model
averaging methods. We also show that the bootstrap tests have more reasonable rejection
frequency than the asymptotic tests in small samples. As an empirical illustration, we apply
the MAPC estimator to the cross-country economic growth models in Barro (1991).

This paper continues with an introduction of the framework of MAPC in Section 2. Sec-
tion 3 proves the asymptotic optimality of the MAPC estimator and derives asymptotic tests
and bootstrap tests for single hypotheses and joint hypotheses on the average coefficients.
Section 4 presents simulation experiments. In Section 5, we provide an empirical application,
in which the MAPC estimator is applied to the economic growth models in Barro (1991).
Section 6 concludes the paper. Proofs are presented in Appendix A and a description of the
data set used in Section 5 can be found in Appendix B.

2 Model Averaging Prediction Criterion

Let (yi,xi) : i = 1, ..., n be a random sample, where yi and xi = [xi1, xi2, ...] are real-valued.
We let xi be countably infinite. The same design can be seen in Hansen (2007) and Wan et
al. (2010). We assume the data generating process is

yi = µi + ui, (1)

where µi =
∑∞

j=1 βjxij, E(ui|xi) = 0 and E(u2
i |xi) = σ2.
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We consider a sequence of linear approximation models m = 1, 2, ...,M . The concept of
“approximation model” can be vague. In this paper, an approximation model m uses k(m)

regressors belonging to xi such that

yi =
k(m)∑
j=1

β
(m)
j x

(m)
ij + u

(m)
i for i = 1, ..., n, (2)

where β
(m)
j is a coefficient in model m and x

(m)
ij is a regressor in model m. Other forms

of approximation models are beyond the scope of this paper. The approximation error for
model m is defined as

b
(m)
i ≡ µi −

k(m)∑
j=1

β
(m)
j x

(m)
ij for i = 1, ..., n. (3)

Therefore, as long as the approximation model is finite, it always contains non-zero approx-
imation error.

Hansen (2007) assumed that the regressors xi were an ordered set and an approximation
modelm contained the first k(m) regressors from xi. As a result, models with fewer regressors
would always nest within larger models, which made the k(m) such that

0 ≤ k(1) < k(2) < · · · < k(m) < · · · < k(M).

This nested model set-up was demonstrated to be unnecessary by Wan et al. (2010) and
Hansen and Racine (2011). In this paper, we place no such restrictions on the orders of xi

and the k(m). Approximation models in our paper can be either nested or non-nested, which
makes our method more widely applicable.

The DGP (1) and approximation model (2) can be represented in the following matrix
forms:

y = µ+ u

and
y = X(m)β(m) + u(m),

where y is n × 1, µ is n × 1, X(m) is n × k(m) with the ijth element being x
(m)
ij , β(m) is

k(m) × 1 and u(m) is the error term for model m. Let P stand for a projection matrix. For
an approximation model m, we have

P (m) = X(m)
(
X(m)⊤X(m)

)−1

X(m)⊤. (4)

Therefore, the least squares estimate of µ from model m is µ̂(m) = P (m)y.
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Let w =
[
w(1), ..., w(M)

]⊤
be a weight vector in the unit simplex in RM and define

HM ≡

{
w ∈ [0, 1]M :

M∑
m=1

w(m) = 1

}
,

where HM is a continuous set. Note that Hansen (2007) and Hansen and Racine (2011)
assumed a discrete set H∗

M for w, in which

H∗
M (N) ≡

{
w(m) ∈

[
0,

1

N
,
2

N
, ..., 1

]
:

M∑
m=1

w(m) = 1

}

for some fixed integer N . We will discuss this further in Section 3.

We define the model average estimator of µ as

µ(w) ≡
M∑

m=1

w(m)µ̂(m) =
M∑

m=1

w(m)P (m)y. (5)

For the sake of simplicity, we define a weighted average projection matrix P (w) as

P (w) ≡
M∑

m=1

w(m)P (m).

Accordingly, (5) can be simplified to

µ(w) = P (w)y. (6)

The effective number of parameters k(w) in model averaging estimation is defined as

k(w) ≡
M∑

m=1

w(m)k(m), (7)

which is a weighted sum of the k(m). Note that k(w) is not necessarily an integer.

We propose the model average prediction criterion (MAPC):

MAPCn(w) =
(
y − µ(w)

)⊤(
y − µ(w)

)(n+ k(w)

n− k(w)

)
, (8)

where µ(w) and k(w) are defined in (6) and (7). MAPC can be understood as the model
averaging version of the prediction criterion by Amemiya (1980). Like most model selection
criteria and model averaging criteria, MAPC follows the idea of parsimony and balances
between the fitness and the size of a model. MAPC can be used to calculate the empirical
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weight vector ŵ, in which
ŵ = argmin

w∈HM

MAPCn(w).

According to Hansen (2007), the Mallows’ model average (MMA) criterion is

MMAn(w) =
(
y − µ(w)

)⊤(
y − µ(w)

)
+ 2σ2k(w). (9)

The empirical weights ŵ can be selected by minimizing (9) subject to w ∈ H∗
M . The

MMA criterion is composed of an averaged sum of squared residuals and a penalty term for
complexity. Note that the penalty term includes an unknown σ2 that must be replaced by a
sample estimate.

For convenience in calculations, we rewrite both criteria. First, denote û(m) as an n× 1
estimated residual vector from model m. Let Û be an n × M matrix consisting of these
residuals such that Û ≡ [û(1), û(2), ..., û(M)]. Define an M × 1 vector k which contains the
number of parameters from each model such that k ≡ [k(1), k(2), ..., k(M)]⊤. Then, the MAPC
in (8) can be written as

MAPCn(w) = w⊤Û
⊤
Ûw

(
n+ k⊤w

n− k⊤w

)
. (10)

Likewise, the MMA criterion in (9) becomes

MMAn(w) = w⊤Û
⊤
Ûw + 2σ2k⊤w. (11)

3 Asymptotic Properties

In this section, we first prove the asymptotic optimality of the MAPC estimator by showing
that it achieves the lowest possible mean squared error. Then, we derive asymptotic tests
for single hypotheses and joint hypotheses on the average coefficients. We also recommend
bootstrap tests for improved inference in finite samples. Proofs for this section are presented
in Appendix A.

3.1 Asymptotic Optimality

We start by listing some properties of P (w).

Lemma 1 Define M(w) ≡ I − P (w). We have

(i) Tr
(
P (w)

)
=
∑M

m=1w
(m)k(m) = k(w),

(ii) λmax

(
P (w)

)
≤ 1, where λmax(·) returns the largest eigenvalue of its argument,
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(iii)
∥∥P (w∗)M (w)µ

∥∥2 ≤ ∥∥M (w)µ
∥∥2 for any w∗,w ∈ HM ,

(iv) Tr
[
P (w)P (w∗)P (w)

]
≤ Tr

[
P (w)P (w)

]
for any w∗,w ∈ HM .

The matrix P (w) is not a traditional projection matrix. For example, it is not idempotent.
Therefore, we cannot further simplify Lemma 1 (iv).

Define the average mean squared error as Ln(w) ≡
(
µ(w) − µ

)⊤(
µ(w) − µ

)
and the

conditional average mean squared error as Rn(w) ≡ E
(
Ln(w)|X

)
. The same definitions can

be found in Li (1987), Hansen (2007) and Wan et al. (2010). We investigate the asymptotic
properties of Rn(w) in the next lemma.

Lemma 2 We have

(i) Rn(w) ≥
∥∥M (w)µ

∥∥2,
(ii) Rn(w) ≥ σ2Tr

(
P (w)P (w)

)
.

Assumption 1 For some fixed integer 1 ≤ G < ∞, we have E(|ui|4G|xi) ≤ κ < ∞.

Assumption 1 is a bound condition on the conditional moments of the error term. It can be
compared with the corresponding condition in Hansen (2007), in which

E(|ui|4(N+1)|xi) ≤ κ < ∞. (12)

Note that (12) depends on model weights w through Hansen’s assumption that w(m) is
restricted to the set

{
0, 1

N
, 2
N
, ..., 1

}
for some integer N .

Assumption 2 As n → ∞, ξ−2G
n M

∑M
m=1 (Rn(w

0
m))

G → 0, where ξn = inf
w∈HM

Rn(w) and

w0
m is an M × 1 vector of which the mth element is one and the others are zeros.

Assumption 2 is the convergence condition. It is the same as the convergence condition
in Wan et al. (2010). A necessary condition for Assumption 2 to hold is ξn → ∞, which
indicates that there is no finite approximating model for which the bias is zero. Moreover, we

assume that as n → ∞, ξ2Gn goes to infinity at a faster rate than M
∑M

m=1

(
Rn(w

0
m)
)G

. This
is a relatively stronger assumption than the corresponding condition required by Hansen
(2007), which only needs ξn → ∞ as n → ∞. Note that Hansen’s (2007) assumptions are
appropriate only for nested models and a discrete set for w; in contrast, our theorem is
built on a more general set-up with non-nested models and continuous HM . In practice,
Assumption 2 can be easily sustained by removing poor models prior to estimation. See
Wan et al. (2010) for two explicit examples under which Assumption 2 holds.

Assumption 3 As n → ∞, k(m) → ∞ and k(m)/n → 0 for all m.
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Assumption 3 states that as n goes to infinity, k(m) goes to infinity at a slower rate for
m = 1, ...,M . Similar assumptions can be found in other papers, such as Shibata (1981) and
Hansen (2007). Based on Assumption 3, we have

Lemma 3 Let Assumption 3 hold. Then, k(w)/n → 0 as n → ∞.

