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Estimating Heterogeneous Corn Price Response in the United

States

Nicholas J. Pates and Nathan P. Hendricks

1 Introduction

As individuals, farmers often face di↵erent constraints, have di↵erent goals, and have di↵erent preferences

to practices and risk and these di↵erences can inform their production choices. This decision-making hetero-

geneity can impact farm-response on the aggregate making heterogeneity critically important for designing

better-targeted policies and predicting outcomes of existing policy. Acreage response could also be spatially

correlated with a host of policy relevant details including, environmentally sensitive areas and areas di↵ering

by potential yield and crop substitutability. With greater availability of rich, high density, and expansive

geospatial agricultural datasets, incorporating spatial heterogeneity in production agriculture is becoming

more feasible. In this paper, we estimate a series of corn supply response models over the contiguous United

States (CONUS) between 2004 and 2016 while accounting for heterogeneity. In particular, we use contem-

porary frameworks used by (Hendricks, Smith, and Sumner, 2014; Hendricks et al., 2014) to estimate supply

response heterogeneity over the contiguous United States. Our findings suggest that the corn acreage re-

sponse to price changes is heterogeneous over the United States and, when aggregated is quite di↵erent from

the estimated quantity response. These results indicate that supply response conforms to economic theory

and highlight the importance of heterogeneous response models for producing accurate levels of quantity

response and predicting response changes from area-specific shocks to production.

Accurate measures of supply response are important for understanding supply incentives in general and

for producing better targeted policy. Between 2007 and 2012, domestic US corn prices have been highly

volatile. Researchers attribute this volatility to a variety of factors including domestic ethanol policy, adverse

weather in corn-growing regions including a droughts in Australia in 2006 and 2007 and a drought in the

US Corn Belt in 2012, and growing international demand due to rising living standards abroad, particularly

in China. Researchers have been especially critical of domestic ethanol policy, estimating that Renewable

Fuel Standard (RFS) legislation led to around a 30% increase in the price of corn (Piesse and Thirtle, 2009;

Carter, Rausser, and Smith, 2016; Roberts and Schlenker, 2013).

While heterogeneity is not completely characterized spatially, spatial relationships are likely important.

The link between proximity and “relatedness” underlies much of the work in the field of geography and the
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analysis of spatial correlation is the cornerstone in geography studies (Miller, 2004; Tobler, 1970). Climate

and soil characteristics vary spatially. Since these features in part dictate yield potential for di↵erent crops,

understanding how farmer’s planting response varies over space can aid in producing more accurate aggregate

quantity responses to price for the country as a whole than utilizing averaged response estimates as studies

have found correlations with supply response and yield potential (Roberts and Schlenker, 2013). While

the response of individuals may be spatially correlated, the impact of responses is also spatially correlated.

The expansion of corn acreage in the upper Mississippi River basin and the subsequent regional increase

nitrogen-based fertilizers use is thought to be a major contributer to environmental problems in the Gulf of

Mexico (Wu et al., 2004; Dale et al., 2010; Hendricks et al., 2014). Such problems can be partially avoided

when corn is grown in dryer areas further away from major river systems.

Accurate measurements of spatial heterogeneous response are also important for conventional studies

in supply response as a whole. Supply and demand elasticities are important measures for predicting the

impact price changes have on producer and consumer surplus (e.g. (Lusk and Anderson, 2004)). Estimates of

these elasticity measures are often performed at a point in time and assumed to be consistent in subsequent

studies, sometimes over many years. If heterogeneous supply response exists, localized shocks to supply

can impact the aggregate supply responsiveness price. Finally, policy impacts are not necessarily spatially

homogeneous. From 2006 to 2011, at the height of RFS legislative activity, ethanol production capacity

grew from 4.9 billion gallons to 13.9 billion gallons (Carter, Rausser, and Smith, 2016). Using 10 kmˆ10 km

grid-level data from the US Corn Belt, Motamed, McPhail, and Williams found that increasing the available

grid capacity available within 100 km by 1% resulted in a 1.5% increase in corn acreage planted and an

increase of agricultural land by 1.7% (Motamed, McPhail, and Williams, 2016).

Contemporary supply response literature is placing more emphasis on heterogeneity. While many studies

have incorporated heterogeneity using a fixed e↵ect or additive separable heterogeneous e↵ect frameworks

(Lacroix and Thomas, 2011; Haile, Kalkuhl, and Braun, 2014; Motamed, McPhail, and Williams, 2016; Haile,

Kalkuhl, and von Braun, 2016), models allowing for heterogeneous supply response coe�cients are becoming

more popular as more evidence for non-additive heterogeneity in supply response comes to light. Many

studies allow for heterogeneous response while maintaining a multi-crop analysis using discrete choice models

with individual coe�cients including latent class and random parameter models(Koutchadé, Carpentier, and

Femenia, 2018; Claassen, Langpap, and Wu, 2017). Others use pooled estimators, running separate models

over di↵erent groups characterized by climatic, geological, biological, soil, and historic farm practice regions

(Hendricks, Smith, and Sumner, 2014; Hendricks et al., 2014).

The contemporary supply response literature also stresses the importance of rotational e↵ects in overall

supply response. Using a multi-stage latent class model Claassen, Langpap, and Wu found that the crop

insurance had a relatively small impact on broad land usage but exhibited large influence on rotational

practices. There is a growing consensus that commodity price changes tend to significantly impact crop mixes

grown in areas and, while limited evidence for extensification exists, that e↵ect on rotations was a larger
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overall share of supply response from price changes(Hendricks, Smith, and Sumner, 2014; Claassen, Langpap,

and Wu, 2017; Langpap and Wu, 2011). To allow for both rotational e↵ects and individual heterogeneity

we use the framework from Hendricks, Smith, and Sumner (2014) which use individual Markov transition

probability models over a priori specifications of heterogeneity.

