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 Abstract 

Crop yield forecasts are useful for several purposes such as rating crop insurance and 

government budget predictions, and allocation of barges and railcars. We use Bayesian Kriging 

for spatial smoothing of yield density parameters, including time trends. There is a paucity of 

useful historical yield data for counties, but properly using other counties’ information in the 

estimation of a county’s yield density alleviates the efficiency problem of not having enough 

observations. Using a Gaussian spatial process, our yield density parameters are spatially 

correlated. We spatially smooth multiple parameters, including time trends. Our model can 

handle unbalanced panel data. Using corn yield data from Illinois and Iowa, we find that the 

yield mean has increased faster in northern counties, but that the yield variance has increased 

faster in southern counties. Forecast accuracy is similar with our model and with Bayesian 

Model Averaging and a mixture of normal distribution, but our approach is the only one that 

provides the spatial smoothing desired by the Risk Management Agency. 

Key words: Spatial econometrics, Bayesian Kriging, Bayesian hierarchical modelling, Bayesian 

spatial smoothing, yield density, corn yield, density forecasting. 
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1. Introduction 

Crop yield forecasts are useful for several purposes. Farmers can use yield forecasts in making 

decisions such as entering commodity contracts, buying crop insurance, or determining land 

values. The Risk Management Agency (RMA) of the USDA calculates area yield crop insurance 

premiums based on forecasted county yields. With the emergence of the need for risk 

management, density forecasts have become attractive rather than point forecasts. There is 

uncertainty in forecasting, and relative to point forecasts, density forecasts provide more 

information. In crop insurance, accurate rating of an insurance program is crucial. For the RMA, 

inaccurate rates could lead to substantial losses that would result from insurance indemnities 

considerably exceeding collected premiums. As Harri et al. (2011) remark, if an insurance policy 

is not actuarially fair, producers with high knowledge of yield risk may arbitrage the program or 

select against it. 

Yield density forecasts are generally made before the beginning of a crop’s growing 

season and cannot use yield-determining information observed during the season such as weather 

or production inputs. In addition, the yield forecast for a county is traditionally based largely on a 

density estimated from that county’s past yield observations. This poses an efficiency problem as 

the time series of county yields are not long enough. In addition, there is a concern that structural 

changes in crop genetics, weather patterns, and farming practices may imply that current yield 

observations are from very different distributions than observations from several decades ago, 

making yield time series even shorter.  

To surmount this problem, spatial data can be useful in estimating crop yield densities. 

Due to similarities in climate, soil type, and shared information, the assumption that there are 
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similarities in densities of neighboring counties is plausible. In spatial econometrics, the 

traditional spatial error model of Anselin (1988) treats spatial correlation as being entirely in the 

error term and restricts all locations to have the same model parameters.  

However, there have been efforts to incorporate spatial data at the parameter level. For 

example, Harri et al. (2011) estimate parameters of yield densities at the county level but the 

parameters have restrictions determined at the district level. Ker, Tolhurst, and Liu (2016) 

estimate the yield density of a county by first estimating a posterior density using the county’s 

own data and then finding a weighted average of posterior densities from all counties, based on 

the Bayesian Information Criterion (BIC). 

 Ker, Tolhurst, and Liu (2016) assume that there are yield density similarities, but they do 

not make assumptions about the source of the similarities. The time trend used in these models is 

likely the most important parameter in making density forecasts. Yet, their time trend is 

smoothed in the same way as the other distribution parameters.  Park et al. (2016, 2018) and 

Harri et al. (2011) used two-step methods where the trend was estimated separately from the 

other parameters. 

The objective of this study is to develop Bayesian Kriging for spatial smoothing of yield 

density parameters. We assume that the similarity in yields comes from the correlation between 

parameters that define yield densities. This technique allows the smoothing of parameters and 

gives the ability to estimate yield densities even for counties with missing observations. Previous 

applications of Bayesian Kriging in the agricultural economics literature (e.g., Ozaki et al. 2008) 

perform spatial smoothing of the intercept, while Park et al. (2016, 2018) use it for spatial 

smoothing of two distributional parameters. In this paper, we contribute to the spatial 
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econometrics literature by extending Bayesian Kriging to the general heteroscedastic error 

regression problem. Our work is the second paper, after Reich (2012), to extend Bayesian 

Kriging to the slope parameters in the linear regression problem rather than just the intercept as 

in Ozaki et al. While we assume normality, our general approach can be extended to nonnormal 

distributions. 