With the above lemmas and assumptions, we now show that the MAPC estimator is
asymptotically optimal in the following theorem.

Theorem 1 Let Assumptions 1, 2 and 3 hold. Then, as n → ∞

Ln(ŵ)

Ln(wopt)

p−→ 1,

where
wopt = arg inf

w∈HM

Ln(w).

Theorem 1 states that by using the empirical weight vector ŵ, the mean squared error is
asymptotically equivalent to the lowest possible mean squared error. This implies that the
MAPC estimator is asymptotically optimal in the class of model average estimators (5) where
the weight vector belongs to the set HM .

Define the average estimate of σ2 as σ̂2(w):

σ̂2(w) ≡
(
y − µ̂(w)

)⊤(
y − µ̂(w)

)
n− k(w)

=
w⊤Û

⊤
Ûw

n− k⊤w
.

By inserting σ̂2(w) into (10) and rearranging the equation, we can rewrite MAPC as

MAPCn(w) = w⊤Û
⊤
Ûw + 2σ̂2(w)k⊤w,

which is similar to MMA in (11) with σ2 being replaced by an average estimate σ̂2(w).

Theorem 2 Let Assumption 3 hold. Then σ̂2(w)
p→ σ2 as n → ∞.

Note that σ̂2(w) is a consistent estimator of σ2. Theorem 2 implies σ̂2(ŵ)
p→ σ2 as n → ∞,

where

σ̂2(ŵ) =
ŵ⊤Û

⊤
Ûŵ

n− k⊤ŵ
. (13)

The MMA criterion includes an infeasible σ2. Therefore, this must be computed with
a sample estimate in practice. Hansen (2007, 2008) recommended using σ̂2

L to replace the
unknown σ2, where

σ̂2
L =

(
y − µ̂(L)

)⊤(
y − µ̂(L)

)
n− k(L)
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is the estimated σ2 from a large approximation model L.1 As a result, the MMA criterion
in practice becomes

MMAn(w) = w⊤Û
⊤
Ûw + 2σ̂2

Lk
⊤w.

We can rewrite σ̂2
L as an average estimator such that

σ̂2
L =

(
y − µ̂(L)

)⊤(
y − µ̂(L)

)
n− k(L)

=

(
y − µ̂(w0

L)
)⊤(

y − µ̂(w0
L)
)

n− k⊤w0
L

,

where w0
L is a weight vector in which the Lth element is one and the others are zeros. In

practice, using σ̂2
L as an approximation to the infeasible σ2 can be inefficient at times. As

we show in the next section, simulation evidence indicates that the MMA estimator with σ̂2
L

yields a higher mean squared error than the MAPC estimator in many cases.

The MMA estimator is a two-step estimator since a sample estimate of σ2 must be
provided prior to estimation. In contrast, the MAPC estimator is a continuous updating
estimator that requires only one step of calculation. Estimating ŵ from the MMA criterion
with constraints is a classic quadratic programming problem, while estimating ŵ by the
MAPC estimator is a convex optimization problem.2

3.2 Estimating the Variance-Covariance Matrix for β̂(ŵ)

The average coefficient β̂(ŵ) is not easy to compute. The number of regressors, k(m), is
usually not the same for different models; even if the k(m) are the same for certain models,
the regressors must be different from one model to another. Either scenario complicates the
computation.

Assume that there exists a model L within which all of the approximation models are
nested.3 The average coefficient β̂(ŵ) can be computed by

β̂(ŵ) =
M∑

m=1

ŵ(m)
(
Γ(m)β̂

(m)
)
,

where Γ(m) is k(L) × k(m) and plays the role of mapping the k(m) × 1 vector β̂
(m)

to k(L) × 1
by filling the extra parameters with 0. A convenient way to construct Γ(m) is to use the
following equation:

Γ(m) =
(
X(L)⊤X(L)

)−1

X(L)⊤X(m). (14)

In this case, the rank of Γ(m) is k(m) and each element in Γ(m) is either 1 or 0.

1In fact, Hansen (2007, 2008) used the largest approximation model in his simulation experiments.
2Note that convex optimization usually requires slightly more computation time than quadratic program-

ming.
3If no such model exists, one can be easily created by including all regressors within it.
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Although not shown for the sake of brevity, the variances and covariances in the rest
of this subsection are in fact conditional on X(L). Therefore, X(m) can be assumed to be
exogenous for all m. By straightforward algebra, the variance-covariance matrix of β̂(ŵ) is

Var
(
β̂(ŵ)

)
= Var

(
M∑

m=1

ŵ(m)
(
Γ(m)β̂

(m)
))

=
M∑

m=1

M∑
s=1

ŵ(m)ŵ(s)Cov
(
Γ(m)β̂

(m)
,Γ(s)β̂

(s)
)
. (15)

The right-hand-side of equation (15) is a linear combination of Cov(Γ(m)β̂
(m)

,Γ(s)β̂
(s)
).

When s equalsm, the covariance matrix becomes the variance-covariance matrix of Γ(m)β̂
(m)

.

Each Γ(m)β̂
(m)

includes possible model misspecification bias. We define the following k(L)×1
vector

d(m) = E
(
Γ(m)β̂

(m)
)
− β(w) (16)

as the misspecification bias vector. We propose an estimator for Cov(Γ(m)β̂
(m)

,Γ(s)β̂
(s)
) in

the following lemma.

Lemma 4 For any approximation models m and s, in which m and s can represent the
same model, we have

Ĉov
(
Γ(m)β̂

(m)
,Γ(s)β̂

(s)
)

= σ̂2(ŵ)Γ(m)
(
X(m)⊤X(m)

)−1

X(m)⊤X(s)
(
X(s)⊤X(s)

)−1

Γ(s)⊤ + d̂
(m)
(
d̂
(s)
)⊤

,

where
d̂
(m)

= Γ(m)β̂
(m)

− β̂(ŵ). (17)

For a particular average coefficient, for example β̂j(ŵ), the variance of β̂j(ŵ) is

Var
(
β̂j(ŵ)

)
=
[
Var
(
β̂(ŵ)

)]
jj
,

which is the jth element on the diagonal of the variance-covariance matrix Var
(
β̂(ŵ)

)
. Buck-

land et al. (1997) proposed other estimators for Var
(
β̂j(ŵ)

)
. Some of the estimators are

based on a restrictive assumption that there is perfect correlation between each β(m). They
also proposed computing Var

(
β̂j(ŵ)

)
via a pairs bootstrap.

In practice, we want to include certain regressors in every approximation model because
these regressors are of primary interest to us. Models without these regressors provide no
useful information and therefore are not of interest to us. We name these regressors the core
regressors. Let the n × kc matrix Xc represent the core regressors and let β̂c(ŵ) be the
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corresponding averaged core coefficients. We define Γ(m)
c as a k(m)×kc matrix that plays the

role of subtracting the n×kc matrix Xc out of any X(m) such that X(m)Γ(m)
c = Xc. Similar

to Γ(m) defined in (14), we can construct Γ(m)
c using Γ(m)

c =
(
X(m)⊤X(m)

)−1
X(m)⊤Xc. The

variance-covariance matrix for β̂c(ŵ) is then

Var
(
β̂c(ŵ)

)
= Γ(m)

c

⊤
Var

(
β̂(ŵ)

)
Γ(m)

c .

We name the regressors that are of marginal interest to us potential regressors. These
potential regressors are not included in every approximation model. We let βp be the cor-

responding coefficient. The coefficient βp is a kp × 1 vector with kp ≤ k(L). We define the

regressors that are not included in X(m) as X(−m) and the associated coefficient as β−m.
By definition, the set of β−m belongs to the set of βp for all m. Similar to the definition

of Γ(m) in (14), we let Γ(−m) =
(
X(L)⊤X(L)

)−1
X(L)⊤X(−m) play the role of mapping the(

k(L) − k(m)
)
× 1 vector β−m to k(L) × 1. How to distinguish potential regressors from core

regressors is not the primary concern of this paper. We leave that for future research.

3.3 Asymptotic Inference and Bootstrap Based Inference

We start by listing more assumptions.

Assumption 4 We have

(i) (xi, ui) is an iid sequence,

(ii) E(xiui) = 0, E|xijui|2 < ∞, Var(n−1/2X⊤u) is positive definite,

(iii) As n → ∞, n−1X(m)⊤X(m) p→ S(m) and n−1X(m)⊤X(s) p→ S(m,s) ∀m, s, where both
S(m) and S(m,s) are finite, deterministic matrices and S(m) is also positive definite.

Assumption 5 βp = hp/
√
n, where hp is a fixed vector.

Assumption 6 The average coefficient β(w) is a function of β(m) and β−m that can be

written as β(w) = f
(
β(m),β−m

)
, where β(w) = f

(
β(m),β−m

)
is twice differentiable in a

neighborhood of β−m and f
(
β(m),0

)
= Γmβ(m).

Assumption 4 is a standard assumption about regressors and error terms. Assumption 5
follows the logic that the potential regressors are only of marginal interest to us as they are
weakly correlated with y. This idea of weak variables is similar to ideas put forth in the
weak instruments literature. For example, the Assumption LΠ in Staiger and Stock (1997)
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is almost identical to our Assumption 5. Assumption 6 is a standard assumption that allows
us to use Taylor expansion on β(w).

