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Abstract 

Recent work has shown that expected utility theory does not accurately characterize farmers’ 

crop insurance purchases. Prospect theory has been proposed as a more suitable framework, 

allowing for loss as well as risk aversion. This work examines farmers’ valuation of changes to 

crop insurance policies through the lens of third generation prospect theory. Rather than measure 

gains and losses from a static reference point, third generation prospect theory allows for 

uncertainty in both the reference and prospect choices, determining gains and losses on a state-

by-state basis. Data were obtained from surveys of corn and soybean producers in Michigan and 

Iowa. Participants were asked to suppose they had a plot of land in corn with a hypothetical 

revenue distribution and a baseline revenue insurance policy. They were asked how much they 

would be willing to pay or accept for insurance policies with higher or lower coverage levels. To 

assess the suitability of third generation prospect theory, value and probability weighting 

function parameters were estimated by nonlinear least squares. Parameters estimates indicate that 

third generation prospect theory better fits our data than prospect theory with a constant 

reference point. The analysis was extended to examine farmers’ crop insurance responses to 

proposed cuts in federal crop insurance policies. This work is important for understanding how 

farmers value crop insurance policies and how they may respond to changes in crop insurance 

premiums. 
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Introduction 

Crop insurance is an important tool that allows farmers to manage some of the risk 

inherent in agricultural production. In the United States, crop insurance is heavily subsidized by 

the federal government. Federal crop insurance subsidies were introduced in 1980 in an effort to 

encourage uptake and reduce disaster payments to farms by the federal government. The 

introduction of and increases in premium subsidies has achieved the government’s goal of 

increasing insurance rates among farmers. The proportion of insured acres reached its peak in 

2015, with 88% of all planted acres (over 210 million acres) falling slightly to 86% in 2017 

(Zulauf et al., 2018). As discussed by O’Donoghue (2014) and Zulauf et al. (2018), a strong 

relationship exists between acres covered by federal crop insurance and the rate of subsidisation, 

with higher subsidisation rates encouraging adoption of higher coverage level policies.  

Several crop insurance products are available to American farmers. Once they decide to 

insure their crop, they must choose how they want to insure their acres (basic, optional, or 

enterprise units) and between yield and revenue insurance. Yield insurance protects farmers from 

a decrease in yields only, and is paid out at the harvest price. Revenue insurance protects a 

farmer from a drop in revenue below his insured level, allowing for decreases in crop yield or in 

the price of that crop set by the Risk Management Agency (the agency that operates the Federal 

Crop Insurance Corporation, which manages the federal crop insurance program) (Shields, 

2013). For both, farmers must choose the level of coverage to purchase which ranges from 50% 

to 85% of the expected value, based on their farm’s past production history.  

Insurance premium subsidies vary with the level of coverage that a farmer purchases. 

Premiums for catastrophic coverage (covering yield losses of 50% at 55% of the prevailing 

price) are fully subsidised by the federal government (although farmers must pay an 

administration fee for these insurance policies). The subsidy level for crop insurance premiums 
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decreases with coverage level, such that those purchasing crop insurance with a higher coverage 

level have a smaller proportion of their insurance premiums subsidised by the government, but 

the actual subsidy is in fact larger than for lower levels of insurance (Shields, 2013; Du, Feng, 

and Hennessy, 2016).  

Crop insurance subsidies come at significant cost to the federal government, which 

subsidises an average of 62% of the premium costs of these policies (Shields, 2013). The federal 

government also reimburses private insurance companies for administrative costs, which totals 

over $1 billion annually (CBO, 2016). In 2009, approximately $5.4 billion was paid in insurance 

premium subsidies with over $2 billion distributed to farmers through these subsidies for corn 

alone (Shields, 2013). The total cost of the program in 2011 were estimated at over $11 billion, 

with $7.5 billion of that paid as premium subsidies (Glauber, 2013). Total costs under the current 

program are expected to be $88 billion between 2017 and 2026 (CBO, 2016).  

Because of the significant cost of crop insurance subsidies, there have been calls for these 

subsidies to be reduced or eliminated. With a new federal administration in 2017 and a new Farm 

Bill expected in 2018, crop insurance subsidies and other supports to farmers may be reduced. 

The proposed 2019 Fiscal Year budget includes significant changes to crop insurance policy, 

limiting subsidized crop insurance eligibility to farmers with less than $500,000 adjusted gross 

income and reducing the mean subsidy rate from 62% to 48% (OMB, 2017). For 2017 rates, a 

reduction of this magnitude would save the government approximately $1 billion, although this 

number does not account for potential increases in disaster payments to compensated uninsured 

producers (Zulauf et al., 2018). How farmers respond to changes in subsidies and, consequent 

changes in their insurance premiums, is an important subject of study. Previous studies have 

investigated the relationship between premium price and insurance demand, finding that farmers’ 
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demand for insurance is elastic, such that farmers would likely respond to increases in premiums 

by reducing their coverage levels (O’Donoghue, 2014). If reductions in subsidies cause farmers 

to make changes to their coverage levels or insurance decisions, an increase in disaster payments 

may be observed in the event of significant decreases in yield or revenue. Farmers may also 

change their production plans if their insurance premiums increase.  

Agents’ insurance purchasing behaviour is typically modelled with the expected utility 

theory framework. In the face of risky outcomes, agents are assumed to be expected utility 

maximizers. For insurance choices, including those for crop insurance, expected utility theory 

predicts that farmers will choose the policy that maximizes their expected utility of profits from 

crop production. Expected utility theory generally posits that agents have a concave utility 

function to incorporate risk aversion. If insurance is available at an actuarially fair premium 

(such that the insurance premium is equal to the expected indemnity), risk averse agents should 

fully insure their losses under this theoretical framework.  

Despite the popularity of these models, however, recent research has shown that crop 

insurance purchase decisions are not always guided by the expected utility framework. Using 

data from crop insurance policies purchased in 2009 by American corn and soybean producers, 

Du, Feng, and Hennessy (2016) demonstrated that farmers’ crop insurance choices are 

inconsistent with expected utility maximization. They showed that the coverage level elected by 

farmers was, on average, lower than the coverage level expected if farmers behaved as expected 

utility maximizers. Nor did farmers choose the policy level that maximized their subsidy. 

Contrary to subsidy maximisation, the coverage level chosen by farmers decreased with an 

increase in out-of-pocket prices of insurance policies (prices net of any government subsidies), 

despite the fact that the dollar value of subsidies increased with coverage level.  
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In many instances of expected utility failing to explain observed insurance behaviour, 

prospect theory has been suggested as an alternative, whether over- or under-insurance is 

observed (e.g. Du et al., 2016; Sydnor, 2010). Developed by Kahneman and Tversky (1979), 

prospect theory differs from expected utility theory in that it determines gains and losses with 

respect to a particular reference point; these gains and losses are treated differently by agents. In 

prospect theory the disutility of losing a certain amount relative to the reference point is greater 

in magnitude than the utility experienced from gaining the same amount relative to that reference 

point. Agents are therefore said to be loss averse. Rather than an expected utility function 

concave over its entire support, prospect theory posits a value function concave over gains and 

convex over losses leading to risk aversion in the gain domain, but risk seeking behaviour in the 

loss domain. (Kahneman and Tversky, 1979). Prospect theory also introduces nonlinearity in 

probabilities with a probability weighting function, which over-weighs low probability events 

and under-weights high probability events (Kahneman and Tversky, 1979). 

