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Abstract 

 

This paper investigates the effects of the PROCAMPO subsidy on farm’s technical efficiency 

in Mexico using the parametric stochastic frontier approach. The main findings suggest that: 

(i) the average technical efficiency of the 33,721 farms in the sample ranges between 43-46%, 

(ii) the negative effect of the PROCAMPO subsidy on farms’ TE increases as technical 

inefficiency rises, (iii) PROCAMPO negatively affects farms’ TE in 68.52-73.54% of farms in 

the sample (positive effects in the remaining farms), and (iv) age, years of schooling, the area-

owned, use of hired labour, diversification and use of irrigation increase TE scores. These 

findings further support the view that agricultural subsidies negatively influence farms’ 

technical efficiency, not only in Europe, but also in developing countries. Policy-makers should 

be aware about the possible effect of PROCAMPO payments on technical efficiency.  

 

Keywords: stochastic frontier, technical efficiency, farms, subsidy 

JEL: Q12, Q16, Q18 
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1. Introduction 

Renegotiating or withdrawing from the North American Free Trade Agreement (NAFTA) 

would likely pose significant challenges to the agriculture sector of certain constituent 

countries. Furthermore, some possible outcomes from ongoing negotiations might well force 

policy-makers to re-evaluate the effectiveness of public policies on farms’ performance thereby 

helping agriculturalists to adapt to changed circumstances. Since the implementation of 

NAFTA in 1994, the Government of Mexico has supported a direct cash transfer programme 

called PROCAMPO intended to shrink the difference between subsidies paid to domestic and 

foreign agriculturalists. It replaces the previous price-support policies, which ensured fixed 

prices to the farmer and has grown to become the Government programme with the largest 

number of recipients in the rural sector. 

PROCAMPO consists of a single payment per hectare of cultivated area given to those farmers 

that own eligible lands.1  The government defined the eligible land in 1994 and it is not 

modifiable. It comprises all agricultural fields where farmers cultivated any of the following 

crops between the 1992 and 1993 summer-spring agricultural seasons: cotton, rice, safflower, 

barley, beans, corn, sorghum, soy or wheat. 2  Since 1995, the government has removed 

restrictions and now agriculturalists can grow any (legal) crop. Eligibility for PROCAMPO 

payments has therefore become a characteristic of the land, transferable between property 

owner and tenant, but farmers cannot enrol new fields into the subsidisation programme. 

Nowadays, the main justification for PROCAMPO is to enhance productivity of Mexican farms 

(DOF, 1994).  

                                                           
1 In 2014, small or self-consumption farmers (up to 5 and 0.2 hectares of rain-fed and irrigated lands respectively) receive 

$1,500 MXN/ha for the first 3 hectares of rain-fed land and $1,300 MXN/ha for the remaining fields. Medium-sized farms (5-

20 and 0.2-5 hectares of rain-fed and irrigated lands respectively) receive $963 MXN/ha. Large farms (20 or more and 5 or 

more hectares of rain-fed and irrigated lands respectively) receive $963 MXN/ha up to 100 hectares of land (DOF, 2014). $1 

USD=$13.29 MXN. 
2 Intercropping practices are also eligible but if it includes a perennial crop, the corresponding land was/is not eligible. 
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Over the period 1994-2015 the average payment per hectare ranged between $732-$1,615 

MXN/ha (57-126 USD/ha).3 The PROCAMPO programme covers 10.92 and 3.18 million 

hectares in the Spring-Summer and Autumn-Winter agricultural seasons respectively (49% and 

14% of the total cultivated land in Mexico respectively). It benefits 2.41 million and 0.46 

million farmers in both agricultural seasons, respectively. On average, the total budget of 

PROCAMPO is equivalent to 3.45% of the Gross Domestic Product (GDP) of the arable and 

livestock farming, forestry use, fishery and hunting sector.  Moreover, it currently accounts for 

16% of the Secretariat of Agriculture, Livestock and Rural Development, Fisheries and Food’s 

(SAGARPA) budget (see Figure 6 in Appendix 1). 

Previous studies have examined the effect of PROCAMPO on agriculturalists’ income, 

migration and food security. Among others, Sadoulet et al. (2001) find that such transfers create 

a multiplier income-effect in the ejidal sector.4 The income multiplier ranges between 1.5 and 

2.6. Gonzalez-Konig and Wodon (2005) and Scott-Andretta and Cuecuecha (2010) find that 

PROCAMPO discourages migration from Mexico to the United States and increases the use of 

labour in the production of corn and beans. 

Regarding food security, Garcia-Salazar et al. (2011) argue that since corn receives the largest 

amount of subsidy payments, this programme reduces corn imports by 40.5%. Furthermore, 

Ruiz-Arranz et al. (2002) find empirical evidence against the conventional wisdom that men 

just drink away PROCAMPO subsidies and argue that these cash transfers enhance food 

security through investments in domestic production. Although the existing literature has 

examined the effects of PROCAMPO on different areas, to the best of our knowledge there is 

no study investigating the effect of PROCAMPO payments on the Technical Efficiency (TE) 

of the agriculture sector in Mexico. 

                                                           
3 Measured in constants prices 2013=100 
4 Areas of communal land used for farming activities where members individually exploit designated parcels. 
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Stochastic Frontier Analysis (SFA) relaxes the implausible assumption that all farms are fully 

efficient and allows for inefficiencies in the production process. It defines the production 

frontier as the maximum attainable output that can be produced using existing technology and 

inputs (Minvel and Latruffe, 2017). Any output-input combination lying behind the frontier 

indicates the existence of inefficiencies. To measure the extent of Technical Inefficiency (TI), 

the SFA uses two approaches. The output-oriented (OO) approach explores whether a 

particular farm can produce a higher level of output using the same amount of inputs. On the 

other hand, the input-oriented (IO) approach explores whether a farm can produce the same 

output using fewer inputs. Following previous studies, we use the OO approach, which is the 

standard method, to examine the effect of PROCAPO on farms’ TE. 

