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Abstract

The vector autoregression (VAR) model profoundly uses the lagged causal relationships among
variables. It is well known that VAR models say little about contemporaneous time correlation of
these variables. However, ignoring causal orderings among a VAR endogeneous variables in contem-
poraneous time may produce not representative impulse response simulations and Forecast Error
Variance (FEV) decomposition. The recent advances in Machine Learning and Statistical Learning
literature allow researchers to use Directed Acyclic Graphs(DAGs) to discover causal relationship
from the data and help to impose structure on VAR. In this paper, we propose extended version
of using DAGs to impose structure on VAR when the data does not follow normal distribution.
We show the performance of our method using high dimensional simulation studyand as well real
Macreconomic data.
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1 Introduction

The vector autoregression (VAR) model profoundly uses the lagged causal relationships among

variables. It is well known that VAR models say little about contemporaneous time correlation

of these variables. However, ignoring causal orderings among a VAR endogeneous variables in

contemporaneous time may produce not representative impulse response simulations and Forecast

Error Variance (FEV) decomposition (Bessler, 1984; Sims, 1980).

Econometric literature for VAR’s has traditionally accounted for contemporaneous correla-

tion in several ways. First is the Cholesky factorization, where contemporaneous correlations

are established by imposing theoretically based and recursive causal ordering on the VARs vari-

ance/covariance matrix. The problem with a first approach is that impulse response and Forecast

Error Variance decomposition results vary with the ordering chosen by Cholesky-factorization. The

second approach is Bernanke (1986) structural VAR (SVAR) methods, where prior notions of evi-

dentially based and/or theoretically grounded contemporaneously causal orderings may be imposed

on a VARs endogenous variables. The problem here is that the true contemporaneous orderings

that the researcher claims to know may be in fact unknown. The solution to this problem, that is

making inference about causal ordering from the data, was first given in a literature, known as the

graph-theoretic approach to causal inference by Pearl (2009); Spirtes et al. (2000). The early users

that use this methods (mainly PC 1 algorithm) to solve the problem of determining the causal order

of the structural VAR were Swanson and Granger (1997); Bessler and Akleman (1998); Bessler and

Lee (2002); Demiralp and Hoover (2003). . By following this procedure researchers avoid choosing

arbitrarily among competing but otherwise theoretically consistent sets of contemporaneous order-

ings inherent in Choleski-factorization or Bernanke structural VARs.

The previous use of graph theoretical methods for SVAR were limited only for Gaussian distribu-

tions and low dimensional series. (Bessler and Akleman, 1998; Haigh and Bessler, 2004; Demiralp

and Hoover, 2003; Demiralp et al., 2014). In this paper we extend the existing method to a high-

dimensional consistent method for a broader class of Gaussian copula or nonparanormal distribution

(Liu et al., 2009, 2012; Harris and Drton, 2013) using rank-based measures of correlation such as

Kendalls τ and Spearmans ρ. We call this procedure NPNDAG (Nonparanormal Directed Acyclic

1Named after authors Spirtes et al. (2000)
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Graph). Following the same logic, for making the reference easier we called the procedure define

by Swanson and Granger (1997); Bessler and Akleman (1998) as PCDAG.

Since we will implement NPNDAG in high-dimensional environment than we need VAR model

that designed to solve high dimensional problems. Unfortunately, it is well known that traditional

VAR is not designed for solving high-dimensional problems, since the growth of a number of pa-

rameters in a p − lag VAR with the number of component series (K) is quadratic.(K2p). For an

even moderate dimensional model this can lead to noisy AR parameter estimates. To overcome

this drawback, many sparse VAR approaches have been proposed, including factor models (Forni

et al., 2000; Stock and Watson, 2002), where the authors assume the interdependence within high

dimensional data can be explained by a few common factors. Banbura et al. (2010) and Koop

(2011) used a Bayesian approach for large VAR. They found that applying Bayesian shrinkage

using priors as proposed by Doan et al. (1984); Litterman (1986) is sufficient to deal with large

models, provided that the tightness of the priors should be increased as more variables are added.

Many recent popular approaches are based on advances in variable selection (Tibshirani, 1996) and

its variants (Zhao and Yu, 2006; Yuan and Lin, 2006), use sparsity penalty for the AR coefficients.

For example, see Shojaie and Michailidis (2010); Song and Bickel (2011); Nicholson et al. (2016).

The advantage of the Lasso-VAR approach is that the model selection and parameter estimation

are conducted simultaneously. However, there are also several disadvantages with this approach.