Let β̂
(m)

c = Γ(m)
c

⊤
β̂

(m)
be the core part of β̂

(m)
. We investigate the asymptotic distribu-

tion of β̂
(m)

c in the following lemma:

Lemma 5 Let Assumptions 4, 5, and 6 hold. Then, as n → ∞,

(i) β−m = h−m/
√
n ∀m, where h−m is a fixed vector.

(ii)
√
n
(
β̂

(m)

c − βc

)
d→ N

(
δ
(m)
1 , σ2Γ(m)

c

⊤(
S(m)

)−1
Γ(m)

c

)
, where

δ
(m)
1 ≡ Γ(m)

c

⊤(
S(m)

)−1
S(m,−m)h−m.

(iii) Define F β−m
≡ ∂f

(
β(m),β−m

)⊤/
∂β−m, then

√
n
(
βc − βc(w)

) p−→ δ
(m)
2 ,

where δ
(m)
2 ≡ −Γ(L)

c

⊤ (
F β−m

∣∣
β−m=0

)
h−m.

(iv)
√
nd(m) p→ δ(m), where δ(m) ≡ Γ(m)⊤(S(m)

)−1
S(m,−m)h−m −

(
F β−m

∣∣
β−m=0

)
h−m.

(v) The asymptotic distribution of β̂
(m)

c is

√
n
(
β̂

(m)

c − βc(w)
)
→d Λ

(m)
c ∼ N

(
δ(m)
c ,V (m)

c

)
, (18)

where δ(m)
c = δ

(m)
1 + δ

(m)
2 and V (m)

c ≡ σ2Γ(m)
c

⊤(
S(m)

)−1
Γ(m)

c .

Based on Lemma 5, we derive the asymptotic distribution of the core average coefficient
β̂c(ŵ) conditional on ŵ in the following theorem:

Theorem 3 Let Assumptions 4, 5, and 6 hold. Then, as n → ∞,

√
n
(
β̂c(ŵ)− βc(w)

) ∣∣∣ŵ →d Λc =
M∑

m=1

ŵ(m)Λ(m)
c ∼ N

(
0,Γ(m)

c

⊤
V (ŵ)Γ(m)

c

)
,

where Λ(m)
c is defined in (18) and

V (ŵ) ≡
M∑

m=1

M∑
s=1

ŵ(m)ŵ(s)
(
σ2Γ(m)

(
S(m)

)−1
S(m,s)

(
S(s)

)−1
Γ(s)⊤ + δ(m)δ(s)⊤

)
.

The terms S(m), S(m,s), and δ(m) are defined in Assumption 4 and Lemma 5.
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There is joint convergence of
√
n(β̂

(m)

c − βc(w)) and the stochastic weights ŵ. The condi-
tional asymptotic distribution Λ is normal, which implies that the unconditional asymptotic
distribution of

√
n(β̂c(ŵ) − βc(w)) is a mixed normal distribution. There is a large litera-

ture in time series that studies the mixed normal distribution and its inference (see Johansen
(1995, pp.177–178) for a detailed explanation).

To test a single restriction, for example βj(w) = βj0, we derive the t-statistic for the

average core coefficient β̂j(ŵ)

tβ̂j(ŵ) ≡
β̂j(ŵ)− βj0

V̂ar
(
β̂j(ŵ)

)1/2 ,
where the estimated variance V̂ar

(
β̂j(ŵ)

)
is the jth element on the diagonal of V̂ar

(
β̂(ŵ)

)
:

V̂ar
(
β̂(ŵ)

)
=

M∑
m=1

M∑
s=1

ŵ(m)ŵ(s)

(
d̂
(m)
(
d̂
(s)
)⊤

+ σ̂2(ŵ)Γ(m)
(
X(m)⊤X(m)

)−1

X(m)⊤X(s)
(
X(s)⊤X(s)

)−1

Γ(s)⊤
)
,

where d̂
(m)

and d̂
(s)

are defined in (17) and σ̂2(ŵ) is defined in (13). To test the joint null
hypothesis that Rβc(w) = r, where r is kr × 1, we use the Wald statistic such that

Wr ≡
(
Rβ̂c(ŵ)− r

)⊤ (
RV̂ar

(
β̂c(ŵ)

)
R⊤
)−1 (

Rβ̂c(ŵ)− r
)
.

We derive the asymptotic distribution of the t-statistic and the Wald statistic in the following
theorem.

Theorem 4 Let Assumptions 4, 5, and 6 hold. Then

tβ̂j(ŵ) −→d N(0, 1) and Wr −→d χ
2 (kr) .

We can construct the 1− α confidence interval for β̂j(ŵ) in the classical way:[
βlower, βupper

]
=
[
β̂j(ŵ)− ŝjz1−α/2, β̂j(ŵ) + ŝjz1−α/2

]
,

where ŝj is the standard error for β̂j(ŵ) and z1−α/2 is the 1 − α/2 quantile of a standard
normal distribution.

Since both test statistics are asymptotically pivotal, we can use a semiparametric boot-
strap test to provide improved statistical inference in finite samples. We denote τ̂ as an
estimated test statistic (t or Wald). We first compute the estimated residuals ũ by plugging
in the estimated average coefficients β̃(w̃) under the null hypothesis. We then resample ũ

12



B times and obtain B bootstrap samples y∗
l for l = 1, ..., B. The value of B should satisfy

the condition that α(1 + B) is an integer,4 where α is the desired level of significance. For
each bootstrap sample y∗

l , we compute a simulated test statistic τ̂ ∗l in exactly the same way
that τ̂ was computed from the original data.

Following MacKinnon (2009), we can use the following equation to compute the bootstrap
P value for a one-tail test that rejects in the upper tail, as is the case in the Wald test:

p̂∗(τ̂) =
1

B

B∑
l=1

I
(
τ̂ ∗l > τ̂

)
,

where I(·) is the indicator function, which takes the value 1 when its argument is true and
takes the value 0 otherwise. If we assume that τ is symmetrically distributed around zero,
as is the case in the t test, we can use the symmetric bootstrap:

p̂∗(τ̂) =
1

B

B∑
l=1

I
(
|τ̂ ∗l | > |τ̂ |

)
.

If we are not willing to make the assumption that τ is symmetrically distributed around
zero, we can instead use the equal-tail bootstrap:

p̂∗(τ̂) = 2min

(
1

B

B∑
l=1

I(τ̂ ∗l ≤ τ̂),
1

B

B∑
l=1

I(τ̂ ∗l > τ̂)

)
.

Bootstrap tests generally perform better than asymptotic tests, especially when working
with a small sample size (see Section 4.2 as an example).

To construct symmetric bootstrap confidence intervals, we just need to invert the symmet-
ric bootstrap test we described above. We can also use the bootstrap-t method to construct
asymmetric bootstrap confidence intervals. We first sort the τ̂ ∗l in ascending order. We let
the value of c∗α/2 be the value of number α(1 + B)/2 bootstrap t-statistic in the sorted list.

Similarly, the value of c∗1−α/2 is the value of number (1 − α/2)(1 + B) bootstrap t-statistic.

Both α(1 +B)/2 and (1− α/2)(1 +B) should be integers. The bootstrap-t, or asymmetric
equal-tail bootstrap confidence interval, is then[

βlower, βupper

]
=
[
β̂j(ŵ)− ŝjc

∗
1−α/2, β̂j(ŵ) + ŝjc

∗
α/2

]
.

There are many ways to compute bootstrap confidence intervals. For a literature review, see
DiCiccio and Efron (1996).

Computational cost can be a concern for model averaging estimation when the total
number of approximation models is large. In this situation, we do not want to assign a huge

4If we are using a two-tailed test, it is helpful to make α(1+B)/2 an integer for the purpose of constructing
confidence intervals.
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number for B. In fact, it is often possible to obtain reliable results without using a large
value of B by using the iterative procedure proposed in Davidson and MacKinnon (2000).

4 Finite Sample Performance

This section contains two parts. In the first part, we investigate the finite sample perfor-
mance of the MAPC estimator in a simulation experiment. In the second part, we compare
the finite sample performance of different tests via rejection frequency under the same sim-
ulation design used in the first part. Contrary to the design in Hansen (2007), we propose a
simulation experiment with non-nested models.

4.1 The MAPC Estimator Versus Other Estimators

The general unrestricted model is the simple regression model

y = Xβ + u, (19)

whereX is n×k, β is k×1 and u is n×1. The number of regressors k increases as n increases
but at a slower rate, in which k = round(3+n1/5). We set the first column ofX, x1, to be the
intercept; the remaining xi are assumed to be correlated with each other and are generated
by N(0,Σ), where Σ is a (k − 1)× (k − 1) symmetric matrix with all diagonal terms equal
to 1 and all off-diagonal terms equal to ρ. The k × 1 coefficients β are determined by β =
[1/5, 1/5, 5/

√
n, 4/

√
n, ..., (8− k)/

√
n]

⊤
, where the first two regressors are core regressors

and the remaining regressors are potential regressors. The error term u is independent of
the regressors X and is distributed as N(0, σ2

uI). The parameter σu controls the population
R2 = β⊤

2 Σβ2/
(
β⊤

2 Σβ2 + σ2
u

)
so as to vary on a grid between 0.01 and 0.99, where β2 =

[β2, ..., βk]
⊤. We consider six different sample sizes, in which n = 25, 50, 100, 200, 400 and

800. Other simulation results, which are not reported here, demonstrate that the findings
are not sensitive to alternative distributions. We also find that the results are not sensitive
to different values of ρ, which we will show later.