To incorporate heterogeneity in this study, we separately estimate models over a set of geographic bound-

aries established by the Natural Resource Conservation Service (NRCS) known as Major Land Resource

Areas (MLRAs). These areas spatially classify areas of the country by features that correlate with agricul-

tural productivity. Specifically MLRAs are a set of 278 spatial subregions within the country that control

for such factors as physiography, geology, climate, water, soils, biological resources, and land use. MLRAs

are actually subregions within larger regions known as Land Resource Regions (LRRs) and were drawn up

as refinements over similar set of criteria. Physiography considers the general elevation of the area above

sea level in feet and relief. These features are associated with drainage properties. The geology criteria

refers to general geologic properties of the land such as rock age. Climate delineations were produced using

Parameter-Elevation Regressions on Independent Slopes Model (PRISM) data based on ranges of annual pre-

cipitation, seasonal precipitation distribution, annual temperature ranges, and seasonal freeze statistics. The

water criteria considers water resources available, its quality and quality, and water use within an MLRA.

This includes seasonal e↵ects and intertemporal usage such as drought-year water usage. The soil criteria

characterizes the soil taxonomy to the “great group” as defined in the Soil Survey Geographic (SSURGO)

and SSURGO2 database. Soils at the great group level are divided by such things as salinization, wetness,

and other important soil properties such as fragipan which impacts water and root penetration (Soil Survey

Sta↵, 2014). Biological resources involve the descriptions of the dominant flora and fauna in the area. The

last category, land use, was produced using the 1997 National Resources Inventory (NRI) data on land use.

The NRI consists of survey data collected at five year intervals over 800,000 sample sites in the 50 United

States and in Puerto Rico and the US Virgin Islands. Land use categories used for MLRAs include crop-

land, grassland, forest, urban development, water, and other (NRCS, 2006; Natural Resources Conservation

Service, 2001).

2 Conceptual Model

Following (Hendricks, Smith, and Sumner, 2014; Hendricks et al., 2014), we use a Markov transition prob-

ability framework for this analysis. The basis for these models arises from the results of Hennessy (2006),

who generated a model where rotational choices influence either the yield or the input usage. Under his

framework, crop rotations “memory” which represents the longest lag of crop choice that influences either

the input usage or the yield or both. For instance if rotations have a one-year memory then only one-year

lagged crop choices influence the contemporaneous yield or input usage (Hennessy, 2006).

In this paper we assume that rotations have a one-year memory and that farmers select between two
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crops, corn or some other competing crop. Under these assumptions, they select from a two-period rotational

pattern among some set of rotations: R “ ttCCu , tOOu , tOCuu. The rotation CC signifies a continuous

corn rotation, OO is a continuous other-crop rotation, and OC is a rotation where the other crop is selected,

followed by a corn rotation1. Farmers are assumed to be price takers and select a rotation to maximize

profits conditional on prices. Also for the purposes of a parsimonious conceptual model, we assume that

production follows constant economies of scale. Let cit be the indicator function:

cit “

$
&

%
1 | field i planted corn at time t

0 | otherwise.
(1)

If rotational patterns influence the productivity and input requirements of planting a crop and rotations

have one-year memory, we can write the profit functions of planting a crop in a given year is a function of the

lagged crop indicator pci,t´1q. Equations 2 and 3 show the profits from growing corn or the other selected

crop. Both profit functions take on the classic revenue minus cost form where p
j
i is the j

th’s crop output

price for field i for crop j which is, for simplicity, assumed constant over time. The yield function y
j
it is the

yield for crop j at time t in field piq.2 We assume that yield are functions of inputs for the respective crop´
x
j
it

¯
with the respective input price vector w

j
i which, like output prices are assumed constant over time.

One potential benefit of changing crops versus selecting a continuous crop rotation is that it may save input.

For instance, planting a cover crop helps replenish nutritional content, saving fertilizer. If the farmer planted

the other crop (corn) in t´1, planting corn (the other crop) in year t saves the farmer NOC (NCO) in input.

Alternating crops between years also produces a yield e↵ect, increasing yields by B
OC when planting corn

and by B
CO when planting the other crop relative to mono-cropping.

⇡
C
it “ ⇡

C
it

`
x
C
it , cit´1

˘
“ p

C
i

“
y
C
i

`
x
C
it ` p1 ´ cit´1qNOC

i

˘
` p1 ´ cit´1qBOC

i

‰
´ wix

C
it (2)

⇡
O
it “ ⇡

O
it

`
x
O
it , cit´1

˘
“ p

O
i

“
y
O
i

`
x
O
it ` cit´1N

CO
i

˘
` cit´1B

CO
i

‰
´ wix

O
it (3)

Given a previous crop selection pci,t´1q the farmer will make a contemporaneous planting decision to

maximize the conditional rotational profit function in equation 4.

⇡it “ max
pcit, xC

it
, xO

itq
ˇ̌2
t“1

2ÿ

t“1

cit⇡
C
it

`
x
C
it , cit´1

˘
` p1 ´ citq⇡O

it

`
x
O
it , cit´1

˘
(4)

By Hennessy (2006), the first order conditions for the optimal input vector xj
it is a linear function of the

rotational input savings according to equations 5 and 6. The functions gj p¨q are inverse functions of the j
th

1
In this framework an OC rotation is identical to a CO rotation where an non-corn selected crop choice follows a corn choice.