One of the serious disadvantage is , because of its nature, the VAR model is represented as linear

regression model and the current values of the time series are referred as the response variable and

lagged values as the explanatory variables. However, defining the problem in this way forces the

model to ignore the temporal dependence in the time series. Song and Bickel (2011); Nicholson

et al. (2016) give several solutions and theoretical discussion on the consequences of not accounting

for temporal dependence into the model.To mitigate this issue, Nicholson et al. (2016) suggested

the hierarchical vector autoregression (HVAR) framework, which offers three different structures

to allow for varying levels of flexibility. Other approaches to introduce sparsity in a VAR (sVAR)

has been proposed by Davis et al. (2016), where they developed a two-stage approach of fitting

sVAR models. The first stage selects nonzero AR coefficients by analyzing marginal series that

are conditionally correlated. The conditional correlation between marginal time series is computed
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by partial spectral coherence (PSC). PSC is a convenient measure in frequency-domain time series

analysis that can be used to estimate conditional dependence between components of a multivariate

time series. Since the VAR model in stage 1 may contain spurious nonzero AR coefficients, stage

2 uses t-ratios of the AR coefficient estimates to refine the model.

In this paper,first we conduct simulations to estimate the performance of NPNDAG method

based on ability to recover true causal ordering among VAR endogenous variables under different

distributional assumptions and sparsity levels. Then proposed method was applied to Stock and

Watson (2005) data to illustrate empirical usefulness using residuals from high dimensional VAR

methods such as HVAR.

The remainder of this paper is organized as follows. In Section 2 we review some material on

SVAR and its identification as well we give overview of HVAR model. In Section 3 we review

graphical models,PC algorithm and describe nonparanormal distribution and extended PC algo-

rithm for Gaussian Copula based graphical models. A simulation study in Section 4 and real world

data application in Section 5 emphasizes the advantage of NPNDAG in recovering true covariance

matrix. Further discussion is contained in Section 6.

2 SVAR and Its Identification

To describe the SVAR model we start with the usual K dimensional VAR model of order p

(VAR(p)) represented as follows:

Yt = a+A1yt−1 + · · ·+Apyt−p + ut (1)

where yt = (y1t, . . . , yKt)
T is a (K × 1) random vectors, the Ai are fixed (K × K) coefficient

matrices, a = (a1, . . . , a
T
K) is a (K × 1) vector of intercept. The K -dimensional white noise is

given by ut = (u1t, . . . , u
T
Kt). In other words , we assume E(ut) = 0, E(utu

T
ts) = Σu for t = s and

E(utu
T
s ) = 0, t 6= s .

A usual approach to find a model with contemporaneously uncorrelated residuals is to directly

model the contemporaneous relations between the observed variables. It can be done as follows

4



ÃYt = a+A∗1yt−1 + · · ·+A∗pyt−p + εt (2)

, where A∗i = ÃAi (i = 1, . . . , p) and εt = Ãut, such that εt has a diagonal covariance matrix

Σε = ÃΣuÃ
T (3)

Note that we need specific restrictions to make sure that matrix Ã is unique. From the relation

(4) and the assumption that Σε is diagonal matrix, we get K(K − 1)/2 independent equation. In

order for all K2 elements of matrix Ã to have a unique solution we need K(K + 1)/2 additional

equations. By normalizing the diagonal elements of A to unity, we still need another K(K − 1)/2

zero restrictions. If we assume a Wold causal ordering, then the matrix Ã is a lower-triangular

matrix. Thus, we have exactly K(K − 1)/2 restrictions and the associated impulse-responses are

just-identified. Usually the literature uses just-identified SVAR and rely on theory to tell the

recursion model. However if we believe that the SVAR is overidentified, we can use empirical based

graphical models to represent causal relationships. In the next subsections we give overview of

HVAR models.

2.1 Hierarchical Vector Autoregression

HVAR framework implements the lag order selection problem through convex regularization.