Prospect theory has been applied to insurance purchases as an alternative to expected 

utility theory in several different contexts (Barberis, 2013). Examining a large number of home 

insurance contracts, Sydnor (2010) found that the high deductible chosen in many actual home 

insurance policies implied an unreasonably high level of risk aversion under expected utility 

theory. The probability weighting function, which overweighs low probability events, was able 

to explain the chosen deductibles not explained by risk aversion alone. In the context of home 

insurance, this implies an overweighting of low probably but potentially catastrophic events, 

leading homeowners to over insure from an expected utility standpoint (Sydnor, 2010). 

Barseghyan et al. (2013) also found evidence of loss aversion in home and auto insurance 

contract choice. Observing that people chose a deductible larger than that which would be 
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predicted by expected utility theory, they found evidence of loss aversion resulting primarily 

from overweighing low probability events.  

In a purely theoretical model, Schmidt (2015) demonstrates that, in a two-state world (the 

agent either experiences a loss or no loss) prospect theory prediction that agents should either 

purchase no insurance or fully insure (i.e. there is no interior solution). These results hold when 

the uninsured status quo and wealth with insurance are used as reference points. However, the 

specification of prospect theory employed by Schmidt induced loss aversion from the value 

function alone rather than the value function and probability weights.  

In the context of agricultural production, prospect theory has been used in a limited 

amount to explain farmers’ behaviour. Bocquého et al. (2014) conducted experiments with 

farmers in France to determine whether expected utility or cumulative prospect theory (Tversky 

and Kahneman, 1992) better explained farmers’ decisions. Estimating prospect theory 

parameters of French farmers through multiple price list games developed by Tanaka et al. 

(2010) (similar to those developed by Holt and Laury, 2002). They found evidence of loss 

aversion and probability weighting, supporting the use of cumulative prospect theory models 

rather than those based on the expected utility framework as a model of farmer behaviour.  

Liu (2013) examined adoption of a particular technology, Bt cotton, among Chinese 

farmers, looking at the factors that may influence adoption of the genetically modified crop. 

Despite the potential for higher profits by cultivating Bt cotton, some farmers were reluctant to 

adopt. Liu (2013) posits that this may be due to the higher cost and uncertain yield of the 

genetically modified cotton seed, causing farmers to experience a loss of revenue if adoption 

does not result in more revenue. She predicts that risk averse and loss averse farmers may 

therefore delay adoption. Experiments similar to those in Tanaka et al. (2010) were used to 
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estimate prospect theory parameters, which were then used as independent variables in 

regressions to determine the probability of adoption. Farmers who exhibited loss aversion were 

likely to delay adoption of the new technology, while those whose behaviour was consistent with 

probability weighting (over-weighting rare events) were found to adopt earlier.  

Prospect theory provides a natural theoretical lens for crop insurance choices that cannot 

be explained by expected utility theory. As pointed out by Du et al. (2016), it is likely that 

farmers have a reference outcome to which they compare yearly yield and revenue outcomes. 

They may be averse to revenue outcomes below this reference point. Observations of under-

insurance, from an expected utility standpoint, may be due to risk-loving behaviour observed 

when faced with losses, due to convexity of the prospect theory value function in the loss 

domain. Babcock (2015) applied the prospect theory model to crop insurance choices, examining 

crop insurance purchases among US farmers in 2009. Using simulated crop yield and price data 

and accepted prospect theory parameter values, he found that the prospect theory model was 

better able to explain observed choices than expected utility theory. However, this finding was 

sensitive to the reference point used in the analysis. When insurance policies were treated as 

investment tools (i.e. when per-acre revenue and per-acre revenue plus out of pocket premium 

were used as reference points), prospect theory was not able to explain observed choices. Under 

prospect theory, the optimal coverage level choices were consistent with those observed in 

farmers’ actual insurance purchases when insurance policies were treated as a standalone 

investment (i.e. when the reference point was defined as farmers’ out of pocket premium) 

(Babcock, 2015). 

While prospect theory has advantages over expected utility theory in explaining certain 

observed behaviours, in its original form uncertain outcomes are compared to a particular fixed 
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reference point. The analysis in Babcock (2015) points to a weakness in this theoretical 

framework: results often depend on the choice of reference point. Under traditional 

specifications of prospect theory, gains and losses are typically measured with respect to an 

outcome observed with certainty. The results in Barseghyan et al., 2013 and Sydnor (2010) in 

support of prospect theory rely on using the household’s expected outcome as a reference point 

from which gains and losses are determined. In stylized economic experiments used to measure 

prospect theory parameters, lotteries are most often valued with respect to a certain outcome 

(REFERENCES). Some conceptualizations of prospect theory allow for stochastic reference 

points. For example, Kőszegi and Rabin (2006) develop a model that determines the expected 

utility of each outcome and uses this as the baseline against which gains and losses are 

determined. However, while this model does allow for uncertainty in the reference point, it still 

assumes the same reference point in each possible state of the world.  

When considering economic and agricultural events, it is unlikely to be the case that a 

risky prospect is compared to a certain outcome. It is possible that, since a baseline outcome may 

itself be risky, the way in which a farmer determines gains and losses from a particular reference 

point may also vary depending on the state that occurs. When deciding whether or not to 

purchase crop insurance, or deciding among coverage level options, farmers must compare two 

uncertain outcomes. This uncertainty cannot be adequately addressed in prospect theory models 

that assume a fixed reference point. To deal with uncertainty in the reference choice, Schmidt, 

Starmer, and Sugden (2008) have extended the prospect theory model. Their so-called third-

generation prospect (PT3) theory follows Sugden’s (2003) rank dependent subjective expected 

utility framework and defines a value function using the outcome of a reference choice in the 
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same state of the world against which gains and losses are measured. PT3 has been shown to be 

consistent with WTA/WTP discrepancies in the face of uncertainty (Schmidt et al., 2008).  

In this paper, we apply PT3 to farmers’ crop insurance choices. We assess the ability of 

PT3 to explain farmers’ valuation of changes to their crop insurance choices. Using data from 

surveys conducted with farmers in Michigan and Iowa, we use their reported willingness to pay 

(WTP) and willingness to accept (WTA) for increases and decreases in coverage level to 

estimate PT3 value function parameters. We find support for PT3 in our parameter estimations, 

with the parameters estimated suggesting risk and loss aversion among agricultural producers, as 

well as a moderate degree of probability weighting. Our estimated parameters are consistent with 

those estimated in other studies of agricultural producers (Bocquého et al., 2013). We also find 

that PT3 parameter estimates are closer to values published in past work than those estimated 

with prospect theories that assume a constant reference point, providing further support for the 

PT3 framework. This work furthers our understanding of how farmers chose among the crop 

insurance products available to them, and how they perceive production risk.  