Forecasts of expected yield densities are based on past yield observations. But there are 

counties that lack yield records for certain years. The Ker, Tolhurst, and Liu (2016) approach is 

restricted to balanced data. Using interpolation techniques, our Bayesian Kriging approach 

makes it possible to include counties without a full yield history in the estimation and 

predictions. 

2. Methods 

Suppose there are N counties for which yield densities have to be estimated in year t 

(t=1,…,T). In this study, each county’s yield is assumed to have a normal density. It is common 

practice in yield forecasts to assume time trends in the yield densities. Examples of what time 

trends capture include advances in production technology and improvements in seed genetics. 

Unlike past research, we use a simple time trend rather than a spline because we are limiting the 

time period. We assume that there are time trends in both the mean and variance. The yield 𝑌𝑖𝑡 in 

year t for county i can thus be expressed as: 

(1)  𝑌𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖𝑡 + 𝜀𝑖𝑡  
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where 𝛼𝑖 and 𝛽𝑖 are the parameters that determine the mean of the yield, and 𝜀𝑖𝑡 is a random 

error term with mean zero and variance 𝜎𝑖𝑡
2 . As noted above, we assume heteroskedasticity 

through a time trend in the variance equation. The yield variance 𝜎𝑖𝑡
2  is: 

(2) 𝜎𝑖𝑡
2 = 𝛾𝑖 + 𝛿𝑖𝑡 + 𝜈𝑖𝑡,  

where 𝛾𝑖 is the intercept, 𝛿𝑖 is the slope or time trend, and 𝜈𝑖𝑡is a random error term with mean 

zero. This assumption is different from assumptions made in previous research such as Harri et 

al. (2011), where the variance is assumed to be proportional to a power of predicted yields. 

Note that there are four parameters that define the mean and variance equations for 

county i’s yield densities. For convenience of notation we will sometimes collectively refer to 

the parameters as 𝜽𝒊, that is, 𝜽𝒊 = (𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝛿𝑖). Equation (1) is then written as: 

(3) 𝑌𝑖𝑡~𝑝1(𝑌𝑖𝑡|𝜽𝒊). 

Equation (3) can further be written in matrix form as: 

(4) 𝒀~𝑝1(𝒀|𝜽), 

where 𝒀 is the N×T matrix of yields from all counties and all years and 𝜽 is the N×4 matrix of 

yield density parameters for all counties. In the remainder of the paper whenever we mention 

parameters without more details we are referring to 𝜽. 

The Bayesian approach to inference assumes that model parameters are random variables. 

This is in contrast to the frequentist approach that assumes that the observed data are random but 

that the model parameters are fixed. The parameters 𝜽 follow a density 

(5) 𝜽~𝑝2(𝜽|𝝀).  
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The prior distributions of parameters represent prior beliefs about the parameters before 

observing the data, although in some cases data can be used in forming priors. The parameters of 

the prior distributions are called hyperparameters (𝝀 in this case). The hyperparameters comprise 

the parameters that determine the parameters 𝜽, including the Kriging parameters (sill and range) 

that define the spatial similarities among parameters of counties’ yield densities based on 

distance. The prior distribution for our Kriging approach is a Gaussian spatial process. Bayesian 

inference is based on the posterior distribution. The posterior is proportional to the product of the 

likelihood 𝑝1(𝒀|𝜽) and the prior 𝑝2(𝜽|𝝀). 

 Our Kriging approach uses Bayesian hierarchical modelling, where hyperparameters have 

prior distributions of their own, called hyperpriors: 

(6) 𝝀~𝑝3(𝝀).  