2
These are per-acre profit functions and so the only critical linkage between prices and yield is that price in dollars per

“unit” have to correspond to the yield in “units” per acre. This will be a non-trivial detail since we represent the other crop as

a composite crop with corresponding units besides bushels. In addition, these yields are indexed to the field-level, these yield

functions can be scaled up to accommodate the size of the respective field.
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crop’s marginal yield equation

x
c‹
it “ g

C
`
wi, p

C
i

˘
´ p1 ´ ct´1qNOC

i (5)

x
o‹
it “ g

O
`
wi, p

O
i

˘
´ ct´1N

CO
i . (6)

Inserting equations 5 and 6 into equations 2 and 3 and combining it all into 4, yields equation 7. This

states that the profit of an OC rotation relative to a CC or OO rotation is determined by di↵erences in

the relative profits of one crop over another and linear functions of the yield premiums and input expense

savings from rotations. Notice that yjit for j P tO,Cu are not functions of the previous crop choices and are

therefore independent of the rotation selection. This means that the profit function can be written more

simply as equation 8. This and the concept of a single memory crop rotational pattern will be important in

building our empirical model in the later sections.

2ÿ

t“1

cit

“
p
C
i

“
y
C
i

`
g
C

`
wi, p

C
i

˘˘
` p1 ´ cit´1qBOC

i

‰
´ wi

`
g
C

`
wi, p

C
i

˘
´ p1 ´ ct´1qNOC

i

˘‰
` (7)

p1 ´ citq
“
p
O
i

“
y
O
i

`
g
O

`
wi, p

O
i

˘˘
` cit´1B

CO
i

‰
´ wi

`
g
O

`
wi, p

O
i

˘
´ ct´1N

CO
i

˘‰

2ÿ

t“1

cit

“
p
C
i

“
y
C
i ` p1 ´ cit´1qBOC

i

‰
´ wi

`
g
C
i ´ p1 ´ ct´1qNOC

i

˘‰
` (8)

p1 ´ citq
“
p
O
i

“
y
O
i ` cit´1B

CO
i

‰
´ wi

`
g
O
i ´ ct´1N

CO
i

˘‰

This in turn means that profits for each rotation are:

hCCi : 2
`
p
C
i y

C
i ´ wig

C
i

˘
(9)

hOOi : 2
`
p
O
i y

O
i ´ wig

O
i

˘
(10)

hCOi : pCi yCi ` p
O
i y

O
i ´ wig

C
i ´ wig

O
i ` p

C
i B

OC
i ` p

O
i B

CO
i ` wi

“
N

CO
i ` N

OC
i

‰
(11)

Comparing values of equations 9, 10, and 11, the each of the respective rotations will be optimal according

to:

hCC
‹i : pCi yCi ´ p

O
i y

O
i ° p

C
i B

OC
i ` p

O
i B

CO
i ` wi

“
N

CO
i ` N

OC
i

‰
(12)

hOO
‹i : pOi yOi ´ p

C
i y

C
i ° p

C
i B

OC
i ` p

O
i B

CO
i ` wi

“
N

CO
i ` N

OC
i

‰
(13)

hCO
‹i : pCi BOC

i ` p
O
i B

CO
i ` wi

“
N

CO
i ` N

OC
i

‰
•

ˇ̌
p
C
i y

C
i ´ p

O
i y

O
i

ˇ̌
(14)

This implies that the choice among alternative rotation patterns will be a linear function of prices and

individual yield and input benefits of alternating crops over two consecutive years.
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3 Data

To study supply response at the farm-level we require two pieces of information. The first is the crop choices

that were made and the second is the domain over which farmers makes their choices. The first component

comes from the USDA’s Cropland Data Layer (CDL) which provides a categorical raster file generated from

satellite images. This raster file provides estimates of crop choice at the 30m angular resolution. We define

the farmer’s choice domain using the 2008 Common Land Unit (CLU) shapefile these data represent the

smallest contiguous and bounded land units with a common owner and a common producer (Woodard,

2016).3

While the CDL dataset provides high resolution data over the contiguous United States, not all states

entered the dataset in the same year. For example North Dakota entered the CDL in its inaugural year

in 1997 while Texas entered in 11 years later in 2008. In the base model heterogeneity was incorporated

using pooled regressions over the Natural Resource Conservation Service’s (NRCS) MRLA boundaries. An

attractive feature of MLRAs is that characterize similarities in growing environments as opposed to political

boundaries. To ensure that MLRA-specific datasets are balanced panels, we restricted the years of analysis

for each MLRA by the latest-earliest year for each of the CLU observations. For instance, North Dakota’s

CDL observations begin in 1997 while South Dakota’s begin in 2006. A MLRA that overlaps with North

and South Dakota will begin in 2006 as this is the latest year between 1997 and 2006. Figure 1 shows the

MLRA map and earliest year of analysis for each MLRA4.