  

Conceptual Framework 

 We begin by supposing that a farmer is faced with the choice of purchasing a revenue 

insurance policy for a unit of land on his farm for the coming growing season1. Let r  represent 

his per-acre revenue, unknown when this decision is made, r  his average revenue2 (APH x 

price), and c  his chosen coverage level. The policy will pay an indemnity if the farmer’s revenue 

                                                 

1 This assumes farmers make coverage decision on a year-by-year basis, thinking only of the coming growing 

season. 
2 APH denotes actual production history, typically a ten-year average of historical yields used to determine premium 

rates. 
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falls below his insured revenue; if his revenue is above this amount, he will receive no payment. 

The indemnity that a farmer will be paid is shown in (1). The fair premium (the expected value 

of the indemnity), is as shown in (2). 

  max ,0indemnity cr r= −   (1) 

 ( ) ( )
0

fair premium
cr

cr r dF r= −   (2) 

The premium paid by the farmer for the policy, p , is the value of the fair premium less the 

subsidy he receives. The subsidy amount ( )s c  is determined by the coverage level, and so the 

subsidised premium paid by farmers for the insurance policy with coverage level   is denoted 

by (3). 

 ( ) ( ) ( )
0

(1 ( ))
cr

p c s c cr r dF r= − −   (3) 

The farmer’s per-acre revenue, w , is as shown in (4). It is determined by the revenue received 

for his crop, any indemnity payment he receives, and the premium he must pay for his insurance 

policy. 

 ( )   ( ), , max ,w r c p cr r p c= −   (4) 

  

Expected Utility 

In the expected utility framework, farmers should choose the coverage level that 

maximizes their expected utility of income3, so that   ( )( )* arg max max ,cc E u cr r p c = −  , 

where ( )u  is a concave utility function. An increase in coverage level increases the revenue 

                                                 

3 For simplicity, we assume zero costs of production and no income from non-farm sources. 
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guarantee and the probability that the farmer will receive an indemnity payment, increasing his 

utility, but will cost more than his original policy. For a farmer to choose a higher coverage level 

*'c c , his expected utility must be at least as high as his original utility.  

 The maximum amount that the farmer is willing to pay (WTP) for an increase in 

coverage level should be the amount above ( )* *p p c=  that keeps his expected utility constant. 

That is,  

 ( )( ) ( )( )* * *

*, , , , c cE u w r c p E u w r c p WTP →
   = +
   

  (5) 

Similarly, for *   , the minimum amount that he should be willing to accept (his WTA) 

should be the amount that his expected utility is unchanged such that  

 ( )( ) ( )( )*

* *, , , ,
c c

E u w r c p E u w r c p WTA
→

    = −   
  (6) 

For goods with close substitutes, any difference in agents’ WTA and WTP will be caused 

only by the income effect. For increments in coverage level, this should be small, so that a 

farmer’s WTP and WTA for changes in coverage level should not differ by much. Despite this 

theoretical result, previous research has consistently found that WTA exceeds WTP, often by a 

significant margin (Brown and Gregory, 1999; Horowitz and McConnell, 2002; Tunçel and 

Hammitt, 2014). This has been found with studies of physical objects, environmental quality, 

and health, among others, and holds a variety of elicitation methods (e.g. economic experiments 

or hypothetical statements of WTP and WTA).  

 

Prospect Theory 

 Loss aversion is one of the proposed explanations for the observed willingness to 

pay/willingness to accept disparity, suggesting that people experience more disutility from a loss 
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than utility from a gain of the same magnitude. This may explain why people are willing to pay 

less to obtain an item than they are willing to accept to give up that same item, as has been found 

in many economic experiments. Prospect theory accounts for loss aversion in a way that is not 

explained by expected utility theory, treating losses and gains from a particular reference point 

differently (Kahneman and Tversky, 1979).  

For outcomes with discrete distribution functions, the expected utility framework is linear 

in probabilities such that the expected utility of an uncertain outcome is defined as 

( ) ( )
1

n

i ii
U x u x 

=
= , where 

i  is the probability that state i  will occur. The utility function for 

outcome i , ( )iu x , is an increasing function, concave over outcomes. In prospect theory, utility 

of the outcome is determined similarly, but with some key differences. The agent’s value 

function, ( )V x , is defined as  

 ( ) ( ) ( )
n

i ii m
V x v x  

=−
=   (7) 

in which ( )iv x  is the value of 
ix  and ( )i   is the weighted probability of outcome i . Outcomes 

are defined with respect to some reference point, from which gains ( 0ix  ) and losses ( 0ix  ) 

are measured.  

One of the main features of prospect theory is the way in which gains and losses are 

treated by agents. Gains and losses are determined with respect to the agent’s particular reference 

point. Rather than a utility function that is concave over its entire domain (gains and losses), 

prospect theory posits a value function that is concave over gains but convex over losses. The 

magnitude of the value function may also be different for gains and losses to incorporate loss 

aversion observed in many scenarios, such that losses are felt more keenly than gains. The value 
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function proposed by Kahneman and Tversky (1979) that accounts for this is shown in equation 

(8) 

 ( )
( )

                if 0

     if 0

gain

loss

x x
v x

x x






 
= 

− − 

  (8) 

where 0 , 1gain loss    (and often 
gain loss =  is assumed). The curvatures of the value function 

in the two domains are determined by gain  and
loss  , while 1  implies loss aversion.  

 Decision weights of probability, ( )i   in equation (7), is another way in which prospect 

theory differs from expected utility. Decision weights are commonly modelled such that low 

probability events are over weighted and high probability events are under weighted. Several 

weighting functions have been proposed, but the one most commonly employed is as in 

Kahneman and Tversky (1979). Their proposed weighing function is of the form 

( )

( )( )
1

1



 


 

 

=

+ −

 , where   is the probability weighting parameter. This function causes 

the value function ( )V x  to be non-linear in probabilities, and also contributes to observed loss 

aversion. 

 

Cumulative Prospect Theory  

 Cumulative prospect theory, developed by Kahneman and Tversky (1992), retains the 

value function and decision weights of prospect theory developed earlier by the same authors 

(equation (8), above) (Kahneman and Tversky, 1979). However, cumulative prospect theory 

introduces a cumulative probability weighting function that determines decision weights for 
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gains and losses differently, such that a prospect with n  potential gains assigns any gain i  , with 

outcomes ranked ...i nx x   the decision weight  

 ( ) ( ) ( )1... ...i i n i n iw w w     + + + +

+= + + − + + =   (9) 

such that ( )...i nw  + + +  is the probability of receiving at least outcome i  and ( )1 ...i nw  +

+ + +  

is the weighted probability of receiving an outcome strictly greater than i . A loss i  of m  total 

potential losses ...m ix x   is similarly assigned the probability weight 

 ( ) ( ) ( )1... ...m i m i mw w w     − − − −

−= + + − + + =   (10) 

These probability weighting functions weigh cumulative probabilities, such that  

 While cumulative prospect theory adds features to prospect theory, it still assumes a 

constant reference point, which may not be suitable for all decision-making contexts. 

 

Third Generation Prospect Theory 

Prospect theory and cumulative prospect theory propose important alternatives to 

expected utility theory that may more accurately describe how agents choose among risky 

prospects. However, both compare risky outcomes to a certain reference point. This may not 

always be a reasonable assumption, especially when applying prospect theory to the context of 

agricultural production. Third generation prospect theory (PT3), developed by Schmidt et al. 