In our Bayesian hierarchical modelling, the determination of yield densities is based on 

the posterior distribution of the parameters. The joint posterior distribution of the parameters is 

proportional to the product of: (i) the likelihood, (ii) the prior, and (iii) the hyperprior, 

(7) 𝑝(𝜽, 𝝀|𝒀) ∝  𝑝1(𝒀|𝜽, 𝝀)𝑝2(𝜽|𝝀)𝑝3(𝝀), 

and is expressed mathematically as: 

(8) 𝑝(𝜽, 𝝀|𝒀) =  
𝑝1(𝒀|𝜽,𝝀)𝑝2(𝜽|𝝀)𝑝3(𝝀)

∬ 𝑝1(𝒀|𝜽,𝝀)𝑝2(𝜽|𝝀)𝑝3(𝝀)
  .  

Note that the likelihood notations 𝑝1(𝒀|𝜽, 𝝀) in equations (7) and (8) and 𝑝1(𝒀|𝜽) in equation 

(4) are equivalent, as the likelihood of 𝒀 depends on 𝝀 only through 𝜽. 
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As mentioned above, we assume that yields are normally distributed. The likelihood function for 

our data is 

(9) 𝑝1(𝒀|𝜽, 𝝀) = ∏ ∏
1

𝛾𝑖 + 𝛿𝑖𝑡
exp {−

[𝑌𝑖𝑡 − (𝛼𝑖 + 𝛽𝑖𝑡)]2

2(𝛾𝑖 + 𝛿𝑖𝑡)
}

𝑇

𝑡=1

𝑁

𝑖=1

. 

Perhaps the most important aspect of our Bayesian hierarchical modelling is the Gaussian 

spatial process.  It is at this stage that we model the spatial processes of each parameter. The 

spatial processes of each parameter are assumed to be independent. For brevity, here we only 

present the spatial process of the intercept of the mean equation. 

(10) 

𝜶 = 𝑀𝑉𝐺𝑃(𝝁, 𝛴𝜶), 

𝛼𝑖 = 𝜇𝑖 + 𝑢𝑖, 

𝑢𝑖~𝑀𝑉𝑁(0, 𝛬), 

𝛴𝜶 = 𝜓(𝑑𝑖𝑗, 𝜌𝜶, 𝛷𝜶), 

 

where 𝜶 = 𝛼1, … , 𝛼𝑁 is the vector of intercept parameters for all counties, and is assumed to 

follow a multivariate Gaussian process (MVGP), 𝝁 is the deterministic part of the Gaussian 

process, 𝛴𝜶 is the covariance matrix of the Gaussian process, 𝑑𝑖𝑗 is the distance between counties 

i and j measured from longitude and latitude coordinates, 𝜌𝜶 is the sill parameter, and 𝛷𝜶 is the 

range parameter. Note that the spatial correlation is captured in the stochastic parameters of the 

MVGP. There is no spatial correlation in errors like in a spatial error model.  
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The covariance between two counties is a function of the distance separating them and 

the Kriging parameters (sill and range). There are different possible specifications for this 

function; we use the exponential: 

(11) 𝜓(𝑑𝑖𝑗, 𝜌𝜶, 𝛷𝜶) = 𝜌𝜶𝑒
−

𝑑𝑖𝑗

𝛷𝜶 .  

As noted before, the hyperprior is the prior for the vector of hyperparameters. We assume that 

each hyperprior is independent from the others. 

3. Data 

Historical corn yields from 1984 to 2015 are from the National Agricultural Statistics Service 

(NASS). We use county corn yields from the states of Illinois and Iowa. We use all counties, 

including those with an incomplete yield history. When we compare the predictive performance 

of our approach to that of BMA, we use all counties for our approach but only use counties with 

a full yield history for BMA. Illinois and Iowa are the two leading producers of corn in the 

country. Due to the computational needs of the algorithm used in this study, we use data from 

only two states. The distance between counties is measured using the longitude and latitude 

coordinates of the county centroids. 