All submodels that are nested in the general unrestricted model (19) are treated as
approximation models. Therefore, the approximation models are clearly non-nested in our
experiment. The total number of approximation models, M , is equal to the total number of
combinations made by all the potential regressors.

We study seven methods: (1) general-to-specific approach (GETS); (2) Akaike informa-
tion criterion (AIC); (3) model averaging by AIC (MA-AIC); (4) model averaging by Bayesian
information criterion (MA-BIC); (5) Mallows model averaging (MMA); (6) jackknife model
averaging (JMA); and (7) model averaging by prediction criterion (MAPC).

The GETS approach aims to modify the general unrestricted model by removing irrele-
vant variables according to pre-determined criteria. In our experiment, we adopt a simple

14



GETS approach from Hendry and Nielsen (2007). We first estimate model (19). Then,
regressors with the absolute value of the t-statistics smaller than cα = 2 are eliminated. If
multiple t-statistics are smaller than 2, we eliminate the smallest one. The remaining re-
gressors are retained and form a new model for the next-round test until no regressors can
be eliminated.

The Akaike information criterion (AIC) for a model m is defined as

AIC(m) = n log(σ̂2
m) + 2k(m).

The model that achieves the lowest value among all of the estimated AIC(m) is selected. The
model average AIC (MA-AIC) makes use of the estimated AIC(m) to compute the empirical
weights, where

ŵ
(m)
AIC = exp

(
−1

2
AIC(m)

)/ M∑
m=1

exp

(
−1

2
AIC(m)

)
.

MA-BIC computes the empirical weights for its associated average estimator according
to

ŵ
(m)
BIC = exp

(
−1

2
BIC(m)

)/ M∑
m=1

exp

(
−1

2
BIC(m)

)
,

where
BIC(m) = n log(σ̂2

m) + log(n)k(m).

Jackknife model averaging (JMA) (Hansen and Racine 2011) is also known as leave-one-
out cross-validation. As its name indicates, JMA requires the jackknife residuals for the
average estimator. The jackknife residual vector for model m can be conveniently written
as û

(m)
J = D(m)û(m), where û(m) is the least squares residual vector and D(m) is the n × n

diagonal matrix with the ith diagonal element equal to (1 − h
(m)
i )−1. The term h

(m)
i is

the ith diagonal element of P (m) defined in (4). Define an n × M matrix that collects all

the jackknife residuals, in which ÛJ =
[
û

(1)
J , ..., û

(M)
J

]
. The least squares cross-validation

criterion for JMA is simply

CVn(w) =
1

n
w⊤Û

⊤
J ÛJw with ŵ = argmin

w∈H∗
M

CVn(w).

The MAPC estimator and the MMA estimator are presented in previous sections. The
infeasible σ2 in (11) is replaced by a sample estimate, σ̂2

L, from the largest approximation
model (19).

We define the risk of an estimator as the mean squared error such that

Risk ≡ 1

n

(
µ(ŵ)− µ0

)⊤(
µ(ŵ)− µ0

)

15



where µ(ŵ) is the averaged µ by the estimated ŵ and µ0 is the true value of µ (feasible in
simulation). We compute risks for all seven estimators and average across 100,000 simulation
draws. We normalize risks by dividing by the risk of the infeasible optimal least squares
estimator (the OLS estimator of model (19)). We present the risk calculations for n = 25
with two different values of ρ (0.1 and 0.5) in Figures 1(a) and 1(b). The R2 is presented
on the x-axis and the risk is displayed on the y-axis. The dash-dotted line, dashed line,
solid line, star, cross, circle, and x-mark correspond to MMA, JMA, MAPC, GETS, AIC,
MA-AIC, and MA-BIC, respectively.

Figures 1(a) and 1(b) show similar results. As R2 → 1, risks of all seven methods tend
to converge to 1, which suggests that all corresponding estimators are converging to the
infeasible optimal least squares estimator. In many cases, the GETS method shows a much

Figure 1: Simulation Results for n = 25
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higher risk relative to other methods. We notice that when R2 is close to 1, AIC yields the
lowest risk. This means that the true model (19) is frequently selected by the AIC method,
when there is sufficient information. However, AIC has a relatively poor performance for
other values of R2. The MA-AIC estimator achieves lower risk than the MA-BIC estimator
in most cases, except when R2 is close to 0. In extreme cases, when R2 is close to 0 or 1,
MA-AIC and MA-BIC yield lower risks than MMA, JMA, and MAPC. However, they are
outperformed by MMA, JMA, and MAPC in most other cases that are more reasonable in
practice.

It is instructive to compare the performance of MMA, JMA, with MAPC. In most cases,
these three methods have better performance when compared to other methods. We provide
Figures 1(c) and 1(d) to show only these three methods. For all values of R2, the MAPC es-
timator achieves lower risks than the MMA estimator and the JMA estimator. This suggests
that, in finite samples, MAPC is more efficient than MMA and JMA.

We notice that all the risk curves are hump-shaped. As we mentioned, all the risk curves
are normalized by dividing by the risk of the infeasible optimal OLS estimator. The hump
shape is caused by this normalization. To demonstrate the reason for this, we use the MAPC
estimator as an example and present its estimated risk without normalization (denoted by
solid lines) in Figure 2, along with the estimated risk of the optimal OLS estimator (denoted
by dashed lines).

In Figure 2, part (a) represents the estimated risks for the MAPC estimator along with
the OLS estimator. When R2 is low, both estimators yield high risks. A low R2 means

Figure 2: The Estimated Risks without Normalization
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that the model does not fit the data very well. As a consequence, the estimated risks for
the OLS estimator are high. The MAPC estimator, however, considers other approximation
models as opposed to limiting itself to the unrestricted model (19). Therefore, as we see
from the figure, the MAPC estimator yields smaller risk when R2 is low. The corresponding
normalized risk for MAPC is smaller than 1. As R2 increases, the risk decreases for both
estimators and the gap between the two curves shrinks. This implies that when R2 is low,
the normalized risk for the MAPC estimator increases as R2 increases from 0.

Part (b) of Figure 2 is the truncated version of part (a) with y-axis being 0 to 2 and x-
axis being 0.2 to 1. As R2 increases, the estimated risk for the OLS estimator decreases and
eventually becomes smaller than the MAPC risks. Therefore, the corresponding normalized
risk for MAPC is greater than 1. As we can see from the figure, the gap between the
two curves first expands and then shrinks. The two methods yield almost identical risks
when R2 = 0.99. This implies that the normalized risk curve is hump-shaped and that the
normalized risk for the MAPC estimator is very close to 1 when R2 = 0.99.

Risk calculations for various sample sizes (n = 25, 50, 100, 200, 400, and 800) are displayed
in Figure 3. In this case, we set ρ = 0.1. To keep the figure uncluttered, only MMA, JMA
and MAPC are displayed and represented by the dash-dotted line, dashed, and solid lines,
respectively. In each panel, the MAPC estimator has a better performance than the MMA
and JMA estimator by yielding lower risks. As n increases, the index on the y-axis shrinks
and MMA and JMA merge with MAPC. This implies that, as n → ∞, these three estimators
converge to the infeasible optimal least squares estimator. We also notice that as n increases,
the hump shifts from the right to the left. Again, this is caused by the normalization. As
n becomes larger, the performance of the OLS estimator also gets better. Therefore, the
values of the normalized risks increases when R2 is low.

4.2 Evaluate Tests via Rejection Frequency

Buckland et al. (1997) proposed using a pairs bootstrap method to estimate the variance of an
average coefficient. To implement this method, we first resample the data matrix and obtain
B bootstrap resamples. Then, we apply model averaging to each resample and obtain B
bootstrap estimates. Finally, we estimate the sample variance of the B bootstrap estimates
as the estimated variance of the average coefficient. We can easily derive asymptotic tests
(t and Wald) using the pairs bootstrap sample variance, henceforth pairs tests.

In Section 3.3, we derived the asymptotic tests (t and Wald) and the bootstrap tests for
the average core coefficient. In this section, we compare the finite sample performance of
these tests with pairs tests via the rejection frequency. We use the same simulation design we
proposed in Section 4.1. We concentrate on the second coefficient, β2 and the null hypothesis
is that β2 = 1/5, which is the true value of β2. We generate 10,000 simulation draws for 15
sample sizes: n = 25, 30, 35, ..., 95. For each simulation draw, we compute the P values from
the asymptotic tests, the semiparametric bootstrap tests and pairs tests for each sample
size. In order to reduce the costs of doing the Monte Carlo experiments, the total number of
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Figure 3: Simulation Results for Various Sample Sizes
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bootstraps for each bootstrap test and pairs test is B = 199. We then record the frequencies
with which tests based on the three p values reject at the 0.05 level. We consider four
different R2: 0.25, 0.5, 0.75, and 0.99. The results of this simulation are presented in the
following figure.

In Figure 4, asymptotic t tests, bootstrap tests, and pairs tests are represented by dashed
lines, solid lines, and dash-dotted lines, respectively. Although not shown for the sake of
brevity, we also compare the three tests using the Wald statistic. Simulation results are very
similar to what is shown here. The results suggest that both asymptotic test and pairs test
tend to overreject severely when n is small, although their performance improves quickly as
n increases. Note that the pairs test becomes more computer intensive when the bootstrap
method is used. In contrast, the bootstrap tests overreject only very slightly on average
for all values of R2. The rejection frequencies are always very close to 0.05. Overall, the
bootstrap tests outperform the asymptotic tests and pairs tests, especially when the sample

Figure 4: Rejection Frequency for Three Tests
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size is small. One drawback of the bootstrap tests is that they require more computation
time than the asymptotic tests.