Minimum Year By MLRA

2004.0

2004.5

2005.0

2005.5

2006.0

2006.5

2007.0

2007.5

2008.0

Figure 1: Minimum Observation Year by Major Land Resource Area

3
Areas of the country with missing common land unit boundaries were filled in with boundaries from Yan and Roy (2016).

4
The availability of price data was also a limiting factor. The panel dataset that o↵ers the best spatial resolution over the

longest time frame begins in 2004.
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The importance of including expected prices and the debate how to properly account for expectations has

been a consistent topic of discussion in agricultural supply response literature (Nerlove, 1956; Haile, Kalkuhl,

and von Braun, 2016; Miao, Khanna, and Huang, 2016; Roberts and Schlenker, 2013; Gardner, 1976). A

common theme in many of these discussions stresses the importance of using prices that reflect harvest-time

expectations at or before the time planting when modeling planting decisions. The earliest and simplest

forms of expected price were simply the previous years lagged harvest price. In Nerlove’s famous supply

response paper, he used an moving average model to produce expected prices (Nerlove, 1956). Others have

used futures prices since, under the e�cient market hypothesis, these prices should reflect information about

expected price changes (Gardner, 1976; Haile, Kalkuhl, and Braun, 2014; Roberts and Schlenker, 2013).

We employ a mixture of lagged prices and futures prices to form our expected price series. Much of the

nation’s corn acreage is planted in the month of April with planting starting in early April or late March.

We assume that the planning process begins in the months of January and February as this gives time for

required crop specific land preparation before planting begins. To construct expected prices, we first average

local daily spot prices over the course of the months of January and February which we call the planting

price
`
C

P
it

˘
. Next, we average daily the nearby futures contract price and the harvest-time futures contract

price for the respective commodities in January and February
`
F

P
t and F

H
t respectfully

˘
. We construct the

expected harvest-time spot prices according to equation 15. We first compute the average annual nearby

basis at planting and add the harvest-time futures price. The pre-plant average nearby basis incorporates

the local basis pattern of the individual market, providing an estimate for basis at harvest time. The average

harvest-time price acts serves as the projected harvest time futures price. Adding the expected basis to to

the expected harvest futures price gives the projected harvest-time local market spot price. Another way to

think about this expected price is that the di↵erence between the harvest-time contract price and the nearby

contract price is the markets estimated cost of carry to harvest. If these prices are properly reflecting market

transactions, this means that individuals with grain holdings would be willing to hold their grain in storage

to receive this expected price at harvest.

Eit

“
P

H
it

‰
“ F

PH
t `

“
C

P
it ´ F

PN
t

‰
“

“
F

PH
t ´ F

PN
t

‰
loooooooomoooooooon

Expected Cost of Carry

`C
P
it (15)

This study utilizes price data for corn, soybeans, hard red winter wheat, hard red spring wheat, soft red

winter wheat, rice, and cotton. These prices are all quoted in dollars per bushel with the exceptions of rice

and cotton which were quoted in dollars per pound. Daily values for futures prices for these commodities

are readily available. We collected from these data from the Data Transfer Network (DTN). Spot price

datasets were constructed using a combination of data from the Data Transfer Network (DTN) and Cash

Grain Bids (CGB). To ensure that our estimates are not dictated by a small number of observed prices,

we remove markets with less than 10 observations over January and February. Between these two sources

data from 2004 to 2016 were collected from 1,367 corn price locations, 1,252 soybean price locations, 84
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hard red spring wheat (HRSW) price locations, 96 hard red winter wheat (HRWW) price location, and 123

soft red winter wheat (SRWW) price locations. Rice and cotton prices were collected from the National

Agricultural Statistics Service’s (NASS) Quickstats at the national level from 2004 to 2016. Coverage for

the continuously observed local markets was rather good, densely covering most of the major field crop

production areas. Figure 3 shows the price coverage by crop.
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Figure 2: Commodity Price Locations Continuously Observed Between 2004 and 2016

Using the location of the market city as a reference, we used these prices to construct annual basis maps

for each commodity over the contiguous United States. After estimating the expected commodity prices over

the markets we interpolated these estimates using ordinary kriging. Ordinary kriging has advantages over

other interpolation procedures such as inverse distance weighting since it takes the spatial correlation of the

values observations into account to minimize the variance of the estimates. Basis map values were estimated

over a raster image with a resolution of 0.01 square degrees (or approximately 36 square miles). Figures 3

shows an example of basis maps in 2009 and their respective standard errors for the localized markets of

corn. To maintain consistency of the price expectations estimates over time, the original observation set

contains only markets with continuously observed price averages in every year from 2004 to 2016.

Krigged Local Corn Prices 2009

3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

Krigged Local Corn Prices 2009 Std. Error

0.05
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0.15

0.20

0.25

Figure 3: 2009 Corn Expected Price Map
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Incorporating rotations in heterogeneous supply response studies is challenging since rotational choices

are more likely to vary spatially. By focusing on the supply response of a single crop, corn, we can simplify the

study somewhat by considering rotations between corn and some other crop. In this study we characterize

the other crop price using a weighted average of soybeans, HRWW, SRWW, HRSW, cotton, and rice prices.

Using a common weighting scheme for every field is problematic since the set of relevant alternative crops to

corn production will di↵er by the area of the country. We construct the other crop price as a Laspeyres Index.

This index is commonly used to compute the Consumer Price Index and creates a “basket” of commodities

indexed from k “ 1, . . . ,K using the quantities in some base period (period 0) to track the basket’s changing

total product as a result of price changes. Equation 16 shows the functional form where ptk is the price for

commodity k at time t and q0k is the total quantity of crop k produced in period 0. Using unique price

indices for each MLRA ensures that the other crop price will largely consist of crops grown in the region.

For instance, the dominant alternative crop in the state of Iowa is soybeans. If the alternative acreage only

consists of soybeans, then qk1 “ 0 @k1 where k1 is not soybeans, which means that only soybeans prices would

enter the price index.