(2008) builds on the previous versions of prospect theory, including a value function concave 

over gains and convex over losses as well as weighted probabilities that overweigh low 

probability events and underweight high probability events. However, PT3 does not suppose a 

fixed reference point, and instead compares risky prospects to a reference choice that also 

depends on the state of nature. 
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The value function used in PT3 follows the function proposed by Kahneman and Tversky 

(1979), and is of the form 

 
            if 0

( )
( )   if 0

z z
v z

z z





 
= 

− − 

  (11) 

with 0 1   indicating a function concave over gains and convex over losses, and 1 

indicating loss aversion. An agent’s objective function is defined as  

 ( ) ( ) ( ), i ii
V f h v z  =   (12) 

where, as above, ( )i  is the weighted probability of state i  occurring.  

The key difference between prospect theory as proposed by Kahneman and Tversky 

(1979, 1992), and PT3 is that 
iz  is the difference between the outcomes in state i  of choice f

and the reference choice h , against which gains and losses are measured, rather than a fixed 

reference point. The value function ( )iv z  is accordingly called the relative value function. In 

this framework, gains and losses for alternative f  with respect to the reference choice h  are 

compared for each potential state of the world are separately, such that the difference between 

the two outcomes in in state 
is  is determined by  

 ( ) ( )i i iz f s h s= −   (13) 

When ( )ih s  is a certain outcome, this function is equivalent to the previous conceptions of 

prospect theory.  

In the context of crop insurance choices, we define a farmer’s revenue  in state i  without 

insurance as his reference choice, ih , and the revenue that he would receive in state i  if he chose 

the policy with coverage level c  as 
icf , his value of the insurance policy can be valued 

according to PT3. In each potential state of the world, the potential revenue outcomes without 
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and with crop insurance are compared to determine whether the insurance policy results in a gain 

or a loss relative to his revenue without insurance. The differences in each possible state i , 

i ic iz f h= − , are valued according to (11), and the value of the insurance policy with coverage 

level c , 
cf , relative to revenue without insurance, the reference choice h , is determined by (12).  

A farmer should choose the insurance policy with coverage level that maximizes his 

value function such that   

 ( )* arg max ,c cc V f h=   (14) 

yielding the maximized value function ( )*,cV f h .  

We can also use this framework to determine how much a farmer would be willing to pay 

or accept for changes in his coverage level from a baseline insurance policy. The maximum 

amount that the farmer would be willing to pay to increase his coverage level is the amount that 

leaves his valuation unchanged at the maximum, such that 
*c cWTP →

 satisfies  

 ( ) ( )* *, , ,c c c cV f h V f h WTP →=   (15) 

Similarly, the minimum amount that he would be willing to accept for a decrease in coverage 

level should be the amount such that  

 ( ) ( )* *, , ,c c c cV f h V f h WTP →=   (16) 

In each state of the world, we define 
* *ic ic i c cz f h WTP →= − −  and 

* *ic ic i c cz f h WTA →= − + . 

 

Data 

 Data were collected from surveys of corn and soybean farmers in Michigan and Iowa in 

late 2016 and early 2017. These two states were chosen to represent typical farms in the U.S. 

corn belt (Iowa) and states in which mixed farming is more prevalent (Michigan). Farmers who 
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grew at least 100 acres of corn or soybeans in 2016 in either of the two states were eligible to 

participate. Surveys were administered to farmers through mail (77% of respondents), online 

(18%), and in person at farmer meetings (5%). The survey was tested in the summer of 2016. 

Researchers travelled to various farmer meetings in Michigan and invited attendees to complete 

the survey. Farmers were compensated at these meetings for their time. In late 2016 and early 

2017, the researchers travelled to other meetings in Michigan and Iowa sponsored by Michigan 

State University and Iowa State University, respectively, at which farmers were invited to 

complete the survey. 

The majority of surveys were completed by farmers online and through the mail in the 

winter and spring of 2017. Surveys were administered by the Centre for Survey Statistics & 

Methodology (CSSM) of Iowa State University. A sample of addresses for 2,000 farmers (1,000 

in each state) was purchased from Farm Market iD and provided to CSSM staff. This sample 

included email addressed for approximately two thirds of these farmers. Farmers for whom email 

addresses were provided were initially sent letters to let them know they would receive an email 

with a link to the online survey. Emails were sent to 1,278 farmers (677 in Michigan and 601 in 

Iowa), of which 50 initially completed the online version of the survey. An additional sample file 

of 598 farmers, 299 in each state, was later obtained from Farm Market iD. CSSM staff prepared 

and mailed paper invitation letters to those respondents informing them that they would be 

receiving an email invitation to complete the online survey. From these additional addresses, 40 

respondents completed the survey. For both samples, reminder emails were sent roughly a week 

after the initial electronic invitation. Respondents who completed the survey online were 

compensated between $19 and $28 depending on the outcome of an economic experiment not 

discussed in this work.  
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 Surveys were mailed to 1,925 farmers, including those who had not completed the initial 

online survey and those for whom no email address was provided. Mailings included a postage 

paid return envelope and an incentive of $2. One week after the initial mailing, a reminder 

postcard was sent. An additional survey was sent to 1,531 farmers roughly three weeks after the 

initial mailing. A total of 470 completed surveys were returned to the CSSM. The surveys 

captured information about farmers’ demographics, their farm operations, and past insurance 

choices and payments. Farmers were asked about their insurance purchase decisions and any 

insurance payments they received in the preceding five years (from 2011 to 2015). They were 

asked about other activities they employ, besides crop insurance, to mitigate risk (e.g., using 

futures markets, purchasing named-peril insurance policies, etc.). The survey also asked 

participants about the importance of non-financial factors in their insurance decisions.  

To investigate how farmers value changes in coverage level from a baseline policy, they 

were shown a per-acre revenue distribution for corn. The hypothetical distribution was designed 

such that the actuarially fair insurance premium was typical for corn production in mid-

Michigan. The discrete distribution indicated number of years in twenty they could expect to 

receive that particular revenue (see Figure 1). Farmers were asked to suppose that they had a 

revenue insurance policy with 75% coverage, with the fair premium and revenue guarantee for 

this policy shown. They were asked to report the maximum amount that they would be willing to 

pay to increase their coverage to 80% and 85%, and the minimum amount they would be willing 

to accept to decrease their coverage to 70% and 65%. For each insurance policy, farmers were 

given the average revenue and the revenue guarantee of the policy. Changes in coverage level, 

revenue guarantee, and the probability of making a claim from this baseline policy are given in 

Table 1. Farmers were asked to choose their WTP and WTA from given ranges. For this 
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analysis, the mid point of each response was chosen as a farmer’s WTP or WTA to evaluate the 

ability of third generation prospect theory to explain observed valuations. We use the data to 

estimate the PT3 parameters and assess the ability of PT3 to explain farmers’ valuation of changes 

to the crop insurance coverage.  

