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Abstract 

Predictions of future food supply under climate change rely on projected crop yield trends, which 

are typically based upon retrospective analyses of historical yield gains. However, the estimation 

of these trends is difficult given the evolving impact of agricultural technologies and confounding 

influences such as weather. Here, we evaluate the effect of climate change on United States (US) 

maize yields in light of the productivity gains resulting from the adoption of Genetically 

Engineered (GE) seeds. We find that yield gains on the order of those experienced during the 

adoption of GE maize are needed to offset climate change impacts under the business-as-usual 

scenario, and that anything short of that will likely induce yield reductions below current levels. 

Outside of the US, our findings have important implications for regions lagging in the adoption of 

new technologies – such as GE varieties – which could help offset the detrimental effects of climate 

change.  
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1. Introduction 

A major challenge for global food security is ensuring that technological progress will be sufficient 

to compensate for the effects of a warmer climate (Lobell and Asner 2003, Schmidhuber and 

Tubiello 2007, Lobell and Field 2007, Lobell et al 2011, Cassidy et al 2013, Wheeler and von 

Braun 2013, Butler and Huybers 2013, Lobell et al 2013, Burke and Emerick 2016). Without 

substantial gains in productivity, the rising global demand for food could lead to higher food prices 

thereby incentivizing conversion of rainforests, wetlands, and grasslands to farmland (Duvick and 

Cassman 1999, Alston et al 2013). There has been much work estimating the potential impact of 

climate change on maize yields using historical data coupled with statistical models (Schlenker 

and Roberts 2009, Lobell and Asner 2003, Lobell et al 2011, Butler and Huybers 2013, Burke and 

Emerick 2016, Gammans et al 2017), and recent research suggests that these statistical-based 

approaches provide similar estimates to process-based models (Roberts et al 2017). A key 

empirical challenge for statistical models is unpacking the effect of weather on crop yields from 

that of technological differences across both locations and time. The conventional approach to 

address this issue is to introduce time trends in the statistical model to “control for” ongoing 

technological advancement. In general, the focus is not on correctly specifying the pace of 

technological change per se, but rather on evaluating whether climate change impact projections 

remain insensitive to alternative assumptions about the time trend.  

Nonetheless, there is growing interest in improving the estimation of technological trends 

with the goal of analyzing emerging food security concerns for a growing global population 

(Dyson 1999, Evenson 1999, Hafner 2003, Fisher et al 2010, Jaggard et al 2010, Cassman et al 

2011, Ray et al 2012, 2013, Grassini et al 2013, Tollenaar et al 2017). Studies typically explore 

alternative trend specifications, but do not account for both structural changes of the growth rate 



	
	

3	

and the confounding influence of weather. The presence of regime shifts or “breaks” in historical 

data is important for considering plausible future trends as it is difficult – if not impossible – to 

forecast structural changes ex ante. How we characterize historical changes in technology has 

crucial implications for climate change and food security projections as they require assumptions 

on the future pace of yield progress (Dyson 1999, Evenson 1999, Jaggard et al 2010, Cassman et 

al 2011, Ray et al 2013). 

The widespread adoption of genetically engineered (GE) varieties in US maize production 

starting in 1996 was a major technological revolution (Shi et al 2013, Xu et al 2013, Lusk et al 

2017). GE varieties are associated with higher yields typically attributed to the inclusion of genes 

transmitted by the Bacillus thuringiensis bacterium that make plant tissues toxic to pests (Nolan 

and Santos 2012, Xu et al 2013, Shi et al 2013, Barrows et al 2014, Chavas et al 2014, Klümper 

and Qaim 2014, Lusk et al 2017). Figure 1 provides a broad perspective on maize yield since the 

late 1800s and highlights the existence of several technological regimes that have occurred 

following the introduction of hybrids in the 1920s and GE varieties in the 1990s. While yields 

stagnated for many decades until the adoption of hybrid seeds in 1930s, yield increases have been 

substantial particularly since the adoption of GE seed technologies. However, it remains unclear 

today which of these yield growth regime(s) best represents plausible scenarios of future progress 

given the potential biophysical limits on crop growth (Duvick and Cassman 1999, Lobell et al 

2009). These technological regimes are useful reference points for exploring future yield trends in 

a warming world. 