4. Procedures 

Our approach estimates the mean and variance of yield densities together. Yield densities have 

usually been estimated in two stages. The first stage is to regress a county’s historical yield 

against a trend. The second stage—the determination of the variance of the yield densities— uses 

the estimated residuals from the first stage. There are different functional forms used by 

researchers for the mean yield. The trend is usually deterministic. The common approaches are a 
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simple linear trend and a trend modeled through a spline with knots (e.g. Harri et al. 2011). In 

our model we use a simple linear trend. One slope suffices because we use a limited time period. 

Similarly, in the crop insurance literature, different assumptions have been made about 

the structure of the variance of yield. Some researchers have assumed a constant coefficient of 

variation, with changes in the yield standard deviation proportional to the yield mean (e.g. Ker, 

Tolhurst, and Liu 2016; Deng, Barnett, and Vedenov 2007; Ker and Coble 2003; Miranda and 

Glauber 1997; Skees, Black and Barnett 1997). Other researchers have assumed 

homoskedasticity (Coble, Heifner, and Zuniga 2000; Mahul 1999; Miranda 1991). Harri et al. 

(2011) assume the relationship between yield variance and predicted yield is 𝜎𝑖𝑡
2 = ω2[E(𝑌̂𝑖𝑡)]𝜅, 

so they empirically estimate the functional form of the heteroskedasticity. Our model assumes a 

linear trend in the variance equation. This form of heteroskedasticity is different from other 

forms assumed in past research. 

There have been different specifications for yield densities. We use the normal density in 

this study. In addition to the normal, other specifications that have been used are the gamma 

(Gallagher 1987), the logistic (e.g., Atwood, Shaik, and Watts 2003), and the mixture of normals 

(e.g. Ker, Tolhurst, and Liu 2016), among others. 

Ker, Tolhurst, and Liu (2016) use Bayesian Model Averaging (BMA). BMA is a 

weighted average of a set of models. They first estimate each county’s conditional yield density 

using its own historical yield data. To obtain the BMA estimate for county i, they compute the 

Bayesian Information Criterion (BIC) of each estimated model using county i’s yield data. 

County i’s BMA estimate is the weighted average of all models, where the weights are derived 

from the BIC of each model given the data in county i. Like the BMA approach, our approach 
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improves estimation efficiency by using data from all counties in the estimation of each county’s 

yield density. Unlike the BMA approach, the Bayesian approach assumes that the similarity in 

yield density results from proximity in space. 

The computation of integrals such as the one in equation (8) generally does not have 

closed-form solutions. The marginal posterior distributions of the parameters 𝜽, we use Markov 

Chain Monte Carlo (MCMC) simulations. Specifically, we use the Metropolis Hastings 

algorithm within a Gibbs sampler. In the Metropolis-Hastings algorithm, random parameter 

values are drawn from a candidate density and then accepted or rejected; the accepted values are 

included in the posterior density. 

We impose hyperpriors as follows. For the hyperparameters corresponding to prior means 

of the parameters 𝜽, we impose normal hyperprior distributions with parameters obtained from 

maximum likelihood estimates of the model that aggregates all counties for the estimation of the 

parameters of yield densities. Note that there is no spatial process in this maximum likelihood 

estimation.  For the variance hyperparameters, we impose inverse gamma hyperpriors. For the 

sill and range, we impose hyperpriors based on an empirical variogram. 

The posterior distributions obtained from the MCMC are given as samples of values from 

the posterior distributions. The samples are generated by a Markov Chain whose stationary 

distribution is the same as the posterior. We assume that the marginal distributions of the 

simulated values are close to the target distributions of the parameters.  

The MCMC contains 15,000 iterations, with a burn-in period of 5,000. Discarding (i.e., 

“burning”) the early iterations diminishes the influence of the starting values. To perform a 
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diagnosis of the convergence of the MCM simulations, we use the Gelman-Rubin test. The 

procedure for this test followed the outline in Gelman et al. (2014). Two sequences are 

simulated, each with 10,000 iterations after burn-in. Then each of the sequences is split into two 

sequences of length 5,000, and we end up with m=4 sequences of n=5000 iterations each. 