 

Empirical Framework 

  We first examine farmers’ stated WTP responses to motivate the use of prospect theory in 

their valuation of crop insurance policies. As discussed in the conceptual framework section of 

this paper, farmers should be willing to fully insure if they behave as expected utility 

maximizers. Accordingly, their WTP for changes in coverage level should be the same as the 

change in fair premium under the same conceptual framework. We also expect that farmers are 

equally sensitive to gains and losses when determining their WTP and WTA for changes in 

coverage level. If, however, farmers behave according to prospect theory, we should observe loss 

aversion in that they are more responsive to losses than to gains. As a first pass analysis, we 

determine the impact of expected losses and expected gains on their stated WTP. Gains and 

losses are defined with respect to the baseline 75% coverage policy in each state i . Expected loss 

is defined as the product of a loss in state i   and the probability of sate i  occurring, such that 

  *nc nci ii
E loss loss = , where 

i  is the probability of state i  occurring. Expected gains are 

defined similarly, with   *nc nci ii
E gain gain = . We regress participant n ’s WTP on expected 

gains and losses, estimating  

    0 1 2E Enc nc nc ncWTP loss gain   = + + +   (17) 
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where 
ncWTP is farmer n ’s additional willingness to pay for the insurance policy with coverage 

level c ,  65%,70%,80%,85%c . If farmers do not exhibit behaviour consistent with prospect 

theory, we expect 
1 2 =  indicating that they are equally sensitive to gains and losses when 

determining their willingness to pay for the alternative coverage level. However, if farmers are 

loss averse, we expect 
1 2  , such that they are more sensitive to losses than to gains and 

suggesting that prospect theory may more accurately describe their behaviour. 

After the above initial analysis, we use third generation prospect theory to examine 

farmers’ valuation of changes to crop insurance policies, estimating the parameters of the value 

and probability weighting functions to assess the theoretical framework’s ability to explain 

observed choices. The majority of studies that estimate prospect theory parameters ask 

participants to make binary choices between risky prospects, from which the model’s parameters 

are estimated. The values estimated in the experiments conducted by Kahneman and Tversky 

(1979) are often used as a benchmark from which other parameter estimates are evaluated.4 

Rather than asking farmers to choose between to policies, we asked them to report how much 

they would be willing to pay or accept for policies with higher or lower coverage levels. 

From a baseline of an uninsured state, let nih  be the revenue that farmer n  receives from 

his plot of land in random state i  without an insurance policy. When determining the value of a 

policy with coverage level c under PT3, the farmer will compare the monetary outcome of the 

policy in each random state to the value he would receive if no insurance policy was purchased. 

                                                 

4 This paper reported the median parameter values, and this method remains popular in the literature, although it has 

been met with some criticism. See Harrison and Swarthout (2016) for a discussion of this issue. 
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We let 
ncif  represent the monetary value received by farmer n  in state i  with a policy that offers 

coverage level c , defined as  

 
nci nci cf rev prem −   (18) 

where 
ncirev  is the revenue farmer n  receives with coverage level c  in state i , and 

cprem  is the 

premium of that particular policy.  

The monetary difference between the uninsured state and baseline without insurance in 

state i  is defined as  

 
nci nci niz f h −   (19) 

Farmer n ’s valuation of a policy with coverage level c  in state i  is determined by  

 ( )
                0

        0

nci nci

nci

nci nci

z z
v z

z z






 
= 

− 

  (20) 

where   determines the curvature of the value function and   determines the magnitude of loss 

aversion. His value of the policy with coverage level c , compared to the reference point of no 

insurance is determined by  

 ( ) ( )nc nci ii
V v z  =   (21) 

where ( )i   is the weighted probability of being in state i . We use the same probability 

weighting function as in Schmidt et al (2008), defined as ( )

( )( )
1

1



 


 

 

=

+ −

5.  The 

                                                 

5 This is the probability weighting function proposed by Kahneman and Tversky (1979). Others have been proposed 

that retain the same qualitative properties of overweighing low probability events. See Prelec (1998), for an 

example. 
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parameter (0,1)   determines the degree of probability weighting, such 1 =  indicates no 

probability weighting and the probabilities are taken at face value.  

 Whether a farmer would choose to be insured, based on the above framework, is 

determined by equation (21). If 0ncV  , the farmer would experience a higher utility with 

insurance, and would therefore opt for coverage; if 0ncV  , he would choose to remain 

uninsured.  

We can also this theoretical framework to determine a farmer’s valuation of crop 

insurance policies from a baseline coverage level to estimate value function parameters. Babcock 

(2015) determines the individually optimal crop insurance coverage levels by estimating their 

prospect theory certainty equivalent (CE) value.  The CE is the amount that agents would accept 

rather than an uncertain prospect or gamble; an agent is indifferent between this certain amount, 

valued according to her utility function, and the uncertain prospect. We take this approach to 

estimate PT3 value and probability weighting function parameters, treating farmers’ WTP as 

their certainty equivalent for a change in coverage level.  

We use 
75n ih  to denote he revenue farmer n  would receive with the 75% insurance 

policy in each possible state of nature i . This serves as the farmers’ reference point in state i . 

The monetary value received in state i  under the alternative policies is represented by 
ncif , with 

 65%,70%,80%,85%c  denoting the alternative coverage levels. The monetary difference 

between the baseline and alternative policies in state i  is defined as  

 
75nci nci n iz f h −   (22) 

Farmer n ’s valuation of revenue received in state i  of a policy with coverage level c , compared 

to the baseline with 75% coverage is determined by  
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 ( )
                0

        0

nci nci

nci

nci nci

z z
v z

z z






 
= 

− 

  (23) 

Farmer n ’s value of a policy with coverage level c is  

 ( ) ( )nc nci ii
V v z  =   (24) 

using the same probability weighting function as above.  

A farmers’ maximum willingness to pay for a higher coverage level and his minimum 

willingness to accept for a lower coverage level is the amount that he would pay or accept with 

certainty for an uncertain gain or loss in revenue. We therefore treat this amount as his certainty 

equivalent (CE), valued according to his utility function.6 Letting 0ncWTP   denote farmer n ’s 

maximum willingness to pay to increase his coverage level to  80%,85%c , and 0ncWTP   

his minimum willingness to accept for  65%,70%c , 
ncWTP  should be such that  

 ( ) ( ) ( )nc nc nci ii
U WTP V v z  = =   (25) 

Supposing a constant relative risk aversion utility function, with ( )nc ncU WTP WTP = , the 

parameters  and   in the value function, and the probability weighting function parameter   

should be the values that satisfy (25). 

We can estimate the PT3 parameters with nonlinear least squares estimation, minimizing 

the sum of squared differences between the value of the change in coverage level and the CE of 

                                                 

6 We value the agent’s certainty equivalent according to his utility function rather than his value function. 

Experiments conducted by Novemsky and Kahneman (2005) suggest that loss aversion is not exhibited when the 

loss is intended, such as making a payment, rather than when a loss results from a risky choice. We thus do not value 

his CE with the value function that incorporates loss aversion. 
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reported WTP (the sum of squared errors). Assuming ( )nc nc ncU WTP V = + , we estimate the 

parameters ,   and   that minimize  

 ( ) ( )
2

2

nc nc ncinc nc
U WTP V z = −      (26) 

We also explore other model specifications, omitting the probability weighting function 

( )i   (that is, assuming 1 = ) to estimate   and   only. We then set 1 =  and estimate   

and  . We also allow for different curvature parameters in the gain and loss domains, estimating 

loss  and gain  along with   and  .  