Our research seeks to inform the technological needs under climate change. More 

specifically, we aim to distinguish US maize yield trends in the pre- and post-GE era, and contrast 

these to predicted yield impacts based on climate change models. This comparison sheds light on 
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the necessary technological advancements required to offset climate change impacts. Regression 

analysis of county-level yields spanning 1981-2015 show that annual yield gains of a similar 

magnitude as those experienced during the adoption of GE maize are needed to offset climate 

change impacts under the business-as-usual scenario, and that anything short of that will likely 

induce yield reductions below current levels. In addition, we show that accurate estimation of 

historical yield trends requires (i) allowing for a structural break when GE varieties are initially 

introduced and (ii) controlling for the confounding influence of weather.  

The raw data in this study include annual county-level maize yields, monthly precipitation, 

and daily minimum and maximum temperature observations. We focus on 8 states constituting the 

US Corn Belt in which GE maize has reached near-complete adoption. The data contain 17,000 

observations spanning 500 counties during 1981-2014. As a departure from previous work, we 

model trends using a piece-wise linear spline with an inflection point in 1996 to allow the trend to 

vary across the pre-GE (1981-1995) and post-GE (1996-2014) periods. Recent work suggests that 

yield gains from GE seed adoption have been spatially heterogeneous (Lusk et al 2017), so we rely 

on hierarchical mixed models with trends varying across agricultural reporting districts within each 

state.  

 

2. Methods  

2.1 Data sources 

We rely on county-level maize yield data from USDA/NASS (1981-2014). We also rely on 

average acreage over the sample period as weights for computing aggregate regional impacts. The 

analysis is based on a balanced panel of 500 counties in eight Midwestern states (Illinois, Indiana, 
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Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin). Maize production in these counties 

is mostly rain-fed. 

For weather data we rely on monthly precipitation and daily maximum, minimum, and 

average temperature from the PRISM Climate Group (http://www.prism.oregonstate.edu). The 

PRISM data is a gridded climate dataset with a 4-km spatial resolution that is the official 

climatological data of the USDA. The daily PRISM data is available since 1981 and we rely on 

the 1981-2014 period for our analysis. Daily temperatures are processed into temperature exposure 

bins of 1°C each, from -15 to 50°C, which are necessary to estimate nonlinear effects of 

temperature following Schlenker and Roberts (2009). The temperature exposure data is computed 

based on a double sine curve passing through the minimum and maximum of each consecutive day 

at each grid. We aggregate the gridded data up to the county level to match the agricultural 

production data based on the amount of cropland contained in each PRISM grid, which we derive 

from USDA’s 30-m resolution Crop Data Layer (CDL). 

  

2.2 Regression models.  

We specify the statistical model using a linear multilevel model: 
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where yit is the natural log of maize yield in county i and year t. The fixed effects portion (in the 

multilevel model parlance) of the model includes the effects of temperature exposure ,1

d
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and the effects of precipitation 2
1 2it itp pb b+ . The random effects captured by vit include random 

intercepts across counties and random piecewise linear trends across districts: 
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 0 1 2 ( 16)it i g gv u u t u t= + + -   

where t denotes the trend variable with value 16 in the year 1996 and the subscript g denotes ag 

districts. Parameter estimates are obtained using the lmer function in R and reported in Table S1.   

 

All weather variables are aggregated over the April-September growing season following 

modeling choices in the literature. Our approach is similar to Schlenker and Roberts (2009) in that 

it allows for nonlinear effects of temperature exposure over the season. More specifically, 

( ) ( )1it ith hF + -F  is the exposure to temperature bin h over the season, and 𝑇"(ℎ) is the element 

in column k and row h of the basis matrix of a Chebyshev polynomial of degree d defined over 

temperature bins (ℎ, … , ℎ). Unless otherwise noted, all models in the study rely on an 8th degree 

polynomial with ℎ = 0 and ℎ = 36°C so that there is enough exposure at the extreme bins. In a 

sense, the variable 𝑧-.," is a locally-weighted transformation of temperature bins, which assumes 

a smooth response to exposure to different temperature levels. We also considered polynomial 

specifications of various degrees and find the results to be fairly insensitive to the functional form. 