Simulation results also suggest that asymptotic tests and pairs tests have similar per-
formance. The performance of both tests are sensitive to different values of R2. When
R2 = 0.25, rejection frequencies yielded by the pairs test are closer to 0.05 compared with the
asymptotic test. As R2 increases, the performance of both tests improves. When R2 = 0.75,
both tests yield similar rejection frequencies for most values of n. In the extreme case of
R2 = 0.99, we see that the asymptotic test has better performance than the pairs test by
yielding rejection frequencies closer to 0.05 for most values of n.

5 Empirical Application

In this section, we apply our MAPC estimator to the economic growth models in Barro
(1991), which proposed a group of non-nested approximation models to analyze the relation
between economic growth rate and a number of variables in a cross section of countries. The
models considered by Barro (1991) are a small subset of the models we consider. The main
results in Barro (1991) are summarized in Table 1.

We create our data set based on the Barro and Lee (1994) updated growth data for 98
countries. Variables that are used in our estimation are GR6085, GDP60, SEC60, PRIM60,

Table 1: A Summary of Barro’s (1991) Arguments

• The growth rate of real per capital GDP (GR6085) is positively related to the
initial human capitala

• GR6085 is negatively related to the initial (1960) level of real per capita GDP
(GDP60)

• GR6085 is negatively related to the share of government consumption in GDP
(gc/y)

• GR6085 is positively related to the share of total investment on GDP (i/y)

• GR6085 is negatively related to the measures of political instabilityb

• GR6085 is negatively related to the proxy for market distortionsc

a Proxied by 1960 primary (PRIM60) and secondary (SEC60) school-enrollment rates.
b Proxied by the number of revolutions and coups per year (REV) and the number per
million population of political assassinations per year (AS).
c Proxied by the magnitude of PPPI60 deviation (PPI60DEV), where PPPI60 is the 1960
PPP ratio based on the investment deflator.
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gc/y, REV, AS, PPI60DEV, GDP60SQ, RPRI, RSEC, AFRICA, LAT.AMER, i/y, and
FERTNET. Means and standard deviations are reported in Appendix B, along with detailed
definitions for all of the variables. There are eight variables that are of primary interest
to us (core variables, including a constant term) and the other seven variables are only of
marginal interest to us(potential variables).

We first revisit Barro’s (1991) approach using our updated data set. The average growth
rate between 1960–1985 (GR6085) is the common dependent variable. There are eight models
that are summarized from Barro (1991). Table 2 shows regression results of these models,
which are labeled from [1] to [8]. The smallest model is model [1], which only contains the

Table 2: Regressions for Per Capita Growth

[1] [2] [3] [4] [5] [6] [7] [8]
Const. 0.0287 0.0304 0.0368 0.0355 0.0332 0.0218 0.0449 0.0438

∗(0.0076) (0.0076) (0.0103) (0.0103) (0.0069) (0.0071) (0.0119) (0.0111)
GDP60 -0.0473 -0.0826 -0.0495 -0.0490 -0.0435 -0.0489 -0.0554 -0.0501

(0.0091) (0.0284) (0.0093) (0.0093) (0.0080) (0.0083) (0.0085) (0.0080)
SEC60 0.0331 0.0352 0.0321 0.0306 0.0107 0.0213 0.0127 0.0013

(0.0108) (0.0109) (0.0108) (0.0109) (0.0103) (0.0102) (0.0106) (0.0102)
PRIM60 0.0202 0.0237 0.0196 0.0187 0.0249 0.0071 0.0037 0.0110

(0.0071) (0.0076) (0.0072) (0.0072) (0.0069) (0.0072) (0.0071) (0.0075)
gc/y -0.1071 -0.1102 -0.1060 -0.1047 -0.0800 -0.1104 -0.1071 -0.0853

(0.0286) (0.0286) (0.0286) (0.0286) (0.0260) (0.0261) (0.0255) (0.0244)
REV -0.0185 -0.0183 -0.0197 -0.0202 -0.0144 -0.0129 -0.0123 -0.0111

(0.0067) (0.0067) (0.0068) (0.0068) (0.0060) (0.0062) (0.0061) (0.0057)
AS -0.0441 -0.0430 -0.0440 -0.0428 -0.0242 -0.0401 -0.0375 -0.0254

(0.0184) (0.0183) (0.0183) (0.0183) (0.0170) (0.0168) (0.0164) (0.0160)
PPI60DEV -0.0074 -0.0080 -0.0071 -0.0073 -0.0082 -0.0045 -0.0051 -0.0061

(0.0036) (0.0037) (0.0036) (0.0037) (0.0033) (0.0034) (0.0033) (0.0032)
GDP60SQ - 0.0377 - - - - - -

- (0.0287) - - - - - -
RPRI - - -0.1929 -0.2637 - - - -

- - (0.1646) (0.1770) - - - -
RSEC - - - 0.2452 - - - -

- - - (0.2267) - - - -
AFRICA - - - - -0.0141 - - -0.0114

- - - - (0.0037) - - (0.0035)
LAT.AMER - - - - -0.0171 - - -0.0126

- - - - (0.0035) - - (0.0035)
i/y - - - - - 0.0955 0.0866 0.0640

- - - - - (0.0218) (0.0216) (0.0208)
FERTNET - - - - - - -0.0035 -0.0025

- - - - - - (0.0015) (0.0014)

R2
c 0.4679 0.4780 0.4760 0.4829 0.6015 0.5624 0.5888 0.6578

∗ Values in parentheses are standard errors.
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eight core variables, while the largest is model [8], which contains twelve variables (eight
cores and four potentials). We also report the standard error associated with each estimated
coefficient and the centered R2 for each model.

One problem with Barro’s (1991) approach is the huge fluctuation of estimates (coef-
ficient and P value) for the core variable across different models using different potential
variables. Take SEC60 for an example. The estimated coefficient in regression [2] is 0.0352
with a standard error of 0.0109, which means that SEC60 is highly significant. However, the
estimated coefficient of the same variable drops to 0.0013 in regression [8] with a standard
error of 0.0102, which implies that SEC60 is highly insignificant. By using different models
(potential variables), we may end up with contradictory results.

To solve this model uncertainty problem, we conduct model average estimation using the
MAPC estimator. Following Barro (1991), we include the constant term, GDP60, SEC60,
PRIM60, gc/y, REV, AS, and PPI60DEV in every approximation model as the core variables
and consider every possible combination of the potential variables. Since there are seven
such variables, the total number of combinations is 27 = 128. Therefore, we include 128
approximation models in our estimation.

In Table 3, we report the estimated average coefficients for the core variables and their
standard errors. We also estimate the P value for each coefficient equal to zero using the
t-test we derived in Section 3. We also calculate the bootstrap P value for each average
coefficient. We set B = 9999 for all variables. We also show the top eight models with
associated weights in Table 4.

The result of the MAPC estimation provides significant evidence to support Barro’s
(1991) argument from the perspective of model average estimation. All estimates yield the
same signs as Barro’s, which implies similar relations between the growth rate and poten-
tial variables. The estimated coefficient for GDP60 is -0.0713, which indicates a negative
relationship between growth rate and the initial per capita product. We notice that the
magnitude of this estimate is larger than those estimated by Barro’s (1991) models (except
model [2]). Both SEC60 and PRIM60 are proxies for the initial human capital. Positive signs
on these proxies indicate a positive relation between the growth rate and the initial human
capital. The estimate on gc/y is negative, which indicates a negative relation between the

Table 3: Results for the MAPC Estimation

Estimates s.e. Asymptotic Bootstrap
Const. 0.0438 0.0089 0.0000 0.0002
GDP60 -0.0713 0.0148 0.0000 0.0100
SEC60 0.0070 0.0097 0.4715 0.5445
PRIM60 0.0136 0.0069 0.0483 0.0911
gc/y -0.0902 0.0240 0.0002 0.0020
REV -0.0122 0.0056 0.0289 0.0361
AS -0.0281 0.0156 0.0716 0.0861
PPI60DEV -0.0064 0.0031 0.0376 0.0501
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Table 4: Top Eight Models in MAPC Estimation
Assigned Weights

0.0814 0.0795 0.0792 0.0626 0.0547 0.0522 0.0518 0.0504

Const. + + + + + + + +
GDP60 + + + + + + + +
SEC60 + + + + + + + +
PRIM60 + + + + + + + +
gc/y + + + + + + + +
REV + + + + + + + +
AS + + + + + + + +
PPI60DEV + + + + + + + +
GDP60SQ - + - + + + + -
RPRI - - - - - - + -
RSEC - - - - - - - -
AFRICA + + + + + - + +
LAT.AMER + + + + - - + +
i/y + + + + + + + -
FERTNET - + + - + + + +

The “+” indicates that the corresponding parameters are included in the
model and the “-” indicates the opposite.

growth rate and the share of government consumption in GDP. Political instability, which
is proxied by REV and AS, reflects negative effects on the growth rate.