The method prone to select low lag coefficients before corresponding high lag coefficients by forc-

ing the selection to shrink toward low lag order solutions. In contrast to Song and Bickel (2011)

approach, where they without enforcing a low-lag structure increase a weight of the penalty param-

eter with the coefficents’ lag. For further convenience, as in Nicholson et al. (2016) we represent

equation 1 in following form:

Y := [y1 . . . ,yT ] (K × T ); A := [A1, . . . , Ap] (K ×Kp)

Y0
t := [yTt−1, . . . ,y

T
t−p]

T (Kp× 1); X := [Y0
1, . . . ,Y

0
T ] (Kp× T )

U := [u1, . . . ,uT ] (K × T ); 1 := [1, . . . , 1]T (T × 1)

5



Then, we can write equation1 as

Y = a1T + AX + U (4)

Using equation4 the traditional least squares can be expressed as minimizing

min
a,A
||Y − a1T −AX||22 (5)

,where ||·||2 is Frobenius norm. When number of observation T is not large compare to parameter

space, the least squares results are unreliable. Nicholson et al. (2016) introduced three following

different structures on the parameter space to make estimation possible.

• Componentwise(C):This structure assumes that each of the K marginal equations in

equation!1 has their own maximum lag, however each component within each equation has

the same maximal lag.

• Own-Other(O): This assumptions implies that a series own lag contains more information

than other lags. Therefore, in this structure the diagonal elements are prioritized compare to

off-digaonal elelments within each lag.

• Elementwise(E): This structure is the most flexible one compare to other two. It does not

assume any relationship among the coefficient lags.

In this paper, we consider only Componentwise structure, however our simulation results shows

that in most of the times NPNDAG perform better than the usual approach as in Bessler and

Akleman (1998) for the other two structural cases.

The convex optimization problem for Componentwise structural assumption after demeanizing

data is following:

min
A

{1

2
||Y −AX||22+λ

K∑
i=1

p∑
l=1

||Ai(l:p)||2
}

(6)

, where Ai(l:p) := [Ail . . . A
i
p] and Ail is the i’th row of the coefficient matrix at lag l. In equation 6,

if the penalty λ ≥ 0 is increasing than estimated Âi
(l:p) = 0 for more i and for smaller l. As well, if

Âil = 0, then Âih = 0 for all h > l.

The modeling is done using so called hierarchical group lasso (Zhao et al., 2009), which is
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modified version of a group lasso (Yuan and Lin, 2006) and allows a nested group structure. The

group lasso penalty allows a set of groups of parameters to be simultaneously zero and nested

group penalty assumes hierarchical sparsity constraints, that is if one set of parameters is zero than

another set is also zero. The optimization problem in equation 4 can be efficiently solved using the

proximal gradient method (Jenatton et al., 2011), which is extended version of gradient descent

method, when the objective function is not smooth. The Algorithm 1 and 2 on page 9 at Nicholson

et al. (2016) gives the general algorithm for solving HVAR problem.

3 Directed Acyclic Graphs and PC algorithm

A graph is a data structure G consisiting of a set of nodes and a set of edges. A pair of nodes

Xi, Xj can be connected by a directed edge Xi → Xj or an undirected edge Xi Xj . Thus, the

set of edges ξ is a set of pairs, where each pair is one of Xi → Xj ,Xi ← Xj , or Xi Xj . We

say that X1 . . . Xk form a path in the graph G if, for every i = 1, . . . k − 1, we have that either

Xi → Xi+1, or Xi Xi+1. A path is directed, if, for at least one i, we have Xi → Xi+1. A cycle in

G is a directed path X1 . . . Xk where X1 = Xk. A graph is acyclic if it contains no cycles. We called

these graphs Directed Acyclic Graphs (DAG). DAGs are the fundamental graphical representation

that underlies Bayesian Networks. A Bayesian Network Structure G is a directed acyclic graph

whose nodes represent random variables X1 . . . Xn . Denote PaGXi
the parents of Xi in G, and

NonDescendantsXi the variables in the graph that are not descendents of Xi. Then G encodes

following set of conditional independence assumptions, called the local independencies:

(Xi⊥NonDescendantsXi |PaGXi
) (7)

or

P (X1, . . . , Xn) =
n∏
i=1

P (Xi||PaGXi
) (8)

The Independence implied by equation (7) and (8) can be read off the graph using the notion of d-

separation (Pearl, 1986).Geiger et al. (1990) show the soundness and completeness of d-separation.