The effects of precipitation are captured by the inclusion of linear and quadratic terms for seasonal 

precipitation.  

Table S1 shows that the multilevel model produces similar results to the more commonly 

used panel data “fixed effects” models used in the literature. The estimated yield-temperature 

response curve for the multilevel model is similar to those from previous studies (Figure S1). We 

prefer the multilevel model here as it allows for a parsimonious expansion of the trend effects to 

be heterogeneous across districts, which permits a more localized representation of cross-sectional 

trend differences compared to previous studies that allow trends to vary at the state-level. This is 
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an important consideration given previous evidence of localized differences in GE adoption effects 

(Lusk et al 2017).   

To represent the variability of estimated effects and projections we rely on a block-

bootstrap procedure whereby we estimate the above model 1,000 times with data resampled with 

replacement by year. This follows the bootstrap aggregating or “bagging” procedure developed 

commonly used in machine learning (Breiman 1996).  

We utilize out-of-sample forecasting procedures to guide model specification. Within each 

iteration we randomly sample without replacement 27 of the years (approximately 80% of the 

data), estimate the model, and then predict yields for the remaining 7 years. We do this 1,000 times 

and report the mean squared errors of the predictions relative to a baseline model that only includes 

the random effects for counties and linear time trends, i.e. 0 1it i g t ity u u year e= + + .    

 

2.3 Climate projections and impacts 

Future projections of changes in temperature and precipitation are derived from models archived 

as part of the Climate Model Intercomparison Project Phase 5 (CMIP5) project, and include the 

same collection of General Circulation Model (GCM) simulations used for the 5th 

Intergovernmental Panel on Climate Change (IPCC). Native GCM spatial resolution tends to be 

between 50 and 200 km, which is much coarser than required for our estimates of crop yields. The 

native GCM data is therefore downscaled based on a modified version of the “delta” method. In 

the classic implementation of the delta method, coarse resolution GCM anomalies are first 

interpolated to the finer scale resolution of an observational target grid. Next, these interpolated 

anomalies are added to historical climatologies, yielding future trajectories at high spatial 
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resolution with changes in the long term mean and variability that are consistent with the coarse 

resolution of the GCM output. 

The fine resolution target is the 4km PRISM grid.  The coarse resolution GCM data 

originate from the IPCC models with surface air temperature (tas), and precipitation (pr) fields 

available at monthly timescales, and for both historical and climate change scenarios. This list of 

models is restricted to the following subset of all CMIP5 GCMs: CNRM-CM5, FGOALS-g2, 

GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, HadGEM2-CC, HadGEM2-ES, INM-CM4, IPSL-

CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM-CHEM, MIROC-ESM, MRI-CGCM3, 

and MRI-ESM1. Several models include multiple ensemble members, and all include simulations 

of different representative concentration pathways (RCPs). Here, we use the RCP 2.6, 4.5, 6.0 and 

8.5 scenarios, which represent total net increase in longwave radiative forcing of 2.6, 4.5, 6.0 and 

8.5 W/m2 by the end of the 21st Century, respectively. 

Our initial step is to compute historical “reference” climatologies for each variable at 

weekly and monthly timescales from each CMIP5 model at its native resolution using the period 

(of the model) from 1950-2000. Likewise, we compute future climatologies from each GCM for 

the periods between 2025-2075 and 2050-2100 for each RCP and ensemble. Next, we computed 

changes in model mean (𝛥𝜇) according to 𝛥𝜇 = 𝜇12.234 − 𝜇6-7.83-9:; for temperature (tas), and 

𝛥𝜇 = (𝜇12.234 − 𝜇6-7.83-9:;)/𝜇6 !7.83-9:;  for precipitation (pr). The changes in temperature are 

therefore to be regarded as actual differences in the mean and variance of the quantity itself, 

whereas the changes in precipitation are fractional increases or decreases relative to historical 

climatology. Changes in mean climatology are computed from each model at each grid point for 

all ensemble members and scenarios at model resolution prior to interpolation. The final two steps 
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in the downscaling procedure are to (i) interpolate the modified climatologies of the future to the 

target (4km) grid, and then (ii) apply those changes to PRISM climatology. 