We also compare the relative out-of-sample predictive efficiency of the MAPC estimator
with other estimators. For the original data sample n = 98, we shuffle the sample into a
training set of n1 and an evaluation set of size n2 = n − n1. We apply the seven methods
(GETS, AIC, MA-AIC, MA-BIC, MMA, JMA, and MAPC) in Section 4 to the training set.
We evaluate the selected models and computed estimates via mean squared prediction error
(MSPE):

MSPE =
1

n2

(y2 −X2β̂1)
⊤(y2 −X2β̂1),

where (y2, X2) is the evaluation set, n2 is the number of observations of the evaluation set,
and β̂1 is the estimated coefficients by a particular method based on the training set. We
normalize the MSPEs by the MSPE by the MAPC estimator. We repeat the entire procedure
10001 times and report the median MSPE. We vary n1 and consider n1 = 20, 30, ..., 80. Table
5 reports the relative out-of-sample predictive efficiency. Entries larger than one indicate
inferior performance relative to the MAPC estimator.

Table 5 suggests that the MAPC estimator delivers models that have better out-of-sample
predictive efficiency than those by the six existing methods. As n1 increases, the relative
performance for all six methods improves. We notice that the MA-AIC method works better
than MMA. As mentioned in Hansen and Racine (2012), the MMA method is somewhat
sensitive to the preliminary estimate of σ2 needed for its computation, and relying on a
“large” approximating model may not be sufficient to deliver optimal results. In contrast,
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Table 5: Relative Out-of-sample Predictive Efficiency
n1 GETS AIC MA-AIC MA-BIC MMA JMA
20 1.1808 1.0168 1.0052 1.0290 1.0111 1.0100
30 1.1801 1.0154 1.0049 1.0284 1.0101 1.0098
40 1.1680 1.0148 1.0046 1.0283 1.0100 1.0096
50 1.1665 1.0139 1.0046 1.0281 1.0099 1.0095
60 1.1659 1.0137 1.0032 1.0281 1.0097 1.0094
70 1.1642 1.0131 1.0024 1.0274 1.0096 1.0094
80 1.1630 1.0109 1.0023 1.0271 1.0093 1.0070

our MAPC estimator does not require a preliminary estimate, as it is a continuous-updating
estimator.

6 Conclusion

Our MAPC estimator computes the weighted average across all approximation models; in
doing so, it reduces the chance of a poor model being selected. The eight models selected
from Barro (1991) are a small subset of the 128 models in the MAPC estimation. The idea of
considering every possible approximation model helps avoid the risk of omitting important
variables or retaining irrelevant variables. Both simulation and application suggest that
as a continuous-updating estimator, our MAPC estimator yields better efficiency than the
two-steps estimator MMA, especially when sample sizes are small. The asymptotic test
statistics we derived in Section 3 work well in large sample sizes and bootstrap tests are
highly recommended for small sample sizes.

25



A Proof

Proof of Lemma 1. To prove (i), we make use of Tr
(
P (m)

)
= k(m), then

Tr
(
P (w)

)
= Tr

(
M∑

m=1

w(m)P (m)

)
=

M∑
m=1

w(m)Tr
(
P (m)

)
=

M∑
m=1

w(m)k(m) = k(w).

To prove (ii), we first note that projection matrix P (m) is idempotent, then for an n × 1
vector η

max
η

η⊤P (m)η

η⊤η
= 1 for all m.

By the definition of eigenvalue, we have

λmax(P (w)) = max
η

η⊤P (w)η

η⊤η
≤

M∑
m=1

w(m)

(
max

η

η⊤P (m)η

η⊤η

)
= 1.

Parts (iii) and (iv) can be obtained using result (ii) such that∥∥P (w∗)M (w)µ
∥∥2 ≤ λ2

max

(
P (w∗)

)∥∥M (w)µ
∥∥2 ≤ ∥∥M(w)µ

∥∥2
and

Tr
[(
P (w∗)P (w∗)

)
P (w)P (w)

]
≤ λ2

max

(
P (w∗)

)
Tr
[
P (w)P (w)

]
≤ Tr

[
P (w)P (w)

]
.

Proof of Lemma 2. Rn(w) can be written as

Rn(w) = E
[
(P (w)µ+ P (w)u− µ)⊤(P (w)µ+ P (w)u− µ)|X

]
= µ⊤M (w)M (w)µ+ σ2Tr(P (w)P (w))

= ∥M (w)µ∥2 + σ2Tr
(
P (w)P (w)

)
. (20)

Both terms in (20) are non-negative, which implies Lemma 2.

Proof of Lemma 3. The proof is straightforward. If k(m)/n → 0 for all m, then the linear
combination of k(m), k(w) =

∑M
m=1w

(m)
(
k(m)/n

)
→ 0.

Proof of Theorem 1. Our proof follows the techniques derived in Li (1987) and Wan et
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al. (2010). Rewrite MAPCn(w) to contain Ln(w),

MAPCn(w) = (µ− µ(w) + u)⊤(µ− µ(w) + u)

(
n+ k(w)

n− k(w)

)
= Ln(w) + 2µ⊤M (w)u+ 2Ln(w)

(
k(w)

n− k(w)

)
+ 4µ⊤M (w)u

(
k(w)

n− k(w)

)
+ u⊤u

(
n+ k(w)

n− k(w)

)
. (21)

As n → ∞,
(
n+ k(w)

)
/
(
n− k(w)

)
→ 1 by Lemma 3, which implies that the last term in

(21) is independent of w. Therefore, ŵ minimizes

Ln(w) + 2µ⊤M (w)u+ 2Ln(w)

(
k(w)

n− k(w)

)
+ 4µ⊤M (w)u

(
k(w)

n− k(w)

)
. (22)

If we can show that as n → ∞, all terms in (22) except Ln(w) are negligible compared with
Ln(w), for any w ∈ HM , then the asymptotic optimality of ŵ is established.

Theorem 1 is valid, if, as n → ∞

sup
w∈HM

∣∣∣∣µ⊤M(w)u

Rn(w)

∣∣∣∣ →p 0, (23)

sup
w∈HM

∣∣∣∣Ln(w)

Rn(w)
− 1

∣∣∣∣ →p 0, (24)

sup
w∈HM

∣∣∣∣µ⊤M(w)u

Rn(w)

(
k(w)

n− k(w)

)∣∣∣∣ →p 0, (25)

sup
w∈HM

∣∣∣∣Ln(w)

Rn(w)

(
k(w)

n− k(w)

)∣∣∣∣ →p 0. (26)

We shall prove (23) first. Given any δ > 0, by triangular inequality, Bonferroni’s inequal-
ity we have

P

{
sup

w∈HM

∣∣∣∣µ⊤M(w)u

Rn(w)

∣∣∣∣ > δ

}
≤ P

{
sup

w∈HM

M∑
m=1

w(m)
∣∣∣µ⊤M (m)u

∣∣∣ > δξn

}
= P

{
max
m

∣∣∣µ⊤M (m)u
∣∣∣ > δξn

}
≤

M∑
m=1

P
{∣∣µ⊤M (w0

m)u
∣∣ > δξn

}
,
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which, by Chebyshev’s inequality, is no greater than

M∑
m=1

E

{(
µ⊤M(w0

m)u
)2G

δ2Gξ2Gn

}
.

By Theorem 2 of Whittle (1960) and our Lemma 2(i), we observe that

M∑
m=1

E

{(
µ⊤M (w0

m)u
)2G

δ2Gξ2Gn

}
≤ C1δ

−2Gξ−2G
n

M∑
m=1

∥∥M (w0
m)µ

∥∥2G
≤ C1δ

−2Gξ−2G
n

M∑
m=1

(
Rn(w

0
m)
)G

for some constant C1. The last term above goes to zero by Assumption 2. Thus, (23) is
proved.

To prove (24), we first see

sup
w∈HM

∣∣∣∣Ln(w)

Rn(w)
− 1

∣∣∣∣→p 0

⇔ sup
w∈HM

∣∣∣∣u⊤P (w)P (w)u− σ2Tr (P (w)P (w))− 2µ⊤M (w)P (w)u

Rn(w)

∣∣∣∣→p 0.

Then, it suffices to prove

sup
w∈HM

∣∣∣∣µ⊤M (w)P (w)u

Rn(w)

∣∣∣∣→p 0 (27)

and

sup
w∈HM

∣∣∣∣u⊤P (w)P (w)u− σ2Tr (P (w)P (w))

Rn(w)

∣∣∣∣→p 0. (28)

By Chebyshev’s inequality and Theorem 2 of Whittle (1960), given any δ > 0,

P

{
sup

w∈HM

∣∣∣∣µ⊤M (w)P (w)u

Rn(w)

∣∣∣∣ > δ

}
≤

M∑
m=1

M∑
l=1

E

{(
µ⊤M (w0

m)P (w0
l )u
)2G

δ2Gξ2Gn

}

≤ C2δ
−2Gξ−2G

n

M∑
m=1

M∑
l=1

(
µ⊤M (w0

m)P (w0
l )M (w0

m)µ
)G

= C2δ
−2Gξ−2G

n

M∑
m=1

M∑
l=1

∥∥P (w0
l )M (w0

m)µ
∥∥2G ,
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where C2 is a constant. By Lemma 1 (iii), Lemma 2 (i) and Assumption 2, we obtain

C2δ
−2Gξ−2G

n

M∑
m=1

M∑
l=1

∥∥P (w0
l )M (w0

m)µ
∥∥2G ≤ C2δ

−2Gξ−2G
n

M∑
m=1

M∑
l=1

∥∥M (w0
m)µ

∥∥2G
≤ C2δ

−2Gξ−2G
n M

M∑
m=1

(
Rn(w

0
m)
)G → 0.