The primary goal of subsidisation programmes, such as PROCAMPO, is to influence farmers’ 

income, boost productivity or to prevent beneficiaries from choosing undesired practices e.g. 

those that are environmentally damaging. However, subsidy payments might have a positive, 

neutral or potentially negative effect on farms’ TE. For example, whilst some cash transfers 

might lead to technology modernisation, a process which could increase TE (e.g. Zhu and Oude 

Lansink, 2010) some recipients might use cash transfers merely to augment their income 

providing them with less incentive to produce efficiently (e.g. Martin and Page, 1983). Among 

others, Serra et al. (2008), Kumbhakar and Lien (2010), and Zhu and Oude Lansink (2010) 

argue that any conclusion concerning the effect of subsidies on farms’ TE must be drawn from 

empirical evidence rather than from theorising. 

To investigate the effect of PROCAMPO on farms’ TE, we use representative cross-sectional 

data drawn from 33,721 crop farms in Mexico. In so doing this research contributes to the 

literature by: (i) providing empirical evidence on the link between agricultural subsidies and 

TE in a large developing country where there is no prior evidence concerning any such 

relationship and (ii) computing observation-specific and percentile-specific estimates for the 
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subsidised-farms’ TE relationship using Wang’s (2002) formula and Recentered Influence 

Function (RIF) regressions respectively. The observation-specific and percentile-specific 

estimates allow us to investigate the differential impact of PROCAMPO on farms’ TE. 

The remainder of this paper is structured as follows. Section 2 presents an overview of the 

existing literature investigating the link between agricultural subsidies and farms’ TE. Section 

3 describes the SFA method and the database. Section 4 presents the results and discuss a set 

of policy implications arising out of them. Section 5 concludes with some suggestions for 

further research.  

2. Literature review 

For presentation purposes, we organise this section as follows. Subsection 2.1 describes the 

literature survey. It identifies the set of relevant materials for the literature review. Section 2.2 

briefly describes two methodological approaches that account for technical inefficiencies in 

farming activities. This subsection discusses the main advantages of the SFA over the Data 

Envelope Analysis (DEA) method. Subsection 2.3 presents an overview of previous studies 

analysing the effect of agricultural subsidies on farms’ TE. To guide the implementation of the 

SFA method, we compare model specifications encountered in the empirical literature, which 

allows us to place the novelty of this research into the existing literature. 

2.1. Literature survey  

A systematic literature survey helps us to identify those studies analysing the effect of subsidy 

payments on farms’ TE. To survey the existing literature, we follow three steps. First, we select 

a set of search terms closely related to our topic of interest: subsidies, cash transfers, farm, 

technical efficiency, and agriculture. Second, we refine our literature search by using different 

combinations and word endings of these keywords in the EconLit, Web of Science, JSTOR, 

EconPapers, Science Direct, IDEAS, and Google Scholar databases. These materials include 
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published papers, working papers, books, chapters and technical reports. Third, we exclude 

irrelevant publications by looking at their abstracts and add other relevant materials cited in the 

initial set of documents. Figure 1 shows the literature survey from the abovementioned 

databases.5  

Figure 1. Literature survey 

 

 
 

Source: EconLit, Web of Science, JSTOR, EconPapers, Science Direct, IDEAS, and Google Scholar databases. 

Note: AB: anywhere in the abstract; TI: anywhere in the title; ATK: anywhere in the abstract, title or key words. 

 

 

The initial set of materials comprises 173 different documents that result from the combination 

of seven outcomes at the bottom right of figure 1.6 We exclude 95 irrelevant entries because 

subsidy payments are not part of the analysis and/or simply because the authors do not estimate 

a second stage regression for technical efficiency.7 To complete the set of materials, we also 

                                                           
5 The search tools limit us to use the same criteria in all of them therefore, we take into account those studies in which the 

search terms appear either in the abstract (AB), abstract, title or keywords (ATK) or title (TI). 
6 We use those studies where the three search terms, subsidies, farm and technical efficiency, appear in the abstract, title or 

keywords. We also use agricultur* and cash transfer* as alternative search terms for farm* and subsid* respectively but, the 

criteria in figure 1 outperform other alternative criteria.  
7 Some authors do not estimate a TI equation either because they assume that farms are fully efficient or because the main 

purpose of the research is to compute average technical efficiency scores and compare such scores between subsamples. 
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use two meta-analyses that examine the link between public subsidies and TE in all types of 

farms (Minviel and Latruffe, 2013, 2014, 2017) and organic farms (Lakner and Breustedt, 

2017). As a result, we add 31 materials to the original set of references. Thus, we analyse 

previous findings encountered in 109 published papers, working papers, technical reports, 

chapters and books. 

2.2. Methodological approaches 

To identify the effect of public subsidies on TE, previous studies apply either the non-

parametric DEA or the parametric SFA. Both methods compute strictly positive TE scores, 

allowing researchers to evaluate the performance of particular farms. The production frontier 

is the maximum attainable output produced using some inputs and existing technology. Thus, 

all points behind the frontier are suboptimal. The OO approach computes the size of TI by 

measuring the distance between the current production level and the production frontier. On 

the other hand, the IO approach uses the distance between current level of inputs used to 

produce the corresponding output and the (lower) level of inputs required to produce exactly 

the same output to measure the size of TIs (Kumbhakar et al. 2015).  