 Following the conventional practices in the literature, we calculate county-level climate 

change impacts on yields in percentage terms as 100{exp[ ] 1}iimpact = -1i 0i 1i 0i(z - z )γ+(p -p )β  

where ( )0i 0iz ,p  are the baseline temperature and precipitation climate measures and ( )i i1 1z ,p  are 

the measures under climate change for each county i. The aggregated impacts for the entire region 

are the acreage-weighted summation of the county-level impacts.  

 

3. Results 

Accounting for weather realizations may be critical for estimating yield trends correctly. 

Intuitively, a string of peculiar weather realizations could bias the estimation of the trends if such 

conditions are unaccounted for and materialize disproportionately in either the pre- or the post-GE 

period. We therefore compare trend estimates using: (i) a single linear trend, (ii) a piecewise linear 

trend with an inflection point at 1996, and (iii) the same piecewise linear trend but with weather 

variables added as controls. The latter model provides the best model fit as it improves out-of-

sample prediction accuracy relative to other models (Figure S2). Similarly, we find that the 

placement of the knot at 1996 is optimal (Figure 2). 

We find the adoption of GE seeds increased maize yield trends by almost 70 percent. We 

could identify this finding only by accounting for the confounding influence of weather. More 

precisely, the first two models suggest GE seed adoption did not alter the yield growth trajectory. 

However, the third model – which predicts yields most accurately – points to large differences in 

the trend estimates between the pre- and post-GE periods. The trend estimates for the three models 

are illustrated for the state of Iowa in Figure 3 and mirror similar results for other states (Figures 
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S3-S9). This finding is consistent with previous work demonstrating the importance of controlling 

for weather realizations when estimating yield gains from GE adoption (Lusk et al 2017). Since 

log-yield is the dependent variable in our regression model, the slopes of the piecewise linear trend 

segments provide an estimate of the annual percentage-change in yields. On average across 

counties, maize yields grew by 0.94 and 1.59 percent per year in each of the two periods, indicating 

GE seed adoption is associated with a net annual yield growth increase of 0.65 percentage points. 

Given a baseline yield of 120 bushels/acre – approximately the five-year sample-average in these 

states prior to GE adoption – the compounded gain from GE technology over a 22-year period 

spanning 1996 to the present is approximately 17.5 bushels per acre.  

The trend estimates exhibit extensive cross-sectional heterogeneity. Across counties, the 

pre-GE trends span 0.64 to 1.34 percent whereas post-GE trends range from 1.07 to 2.15 percent 

with pre-post differences ranging between 0.29 and 1.04 percentage points (Figures S10-S12). 

This heterogeneity indicates that technological change has impacted different regions very 

differently. That is, while new technologies such as GE seeds are widely adopted, benefits can 

vary substantially across alternative growing conditions associated with local biotic and abiotic 

factors and interactions thereof.          

The effect of climate change on crop yields will severely undercut potential gains from 

technological progress based on a widely-used GCM. We compare trend estimates with the gross 

impact of climate change on yields. To ensure comparability we annualize climate change impacts 

by taking the point-prediction at a given future date divided by the number of years until that date. 

For example, the total estimated impact is a 77 percent yield reduction on average across counties 

for 2050-2100 under the HadGEM2-ES General Circulation Model (GCM) and the business-as-

usual representative concentration pathway (RCP) 8.5. Annualizing this impact by taking the 
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midpoint of the projection (2075) and benchmarking it to 2010 points to a 1.19 percent per year 

reduction. 