By soundness they show that any independence reported by d-separation is satisfied by the un-

derlying distribution. For completeness of d-separation, they need the notion of faithfulness. A
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distribution is faithful to G, if any independence in distribution is reflected in the d-separation prop-

erties of the graph. It can be shown that for almost all distributions that satisfy (8) over G, that is,

for all distributions except for a set of measure zero in the space of conditional probability distri-

bution(CPD) parametrizations, faithfulness holds. In other words, for almost all possible choices of

CPDs for the variables, the d-separation precisely characterizes the independence of the underlying

distribution. (Koller and Friedman, 2009) The skeleton of a DAG G is obtained by substituting

undirected edges for directed edges. Chickering (2002) showed that a probability distribution P ,

which is generated from a DAG G has a whole equivalence class of DAGs. Verma and Pearl (1991)

characterizes the two DAGs in equivalent classes if and only if they have the same skeleton and the

same v−structure. Where v−structure in a DAG G is a ordered triple of nodes (Xi, Xj , Xk) such

that X1 → X2 ← X3.

In literature the representation of equivalent classes is done using the notion of partially directed

acyclic graphs (PDAG), which is a graph where some edges are directed and some are undirected.

a PDAG is completed (CPDAG), if every directed edge can be found alss in DAG’s belonging to

the same equivalence class and for every undirected edge Xi−Xj one can find at least two DAGs in

equicalent class with Xi → Xj and Xi ← Xj . Then, one can show that two CPDAGs are identical

if and only if they represent the same equivalence class.

3.1 PC algorithm

PC algorithm is designed to estimate CPDAG. Usually CPDAG estimation consists of two parts:

Skeleton estimation and partial orientation of edges. As usual in developing statistical estimation,

there exist population and sample version of PC-algorithm. Algorithm1 and Algorithm 2 in Kalisch

and Bühlmann (2007) represent a high dimensional consistent version of PC-algorithm to produce

the correct skeleton and the CPDAG . In this population version of algorithm the assumption

is that perfect knowledge about all necessary conditional independence relations is available. In

general, the PC algorithm is an ordered set of commands that begins with a complete, undirected

graph that places an undirected edge between every variable in the system (every variable in graph

G vertex set X ) . Edges between variables are removed sequentially on the basis of zero correlations

or zero partial (conditional) correlations. These conditioning variables on removed edges between
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variables comprise the “sepset” of the variables whose edges has been removed. .The goal is

to impose a directed edge among sets of variables X1, X2, X3 in a vertex set (variable set)X :

X1 → X2 → X3, X1 ← X2 ← X3, X1 → X2 ← X3.

For finite sample version of PC-algorithm, the researcher need to estimate conditional indepen-

dencies from the data. When the nodes of graph G has a multivariate normal distribution and the

model is faithful, then from well-known property of the multivariate normal the partial correla-

tions can be used as an estimates of conditional normal distribution( for proof see Proposition 2 in

Kalisch and Bühlmann (2007) or Proposition 5.2 in Lauritzen (1996)). That is

Xu⊥Xv|XS ⇐⇒ ρuv|S = 0, (9)

, where the partial correlation ρuv|S for any w ∈ S is given by

ρuv|S =
ρuv|S\w − ρuv|S\wρvw|S\w√
(1− ρ2uw|S\w)(1− ρ2vw|S\w)

(10)

4 PC algorithm for Gaussian Copula based Graphical Models

In this section we give overview of high-dimensional consistency properties of PC-algorithm

(Harris and Drton, 2013) for a broader class continuous distributions with Gaussian Copulas or

as named in Liu et al. (2009) nonparanormal distributions. In this algorithm, to test the con-

ditional independence the Pearson-type sample correlations are replaced by rank-based measures

of correlations such as Kendall’s τ and Spearman’s ρ. We start by defining the nonparanormal

distribution.

Definition 1. A random vector X = [X1 . . . Xp]
T has a nonparanormal distribution if there exist

functions {fj}pj=1 such that Z := f(X) ∼ N(0,Σ), where f(X) = [f1(X1), . . . , fp(Xp)]
T .

Considering fv functions as affine, then by definition, all multivariate normal distributions are

also nonparanormal. Let X ∼ NPN (f ,Σ ), then the marginal distribution for specific Xj coordinate

may have CDF Fj then:

Fj(x) = P (Xj ≤ x) = P (Zj ≤ fj(x)) = Φ
(fj(x)− µj

σj

)
9



which implies that

fj(x) = σjΦ
−1(Fj(x))

Lemma 1. The nonparanormal distribution NPN(Σ, f) is a Gaussian copula when the fj’s are

monotone and differentiable.

The proof of the lemma is the simple use of Sklar’s theorem (Nelsen, 2006) and can be found

in Liu et al. (2009, page 2298).

Definition 2. The nonparanormal graphical model NPN (G) associated with a DAG G is the set

of all distributions NPN (f ,Σ ) that are Markov2 with respect to G.