To compare PT3 and prospect theory specifications with a constant reference point, we 

estimated value function parameters using farmers’ stated WTP and the revenue guarantee of the 

baseline insurance policy as a constant reference point. Parameters were similarly estimated by 

nonlinear least squares methods, as in equation (26), but defining  

 
75nci nci nz f h −   

where 
75nh  is the revenue guarantee of the 75% coverage policy (the same value in all possible 

states of nature). We estimated parameters with the same model specifications used to test PT3 

(estimating ,  , and  , then omitting the probability weighting function, setting 1 = , 

allowing   to differ in the gain and loss domains).   

 

Results 

Summary statistics 

 A total of 612 surveys were completed, with 43% of respondents operating farms in 

Michigan and 57% in Iowa. Summary statistics for survey respondents are presented in Table 2 

below. Participants had been farming for over 34 years, on average. The mean farm size was just 
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under 960 acres, with the majority of participants growing corn and soy in the past year. Over 

80% of respondents had purchased insurance in the past five years, and almost 70% had made an 

insurance claim in the same time period. In addition to MPCI, farmers used a variety of other 

risk management tools in their farm operations, as reported in Table 3. The most popular of 

these, employed by over 78% of respondents, was agriculture risk and price loss coverage (ARC 

and PLC, respectively), followed by forward and minimum price contracts (used by over 69%). 

Named peril insurance (e.g. hail insurance), was the third most popular of these other strategies, 

with approximately 60% of farmers reporting use. The others, in order of frequency, were the use 

of risk-mitigating technologies, such as drainage tile and other physical investments, futures and 

options markets, and supplemental coverage option (SCO).  

 

Valuation of changes in coverage level 

 Average WTA and WTP for alternative coverage level policies, compared to the baseline 

policy with 75% revenue coverage, are plotted against changes in fair premium in Figure 2. The 

45º line indicates the change in fair premium, which should be the amount that farmers are 

willing to pay/accept for an increase/decrease in coverage level if they are risk-averse expected 

utility maximizers. As the figure shows, farmers’ mean WTA for decreases in coverage level are 

closer to the change in fair premium than their mean WTP for increases, suggesting that the 

farmers value gains less than corresponding losses in coverage level. Table 4 shows the mean 

WTA and WTP responses for the different coverage level policies.  

 Farmers’ sensitivity to decreases in coverage level is more formally demonstrated with a 

regression of their WTA and WTP responses on expected losses and expected gains of the 

alternative insurance policies. As shown in Table 5, the larger coefficient on expected losses 

indicates that expected losses have more impact on farmers’ stated WTA than expected gains 



 

27 

 

have on their WTP. This behaviour is consistent with prospect theory, providing motivation for 

exploring valuation of changes to crop insurance coverage level through this theoretical 

framework.  

 

Prospect theory parameter estimation 

Results for PT3 parameters estimates are presented in Table 6. The parameter estimates 

provide support for third generation prospect theory, with estimated parameter values consistent 

with risk aversion and loss aversion. Our statistically significant estimates of  ,  , and   

(0.166, 0.444, and 1.646, respectively) denote significant risk aversion and probability 

weighting, and moderate loss aversion through the loss aversion parameter. Figure 3 shows the 

probability weighting function with a value of   set equal to 0.444. As shown in this figure, this 

value of   denotes considerable weighting of probabilities, with events with probabilities of 

approximately 0.25 and less given more weight than the actual probability that they would occur, 

and those with probabilities over 0.25 underweighted. 

These values differ from the parameters estimated by Kahneman and Tversky (1979), 

which are often used as benchmark values in discussions of prospect theory. Their seminal paper 

estimated   of 0.88,   of 0.69, and   of 2.25. These values denote moderate risk aversion, 

probability weighting, and loss aversion, respectively. The prospect theory parameters estimated 

by Liu (2013), ( = 0.48,  =0.69 and  =3.47) and Bocquého et al. (2013) ( = 0.51,  =0.65 

and  =3.76) are similar to those in Kahneman and Tversky (1979). The studies by Liu (2013) 

and Bocquého et al. (2013) estimated prospect theory parameters among agricultural producers 

in China and France, respectively. Our estimated parameters are consistent with the qualitative 

conclusions of other estimates (risk aversion, probability weighting, and loss aversion) but our 
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parameter estimates differ from those in previous work, suggesting a higher degree of risk 

aversion and probability weighting, and lower loss aversion from the loss aversion parameter. 

We also estimated the PT3 parameters with alternative model specifications, as outlined 

above. When   was set to one (no probability weighting), the estimates for   and  are 

inconsistent with prospect theory. The estimated value of  of 0 suggests extreme risk aversion, 

such that agents would not be willing to taking on any risk. Additionally, the estimated value of 

  of over 9 implies extreme loss aversion not observed in other prospect theory studies. This 

model specification therefore does not seem to be a good fit for our data.  

 The third column of Table 6 present the parameters estimated when   was set to 1 (so 

that any loss aversion is a result solely of the probability weighting parameter  ). The estimates 

of  and   are much closer to those estimated in previous prospect theory studies. The values of 

these parameter estimates suggest significant risk aversion and probability weighting, with an 

estimated value of    of 0.198 and an estimated   of 0.444, both significantly different from 

zero.  

The fourth specification of the model estimated   and  as before, but allowed for 

different values of   in the gain and loss domains of the value function. This estimation resulted 

in similar parameter values for   in the gain domain and   as in other models, but the estimates 

of   in the loss domain and   were not statistically significant. The final model specification 

estimated   in the gain and loss domains as well as   , with   set equal to one. The estimated 

values of   were 0.164 in the gain domain and 0.300 in the loss domain (both statistically 

significant), suggesting more risk aversion in the gain domain than risk seeking in the loss 

domain (a steeper curve over gains than losses). The estimated value of   is similar to that in 

the previous specifications.   
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 Parameter estimates for prospect theory with the revenue guarantee of the 75% coverage 

policy (a constant reference point) are presented in Table 7. When the three value function 

parameters were estimated, the estimated value of  was not statistically significant from zero. 

The value of  , 0.312, was similar to the PT3 parameter estimates and statistically significant. 

The estimated value of  , however, denoted a higher level of loss aversion than PT3, with a 

value of over 4. When we estimated different values of   in the gain and loss domains, we 

obtained similar results, with   not statistically different from zero in either domain. In this 

model specification, the value of   was no longer statistically significant, and the estimate of   

was consistent with the previous specification. When we set 1 =  and estimated different values 

of   in the gain and loss domains as well as  , the parameter estimates were similar to those of 

PT3, with estimated values of gain  of 0.167, 
loss  of 0.274, and   of 0.444, all statistically 

different from zero.  