The combined impact of technological progress and climate change will result in spatially 

heterogeneous net impacts. Figure 4 illustrates separate county-level annual yield impacts from 

technology and climate change for the aforementioned climate model and scenario as well as the 

combined effects. Panels a and b indicate pre- and post-GE trend estimates, whereas panel c 

indicates the gross climate change contribution. Adding the trend estimate to the climate change 

effect results in the net combined impacts in panels d and e, respectively. The acreage-weighted 

aggregate trends are 1.02 percent per year (SE = 0.21) for pre-GE technology; 1.61 percent per 

year (SE = 0.22) for post-GE technology; and -1.14 percent per year (SE = 0.10) for climate 

change. The aggregate combination of the trend plus climate change impacts are -0.12 (SE = 0.24) 

and 0.47 percent per year (SE = 0.25) for pre- and post-GE, respectively. These results are naturally 

sensitive to the GCM and the RCP scenario. For example, under the CNRM-CM5 climate model 

and RCP 8.5 scenario, the combined impacts are 0.25 and 0.90 percent per year for the pre- and 

post-GE technologies. If instead, we hold the GCM fixed and consider the lowest emissions 

trajectory (i.e. HadGEM2-ES, RCP 2.6), the combined impacts are 0.58 and 1.2 percent per year, 

respectively.  

Climate change will severely curtail potential crop yield gains from technological progress in 

the coming decades based on a wide range of GCMs. Yield projections under all of the GCMs in 

CMIP5 and RCPs are provided in Figure 5 for three different regimes: no yield growth (panel a), 

yield growth comparable to pre-GE era (panel b), and yield growth comparable to post-GE era 

(panel c). Under the RCP 8.5 scenario, it will take innovations on the order of the post-GE era to 

offset climate change impacts. Yield gains less than that, such as those exhibited prior to GE 
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adoption, would lead to reductions in yield levels by the end of the century. Mitigation of CO2 

emissions under the 2.6 and 4.5 RCPs point to a much more optimistic outlook as projected yields 

would continue to rise through the end of the century under both the pre- and post-GE 

technological regimes. 

 

4. Discussion and conclusion 

US Maize yields exhibit sustained growth since the adoption of hybrid seeds in the 1930s. We find 

that this growth has accelerated with the adoption of GE seeds, and that this acceleration can only 

be fully appreciated when accounting for weather patterns which can be confounded with secular 

technological trends. We cannot identify the biophysical source of this acceleration, but our 

findings are consistent with yield gains attributed to GE maize adoption in analyses based on both 

experimental field-trial and actual on-farm yields (Lusk et al 2017). While GE traits do not 

necessarily increase the maximum possible yields (i.e. yield potential), they have been associated 

with narrowing yield gaps through improved weed control, insect resistance, and more timely 

planting (Fisher and Edmeades 2010). 

Our results suggest that the relative increase in maize yields has been nonlinear since 1980, 

with a clear structural change in the growth rate occurring in 1996. Although much recent literature 

suggests a linear growth trend over many decades for US maize yields (Cassman et al 2001, 

Grassini et al 2013), our findings are more in line with studies having identified a nonlinear change 

in yield trends attributed to GE adoption (Fischer and Edmeades 2010, Xu et al 2013, Lusk et al 

2017). Our analysis suggests that controlling for weather outcomes when estimating yield trends 

is crucial, and would likely resolve existing debate regarding the appropriateness of linear trend 

assumptions.  
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The growth rate of crop yields in the coming decades will have serious implications for the 

global food supply under climate change. Our results suggest that US maize yields could stagnate 

under a business-as-usual scenario even with bold assumptions about the sustained growth in crop 

yields. This has serious implications for other crops and countries as well, as there are many large, 

economically relevant regions in the world where technology adoption lags and the use of GE 

crops are prohibited (Barrows et al 2014). In addition, GE varieties of rice and wheat are not 

commercially available. If the relative yield gains estimated here are any indication of the potential 

for other crops and/or regions, then the adoption of new technologies such as GE varieties may 

constitute a potentially fruitful adaptation strategy for counterbalancing the effects of climate 

change. Consumer preferences for (or against) will continue to play a critical role in the global 

pattern of land-use for production of GE crops and have the potential to alter trade patterns among 

countries (Garrett et al 2013, VanWey and Richards 2014).   