Likewise, by Chebyshev’s inequality, Theorem 2 of Whittle (1960), Lemma 1 (iii), Lemma 2
(ii) and Assumption 2, given any δ > 0, we observe that, for a constant C3,

P

{
sup

w∈HM

∣∣∣∣u⊤P (w)P (w)u− σ2Tr (P (w)P (w))

Rn(w)

∣∣∣∣ > δ

}
≤

M∑
m=1

M∑
l=1

E

{[
u⊤P (w0

l )P (w0
m)u− σ2Tr (P (w0

l )P (w0
m))
]2G

δ2Gξ2Gn

}

≤ C3δ
−2Gξ−2G

n

M∑
m=1

M∑
l=1

[
Tr
(
P (w0

m)P (w0
l )P (w0

m)
)]G

≤ C3δ
−2Gξ−2G

n

M∑
m=1

M∑
l=1

[
Tr
(
P (w0

m)P (w0
m)
)]G

≤ C3

σ2
δ−2Gξ−2G

n M

M∑
m=1

[Rn(w
0
m)]

G → 0.

Proving (25) and (26) becomes straightforward once we validate (23) and (24). We
obtain, as n → ∞, that

sup
w∈HM

∣∣∣∣µ⊤M(w)u

Rn(w)
· k(w)

n− k(w)

∣∣∣∣ ≤ sup
w∈HM

∣∣∣∣µ⊤M (w)u

Rn(w)

∣∣∣∣ · sup
w∈HM

∣∣∣∣ k(w)

n− k(w)

∣∣∣∣→p 0

and

sup
w∈HM

∣∣∣∣Ln(w)

Rn(w)
· k(w)

n− k(w)

∣∣∣∣ ≤ sup
w∈HM

∣∣∣∣Ln(w)

Rn(w)

∣∣∣∣ · sup
w∈HM

∣∣∣∣ k(w)

n− k(w)

∣∣∣∣→p 0.

This completes the proof of Theorem 1.

Proof of Theorem 2. Since û(m) = y − µ̂(m) = y −P (m)y = M (m)u+M (m)µ for model
m, the average estimate of u becomes

u(w) =
M∑

m=1

w(m)(y − µ̂(m)) =
M∑

m=1

w(m)M (m)(µ+ u) = M (w)(µ+ u).
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Then, the average estimate for σ2 becomes

σ2(w) =
u(w)⊤u(w)

n− k(w)
=

(µ+ u)⊤M (w)M(w)(µ+ u)

n− k(w)

=
u⊤M(w)M (w)u

n− k(w)
+

µ⊤M (w)M (w)µ

n− k(w)
+

2µ⊤M (w)M (w)u

n− k(w)
. (29)

Therefore, Theorem 2 is valid if the following hold: as n → ∞,

sup
w∈HM

∣∣∣∣u⊤M (w)M (w)u

n− k(w)

∣∣∣∣ →p σ2, (30)

sup
w∈HM

∣∣∣∣µ⊤M (w)M (w)µ

n− k(w)

∣∣∣∣ →p 0, (31)

sup
w∈HM

∣∣∣∣µ⊤M (w)M (w)u

n− k(w)

∣∣∣∣ →p 0. (32)

Equation (30) is equivalent to

sup
w∈HM

∣∣∣∣u⊤M (w)u

n− k(w)
− u⊤P (w)M (w)u

n− k(w)

∣∣∣∣→p σ
2. (33)

To prove (30), it suffices to show, as n → ∞, that

sup
w∈HM

∣∣∣∣u⊤M (w)u

n− k(w)

∣∣∣∣→p σ
2 (34)

and

sup
w∈HM

∣∣∣∣u⊤P (w)M (w)u

n− k(w)

∣∣∣∣→p 0. (35)

First, because E
(
u⊤M (w)u

)
= σ2 (n− k(w)), by Theorem 2 of Whittle (1960),

E
∣∣u⊤M (w)u− σ2 (n− k(w))

∣∣2 ≤ C4Tr (M (w)M (w))

≤ C4Tr (M (w))

= C4 (n− k(w)) ,

where C4 is some constant. Thus, for any δ > 0, by Markov’s inequality and Lemma 3,

P

{
sup

w∈HM

∣∣∣∣u⊤M (w)u

n− k(w)
− σ2

∣∣∣∣ > δ

}
≤

E
∣∣u⊤M (w)u− σ2 (n− k(w))

∣∣2
δ2 (n− k(w))2

≤ C4

δ2 (n− k(w))
→ 0.
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Second,

P

{
sup

w∈HM

∣∣∣∣u⊤P (w)M (w)u

n− k(w)

∣∣∣∣ > δ

}
≤ P

{
sup

w∈HM

∣∣∣∣u⊤P (w)u

n− k(w)

∣∣∣∣ > δ

}
= P

{
sup

w∈HM

M∑
m=1

w(m)

∣∣∣∣∣u⊤P (m)u

n− k(w)

∣∣∣∣∣ > δ

}

≤ P

{
sup

w∈HM

max
m

∣∣∣∣∣u⊤P (m)u

n− k(w)

∣∣∣∣∣ > δ

}
→ 0

since (n− k(w))−1
(
u⊤P (m)u

)
→p 0 as n → ∞ for all m. (30) is obtained.

To prove (31), we see that for any approximation model m,

E


(
b(m)

)⊤
M (m)b(m)

n− k(w)

 ≤ E


(
b(m)

)⊤
b(m)

n− k(w)

 ≤ n

n− k(w)
E
(
b
(m)
i

)2
→ 0

since k(m) → ∞ as n → ∞ and the square integrability of µ
(m)
i implies E

(
b
(m)
i

)2
→ 0 as

k(m) → ∞. This implies (
b(m)

)⊤
M (m)b(m)

n− k(w)
→p 0 (36)

for all m. Therefore, by (36), we observe, for any δ > 0, that

P

{
sup

w∈HM

∣∣∣∣µ⊤M (w)M (w)µ

n− k(w)

∣∣∣∣ > δ

}
≤ P

{
sup

w∈HM

∣∣∣∣µ⊤M (w)µ

n− k(w)

∣∣∣∣ > δ

}
= P

{
sup

w∈HM

M∑
m=1

w(m)

∣∣∣∣∣µ⊤M (m)µ

n− k(w)

∣∣∣∣∣ > δ

}

≤ P

{
sup

w∈HM

max
m

∣∣∣∣∣µ⊤M (m)µ

n− k(w)

∣∣∣∣∣ > δ

}

= P

 sup
w∈HM

max
m

∣∣∣∣∣∣∣
(
b(m)

)⊤
M (m)

(
b(m)

)
n− k(w)

∣∣∣∣∣∣∣ > δ

→ 0.
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Finally, since (n− k(w))−1
(
µ⊤M (m)u

)
→p 0 for all model m, we obtain

P

{
sup

w∈HM

∣∣∣∣µ⊤M (w)M (w)u

n− k(w)

∣∣∣∣ > δ

}
≤ P

{
sup

w∈HM

∣∣∣∣µ⊤M (w)u

n− k(w)

∣∣∣∣ > δ

}
≤ P

{
sup

w∈HM

max
m

∣∣∣∣∣µ⊤M (m)u

n− k(w)

∣∣∣∣∣ > δ

}
→p 0.

Therefore, we conclude that σ2(w) →p σ
2.

Proof of Lemma 4. Since the covariance matrix is conditional on X(L), we can assume
that X(m) is exogenous for all m. The covariance matrix can be written as

Cov
(
Γ(m)β̂

(m)
,Γ(s)β̂

(s)
)

= E
[(

Γ(m)β̂
(m)

− β(w)
)(

Γ(s)β̂
(s)

− β(w)
)⊤]

= E
((

Γ(m)
(
β̂

(m)
− β(m)

)
+ d

(m)
1

)(
Γ(s)

(
β̂

(s)
− β(s)

)
+ d

(s)
1

)⊤)
, (37)

where d
(m)
1 = Γ(m)β(m) − β(w) is non-random. First, we have

Γ(m)
(
β̂

(m)
− β(m)

)
= Γ(m)

((
X(m)⊤X(m)

)−1

X(m)⊤
(
X(m)β(m) +X(−m)β(−m) + u

)
− β(m)

)
= Γ(m)

(
X(m)⊤X(m)

)−1

X(m)⊤X(−m)β(−m) + Γ(m)
(
X(m)⊤X(m)

)−1

Γ(m)⊤X⊤u.

Define

A(m) ≡ Γ(m)
(
X(m)⊤X(m)

)−1

X(m)⊤X(−m)β(−m),

B(m) ≡ Γ(m)
(
X(m)⊤X(m)

)−1

Γ(m)⊤X⊤u.

We expand the expectation in (37) and obtain

E
(
A(m)A(s)⊤ +A(m)B(s)⊤ +A(m)d

(s)
1

⊤
+B(m)A(s)⊤ +B(m)B(s)⊤

+B(m)d
(s)
1

⊤
+ d

(m)
1 A(s)⊤ + d

(m)
1 B(s)⊤ + d

(m)
1 d

(s)
1

⊤)
. (38)

Note that E(B(m)) = 0 since E(u|X) = 0. This implies that E(A(m)B(s)⊤) = 0, E(B(m)A(s)⊤) =
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0, E(B(m)d
(s)
1

⊤
) = 0, and E(d(m)

1 B(s)⊤) = 0. Also,

E
(
B(m)B(s)⊤

)
= σ2Γ(m)

(
X(m)⊤X(m)

)−1

X(m)⊤X(s)
(
X(s)⊤X(s)

)−1

Γ(s)⊤.