Based on the work of Farrell (1957), Charnes et al. (1978) introduce the DEA approach and 

define it as a mathematical programming model that identifies economic relations such as 

production functions and efficient production possibilities using real data. Although there are 

various DEA models in the linear programming literature, Table 8 in Appendix 1 contains an 

overview of the Charnes et al. DEA model. The IO (OO) setting minimises (maximises) the 

difference between (the aggregate of) efficiency scores 𝜃  ( 𝜑 ) and the adjusted non-

Archimedean element (휀) subject to three constraints.  

The first constraint states that the sum of input 𝑥𝑖𝑗  over all farms times the corresponding 

parameter  𝜆𝑗  plus the slack variable 𝑠𝑖
−  must be equal to the efficiency score 𝜃  times the 
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observed input value of the corresponding farm. Second, the sum of output 𝑦𝑟𝑗 over all farms 

times the corresponding parameter 𝜆𝑗  minus the slack variable 𝑠𝑖
+  must be equal to the 

observed output value of the corresponding farm (the observed value of the corresponding farm 

times the efficiency score (𝜑)). Third, all 𝜆𝑗 parameters are strictly non-negative. Cooper et al. 

(2011) state that a farm is fully efficient if and only if 𝜃∗ = 1  ( 𝜑∗ = 1 ) and all slack 

variables 𝑠𝑖
−∗ = 𝑠𝑟

+∗ = 0. The farm is weakly efficient if and only if 𝜃∗ = 1 (𝜑∗ = 1) and 

𝑠𝑖
−∗ ≠ 0 and/or 𝑠𝑟

+∗ ≠ 0 for some input or output. After computing the farm-specific efficiency 

scores, this approach examines the determinants of inefficiency in a second stage, which is a 

separate regression, e.g. truncated regressions or censured Tobit models. 

Aigner et al. (1977) and Meeusen and Van Den Broeck (1977) introduced the parametric SFA 

approach into the economic literature. Among others, Kumbhakar and Lovell (2003), Coelli et 

al. (2005) and Greene (2008) define the SFA as a composite econometric method that 

accommodates technical inefficiencies and random shocks in the production of commodities 

(see Table 9 in Appendix 1 for an overview). These models fit a production frontier using either 

the Cobb-Douglas (CD), the generalised, the transcendental or the translog (TL) specifications. 

Using the parameter estimates of the frontier, the SFA then computes observation-specific TE 

scores. 

The SFA approach splits the error term from the production function into a random term (𝑣), 

which accounts for unobserved heterogeneity across farms and unanticipated events (white 

noise), and a non-negative error term (𝑢), which accounts for TI. Therefore, a farm is fully 

efficient if and only if 𝑢 = 0. The SFA approach further hypothesises the non-negative error 

term to be a function of variables linked to inefficiency. Thus, this method estimates a separate 

equation in order to identify the main determinants of TI (Kumbhakar et al, 2015). Recently, 

empirical studies have used a single-step maximum likelihood (ML) estimator to 
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simultaneously obtain parameter estimates for both the frontier and the inefficiency equation 

since this estimator outperforms the two-step procedure (Wang and Schmidt, 2002). 

Latruffe et al. (2008) and Justyna (2015) analyse the effect of agricultural subsidies on farms’ 

TE applying both the DEA and SFA approaches. The former study reaches similar conclusions 

from both methods: the ratio of operational subsidies to total revenue negatively influences TE. 

Conversely, the latter investigation reaches opposing results; the SFA suggests that total 

subsidies positively affect TE but the DEA identifies harmful effects on TE of subsidy 

payments. Although these articles both suffer from data limitations, their findings show that 

the selection of method matters. Pechrova (2013) argues that changes in input levels in an 

inefficient farm do not alter TE scores of other farms in the DEA. However, it may modify TE 

scores in the SFA since this change may affect the random error term. If that happens, estimates 

from the DEA and SFA may differ and lead to different conclusions. Furthermore, the inclusion 

of new observations in the sample may shift the frontier in the DEA. In the SFA, TE scores 

will always be different since increasing the sample size has an inevitable effect on the random 

and non-negative error terms. 

To summarize, the main advantages of DEA over SFA are: (i) this method does not impose 

any assumption on the functional form of the frontier and (ii) it is able to accommodate multiple 

inputs and outputs in the analysis (Bojnec and Latruffe, 2009 and Minviel and Latruffe, 2017). 

Regarding the SFA approach its advantages are: (i) deviations from the frontier are not only 

attributable to TI since it accommodates random shocks and (ii) the single-step ML method is 

more consistent and efficient than the two-step DEA procedure (Bojnec and Latruffe, 2009; 

Bakucs et al. 2010; Wang and Schmidt, 2002). 

The SFA has, it seems, become the workhorse in the literature investigating the effect of 

subsidies on TE. According to Minviel and Latruffe (2017), 76% of studies use the SFA 



11 
 

approach while 20% use the non-parametric DEA model.8 Some authors argue that DEA 

estimates are too sensitive to outliers. Then, if we remove those outliers, very efficient or very 

inefficient farms, from the sample DEA’s TE scores might be biased. Furthermore, DEA’s TE 

scores are downward-biased because the exclusion of random shocks (Bakucs et al., 2010; 

Bojnec and Latruffe, 2009; and Mamardashvili and Schmid, 2013). In what follows the 

literature review confines itself to those SFA studies which account for random shocks in the 

frontier and include a subsidy variable in the TI equation.9 

2.3. An overview of empirical studies 

2.3.1. The frontier and ATE scores 

To guide the specification of our empirical model, Table 10 in Appendix 1 summarises the set 

of variables used to fit the frontier function in the existing literature. The dependent variable in 

the frontier function is either the value of output in currency units, the quantity of output in 

tonnes/litres or total sales in currency units of the corresponding agricultural commodities.  The 

former indicator is preferred over quantities because farmers tend to diversify their production 

efforts and it facilitates the aggregation of distinct products. The value of output in currency 

units is also preferred over total sales because farmers might store some portion of the produce. 