From the deterministic chatacterization of marginal transformations fv, the dependence struc-

ture in a nonparanormal distribution corresponds to the underlying latent multivariate normal

distribution. That is , if X ∼ NPN (f ,Σ ) and Z ∼ N(0,Σ), then it is true that for any triple of

pairwise disjoint sets A,B, S ⊂ V

XA⊥XB|XS ⇐⇒ ZA⊥ZB|ZS

Therefore, for any two nodes u and v and a seperating set S ⊂ V \{u, v}, it is true that

Xu⊥Xv|XS ⇐⇒ ρuv|S = 0, (11)

, where the partial correlation ρuv|S for any w ∈ S is given as in Equation 10

Based on equivalence (11) Harris and Drton (2013) concluded that

Xu⊥Xv|XS ⇐⇒ ˆρuv|S ≤ γ (12)

, where ρuv|S is rank-based correlation estimate and γ ∈ [0, 1] is a fixed threshold. They refer

PC algorithm that uses the conditional independence tests from (12) as the ’Rank PC’ (RPC) and

demonstrate the high-dimensional consistency of RPC. For details, see Harris and Drton (2013).

We use RPC algorithm as a fundamental block to build the NPNDAG procedure.

2The distribution is Markov if it satisfies equations 7 and 8
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4.1 Directed Graphs and SVAR

The usual procedure to use DAG’s in SVAR is as follows: treat the estimated innovations from

equation (2) as the original data (Swanson and Granger, 1997; Bessler and Akleman, 1998; Demiralp

et al., 2014). Then the estimated covariance matrix is considered as an input for PC algorithm

to compute the various conditional correlations. The output of the algorithm with corresponding

zeros corresponds to particular zeros in Ã in (2). Often times PC algorithm returns only partially

directed acyclic graphs, is such is the case one can use bootstrap methods, as described in Demiralp

et al. (2014) to refine the restrictions. The NPNDAG procedure can be described as follows:

Algorithm 1 NPNDAG procedure

1: procedure NPNDAG

2: input :

3: Σ← K ×K correlation matrix of residuals

4: α← Confidence level for conditional independence test

5: top:

6: Run RPC algorithm

7: Obtain Contemporaneous time restrictions for Ã

8: Maximize Likelihood C + T
2 ln|Ã|

2−T
2 tr(Ã

T ÃΣ̂u)

9: Output :

10: Ã

,where Σ̂u is estimated residuals and Ã as in equation 2. Usually, the maximization problem

does not have closed form solution and optimization is done numerically using gradient descent

algorithm. More details can be found in Lutkepohl (2007, Section 9.3) .

5 Numerical Results

We analyze the NPNDAG procedure for finding the contemporaneous correlation matrix using

various simulated data sets and macroeconomic data. The numerical results have been obtained

using software R .For PC (RPC)-algorithm we use R-package pcalg (Kalisch et al., 2012) and for

Lasso-VAR package BIGVAR (Nicholson et al., 2017).
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5.1 Simulating Data

In order to simulate stationary time series, we first generate covariance matrix Σu by construct-

ing an adjacency matrix B as described in Kalisch and Bühlmann (2007):

• Fix an ordering of the variables.

• Fill the adjacency matrix B with zeros.

• Replace every matrix entry in the lower triangle (below the diagonal) by independent real-

izations of Bernoulli(s) random variables with success probability s where 0 < s < 1. We will

call s the sparseness of the model.

• Replace each entry with a 1 in the adjacency matrix by independent realizations of a Uni-

form[0.1,1] random variable.

The mentioned steps generate the matrix B whose entries are zero or in the range [0.1,1]. The

corresponding DAG draws a directed edge from node i to node j if i < j and Bji 6= 0. The DAGs

that are created in this way have the following property: E[Ni] = s(p− 1), where Ni is the number

of neighbors of a node i . Therefore, when sparseness parameter s is low the DAG has few neighbors

and vice-versa. In order to construct a stationary coefficient matrix A for VAR process, we start by

converting the VARk(p) to VARk(1) as described in equation 2.1.8 of Lutkepohl (2007).Than we

enforce its maximum eigenvalue be less than 1 to assure the stationarity Lutkepohl (2007). Thus

• Generate ut for the two distributions , we consider N (0,Σu) and t3(0,Σ).

• Generate sparse random matrix for A1, . . . , Ap.

• Convert VARk(p) to VARk(1)

• Generate Y corresponding to equation 1.