P
O
t “

∞K
k“1 ptkq0k∞K
k“1 p0kq0k

(16)

There are several aspects that complicate the use of the Laspeyres index in this study. First, crop

choices are subject to change over time so it is unclear that a single quantity measure q0 would sensibly

represent the typical crop choice basket over our study. Second, our analysis is at the CLU level which

generally have a single observation each year. A particular crop planted at the beginning of the analysis

does not preclude another crop from being considered in the future. This means we need to property

define of the initial quantity q0k. Lastly while we observe crop choices on some fields before 2008, the CDL

dataset did not gain full coverage until 2008. Therefore we choose 2008 as the period to define the index

to maintain consistency over space. Defining the index using production statistics before 2008 potentially

introduces spatial di↵erences in an independent variable that is exclusively due to data availability. This

could be characterized as heterogeneously introducing degrees of measurement error over di↵erent areas of

the country. To address these issues, we modified the Laspeyres index. In particular we define q0k as the

MLRA-specific total production of crop k from 2008 to 2016. We compute total production by each MLRA

for each crop by merging the field level data with a county-level yield dataset, multiplying the yield with

the field level acreage choices, then summing over the total MLRA from 2008 to 2016. Average annual yield

data for each of these crops are available at the county-level through the National Agricultural Statistics

Service (NASS) and we used agricultural district-level to fill in for missing county-level observations.

While the MLRAs are drawn up to reflect di↵erences in soils and climate there can still be substantial

intra-regional variation in soils and weather conditions. To control for such variation, we include the soil

horizon composition and the slope, both provided by the SSURGO dataset. The soil horizon composition
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was broken up into three components clay, silt, and sand represented as percentages of the soil’s horizon

and add up to one. These are the three major features that define the texture of the soil. We also include

the slope of the field which is a key component controlling runo↵, and erosion. We also control for extreme

precipitation events in the pre-plant stage. Extremely wet conditions can potentially delay planting and

could cause farmers to plant alternative crops such as soybeans with later planting dates. Extremely dry

conditions may have similar e↵ects and may shift crops to more drought resistant crops. We describe extreme

planting precipitation conditions include two indicator variables. The first variable is equal if the PRISM

cell’s annual total April-May precipitation was at or below the 25th percentile over the respective MLRA5.

The other was equal to one if the PRISM grid cell April-May precipitation was above the 75th percentiles

over the MLRA. These percentiles were calculated based o↵ of data 34 years of historical data between 1983

to 2016.

4 Empirically Modeling Price Response

A direct result of the conceptual model is that the relative profit of selecting one rotation over another is

a linear function of input and output for prices for each of the crops and rotational benefits with respect

to inputs and yields. With the assumption that crop-rotations have a one-period memory, this means that

rotations can be modeled as a first-order Markov decision process. This directly motivates the probabilistic

structure used by Hendricks, Smith, and Sumner (2014) and Hendricks et al. (2014) which is the basis for

this study. The choice framework in the empirical model can be characterized as two first-order Markov

transition probability equations describing the probability of a farmer selecting corn as a crop conditional

on the previous crop choice. These choices are characterized by the indicator variables yOC
it and y

CC
it where:

y
c1c2
it “

$
&

%
1 | Crop type c1 planted on field i in t ´ 1 and type c2 chosen in t

0 | Otherwise
(17)

Equations 18 and 19 show the structure of the Markov transition probabilities of planting corn given

corn or some other crop was planted in the previous year respectfully. The estimated coe�cients �
C and

�
O are of interest as they represent the marginal influence of crop prices have on the conditional probability

of planting corn in the contemporary period. Only fields raising either corn or the other crop between

the two consecutive periods are in the sample used to estimate these models. The probability of planting

corn in period t takes the form of equation 20 and the probability of planting some other crop in period

t takes the form of equation 21. Assuming long-run probabilities exist, they can be found by setting the

lagged probabilities equal to the contemporaneous probabilities in equation 206. This can be represented as

equation 22 shown by plugging equation 21 into equation 20 and setting ⇧C
it´1

ˇ̌
LR

“ ⇧C
it “ ⇧C

it´1. Equations

23 provides the functional forms of the short-run counterpart which allows for fluctuations in the transition

5
Corn planting for many of the largest corn producing states is most active in these months (NASS, USDA, 2010).

6
The long-run probability of planting other crops is the complement of the long-run probability of planting corn.
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probabilities.

y
CC
it “ �10 ` �

C
1 P

C
it ` �

O
1 P

O
it ` �1Xit ` "1it (18)

y
OC
it “ �20 ` �

C
2 P

C
it ` �

O
2 P

O
it ` �2Xit ` "2it (19)

⇧C
it “ ⇧C

it´1ŷ
CC
it ` ⇧O

it´1ŷ
OC
it (20)

⇧O
it “ 1 ´ ⇧C

it (21)

⇧C
it

ˇ̌
LR

“ ŷ
OC
it

1 ´ ŷCC
it ` ŷOC

it

(22)

⇧C
it

ˇ̌
SR

“ ⇧C
it

ˇ̌
LR

ŷ
CC
it `

`
1 ´ ⇧C

it

ˇ̌
LR

˘
ŷ
OC
it (23)

Using these equations, the marginal e↵ect of price changes are computed using their first derivatives with

respect to prices. The major di↵erences between the marginal of short-run probabilities and their long-run

counterparts is that the ⇧p¨q
it

ˇ̌
ˇ
LR

terms are taken as given constants.