 A comparison of the parameters estimated using the PT3 and prospect theory model 

specifications suggest that PT3 is more suitable than the model that compares uncertain prospects 

to a certain reference point. With the exception of the last model specification that estimated 

,gain loss   and   (i.e. when   was set to 1), the estimates of   were not different from zero 

when a constant reference point was used (see Table 7). The estimated values of   are 

statistically significantly different from zero in some model specifications, but not all. The 

estimated values of   are statistically significant and do denote a considerable degree of loss 

aversion. In contrast, the estimates for   and   are statistically significant in all model 

specifications and consistent across the different PT3 models tested (see Table 6). The PT3 

parameter estimates are consistent with risk and loss aversion and are consistent with parameter 

values estimated in other studies (see Bocquého et al., 2014). We therefore suggest that PT3 is a 
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suitable framework through which to analyse farmers’ valuation of crop insurance coverage 

levels. 

 

Potential Policy Implications  

 Our parameter estimates suggest that third generation prospect theory can be used as a 

theoretical framework through which to examine farmers’ crop insurance choices. In this section, 

we use the parameters estimated in the previous section to explore what this theoretical 

framework predicts about farmers’ crop insurance purchases and the implications of proposed 

changes to policy premiums. Federal budget proposals include significant cuts to crop insurance 

subsidies, decreasing the average subsidy rate from 62% to 48%. This would result in increases 

in farmers’ out of pocket premiums. It is not known to what extent these premium increases will 

change farmers’ crop insurance choices.  

To explore the potential ramifications of cuts to premium subsidies, we use the same 

hypothetical revenue distribution used in our WTP scenarios. We use parameters estimated from 

farmers’ WTP and WTA responses ( =0.166,   0.444, and  =1.646), and calculate policy 

values according to (21). We first examine the scenario with no insurance as a baseline, 

determining the optimal coverage level (i.e., the one that maximizes the farmer’s value function) 

as if he was making an initial insurance purchase under the current subsidy regime. We then use 

a baseline policy with 75% revenue coverage to explore whether an alternate coverage level 

would be valued more highly from this baseline insurance policy, again using current subsidy 

levels. Finally, we examine how proposed subsidy cuts might affect farmers’ insurance 

purchasing behaviour under third generation prospect theory. 

 While the average crop insurance subsidy rate is 62%, policies that offer different 

coverage levels are subsidised at different rates. Policies that cover catastrophic losses (referred 
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to CAT insurance policies, covering 50% of yield losses at 55% of the prevailing commodity 

price) are completely subsidised by the federal government. The rate of subsidisation decreases 

as the coverage level increases, with optional and basic unit policies offering 85% coverage 

subsidised at 38% (Du et al., 2016). We base our analysis on the current subsidy rates of optional 

and basic units, as the mean subsidy rate for these policies is 62%. (This differs from the mean 

subsidy rate for enterprise unit policies, which is currently 75% (Du et al., 2016)). 

 The valuation of crop insurance policies under PT3 with uninsured revenue as the 

reference point are presented in the first column of Table 8. Although all the policy values are 

negative, indicating that remaining uninsured is the individually optimal choice under PT3, the 

policy that has the highest valuation provides 75% revenue coverage. When we examine values 

of policies with varying coverage levels, using the 75% coverage as a baseline, we see that 

retaining the 75% coverage policy is still the policy with the highest value, as the value of 

policies with higher and lower coverage levels are all negative. This indicates that with this 

revenue distribution and current policy subsidy rates, farmers with a revenue insurance policy 

with 75% coverage should not make any changes to their coverage level under PT3.  

The proposed cuts to federal crop insurance subsidies does not specify whether the 

subsidies of all policies will be cut by the same proportion, only that average subsidies would be 

cut to 48% from 62%. To explore the changes in insurance policy values under PT3, we reduced 

each subsidy level by 14%. Using these subsidy levels, we calculated the value of alternative 

coverage levels using a 75% policy subsidised at 55% (the current subsidy rate) as the reference 

point. As shown in the third column of the Table 8, in this scenario the 75% policy has the 

lowest value. The policy with the highest valuation is the 50% coverage level policy, indicating 
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that farmers would optimize their value function by switching from 75% coverage to 50% 

coverage under PT3. 

 Although these calculated valuations are for a stylized revenue distribution, they can 

offer some insight into how farmers might choose among the policies available to them. If they 

value policies according to PT3, farmers would consider their revenue in many states of nature 

rather than using a fixed reference point. Under third generation prospect theory, remaining 

uninsured is personally optimal, as all insurance policies have a negative valuation. This is at 

odds with the American farming population, as the overwhelming majority of farmers elect at 

least some level of coverage. However, we observe that the policy with the highest value offers 

75% coverage. This is closer to farmers’ actual insurance purchase behaviour than is predicted 

by expected utility theory, which predicts that farmers should choose the policy with the highest 

coverage level (Du et al., 2016). 

When we suppose that farmers are valuing alternative coverage levels from a baseline 

75% policy and current average premium subsidies, we observe that all alternative coverage 

levels have negative values. Using the proposed premium subsidy cuts, from the current average 

of 62% to 48%, we observe that keeping the 75% coverage policy results in the lowest valuation. 

Under PT3 and the distribution used, farmers would be better off by switching to any alternative 

coverage level than keeping their baseline policy. A change to any alternative coverage level 

would result in a higher value than remaining at 75% coverage, but policies with lower coverage 

levels are more highly valued than those with coverage above 75%. While this issue and this 

particular framework should be studied in more detail, our analysis suggests that farmers would 

be better off reducing their coverage level when faced with the proposed premium increases.  

 



 

33 

 

Further discussion and conclusions 

 Recent work has shown that expected utility theory to be inconsistent with farmers’ crop 

insurance purchases (Du et al., 2016). Prospect theory is often posed as an alternative framework 

with which to examine agents’ risky decisions. This framework has been applied in a limited 

extent to agricultural production and in the context of crop insurance purchases specifically. 

Previous work has found support for prospect theory among agricultural producers, with 

prospect theory found to perform better than expected utility theory in experimental settings 

(Bocquého et al., 2014; Liu, 2013). Prospect theory has also been found to out-perform expected 

utility theory in explaining farmers’ observed crop insurance choices (Babcock, 2015). However, 

previous explorations of farmers’ behaviour through the lens of prospect theory have used model 

specifications with a constant reference point from which gains and losses are determined. As 

discussed in the introduction, this may not a realistic assumption in agricultural production. 

In this paper, we examined the ability of third generation prospect theory to explain 

farmers’ reported valuation of increases and decreases in crop insurance coverage levels. We 

chose PT3 to more accurately model risk in the reference choice. Rather than defining gains and 

losses from a constant reference point, PT3 determines gains and losses from a risky baseline on 

a state-by-state basis. Using WTA and WTP data from hypothetical crop insurance parameters, 

we estimated parameters of PT3 value functions, exploring various model specifications. The 

parameter estimates are different from those typically used in the economic literature (those 

estimated in Kahneman and Tversky, 1979), but they do suggest risk and loss aversion, as well 

as a moderate degree of probability weighting. The parameter estimates of PT3 were more 

consistent with other estimates of prospect theory parameters than those estimated using a 

constant reference point (the revenue guarantee of the 75% coverage insurance policy), 

suggesting that third generation prospect theory more accurately describes farmers’ behaviour. 
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Our findings on prospect theory suggest that farmers are both risk and loss averse. They 

also suggest that farmers apply non-identity decision weights rather than evaluating probabilities 

as given. Both of these results are consistent with traditional conceptualizations of prospect 

theory. However, our findings in support of PT3 also suggest that farmers do not determine a loss 

from a single reference point as posited by prospect theory and cumulative prospect theory, and 

that considering losses on a state-by-state basis may be more suitable. While farmers may not 

consider eight potential states in their on-farm decision making as in our stylized crop insurance 

scenarios, they may consider more than one state (e.g., significant losses, outcomes that are 

approximately average, and above average yields) when comparing their current crop insurance 

contracts to alternatives available to them.  