Our findings also provide key implications for research and development. Emerging 

technologies in genome editing as well as an increased emphasis on abiotic stress tolerance (e.g., 

drought tolerance) could help maintain or even accelerate recent yield growth trends (Svitashev et 

al 2016, Parisi et al 2016). In addition, the rise in computing power and fine-scale data collection 

and analysis may pave the way for a digital revolution that may also contribute to such trends 

through enhanced precision agriculture. It remains to be seen whether these technological 

revolutions and the legal framework to reward such innovations and protect intellectual property 

rights will unfold rapidly enough to counterbalance the projected effects of a changing climate. 

Finally, our study has some caveats that bear mentioning. First, our trend analysis attributes 

a yield growth increase to the adoption of GE seeds but our analysis is unable to identify the 

biophysical source of this change. There could be other confounding factors that generated yield 
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gains parallel to the introduction of GE maize in the US. We consider the possibility of an increase 

in solar radiation and find that our results are robust to controlling for increased levels of solar 

brightening (Tollenaa et al 2017) that occurred over the sample period (Figure S15-S17). Second, 

our climate change projections do not factor in fertilization effects of increased atmospheric CO2 

levels (Urban et al 2015), nor behavioral adaptation to climate change (Butler and Huybers 2013, 

Burke and Emerick 2016). These additional factors could result in potentially more optimistic 

impacts. 
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Figures 

 

Figure 1. Maize yield trends and technology adoption in the US. The solid line corresponds to 

historical yields corresponding to 3 regimes: pre hybrid seed (red), pre GE seed (green) and post 

GE seed (blue). The potential future yields under these historical yield regimes are depicted in 

dashed lines. The periods of hybrid and GE seed adoption are highlighted with the grey band. The 

adoption “S”-curves at the bottom correspond to the adoption rate of the corresponding technology 

(hybrid seed and GE seed).  
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Figure 2. Effect of trend inflexion year on model fit. Each bar corresponds to the reduction in 

Mean Squared Error (MSE) between a model with an inflexion point in the trend, and a model 

without an inflexion point or weather variables. The year indicates the year of the inflexion of the 

estimated trend. A higher number indicates a better model fit. 
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Figure 3. Maize yields and alternative estimated trends by district in Iowa. Each panel portrays 

yields and estimated yield trends for each agricultural district in the state of Iowa. The grey lines 

indicate the county-level yields within each district. The blue line represents a linear trend without 

an inflexion point and without accounting for weather conditions. The green line introduces an 

inflexion point but does not condition for weather. The red line shows the trend with an inflexion 
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point that accounts for weather conditions. All inflexion points are set at 1996. Results for other 

states are presented in the Appendix. 

 

 

Figure 4. Decomposition of annualized projected yield effects for the Midwest. Each panel 

corresponds to an annualized percentage yield impact for each county of a. technological progress 

based on the pre-GE trend (1981-1995), b.  technological progress based on post-GE trend (1996-

2014), c. the impact of climate change (HadGEM2-ES, RCP 8.5, 2050-2100), d. the combined 

impacts of pre-GE trend and climate change and e. the combined effect of post-GE trend and 

climate change. 
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Figure 5. Historical and projected maize yields under alternative growth regimes and climate 

scenarios. a. no growth in yields, b. continued pre GE growth in yields, and c. post GE growth in 

yields. The black line prior to 2015 corresponds to the historical yield trend. The black line beyond 

2015 corresponds to the projected yield level without climate change under a given yield growth 

regime. The colored dots and bars represent the CMIP5 ensemble mean and extrema for the middle 

and end of the century for 3 different climate scenarios. The colored band are added to improve 

readability. 
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Supplemental Material 
 
Figures 
 
 