Most studies include land, capital, labour and intermediate inputs as determinants of the frontier 

function. To account for land in the production function, previous studies use the total number 

of hectares, or units of land, utilised to produce the corresponding output. Some studies also 

include aridity indices and soil characteristics to differentiate the quality of land (Dinar et al., 

2007).  Accounting for capital is rather less straightforward. In theory, one should include the 

cost of capital utilised to produce the corresponding output. Most empirical studies use the self-

reported value of fixed assets or the annual depreciation of fixed assets. Studies analysing 

                                                           
8 The remaining set of materials relies on correlation analyses or on comparisons between average technical efficiency scores 

from different subsamples (subsidised versus not subsidised farmers) calculated with either DEA, SFA, or both. 
9 Refer to Minviel and Latruffe (2017) for a literature review that includes both DEA and SFA empirical studies. 
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arable activities use either the total value or annual depreciation of manufactured capital. 

Regarding non-arable farming, we notice that existing literature uses the total (self-reported) 

value of biological capital, e.g. the value of milking or breeding cows. Alternatively, biological 

capital is accounted for using the size of herd. The selection of the capital variable depends 

upon data availability, which sometimes prevents researchers from correctly account for capital 

endowments in the frontier function. 

Previous studies use the wage bill, number of workers or working hours per annum to account 

for labour in the frontier. Although the former measure captures different levels of workers’ 

skills, it does not consider unpaid family labour. The second measure may misrepresent labour 

since farmers hire labour sporadically. Working hours have the advantage to include and 

aggregate all sources of labour, including family labour, into a single variable but this measure 

does not distinguish between different qualities of labour. To overcome this issue, some studies 

introduce education indices to differentiate the quality of labour, e.g. high skilled versus low 

skilled workers (Dinar et al., 2007). Regarding intermediate inputs, the existing literature uses 

total expenses on purchased inputs, quantities of different inputs or disaggregated expenses on 

fertilisers, seeds, crop protection, feed, veterinary fees, energy, etc.  

Some studies introduce other variables as determinants of total output such as access to 

agricultural extension services that may boost the productivity of inputs, altitude and indicators 

of policy reforms, e.g. CAP reform (Hadley, 2006; Latruffe et al., 2011). Rather than including 

subsidy payments in the TI model, Mc Cloud and Kumbhakar (2008) use subsidies as factors 

of production since Mc Cloud and Kumbhakar argue that these payments facilitate the use of 

inputs and, consequently, farmers obtain higher levels of output. In panel data studies, a time 

trend is also an argument of the frontier accounting for technological progress.  

Using the set of parameter estimates of the frontier, previous studies compute average technical 

efficiency (ATE) scores. Figure 2 displays the distribution of ATE scores in the SFA studies 
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that examine the effect of agricultural subsidies on farms’ TE.10 Most of the estimations analyse 

TE in the production of crops (39%), milk (25%) and crops and livestock (14%). Other studies 

estimate a SFA model for individual commodities such as beef cattle (e.g. Manevska et al., 

2013), pigs (e.g. Rasmussen, 2010), rice and corn (Tian and Wan, 2000), wheat (e.g. Tleubayev 

et al., 2017), olives (e.g. Zhu et al., 2011), cotton (Karagiannis and Sarris, 2002), fruits 

(Karagiannis and Sarris, 2002) and greenhouse horticulture (Karagiannis and Sarris, 2002). 

Figure 2. Average Technical Efficiency in the existing literature (SFA studies) 

 

 
 

Source: literature review 

 

This strand of literature encounters a range of ATE scores between 45% and 96% in regional 

and country-level studies.11  The existence of such inefficiencies in the abovementioned farms 

confirms the appropriateness of the SFA rather than the standard production function, which 

assumes that farmers are fully efficient. Comparisons between ATE scores from different 

                                                           
10 From the 55 studies analysing the effect of subsidies on farms’ TE, 43 papers report the ATE for the corresponding samples 

or subsamples. Since some of the articles compute ATE scores for different sectors and countries, this graph shows the results 

from 88 different estimations. In panel data studies, we use the ATE of the panel of farms rather than annual ATE scores.  
11 TE scores vary within individual studies. The ATE scores represent the mean of observation-specific TE scores. 
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countries or regions might not be appropriate because these scores come from different frontier 

functions (and samples). Latruffe et al., (2017) analyse technical efficiency of dairy farms in 

nine European countries. Latruffe et al find that the dairy sector in Europe seems to be more 

efficient than other farm types. 

2.3.2. Technical inefficiency 

Empirical studies use farmers’ characteristics, managerial practices, farms’ physical features 

and external factors to explain TIs. The age of the farmer is widely used as an indicator of 

experience in farming activities therefore older farmers tend to be more efficient (Coelli and 

Battese, 1996). The literature suggests that more years of schooling enhances farmers’ abilities 

to use available resources and existing technologies more efficiently. Such an effect propels 

farmers closer to the production frontier (Sotnikov, 1998; Dinar et al., 2007). Regarding the set 

of managerial practices, the share of family labour to total labour has a positive effect on TE if 

family members are better skilled than hired labour or are sufficiently involved in farming 

activities (Zhu and Lansink, 2010). Conversely, Karagiannis and Sarris (2005) argue that a 

large share of hired labour to total labour incentivises farmers to be more efficient. This 

happens because farmers look for higher revenues in order to clear higher labour costs. 