After generating the data Y we run HVAR model and obtain residuals for further analysis.
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5.1.1 Evaluate Performance for Different Parameter Setting

To assess the quality of fit we follow an approach suggested by Tsamardinos et al. (2006);

Kalisch and Bühlmann (2007) and use Structural Hamming Distance (SHD). SHD counts the

number of edge insertion, deletions, and flips in order to transfer the PC output into the correct

DAG. Therefore, a large SHD indicates a poor fit and vice versa. We fit 100 replications to all

combinations of

• p ∈ {10, 40}

• n ∈ {250, 500, 1000}

• s ∈ {0.1, 0.4}

• α = 0.1

5.1.2 Results

Figure 1 reports output from PCDAG and NPNDAG algorithms using settings defined on

Section 5.1.1. We take the logarithm of sample size to make the representation simpler. � and

4 corresponds to sparsity level s ∈ {0.1, 0.4} respectively. Figure and corresponds to number of

variables p = 10 and p = 40, respectivelly.The upper row is the output for Normal data and the

bottom row for nonnormal t distribution.

We can see that in case of p = 10 NPNDAG algorithm outperform the PCDAG algorithm for

both Normal and non normal data as well for two sparsity levels. In case of p = 40 NPNDAG algo-

rithm doing as well as PCDAG when data is generated from Normal distribution and outperforms

PCDAG for non-normal case.

5.2 Macroeconomic Dataset

We show the application of NPNDAG on a real-world macroeconomic dataset. The data set

represents the 168 monthly US macroeconomic time series from 01/1959 to 02/2009. Initially the

dataset was compiled by Stock and W. Watson (2005) and augmented by Koop (2011). The full

list of variables can be found in Koop (2011). In this paper we consider only Medium-Large data
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(a) p = 10 (b) p = 30

Figure 1: � and 4 corresponds to sparsity level s ∈ {0.1, 0.4} respectively. a)Output from PCDAG
and NPNDAG algorithms for p = 10 for the sample sizen ∈ {250, 500, 1000} and α = 0.1 b)Output
from PCDAG and NPNDAG algorithms for p = 30 for the sample sizen ∈ {250, 500, 1000} and
α = 0.1.

set (k = 40). More information about the Medium-Large data set and as well for other types of

data-sets can be found in Koop (2011).

First we transform the data-set to make the variables approximately stationary.3 Then we

standardize each series to have mean 0 and variance 1 as recommended in Nicholson et al. (2016)

and run HVAR. Before imposing structure on residuals obtained from HVAR we estimate and

plot kurtosis and skewness for the data-set to visually verify the normality assumption. Figure 2

indicates that the normality assumption for residuals is not valid. The skeweness is around -2 for

more than 30 variables then it grows exponentially and the logarithm of kurtosis starts around 2(or

around 8 without transformation) and has monotonic increasing behavior.

We estimate the contemporaneous time correlation for 40 residuals using PCDAG as in Bessler

and Akleman (1998) and NPNDAG at significance level for the individual conditional independence

tests at α = 0.05. Figures (3 and 4) show the output of RPC and PC algorithms, respectively .The

NPNDAG produces total 2 undirected edges and 60 directed. The maximum number of neighbors

is 3 and the average number of neighbors is around 1.6. For the PCDAG the number of undirected

3Koop (2011) gives the detailed about the transformation.
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Figure 2: Plot of Logarithm of Kurtosis and Skewness for Large Dataset

edges is 7 and the number of directed edges is 43 . The Structural Hamming Distance between two

graphs is 56, which indicates the difference of two methods.

Using the contemporaneous time restrictions produced by two algorithms, we are ready to find

the impulse response functions (IRF). Figure 5 represents plots of response of Consume Price Index

to the first 20 variables in Medium-Large model. Results show that for some shocks the response

produced from the two algorithms are identical, however for most of the shocks there is either

difference in magnitude of shock or the outputs significantly different from each other. In this

paper, we do not interpret or give meaning to results, since our main task is different.

6 Concluding Remarks

Disregarding the contemporaneous time correlation among the residuals may effect the inter-

pretation of IRF and FEV. In this paper we suggest the extended version of PCDAG algorithm

to account for non-Nonnormal distribution using the latest advance techniques in Machine Learn-

ing and Statistical Learning literature. Our simulation results suggested that NPNDAG was able

to perform as well as the PCDAG in case of Normal distribution and outperform PCDAG for

non-Normal distribution.
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