Finally, (38) is equivalent to

σ2Γ(m)
(
X(m)⊤X(m)

)−1

X(m)⊤X(s)
(
X(s)⊤X(s)

)−1

Γ(s)⊤

+
(
A(m) + d

(m)
1

)(
A(s) + d

(s)
1

)⊤
.

Note that A(m)+d
(m)
1 = E

(
Γ(m)β̂

(m)
)
−β(w) = d(m). In practice, we replace the infeasible

σ2 and d(m) with their sample estimates. This completes the proof.

Proof of Lemma 5. Part (i) follows the fact that the set of β−m belongs to the set of βp

for all m. Therefore,
√
nβ−m → h−m by Assumption 5.

To prove part (ii), we first expand the estimator β̂
(m)

around β(m) and obtain

√
n
(
β̂

(m)
− β(m)

)
=

√
n
(
X(m)⊤X(m)

)−1

X(m)⊤X(−m)β(−m) +
√
n
(
X(m)⊤X(m)

)−1

Γ(m)⊤X⊤u.

By Assumption 5 and Lemma 5(i),

√
n
(
X(m)⊤X(m)

)−1

X(m)⊤X(−m)β(−m) p→
(
S(m)

)−1

S(m,−m)h−m ≡ δ
(m)
1 .

By Assumption 4 and central limit theorem,

√
n
(
X(m)⊤X(m)

)−1

Γ(m)⊤X⊤u
d→ N

(
0, σ2

(
S(m)

)−1
)
.

This implies
√
n
(
β̂

(m)

c − βc

)
=

√
nΓ(m)

c

⊤(
β̂

(m)
− β(m)

) d→ N
(
δ
(m)
1 , σ2Γ(m)

c

⊤
(S(m))−1Γ(m)

c

)
.

To prove part (iii), we first have β−m = O(n−1/2) by Assumption 5. Under Assumption
6, we apply Taylor expansion to β(w) and obtain

β(w) = f
(
β(m),β−m

)
= f

(
β(m),0

)
+
(
F β−m

∣∣
β−m=0

)
β−m +

1

2
β⊤

−mH̄β−m, (39)

where H̄ is the Hessian matrix H ≡ ∂2f(·)/∂β−m∂β
⊤
−m evaluated at an intermediate

point between 0 and β−m. Since β−m = O(n−1/2), the last term in (39) is O(n−1). With
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f
(
β(m),0

)
= Γ(m)β(m), we have

√
n
(
Γ(m)β(m) − β(w)

)
=

√
n
(
−
(
F β−m

∣∣
β−m=0

)
β−m −O(n−1)

)
→ −

(
F β−m

∣∣
β−m=0

)
h−m.

Therefore,
√
n (βc − βc(w)) =

√
nΓ(m)

c

⊤ (
Γ(m)β(m) − β(w)

)
→ δ2.

Part (iv) follows Lemma 5 (ii) and (iii). We have

√
nd(m) =

√
n
(
E(Γ(m)β̂

(m)
)− β(w)

)
p→ Γ(m)

(
S(m)

)−1

S(m,−m)h−m −
(
F β−m

∣∣
β−m=0

)
h−m = δ(m).

Part (v) is the main result of Lemma 5.

√
n
(
β̂

(m)

c − βc(w)
)

=
√
n
(
β̂

(m)

c − βc

)
+
√
n (βc − βc(w))

d→ N

(
δ(m)
c , σ2Γ(m)

c

⊤ (
S(m)

)−1

Γ(m)
c

)
∼ Λ(m)

c .

Proof of Theorem 3. It is straightforward to show that the asymptotic distribution of Λc

is a normal distribution, since

√
n
(
β̂c(ŵ)− βc(w)

) ∣∣∣ŵ =
M∑

m=1

ŵ(m)
√
n
(
β̂

(m)

c − βc(w)
) ∣∣∣ŵ →d

M∑
m=1

ŵ(m)Λ(m)
c

is a linear combination of normal distributionΛ(m)
c for allm. Given E

(
β̂c(ŵ)− βc(w)

)
= 0,

the mean of Λc is 0. For the variance of Λc, we have V c(ŵ) = Γ(m)
c

⊤
V (ŵ)Γ(m)

c , where

V (ŵ) = plim
n→∞

Var
(√

n
(
β̂(ŵ)− β(w)

) ∣∣∣ŵ)
= plim

n→∞
n

M∑
m=1

M∑
s=1

ŵ(m)ŵ(s)
(
d(m)d(s)⊤

+ σ2Γ(m)
(
X(m)⊤X(m)

)−1

X(m)⊤X(s)
(
X(s)⊤X(s)

)−1

Γ(s)⊤
∣∣∣ŵ)

= plim
n→∞

M∑
m=1

M∑
s=1

ŵ(m)ŵ(s)
(√

nd(m)
√
nd(s)⊤

+ σ2Γ(m)
(
n−1X(m)⊤X(m)

)−1

n−1X(m)⊤X(s)
(
n−1X(s)⊤X(s)

)−1

Γ(s)⊤
)
.
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We have proved in Lemma 5 that
√
nd(m) p→ δ(m). Therefore,

V (ŵ) =
M∑

m=1

M∑
s=1

ŵ(m)ŵ(s)
(
σ2Γ(m)

(
S(m)

)−1
S(m,s)

(
S(s)

)−1
Γ(s)⊤ + δ(m)δ(s)⊤

)
,

where S(m), S(m,s), and δ(m) are defined in Lemma 5.

Proof of Theorem 4. Since
√
n
(
β̂c(ŵ) − βc(w)

)∣∣ŵ →d N
(
0,V c(ŵ)

)
and V c(ŵ) is a

linear function of ŵ, it is equivalent to have
√
n
(
β̂c(ŵ)− βc(w)

)
|V c(ŵ) →d N

(
0,V c(ŵ)

)
.

We can rewrite the t-statistic as

tβj(w) ≡
β̂j(ŵ)− βj0

V̂ar
(
β̂j(ŵ)

)1/2 =

√
n
(
β̂j(ŵ)− βj0

)
(
nV̂ar

(
β̂j(ŵ)

))1/2 .
Following Theorem 3, for fixed V c(ŵ), we have

√
n
(
β̂j(ŵ)− βj0

)
=

√
n
(
β̂j(ŵ)− βj0

) ∣∣∣V c(ŵ) →d Λj

with mean 0 and variance Vj(ŵ), which is the jth element on the diagonal of V c(ŵ), and

nV̂ar
(
β̂j(ŵ)

)
= V̂ar

(√
n
(
β̂j(ŵ)− βj0

)∣∣∣V c(ŵ)
)
→p Vj(ŵ).

Therefore, for fixed V c(ŵ), the conditional asymptotic distribution of tβj(w) is clearly N(0, 1).
Since this conditional distribution does not depend on V c(ŵ), it also holds marginally.

Similarly, for the Wald statistic, we have

Wr =
(
Rβ̂c(ŵ)− r

)⊤ (
RV̂ar

(
β̂c(ŵ)

)
R⊤
)−1 (

Rβ̂c(ŵ)− r
)
→d χ

2(kr)

for fixed V c(ŵ). Since this conditional distribution does not depend on V c(ŵ), it also holds
marginally.
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B Description of Data Set

Variable Mean Std.dev

1. GR6085 0.0219 0.0198
2. GDP60 1.9146 1.8195
3. SEC60 0.2314 0.2117
4. PRIM60 0.7562 0.2710
5. gc/y 0.1080 0.0555
6. REV 0.1806 0.2355
7. AS 0.0279 0.0764
8. PPPI60 0.8373 0.4716
9. PPI60DEV 0.2884 0.3778
10. GDP60SQ 6.9427 11.4995
11. RPRI 35.7462 9.1282
12. RSEC 19.3646 6.4440
13. AFRICA 0.2653 0.4438
14. LAT.AMER 0.2347 0.4260
15. i/y 0.1912 0.0796
16. FERT 4.8704 1.7520
17. MORT01 0.0810 0.0503
18. FERTNET 4.3946 1.4383

Definitions:

1. GR6085: Growth rate of real per capita GDP from 1960 to 1985.

2. GDP60: 1960 value of real per capita GDP.

3. SEC60: 1960 secondary-school enrollment rate.

4. PRIM60: 1960 primary-school enrollment rate.

5. gc/y: Average from from 1970 to 1985 of the ratio of real government consumption (exclusive
of defense and education) to real GDP.

6. REV: Number of revolutions and coups per year (1960-1985).

7. AS: Number of assassinations per million population per year (1960-1985).

8. PPPI60: 1960 PPP value for the investment deflator (U.S. = 1.0).

9. PPI60DEV: Magnitude of the deviation of PPI60 from the sample mean.

10. GDP60SQ: Square of GDP60.

11. RPRI: Student-teacher ratio in primary schools in 1960.
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12. RSEC: Student-teacher ratio in secondary schools in 1960.

13. AFRICA: Dummy variable for sub-Saharan Africa.

14. LAT.AMER: Dummy variable for LATIN America.

15. i/y: Average from 1960-1985 of the ratio of real domestic investment to real GDP.

16. FERT: Total fertility rate, average of 1965 and 1985.

17. MORT01: Mortality rate for age 0 through 1, average of 1965 and 1985.

18. FERTNET: FERT×(1-MORT01).
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