Moreover, farmers can discipline hired workers, which is not always possible with family 

labour.  

The studies in this literature review encounter both a positive and a negative association 

between owned land and TE. The share of owned land to total land negatively influences TE 

scores since agriculturalists do not pay land rents and, consequently, do not have to look for 

higher revenues in order to clear such costs (Rezitis et al., 2003). On the other hand, if the 

farmer owns his/her fields, he/she has more incentive to invest in modern technologies and in 

soil improvements that reduce the waste of resources in the long run (Zhu and Lansink, 2010). 
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Total debt may influence TE in both directions. It may force farmers to produce closer to the 

frontier in order to face such liabilities or may induce farmers to make inefficient decisions due 

to the financial stress (Foster and Rauser, 1991). 

According to the existing literature, the degree of diversification may augment or reduce farms’ 

technical efficiency. Farmers tend to diversify their production efforts because they own plots 

of land in different locations with different soil qualities (Niroula and Thapa, 2005; Tan et al., 

2006). Moreover, farmers diversify in order to cope with production risks such as plagues, 

water shortages or natural disasters (Latruffe et al., 2011). Another advantage of diversifying 

production efforts is that certain combinations of crops or alternating crops from one season to 

another improve soil fertility. On the other hand, agriculturalists should concentrate their 

efforts in the production of a particular commodity and gain enough experience to produce it 

more efficiently.  

To identify the effect of diversification (specialisation) on technical efficiency, previous studies 

use any of the following variables: the share of the main output to total output, the Herfindahl 

index12 or another composite index. The literature review shows that both hypotheses hold in 

empirical studies. For example, Manjunatha et al., (2013) and Manevska-Tasevska et al., 

(2013)13  encounter a positive relationship between specialisation and technical inefficiency. 

Among others, Dinar et al., (2007), Bojnec and Latruffe (2009) and Karagiannis and Sarris 

(2005) identify a negative association between specialisation and technical inefficiency. Other 

authors, such as Karagiannis and Sarris (2002) and Zhu and Lansink (2010)14 encounter mixed 

results.15 

                                                           
12 Refer to the methodological section for further details. 
13 Share of revenue from the main commodity to total revenue. 
14 Share of crop revenues to total revenue. 
15  Manjunatha et al., (2013), Dinar et al., (2007), Bojnec and Latruffe (2009) and Karagiannis and Sarris (2005) and 

Karagiannis and Sarris (2002) use the Herfindahl index. 
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Among others, Rezitis et al. (2003) argue that allocation of time to off-farm activities at the 

expense of farming may lead to lower levels of TE. In contrast, Bojnec and Ferto (2011) 

encounter a positive effect of off-farm activities on TE. These authors attribute such effects to 

the availability of additional funds (off-farm income) to invest in technologies that are more 

efficient. Market-oriented farms tend to be more efficient than other farms since the interaction 

with other competitors enables them to acquire knowledge and relevant information. However, 

subsistence agriculturalists might be more efficient than market-oriented farms because of their 

ability to manage scarce resources (Bojnec and Latruffe, 2009).  

Regarding the characteristics of farms, irrigation enters in the TI equation as a risk-reducing 

factor. It has a negative effect on TI (Karagiannis and Sarris, 2002). To control for external 

factors, previous studies introduce regional dummy variables, indices or dummy variables for 

soil types, dummy variables for LFAs, road density, distance to the next farm and dummy 

variables accounting for structural (policy) changes and environmental restrictions in the TI 

model (see Table 11 in Appendix 1 for the full set of inefficiency explanatory variables).  As 

stated in the introduction, subsidy payments might have a positive, neutral or negative effect 

on farms’ TI. In this regard, the next subsection describes such a relationship with more details.  

2.3.3. Subsidies and technical inefficiency 

Table 1 shows the distribution of 243 empirical findings in 55 studies examining the effect of 

subsidisation on farms’ TE.16 The lack of information about units of measurement of the 

subsidy variable prevents us comparing the size of such effects. Instead, we examine the 

direction of the effect. For purposes of exposition, Table 1 displays the effect of subsidisation 

on TE using six different classifications. Overall, most of the estimations encounter a 

                                                           
16 Some studies present the SFA results for the entire sector, for different subsamples such as farm types, particular areas or 

countries, ranges of elevation, or quantile regressions. 
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significant and negative subsidy-efficiency effect (48%). Regarding the type of subsidy, 

Minviel and Latruffe (2017) identify subsidies that aim to increase investment or production. 

Production subsidies include input subsidies, output subsidies also known as coupled 

subsidies17, decoupled subsidies18, environmental subsidies and subsidies provided to farms in 

less favoured areas (LFAs). See Table 1 for the distribution of types and their corresponding 

effects on TE.19 

To control for the intensity of the subsidisation of a single farm, SFA models in Table 1 use 

the total value of subsidies, the share of subsidies to total revenue, the share of a particular 

subsidy to total subsidies, payments per unit of land or head, a dummy variable or the share of 

subsidised land to total land. Although the existing literature has not reached a consensus about 

the standard measure of subsidisation in the SFA model, Minviel and Latruffe (2017) argue 

that the total value of subsidies per farm may distort parameter estimates due to size effects. 

Having this potential issue in mind, 55.14% estimation results in Table 1 use the total value of 

subsidies in the SFA model. To avoid size effects, Minviel and Latruffe suggest that one should 

use subsidy rates rather than total subsidy payments. In some cases, data availability does not 

allow researchers to use a continuous variable in the TI equation, instead, they use a 

dichotomous variable to indicate whether the farmer receives the subsidy or not.  