Convergence is judged based on the following scale reduction factor: 

(11) 𝑅̂ = √
𝑛 − 1

𝑛
+

1

𝑛

𝐵

𝑊
  

where B and W are the between-and within-sequence variances. The MCM is said to converge if 

the value of  𝑅̂ is close to 1.  

 We compare the predictive performance of our approach to that of the BMA model (Ker, 

Tolhurst, and Liu 2016), using two prediction measures: the root mean squared error (RMSE) 

and Diebold and Gunther’s (1998) probability integral transform test. We first estimate posterior 

densities using 1984-2010 data and predict 2011 yield means and yield densities. We then 

estimate posterior densities using 1984-2011 data to predict 2012 yields means and yield 

densities. The same process is repeated until we use 1984-2014 data to predict 2015 yields. All 

these predictions are compared to actual observed yields, and the RMSE is computed. 

 The probability integral transform (PIT) is used to evaluate density forecasts. The PIT is 

the cumulative density function corresponding to the predicted yield density, evaluated at the 

observed yield. Deiebold and Gunther (1998) show that under assumptions of a nonzero Jacobian 

with continuous partial derivatives, the sequence of PITs is Uniform (0, 1). This test is a 

goodness-of-fit test. 
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5. Results 

Parameters of corn yield densities are estimated using Bayesian Kriging. The MCMC provides 

four parameters for each of the 201 counties in Illinois and Iowa. Because there are many 

counties in this study, we present the posterior means using maps (Figures 1-6). All results 

presented in these maps are from the estimation that uses 1984-2014 data. Figures 1-4 contain 

results from the Bayesian Kriging approach, while figures 5 and 6 have results from the BMA 

model. The clustering of values on the maps follows the Jenks natural breaks classification 

method. 

Figure 1 is a map of the intercept parameter of the mean of yield density. The posterior 

mean of the intercept is highest in central Illinois and in northern Iowa. The map in Figure 2 

shows the posterior mean of the trend parameter of the mean of yield density. The map shows 

that yields have grown faster in northern counties for both states. An explanation is perhaps that 

due to the cooler climate in the north, improvements in production technology have resulted in 

larger yield increases in the north. Tannura et al. (2008) argue that increased yields are a result of 

earlier planting and this earlier planting may be more important in northern areas.  

Figure 3 shows the posterior mean of the intercept of yield density, and figure 4 shows 

the posterior mean of the trend of the variance of yield density. As seen in these figures, the 

variance is higher and has increased faster in southern counties than in northern counties. This 

result is interesting since the variance did not increase faster in the counties where the mean 

increased faster. 
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Figure 5 shows the posterior mean of the intercept of the mean of yield density, computed 

using BMA. Figure 6 is a map of the posterior mean of the trend of the mean of yield density. In 

contrasting figures 5 and 6 with figures 1 and 2, respectively, two key differences are observed. 

First, the blanks in figures 5 and 6 reflect the inability of BMA to estimate yield densities for 

counties without a complete yield history. Second, the transition from clusters with higher values 

to clusters with lower values is smoother in figures 1 and 2.  

To test the convergence of the MCMC chains, we use the Gelman-Rubin diagnostic. In 

this test, values close to 1 are desired for the scale reduction factor. The test was mostly satisfied. 

The highest 𝑅̂ value obtained was 1.29. Sixty percent of the parameters that were sampled in the 

MCMC had an 𝑅̂ value less than 1.2. Figure 7 shows plots of the 10,000 iterations of the 4 

parameters of one county. The plots show good mixing of the MCM chains for this county. 

However, due to the high number of parameters to sample, not all chains had good convergence, 

and significantly increasing the number of iterations would improve convergence. 

We now compare the predictive performance of our approach to that of BMA. Although 

we make this comparison, we note that the BMA model only uses counties with a full yield 

history, while our model uses all 201 counties. Because Bayesian Kriging is an interpolation 

technique, it has the advantage of handling missing values. A major similar aspect between the 

BMA approach and our approach is that data from all counties included in the model are used in 

the estimation of each county’s yield density. 