B⇧C
it

BP k
it

ˇ̌
ˇ̌
LR

“
“
1 ´ ŷ

CC
it

‰
�̂
k
2 ` ŷ

OC
it �̂

k
1“

1 ´ ŷCC
it ` ŷOC

it

‰2 (24)

B⇧C
it

BP k
it

ˇ̌
ˇ̌
SR

“ ⇧C
it

ˇ̌
LR

�̂
k
1 `

`
1 ´ ⇧C

it

ˇ̌
LR

˘
�̂
k
2 (25)

We construct the elasticity terms by multiplying the respective marginal e↵ects by the ratio of the field-

specific price and the predicted probabilities. These elasticity terms, are useful for estimating the relative

e↵ect that a price change will have on production in di↵erent areas of the country. The Markov transition

probability models described in this section took the form of linear probability models. While they provide

a simpler functional form for exposition and estimation and can perform well, their estimated values are

not confined to the r0, 1s interval. Because the dataset is so large and varied and since we are interested in

estimating MLRA-level elasticities, we use logit models instead since the elasticity measures rely on accurate

probabilistic estimates. In this case the �̂ coe�cients in equations 24 and 25 take the form of the MLRA’s

respective average partial marginal e↵ects.

5 Results

Performing heterogeneous supply response an area as large as the United States is challenging. While

the Cropland Data Layer distinguishes a variety of crops, their respective prices are more di�cult to find.

In addition, many crops do not have associated futures contracts which makes expected prices di�cult
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to construct. Since we account for heterogeneity using pooled regressions at the MLRA-level, we need

to ensure each of our regressions have enough observations to produce reliable coe�cient estimates. Our

Markov transition probability regression modeling strategy requires that our training data consists of only

observations with two consecutive corn or the other crop choices which can constrain the MLRA sample size.

For these reasons we divided the observation strata into 5 groups, corn, priced crops, other crops, cropland,

and non-cropland. Table 1 shows the CDL observation designations. Corn consists of observations where

the CDL signifies only a conventional corn observation. That is, “corn” does not include double-cropping

observations involving corn (e.g. double-cropping corn and soybeans), and less conventional varieties such

as sweet corn, or popcorn. Priced crops are crops with expected price observations that enter the “other”

crop price index value (soybeans, rice, wheat varieties, cotton) and associated double-cropped observations

with these crops (e.g. winter wheat-cotton double cropped observations). Other crops are crops that are

considered substitutes in production to the priced crops. This category includes double-cropped observations

containing these crops. The “Cropland” category contains other crops that are less substitutable to the

priced crops. This category includes specialized fruit and vegetable crops and perennial crops such as alfalfa.

The final category, non-cropland, contains land uses that are not immediately suitable for crop production

including marshland, pasture, and developed lands.
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Corn Sweet Potatoes Greens Squash
Cotton Triticale Herbs Strawberries
Rice Alfalfa Honeydew Melons Sugarcane

Soybeans Almonds Lettuce Sweet Corn
Spring Wheat Apples Mint Switchgrass
Winter Wheat Apricots Misc Vegs Tobacco

Barley Aquaculture Nectarines Tomatoes
Buckwheat Asparagus Olives Turnips
Camelina Blueberries Onions Vetch
Canola Broccoli Oranges Walnuts

Dry Beans Cabbage Other Crops Watermelons
Durum Wheat Caneberries Other Hay/Non Alfalfa Barren

Fallow/Idle Cropland Cantaloupes Other Tree Crops Clouds/No Data
Flaxseed Carrots Peaches Deciduous Forest
Hops Cauliflower Peanuts Developed (All Levels)
Lentils Celery Pears Evergreen Forest
Millet Cherries Peas Forest

Mustard Chick Peas Pecans Grassland/Pasture
Oats Christmas Trees Peppers Herbaceous Wetlands

Other Small Grains Citrus Pistachios Mixed Forest
Potatoes Clover/Wildflowers Plums Nonag/Undefined
Rape Seed Cranberries Pomegranates Open Water

Rye Cucumbers Pop or Orn Corn Perennial Ice/Snow
Sa✏ower Eggplants Prunes Shrubland
Sorghum Fruits Pumpkins Water
Speltz Garlic Radishes Wetlands

Sugar Beets Gourds Shrubland Woody Wetlands
Sunflower Grapes Sod/Grass Seed

Legend
Priced Crop Other Crop Cropland Non-Cropland

Table 1: Cropland Data Layer Observation Designations
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Using the CDL designations, we filter the data using three hurdles. First, we filter out MLRAs with less

than 20% of the MLRA’s total acreage applied to corn, priced crops, other crops, or cropland. This was done

to filter out MLRAs with modest agricultural activity such as desert, mountainous, and developed areas.

We ultimately use the price index made up of the prices of the priced crops as the price for alternative other

crops. To ensure that the other price index can reasonably serve as a measurement for prices for alternative

crops to corn, we filter out MLRAs where the corn and priced crops make up less than 50% of their other

crops. Third, since our goal is to understand how corn plantings respond to price, we also need a minimum

threshold for corn observations within each MLRA. We therefore filtered out MLRAs with less than 10%

of their total other crop acreage in corn. In addition to these three hurdles, we also remove MLRAs with

less than 50,000 total observations and MLRAs where less than 35,000 observations enter either of their

respective Markov transition regressions7. After filtering, our data includes 57 MLRAs and over 29.2 million

individual observations. According to the cropland data layer and county-level NASS estimated yields, these

MLRAs accounted for 92% percent of the nation’s corn production, 95% of its soybean production, 46% of

its cotton production over 47% of its wheat production, and 77% of its rice production between 2008 and

2016.