Grouping together the set of parameter estimates by sector, we observe a clear pattern regarding 

the effect of subsidisation on different sectors. Most of the studies analyse the production of 

crops (42%) and milk (29%), where subsidy payments clearly reduce TE. When researchers 

include both arable and non-arable farming activities in the same analysis (14% of all 

estimations), we observe a negative effect of subsidies on TE. Recently, organic farms have 

                                                           
17 Subsidies linked to the level of output. 
18 Lump-sum payments. 
19 For a further discussion about the transition from coupled to decoupled subsidies in Europe (Common Agricultural Policy) 

refer to Anania and Pupo D’Andrea (2015). 
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become popular due to changes in consumers’ preferences and the promotion of 

environmentally friendly food production (Sauer et al., 2002). Since this type of farms must 

adhere to more stringent environmental regulations, they tend to be less efficient than other 

farms (Kumbhakar et al., 2009) and according to Table 1, subsidy payments exacerbate 

inefficiencies in organic farms.    

Table 1. Effect of subsidies on technical efficiency from previous studies 

 Share (%) of the total estimation results 
  

 
Negative effect 

(significant) 

Null effect 

(non-significant) 

Positive effect 

(significant) 
    

    

All estimations (243 results) 47.74 34.98 17.28 
    

Type of subsidy    
    

Total subsidies (coupled and decoupled) 35.12 23.14 10.74 

Input subsidies 0.83 0.41 1.24 

Agri-environmental subsidies 7.44 4.13 3.72 

LFA subsidies 0.41 6.20 0.41 

Investment subsidies 3.72 0.41 1.24 

Price subsidies 0.00 0.83 0.00 
    

Subsidy variable    
    

Value of subsidies (local currency) 20.16 24.69 10.29 

Subsidies rate (subsidies to revenue) 17.70 2.88 1.23 

Subsidies rate (subsidies to total subsidies) 2.47 1.23 0.41 

Subsidies rate (subsidies per land units) 3.70 2.47 1.23 

Subsidies rate (subsidies per animal) 0.00 0.41 1.23 

Subsidies dummy (1=the farm receives a subsidy) 2.88 2.47 1.23 

Proportion of land (subsidised land to total land) 0.82 0.82 1.65 
    

Sector    
    

Crops and livestock 9.47 3.70 1.23 

Crops only 20.58 16.46 4.53 

Livestock only 4.12 5.76 1.23 

Organic 2.47 0.82 0.82 

Dairy 11.11 8.23 9.47 
    

Data    
    

Cross-section 1.65 1.23 2.06 

Panel or pooled data 46.09 33.74 15.23 
    

Place*    
    

Europe 43.21 30.45 13.17 

America 2.06 2.88 1.23 

Asia 2.47 1.65 2.88 
    

Endogeneity    
    

Addressing endogeneity issues 8.23 13.58 2.47 

All explanatory variables are exogenous 39.51 21.40 14.81 
    

*America: Alberta (Canada), Kansas (USA), Saskatchewan (Canada), State of Wisconsin (USA), and United States. Europe: Austria, Belgium, 

Crete (Greece), Liberecky (Czech Republic), Czech Republic, Denmark, England, Wales, Finland, France, Schleswig-Holstein (Germany), 
Germany, Greece, Hungary, Ireland, Italy, Norway, Poland, Portugal, Slovenia, Spain, Sweden, Switzerland, The Netherlands, and United 

Kingdom.Asia: Bihar and Eastern Uttar Pradesh (India), Wuqi, Dingbian, and Huachi (China), China, Akmola region (Kazakhstan) and Russia. 
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The majority of estimations in the literature review use panel or pooled databases from 

European countries. The main target of such studies is to evaluate the performance of farms 

under the Common Agricultural Policy (CAP). Using single farm payments, single area 

payments, agri-environmental subsidies or payments to LFAs in Europe, these empirical 

analyses find a negative or a non-significant association in 43% and 30% of total estimations, 

respectively. Apart from Europe, this literature survey identifies SFA estimations in Canada 

(Giannakas et al., 2001; Samarajeewa et al., 2012), USA (Serra et al., 2008; Zaeske, 2012), 

India (Dung et al., 2011) and China (Tian and Wan, 2000; Zhao et al., 2015; Ito, 2015). By 

simply looking at figures in Table 1, the relationship between subsidies and TE in zones other 

than Europe seems to remain ambiguous. Moreover, other regions than Europe are not widely 

covered by this literature, especially developing countries in America, Africa and Asia 

(Minviel and Latruffe, 2017).  

The SFA model suffers from endogeneity issues if there exists a correlation between inputs 

and the random error term in the frontier, a correlation between inefficiency effects and the 

random error term or a correlation between the use of inputs and technical inefficiencies.20 

Latruffe et al. (2017) address the first source of endogeneity by using a 4-step estimation 

procedure.21  This issue arises if agriculturalists adjust intermediate inputs (e.g. fertilisers, 

irrigation or pesticides) as a response to stochastic events (e.g. weather shocks or plagues). If 

the SFA model does not account for such events, these are part of the error term. Quiroga et al. 