 
Figure S1. Nonlinear relation between temperature and yields. The top panel display changes 
in log yield if the crop is exposed for one day to a particular 1°C temperature interval. The 95% 
confidence band is constructed from a block bootstrapping routine robust to spatial correlation.  
Histograms at the bottom of each frame display the average temperature exposure among all 
counties in the data. 
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Figure S2. Effect of including weather control variables on model fit. Each bar corresponds to 
the reduction in Mean Squared Error (MSE) for two models, the first includes a spline trend with 
an inflection point at 1996 and no control variables, while the second is the same model with 
variables for temperature and precipitation added as controls. Both report the reduction in MSE 
relative to a linear trend model. A higher number indicates a better model fit. 
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Figure S3. Maize yields and alternative estimated trends by district in Illinois. Each panel 
portrays yields and estimated yield trends for each agricultural district in the state of Illinois. The 
grey lines indicate the county-level yields within each district. The blue line represents a linear 
trend without an inflexion point and without accounting for weather conditions. The green line 
introduces an inflexion point but does not condition for weather. The red line shows the trend with 
an inflexion point that accounts for weather conditions. All inflexion points are set at 1996. 
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Figure S4. Maize yields and alternative estimated trends by district in Indiana. Each panel 
portrays yields and estimated yield trends for each agricultural district in the state of Indiana. The 
grey lines indicate the county-level yields within each district. The blue line represents a linear 
trend without an inflexion point and without accounting for weather conditions. The green line 
introduces an inflexion point but does not condition for weather. The red line shows the trend with 
an inflexion point that accounts for weather conditions. All inflexion points are set at 1996. 
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Figure S5. Maize yields and alternative estimated trends by district in Michigan. Each panel 
portrays yields and estimated yield trends for each agricultural district in the state of Michigan. 
The grey lines indicate the county-level yields within each district. The blue line represents a linear 
trend without an inflexion point and without accounting for weather conditions. The green line 
introduces an inflexion point but does not condition for weather. The red line shows the trend with 
an inflexion point that accounts for weather conditions. All inflexion points are set at 1996. 
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Figure S6. Maize yields and alternative estimated trends by district in Minnesota. Each panel 
portrays yields and estimated yield trends for each agricultural district in the state of Minnesota. 
The grey lines indicate the county-level yields within each district. The blue line represents a linear 
trend without an inflexion point and without accounting for weather conditions. The green line 
introduces an inflexion point but does not condition for weather. The red line shows the trend with 
an inflexion point that accounts for weather conditions. All inflexion points are set at 1996. 
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Figure S7. Maize yields and alternative estimated trends by district in Missouri. Each panel 
portrays yields and estimated yield trends for each agricultural district in the state of Missouri. The 
grey lines indicate the county-level yields within each district. The blue line represents a linear 
trend without an inflexion point and without accounting for weather conditions. The green line 
introduces an inflexion point but does not condition for weather. The red line shows the trend with 
an inflexion point that accounts for weather conditions. All inflexion points are set at 1996. 
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Figure S8. Maize yields and alternative estimated trends by district in Ohio. Each panel 
portrays yields and estimated yield trends for each agricultural district in the state of Ohio. The 
grey lines indicate the county-level yields within each district. The blue line represents a linear 
trend without an inflexion point and without accounting for weather conditions. The green line 
introduces an inflexion point but does not condition for weather. The red line shows the trend with 
an inflexion point that accounts for weather conditions. All inflexion points are set at 1996. 
  