When looking at policy valuations under PT3, we find that among the different coverage 

levels, the policy offering a 75% revenue guarantee is valued most highly. From the baseline 

75% insurance policy, farmers’ optimal policy choice remains unchanged, such that the value of 

every other coverage level is negative. Exploring the impact of proposed subsidy cuts, we find 

that the 75% coverage policy has the lowest valuation, indicating that farmers would be better off 

switching to any alternative coverage level, but that reducing coverage would be personally 

optimal.  

 Examining how farmers value crop insurance policies is important in understanding how 

they may respond to changes in crop insurance policies. Changes to federal agricultural funding 

have recently been proposed; these changes include significant reductions in crop insurance 

subsidy rates. These changes would cause potentially significant increases in the out-of-pocket 

premiums faced by farmers. It is important to study how farmers will respond to potential 

changes in their insurance premiums. Because of the current extent of crop insurance uptake (i.e. 
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the majority of corn and soybean farmers already insure their acres with federally-subsidised 

crop insurance policies) it is important to consider farmers’ valuation of changes to their policies 

from a baseline insurance policy, as with prospect theory. 

 Increases in crop insurance premiums are likely to impact farmers’ decisions to insure 

their planted acres, and the coverage levels they choose. These choices may have downstream 

impacts on agricultural production in the United States which should be considered. Previous 

analyses on crop insurance subsidies have found that lower insurance premiums (through high 

subsidies) influence farmers’ production practices and acreage decisions (Goodwin and Smith, 

2013). While not all effects of crop insurance subsidies are positive (for example, farmers may 

convert marginal land for crop production, with negative environmental consequences (Miao et 

al. (2016)), how farmers will react to higher premiums, and the resulting impacts on domestic 

agricultural production should certainly be considered.  

 Consequences of crop insurance subsidy cuts may include farmers no longer electing to 

insure their acres or purchasing policies with lower coverage levels. Crop insurance subsidies 

were initially introduced in an effort to promote uptake and reduce government disaster 

payments. These goals were generally achieved. How producers react to proposed decreases in 

insurance uptake and coverage levels should be considered in terms of their impacts on 

government outlays to compensate farmers in the event of catastrophic losses, especially since 

subsidy reductions are largely framed as decreasing federal spending on agricultural programs.  

In our crop insurance scenarios in this analysis, we chose a revenue insurance policy with 

75% coverage as a baseline policy, and eight possible states of nature. Further explorations into 

PT3 could examine how farmers respond to different distributions and different baseline 

reference points, and the framing of the possible states of nature. These analyses could provide a 
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more comprehensive picture of how farmers value crop insurance policies, and how they may 

react to future changes in the crop insurance products available to them. 
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Tables and figures 

Table 1. Changes in revenue guarantee and probability of payment from baseline crop insurance 

policy (75% coverage). 

Variable   Baseline   

Coverage level 65% 70% 75% 80% 85% 

Revenue guarantee $393 $424 $454 $484 $514 

Change in revenue 

guarantee from baseline 

policy (per acre) 

-$61 -$30 - +$30 +$30 

Change in expected 

revenue from baseline 

policy (with no change in 

policy premium, per acre) 

-$8.93 -$5.90 - +$6.05 +$13.52 

Probability of making a 

claim 
0.10 0.10 0.20 0.20 0.30 

 

 

 

 

Table 2. Summary statistics of survey respondents. 

Variable Mean Median SD N 

Number of years farming 34.2 36 12.7 603 

Acres farmed 959 689.5 910.0 606 

Corn acres 451.6 300.0 497.6 572 

Soy acres 364.8 250 349.1 561 

Purchased MPCI 2011-2015 80.2% - - 606 

Received indemnity payment 

2011-2015 
69.3% - - 475 
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Table 3. Proportion of farmers reporting use of other risk management strategies, by risk 

management tool. 

Risk management tool Proportion Using 

ACR/PLC 78.3% 

Forward and minimum price 

contracts  
69.4% 

Named peril insurance 60.5% 

Technologies 56.4% 

Futures and option markets 36.6% 

Other 7.8% 

SCO 6.3% 

 

 
 

 

Table 4. Mean hypothetical WTA and WTP for changes in coverage level from baseline 75% 

coverage. 

 
-10% 

(-$8.89) 

-5% 

(-$5.90) 

+5% 

(+$6.05) 

+10% 

(+$13.53) 

Mean response  -9.31 -8.39 4.69 7.04 

 

 

 

Table 5. Impacts expected loss and expected gain on WTA and WTP (linear RE and FE 

regression) 

 WTA/WTP 

 RE FE 

E[loss] 1.165 *** 1.166*** 

E[gain] 0.558*** 0.556 *** 

Constant 0.108 0.117 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 6. PT3 parameter estimates for various model specifications.  

 

 1 2 3 4 5 

   

(gain domain) 0.166*** 0 0.198*** 

0.168*** 0.164*** 

(0.010) (0.010) 
   

(loss domain) 

0.056 0.300*** 

(0.010)  (0.010) (0.066) (0.007) 

   0.444*** 1 (by 

construction) 

0.440*** 0.443*** 0.444*** 

(0.011) (0.006) (0.011) (0.011) 

   
1.646*** 9.182 1 (by 

construction) 

2.470 1 (by 

construction) 0.036  (0.594) 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

Table 7. Prospect theory parameter estimates, revenue guarantee of the 75% coverage policy 

used as the reference point 

 

 1 2 3 4 5 

   

(gain domain) 0.000  0.000 

0.000 0.167*** 

(0.020) (0.010) 
   

(loss domain) 

0.000 0.274*** 

(0.019)   (0.081) (0.006) 

   0.312*** 1 (by 

construction) 

0.000 0.312 0.444*** 

(0.014)  (1.359) (0.011) 

   
4.130***  1 (by 

construction) 

4.130*** 1 (by 

construction) (0.067)  (0.081 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 8. Crop insurance policy valuations under PT3, with various reference points, using 

estimated parameter values ( 0.166, 1.646, 0.444  = = = ).  

 Reference point 

 No insurance 75% coverage 

  

Current 

average 

subsidy level 

Proposed 

average 

subsidy level 

85% -6.09 -0.97 -1.67 

80% -5.91 -1.39 -1.63 

75% -5.40 0 -3.05 

70% -8.40 -0.16 -0.32 

65% -8.00 -0.20 -0.28 

60% -7.32 -0.20 -0.23 

55% -9.64 -0.21 -0.22 

50% -8.38 -0.21 -0.21 

 

 

 

Figure 1. Hypothetical revenue distribution shown to farmers.  
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Figure 2. Plot of mean responses (WTA and WTP) and change in fair premium.  

 
 

 

 

Figure 3. Probability weighting function with 0.444 =  
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