(2017) argue that coupled subsidies are endogenous since these payments depend on the level 

of output and farmers can influence this type of subsidisation. Quiroga et al. (2017) overcome 

                                                           
20 This happens if less efficient farms use large quantities of inputs, which suggests a positive correlation. To the best of our 

knowledge, this source of endogeneity has not been addressed in the existing literature yet. 
21 First, it regresses the endogenous input on the exogenous variable vector using OLS. Second, it computes the non-linear 

least squares estimator to obtain the full set of parameters in the SF and use the estimated coefficients in the technical 

inefficiency equation to compute the instrument. Third, it computes the non-linear two-stage least squares to obtain the full set 

of parameters in the SF using the estimated instrument (step 2) and use the new estimates of the technical inefficiency equation 

to compute a better instrument compared with the one in step 2. Fourth, it replicates the previous step and uses the estimated 

instrument in step 3. 
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this issue by using a two-stage estimation.22 Although Latruffe et al and Quiroga et al address 

the abovementioned sources of endogeneity using four-step and two-step sequential 

estimations, such results are always less efficient than the single-step estimation results. 

Unfortunately, the complexity of the model prevented Latruffe et al to fit a single-step model. 

3. Methods and materials 

3.1. Theory 

The economic literature defines the production function as the process of transforming inputs 

into output(s) and its mathematical representation is as follows: 

𝐹(𝒙, 𝒚) = 0                                                                 (1) 

Where  𝒙  and 𝒚  are J and M dimensional non-negative vectors of inputs and outputs 

respectively. For a single output, and for simplicity, we can rewrite expression (1) as: 

𝑦 = 𝑓(𝒙) = 𝑓(𝑥1, … , 𝑥𝐽)                                                     (2) 

Where 𝑓(. ) is the maximum attainable output for a given set of inputs. Chambers (1988, p. 9) 

states that a well-defined function should satisfy certain regularity conditions. First, the 

production function is finite, non-negative, real-valued and single-valued for all non-negative 

and finite inputs. Second, the absence of inputs leads to no output. Third, additional inputs will 

never produce less output (monotonicity). Fourth, the production function is continuous and 

twice differentiable at any point. Fifth, the input set is convex and therefore, the production 

function is quasi-concave.  

Figure 3a displays the feasible production set using two inputs, 𝑥1 and 𝑥2. The surface denoted 

by 𝑦 = 𝑓(𝑥1, 𝑥2) is the maximum achievable output and it bounds the feasible production set. 

                                                           
22 First, the ratio of coupled subsidies to total crop production is regressed on a vector of farm characteristics and indicators of 

policy reforms using the Fixed Effects (FE) or the Random Effects (RE) estimators. Second, a SFA model is estimated in 

which predicted values of coupled subsidies enter as an additional input in the production function. Actual coupled subsidies 

and particular decoupled payments are part of the technical inefficiency equation. 



21 
 

Fixing any of the two inputs to a certain level (e.g. 𝑥2̅̅ ̅), we obtain the total product curve for 

the remaining input, which captures the relationship between the corresponding input and the 

total output (e.g. 𝑦 = 𝑓(𝑥1)). Thus, holding other inputs constant, the slope of the total product 

curve  𝜕𝑦/𝜕𝑥1, is the marginal product of 𝑥1. To be consistent with theoretical underpinnings, 

𝜕𝑦/𝜕𝑥1 ≥ 0 and 𝜕2𝑦/𝜕𝑥1
2 < 0. 23 Both conditions together guarantee that increasing any input 

has a non-negative effect on total output. 

Standard production theory assumes that farms operate along the frontier. Thus, only random 

noise prevents farms remaining on the production frontier. Nevertheless, the production 

efficiency literature relaxes this restriction. It allows farmers to operate on or below the frontier 

due to technical inefficiencies. Figure 3b displays the total product of 𝑥1 and illustrates two 

different measures of technical inefficiency: Input-Oriented (IO) and Output-Oriented (OO) 

approaches. Point A is below the frontier and results from using 𝑥1𝐴 units of input 𝑥1. This 

research uses the OO approach.  

Figure 3. Single output production function 

 
 

 
 

3a. Single output production function (two 

inputs) 
3b. Total product curve (𝑥1) 

 

Source: adapted from Kumbhakar et al. (2015) 

 

                                                           
23 Law of diminishing returns. 
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The OO approach indicates that a higher level of output 𝑦1𝐵 is achievable using the same level 

of input 𝑥1. Therefore, A is an inefficient production level and the size of technical inefficiency 

(TI) is equal to  (𝑦1𝐵 − 𝑦1𝐴)/𝑦1𝐵 , and consequently, technical efficiency (TE) is  𝑦1𝐴/𝑦1𝐵 . 

Accounting for such inefficiencies, we can rewrite the production function in (2) as follows:  

𝑦 = 𝑓(𝒙) ∗ exp(−𝑢)                                                      (3) 

Where 𝑢 is non-negative and measures TI. For small values of 𝑢, exp(−𝑢) ≅ 1 − 𝑢. Thus, 

TE = exp(−𝑢) = 1 − 𝑢 = 1 − 𝑇𝐼.  

Using equation (3), we can also measure the effect of increasing inputs on the level of output, 

or returns to scale (RTS). According to the widely known economic literature, a production 

function is homogeneous if the following condition holds (Kumbhakar et al. 2015):  

𝜆𝛾𝑦 = 𝑓(𝜆𝑥1, … , 𝜆𝑥𝐽)                                                     (4) 

Here, condition (4) implies that if all inputs rise by the same proportion, 𝜆 , total output 

increases by 𝜆𝛾. Then, this production function is homogeneous of degree 𝛾. For 𝛾 > 1, 𝛾 < 1, 

or 𝛾 = 1, we observe increasing, decreasing or constant RTS respectively. For homogeneous 

functions, RTS is the sum of input elasticities: 

𝑅𝑇𝑆 = ∑ 휀𝑗(𝒙)𝐽
𝑗=1 , where 휀𝑗(𝒙) =

𝜕 ln 𝑓(∙)

𝜕 ln 𝑥𝑗
.                                  (5)          

Accounting for TI in the SFA does not alter formulation (5) since this term appears additively 

after taking logs of equation (3).  