9	
	

Figure S9. Maize yields and alternative estimated trends by district in Wisconsin. Each panel 
portrays yields and estimated yield trends for each agricultural district in the state of Wisconsin. 
The grey lines indicate the county-level yields within each district. The blue line represents a linear 
trend without an inflexion point and without accounting for weather conditions. The green line 
introduces an inflexion point but does not condition for weather. The red line shows the trend with 
an inflexion point that accounts for weather conditions. All inflexion points are set at 1996. 
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Figure S10. Trend yield estimates for the 1981-1995 period. The preferred model allows for 
random slopes of the trend in the pre-GE era. The slopes vary by the 64 ag districts in the sample, 
and reported values are the best liner unbiased predictors (BLUP) of the random trends. The 
histogram provides the full range of estimates and the map shows how the same values vary 
spatially. 
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Figure S11. Trend yield estimates for the 1996-2014 period. The preferred model allows for 
random slopes of the trend in the post-GE era. The slopes vary by the 64 ag districts in the sample, 
and reported values are the best liner unbiased predictors (BLUP) of the random trends. The 
histogram provides the full range of estimates and the map shows how the same values vary 
spatially. 
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Figure S12. Difference in trend yield estimates for the 1996-2014 versus 1981-1995 periods. 
Reported values are the simple difference of the trend estimates in post-GE era from Figure S10 
less the trend estimates in pre-GE era from Figure S9 The histogram provides the full range of 
differences and the map shows how the same values vary spatially. 
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Figure S13. Decomposition of annualized projected yield effects for the Midwest. Each panel 
corresponds to an annualized percentage yield impact for each county of a. technological progress 
based on the pre-GE trend, b.  technological progress based on post-GE trend, c. the impact of 
climate change (CNRM-CM5, RCP 8.5, 2050-2100), d. the combined impacts of pre-GE trend 
and climate change and e. the combined effect of post-GE trend and climate change. 
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Figure S14. Decomposition of annualized projected yield effects for the Midwest. Each panel 
corresponds to an annualized percentage yield impact for each county of a. technological progress 
based on the pre-GE trend, b.  technological progress based on post-GE trend, c. the impact of 
climate change (HadGEM2-ES, RCP 2.6, 2050-2100), d. the combined impacts of pre-GE trend 
and climate change and e. the combined effect of post-GE trend and climate change. 
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Figure S15. Trend yield estimates for the 1981-1995 period using solar brightening as an 
additional control. Here we replicate figure S9 for an alternative specification that includes state-
level measures of solar brightening as an additional control variable. 
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Figure S16. Trend yield estimates for the 1996-2014 period using solar brightening as an 
additional control. Here we replicate figure S10 for an alternative specification that includes 
state-level measures of solar brightening as an additional control variable. 
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Figure S17. Difference in trend yield estimates for the 1996-2014 versus 1981-1995 periods 
using solar brightening as an additional control. Here we replicate figure S11 for an alternative 
specification that includes state-level measures of solar brightening as an additional control 
variable. 
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Tables 
Table S1.  Regression results for multilevel model and panel data model: log maize yield (bu/acre) 
Variables Multilevel Model Panel Data Model 
Temperature variable z1 (x100) -3.902 -4.101 

 (0.8092) (0.8529) 
Temperature variable z2  (x100) -7.226 -7.247 

 (0.9202) (0.9437) 
Temperature variable z3 (x100) -5.493 -5.487 

 (1.088) (1.066) 
Temperature variable z4 (x100) -3.418 -3.499 

 (1.068) (1.088) 
Temperature variable z5 (x100) -2.237 -2.187 

 (1.221) (1.187) 
Temperature variable z6 (x100) 0.1108 0.2260 

 (1.177) (1.126) 
Temperature variable z7 (x100) -0.8405 -0.7873 

 (1.034) (1.051) 
Temperature variable z8 (x100) -1.621 -1.330 

 (1.030) (0.9532) 
Precipitation p (x100) 0.1265 0.1220 

 (0.03247) (0.0318) 
Precipitation squared p2 (x100) -0.00012 -0.00012 

 (0.000031) (0.0000305) 
Time trend pre-1996 (x100) 0.9140 0.9399 

 (0.21587) (0.2168) 
Time trend increase post-1996 (x100) 0.6581 0.6745 

 (0.3709) (0.3808) 
Stn dev county RE (x100) 10.30 -- 
Std dev district RE pre-1996 trend (x100) 0.1736 -- 
Std dev district RE post-1996 trend increase (x100) 0.2596 -- 
Observations 17,000 17,000 
Counties 500 500 
Years 34 34 
Notes: The multilevel model is as specified in the methods section. The panel model has the same weather and trend 
covariates but dummy variables for each county are used instead of county random effects. The panel model assumes 
homogeneous trends while the multilevel model allows the trends to vary by agricultural districts. Standard errors 
from a block bootstrap resampling procedure across years are reported in parentheses.    
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