There was a fair degree of heterogeneity in the supply response between MLRAs. Table 5 shows the

summary statistics over the 57 MLRAs. Between these MLRAs the average estimated long-run probability

of planting corn was around 42% over the years of the analysis. The MLRA with the smallest long-run

probability had just under 10% probability of planting corn. Based on our three hurdle approach, suggests

that our models are working properly. The corn supply response to price were as expected on average. The

probability of planting corn tends to increase when the price of corn increases and decrease when the price

of the other composite commodity increases. On average, a one dollar increase in the price of corn correlates

with a 5% increase in the probability of planting corn in the short-run but, as the table suggests, there is a lot

of heterogeneity in corn supply response to price. Some MLRAs had a negative average own-price response.

In others, a dollar increase in the price of corn is estimated to increase the probability of planting corn by

over 20%. On the whole, the average values agree with Hendricks, Smith, and Sumner (2014) in that the

short-run e↵ects are larger than the long-run e↵ects. This is a consequence of prices impacting temporary

rotational patterns. While on average results are as expected, in several MLRAs, the estimated signs were

not as expected. Figure 4 shows the distribution of the marginal e↵ects.

7
Observations also exclude CLUs that are 15 acres or larger.
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Statistic min mean max
Long-Run Probability of Planting Corn 0.0952 0.424 0.738
Short-Run Own-Price Marginal E↵ect -0.0527 0.0549 0.228
Long-Run Own-Price Marginal E↵ect -0.0916 0.0427 0.231
Short-Run Cross-Price Marginal E↵ect -0.496 -0.109 0.231
Long-Run Cross-Price Marginal E↵ect -0.508 -0.0818 0.335

Short-Run Own-Price Elasticity -0.501 0.704 4.22
Long-Run Own-Price Elasticity -0.871 0.606 4.67
Short-Run Cross-Price Elasticity -4.02 -0.563 0.758
Long-Run Cross-Price Elasticity -4.46 -0.486 1.10

Table 2: Corn Supply Response to Price Summary Statistics
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Figure 4: MLRA-Specific Marginal E↵ects on the Probability of Planting Corn
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Approximately 10% of the MLRA results were not as expected. The MLRAs with negative own-price

marginal e↵ects tended to have positive coe�cient values in the OC Markov transition probability model.

These MLRAs also tended to have smaller corn coe�cient value in the corn-given-other Markov transition

probability model. This suggests that negative values are likely due to high coe�cients estimator- and corn

estimated probability-variance. To further check our elasticity estimates, we compared them with simple

county-level NASS elasticity estimates. To produce our NASS estimates, we added up the planted corn

acreage reported by NASS for every county that touches each MLRA over each year from 2008 to 2016. We

then used the MLRA average corn prices and the average other price index to compute our NASS elasticity

estimates in each year. We finally estimate MLRA specific elasticities with the following equation 26. Here

Corn Pricet is the mean-MLRA corn price in a particular year and Other Price Indext is the other price

index counterpart. NASS Corn Acrest is the sum of county-level NASS acreage in year t for counties that

touch a given MLRA. While the NASS estimate will not be identical to our CDL estimates, they provide a

general comparison to our MLRA estimates using CDL data. Figure 5 plots the NASS estimated elasticities

relative to our CDL estimated elasticities. The NASS and CDL estimates do not correspond perfectly but

do have relationship with a near unit slope and a near zero intercept. This lends further credibility to the

CDL estimates. The acreage response elasticities estimated with the NASS data were estimated with a short

time-series of only 9 years (observations). Despite the small sample size, many of this of these simple models

produced statistically significant elasticity terms. To further address the elasticity negative values from the

CDL, we estimated the standard error of �̂1 in our NASS equations and divided the points by standard

error quantiles. This further suggests that high marginal e↵ect variance may be to blame for the negative

own-price elasticity of supply estimates.

ln pNASS Corn Acrestq “ �0 ` �1 ln
`
Corn Pricet

˘
` �1 ln

`
Other Price Indext

˘
` �3t ` ⌘t (26)
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Figure 5: Short-Run Corn Price Elasticity NASS Comparison
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We now present the elasticity results of the supply response study. The spatial distribution of the supply

response is similar in the long-run so we present the short-run elasticity maps in figures 6 and 7 to save

space. The marginal e↵ects correspond closely with the elasticity values and so we focus our attention on

the elasticity measures. These maps show that there is a high degree of heterogeneity of supply response

between MLRAs within the traditional corn belt and those outside of the corn belt. The probability of

planting corn is particular sensitive in the east and central areas of North Dakota and along Mississippi

delta. The model shows that corn plantings in the eastern portion of North Dakota and the western portion

of Minnesota had an especially high price sensitivity with an exceptional own-price elasticity of over 4.2.

While this value is extreme, the MLRA’s corresponding NASS value was around 1.5 which also indicates

that there is an elastic supply response in the region (see figure 5). This area of the country is known for

its flooding. Furthermore, lagged snowfall over the winter and rapid snow melt are two primary factors in

spring flooding in this region. If adverse weather events were correlated with the low corn price years the

elasticity measurements could be misleading. This may be the case since, over our coverage of the study,

especially severe floods impacted east-central North Dakota in 2009 and 2011 which coincide with low corn

price years.