The RMSE for our Bayesian Kriging model is 31.03 bushels/acre, while the RMSE of 

BMA is 31.33 bushels/acre. These values are similar, but our model is the only one that has 

predictions for all counties and provides the spatial smoothing desired by the Risk Management 
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Agency. Both RMSE values are high, because both models’ predictions of 2012 corn yields were 

poor. Corn yields were atypically low in 2012.We compute separate RMSE’s to evaluate how the 

models performed in each individual year. Our model outperforms BMA in 2009, 2010, 2011, 

and 2013, while BMA outperforms our model in 2012, 2014, and 2015. These results are 

summarized in table 1. 

Histograms of the probability integral transforms obtained by forecasting yield densities 

using Bayesian Kriging and BMA are presented in figures 8 and 9, respectively. For accurate 

density forecasts, the PIT is distributed Uniform (0, 1). Using a formal PIT test, the null 

hypothesis that the actual data comes from the density estimated by the Bayesian Kriging 

approach is rejected, while the null hypothesis that the data comes from the distribution 

estimated using BMA is not rejected.  This result is explained by the fact that our specified 

distribution is normal, while BMA uses a mixture of normals. A better comparison of the two 

methods of estimation will be included in the next step of this research; in that comparison, 

BMA will be respecified with the assumption of normality of yields or we will redo the Bayesian 

Kriging with a mixture of normals. 

6. Conclusion 

Forecasts of yield densities are important for crop insurance rating. The RMA needs accurate 

forecasts in order to make actuarially fair premiums for insurance policies. Producers and 

agricultural businesses also need accurate yield forecasts for land valuation and for their own 

planning. We introduce a new approach for the estimation of yield densities. We use Bayesian 

Kriging for spatial smoothing of all parameters of counties’ yield densities. The intercept and 

trend parameter are spatially smoothed in both the mean equation and the variance equation. Our 
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Bayesian Kriging approach assumes that the stochastic parameters are spatially correlated. The 

spatial autocorrelation in the data is captured by the spatial correlation in parameters rather than 

spatial correlation in error. A county’s estimated yield density is derived not only from its own 

historical yield observations, but also from other counties. 

This paper extends Bayesian Kriging to the general heteroskedastic error regression 

model. The approach can handle nonnormality, but that increases computational time 

considerably. This paper has two main contributions to the crop insurance literature. The first is 

the ability to spatially smooth multiple parameters of yield densities, including trend parameters. 

The second is the ability to use unbalanced data in the estimation. There are counties whose yield 

is not recorded in all years; previous approaches that only use balanced data cannot be used 

directly in forecasting yield densities for such counties. A drawback of our approach is that it is 

computationally expensive. However, with increases in computers’ performance, this problem is 

expected to lessen. Also, we are using the R software package, which is notorious for being 

computationally burdensome. In addition, given the aforementioned advantages, the 

computational time should not be a deterrent.  
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Table 1. Root Mean Squared Error (bu/acre) Comparison between BMA and Bayesian 

Kriging Models 

 BMA  Bayesian Kriging 

2009 13.71 13.14 

2010 28.50 23.92 

2011 18.29 16.80 

2012 63.33 65.32 

2013 21.65 19.12 

2014 28.53 29.49 

2015 15.53 16.71 

2009-2015 31.33 31.03 
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Figure 1. Intercept of Mean Equation for County Yield Density (Bayesian Kriging) 

  

 

 
Figure 2. Trend of Mean Equation for County Yield Density (Bayesian Kriging) 
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Figure 3. Intercept of Variance Equation for County Yield Density (Bayesian Kriging) 

 

 

 
Figure 4. Trend of Variance Equation for County Yield Density 
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Figure 5. Intercept of Mean Equation for County Yield Density (BMA) 

 

  

 
 

Figure 6. Trend of Mean Equation for County Yield Density (BMA) 
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Figure 7. Iterations of parameters for Adams County, Illinois  
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Figure 8. Histogram of the Probability Integral Transform using Bayesian Kriging 

 

 

 

 

 

 
Figure 9. Histogram of the Probability Integral Transform using BMA 

 

  