MLRAs with high own-price elasticity also tended to have deep negative cross price elasticities. While

it can be di�cult to read on the maps, the sensitivity to prices tends to be higher in the Northern central

United States, for instance MLRAs in Iowa tended to have higher price sensitivity than MLRAs in Illinois

and Indiana.
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Figure 6: Short-Run Corn Price Elasticity of the Probability of Planting Corn
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Figure 7: Short-Run Other Price Elasticity of the Probability of Planting Corn

6 Acreage Supply Response Versus Quantity Supply Response

To conclude the analysis, we compare the estimated quantity response to the acreage response to a dollar

increase in the price of corn. We do this by combining the field level own-price marginal e↵ect the NASS

yield values. Over these 57 MLRAs, a $1 increase in the price of corn increases the total acreage planted

to corn by 16.7% while total production would only increase by 6%. This suggests that there is a negative

correlation between yield potential and cropland conversion. This is expected if, for a given price farmers

initially allocate lands to their most profitable use. If the price of corn increases while holding the price of

all other crops constant, we would expect that land with lower corn yield potential be brought into corn

production. It therefore makes sense that the expected acreage increase is larger than the expected quantity

increase. Figures 8 and 9 show the expected land-use percentage change by MLRA and the overall additional

expected bushels from each MLRA respectfully using 2016 yield estimates. These maps show that a dollar

increase in the corn price would induce large acreage in west-central North Dakota, more supply response

would occur in the eastern part of North Dakota, central Minnesota and central Iowa. It also shows that

the Mississippi Delta has high acreage and quantity responses to an increase in the price of corn.
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Figure 8: Expected MLRA Percentage Change in Corn Acreage from a $1 Increase in Corn Price
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Figure 9: Expected Corn Quantity Change in Bushels from a $1 Increase in Corn Price
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7 Conclusions

The initial results in this paper indicate that there is a considerable di↵erence in the degree to which corn

producers respond to corn prices. Planted acreage response to price ranged from near zero to highly elastic.

These results tended to be consistent with estimates using NASS planted acreage estimates. Corn planting

decisions in the northern United States particularly in east-central North Dakota and western Minnesota

were quite sensitive to corn price fluctuations. There could be many reasons for high price sensitivity in this

area. First, prices in this part of the country are relatively low compare to other areas inside of the corn belt.

In general, the lowest corn prices in the country are in central Dakotas. The spatial distribution of prices

of the 2009 corn basis map in figure 3 is quite stable over time. This could mean that, in most years, corn

prices are not high enough relative to other crops grown in the area. The eastern-most MLRA is particularly

known for sugar beet production. While the corn-soybean price ratio rose by nearly 30% between 2005 and

2007, the corn-sugar beet price ratio nearly doubled over this same time frame. Relative to other crops,

sugar beet prices also tended to be more stable from 2008 to 2016 which may explain the high sensitivity to

crop price volatility.

Corn planting decisions in the Mississippi Delta was also sensitive to price changes. The corn-to-rice

price ratio also nearly doubled between 2010 and 2011 in Arkansas and Mississippi. The prevalence of rice

production in the region coupled with the fact that rice-soybean rotations are common could have lead

farmers to transition to the corn-soybean rotations usually seen in traditional Corn Belt states like Iowa.

High corn prices may have also had rotational impacts. While planting cotton to monoculture is popular,

researchers studying the delta suggest that this practice introduces the crop to pest risk and suggest a

corn-cotton rotation as an alternative (Snipes, 2005).

Accounting for heterogeneous acreage response, we find that in percentage terms, the aggregate acreage

response is above the yield response. This suggests that that there is a negative spatial correlation between

yield potential and acreage response. This conforms with economic theory where farmers will utilize the

land to maximize profits for a given price ratio. When the price of corn increases relative to price of other

crops, farmers the marginal product of inputs for corn tends to fall. This highlights the importance of

heterogeneous supply response when yield response at or near zero.

There are many areas for future research. In this analysis we use a Markov-transition probability frame-

work. This framework relies on assumptions of the rotational memory of the crops in question. In this paper,

we assume that corn and the composite other crop both have a single period memory which greatly reduces

the number of equations we need to estimate (Hendricks, Smith, and Sumner, 2014; Hennessy, 2006). While

there is evidence that corn rotations have a single period memory, this may not the be the case for the

other composite crop. Furthermore, there is no research that we are aware of suggesting this memory holds

generally over the entire country. We plan on extending this idea by testing rotation memory within each

MLRA and updating the modeling framework when appropriate.

We also plan on extending the paper by replicating the study using modern machine learning methods and

21



comparing the results. While our average planted acreage response statistics conform with our expectations,

a number of MLRAs had negative own-priced and positive cross-price elasticities of acreage supply. These

results persist despite the fact that each of the included MLRAs had over 30,000 observations that we used

to estimate the models. While MLRAs plausibly control for a great degree spatial variation, these results

suggest that there could be a degree of within-MLRA heterogeneity yet to be controlled for. Many of these

MLRAs are quite large, some spanning dozens of counties and handfuls of states. In addition many of the

values delineating the MLRAs, particularly those involving weather, land-use, and biological resources are

from the 1990s and may no longer be relevant for agricultural production. While other panel estimation

procedures are available, due to the size of the dataset, we plan on implementing the framework of Athey

and Imbens (2016) and Prest (2017) who have developed a tree-based approaches for estimating causal

heterogeneous treatment e↵ects. The potential advantage of these methods is that they are well suited to

estimating models with highly non-linear relationships over large datasets.
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