3.2. Method 

The estimation of the SFA model includes parameter estimates of the frontier and the technical 

inefficiency functions. To obtain such parameters, we apply the single-step maximum 
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likelihood (ML) method.24 The SFA literature typically uses the CD and/or the TL production 

functions to identify the frontier in equation 3. The CD function with TIs and in its logarithm 

form is as follows: 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗
𝐽
𝑗=1 + 𝑣𝑖 − 𝑢𝑖                                              (6) 

Where,  𝑣𝑖  is the random noise in the frontier,  𝑢𝑖  is the TI term, and 𝛽0 = ln 𝑎 . For strict 

concavity (quasi-concavity), it requires 0 < 𝛽𝑗 < 1 ∀ 𝑗 = 1, … , 𝐽, 0 < ∑ 𝛽𝑗
𝐽
𝑗=1 < 1 and 𝑎 > 0 

(𝛽𝑗 > 0 ∀ 𝑗 = 1, … , 𝐽 and 𝑎 > 0). The CD function is homogeneous of degree ∑ 𝛽𝑗
𝐽
𝑗=1   and the 

corresponding elasticities of total output with respect to individual inputs are equal to 휀𝑗 =

𝜕 ln 𝑦

𝜕 ln 𝑥𝑗
= 𝛽𝑗 . Therefore, 𝑅𝑇𝑆 = ∑ 휀𝑗

𝐽
𝑗=1 = ∑ 𝛽𝑗

𝐽
𝑗=1 .  On the other hand, the TL production 

function is as follows: 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗
𝐽
𝑗=1 +

1

2
∑ ∑ 𝛽𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1 𝑥𝑗𝑥𝑘 + 𝑣𝑖 − 𝑢𝑖                       (7) 

Where 𝛽𝑗𝑘 = 𝛽𝑘𝑗. Unlike the CD function, this specification is not necessarily homogeneous, 

unless ∑ 𝛽𝑗𝑘
𝐾
𝑘=1 = 0  ∀ 𝑗, and does not assume a constant elasticity of substitution (equals unity 

in the case of the CD function). The change of total output given by a change in any of the 

inputs depends on the use of other inputs since  휀𝑗 =
𝜕 ln 𝑦

𝜕 ln 𝑥𝑗
= 𝛽𝑗 +

1

2
∑ 𝛽𝑗𝑘

𝐾
𝑘=1 𝑥𝑘. Hence, RTS 

are equal to ∑ 휀𝑗
𝐽
𝑗=1 = ∑ (𝛽𝑗 +

1

2
∑ 𝛽𝑗𝑘

𝐾
𝑘=1 𝑥𝑘)𝐽

𝑗=1 . 

Notice that the CD function is a special case of the TL specification. The latter reduces to the 

former if 𝛽𝑗𝑘 = 0  ∀ 𝑗𝑘. To empirically test for the appropriateness of the two functional forms, 

the existing literature uses a likelihood ratio test of the form: 𝐿𝑅 = −2(𝐿𝐶𝐷 − 𝐿𝑇𝐿), where the 

CD model is nested in the TL model. Here, 𝐿𝐶𝐷 and 𝐿𝑇𝐿 are the log-likelihood values of the 

                                                           
24 Refer to Wang and Schmidt (2002) for a further discussion about the superiority of the single-step estimator over the 

traditional two-step estimation procedure. 
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CD and TL models respectively. The LR-statistic follows a 𝜒2 distribution with 𝑑𝑓𝑇𝐿 − 𝑑𝑓𝐶𝐷 

degrees of freedom, that is, the difference between the degrees of freedom of the corresponding 

models (Greene, 2012, p. 526-527).  

To identify the two elements of the composite error term in the SFA model, Aigner et al. (1977) 

and Meeusen and van den Broeck (1977) impose parametric distributions on both terms. The 

SFA assumes that 𝑣𝑖 is an i.i.d. random term with zero mean and constant variance (𝑁(0, 𝜎𝑣
2)). 

It accounts for unobserved heterogeneity across farms, stochastic events involved in production 

activities and errors in the functional form of the frontier. Moreover, it assumes independency 

between 𝑣𝑖 and 𝑢𝑖 . 25 Regarding the non-negative error term, empirical studies adopt either a 

half-normal ( 𝑢𝑖~𝑖. 𝑖. 𝑑. 𝑁+(0, 𝜎𝑢
2) ), a truncated-normal ( 𝑢𝑖~𝑖. 𝑖. 𝑑. 𝑁+(𝜇, 𝜎𝑢

2) ), or an 

exponential (𝑓(𝑢𝑖) =
1

𝜂
∗ exp (−

𝑢𝑖

𝜂
)) distribution for the TI term.  

The one-parameter half-normal and exponential distributions cluster the majority of 

observations close to full-efficiency, that is, the mode of the distribution of TI is zero. This 

seems to be a restrictive assumption as one may observe high inefficiencies in farming 

activities. The truncated-normal distribution relaxes such restriction by allowing the mode of 

𝑢𝑖 to be nonzero. Furthermore, if 𝜇 = 0 the truncated-normal is identical to the half-normal 

distribution. For these reason, we assume a (more flexible) truncated-normal distribution of TI 

in the SFA model. 

To empirically disentangle the composite error and compute the estimator of 𝑢𝑖, the SFA model 

uses the Jondrow (JLMS) formula (Jondrow et al. 1982, p. 235) along with the previous 

assumptions: 

                                                           
25 As pointed out in Kumbhakar et al. (2015, p. 55), since vi captures exogenous shocks, it is unlikely that it might be related 

to production inefficiencies. However, this random term may capture risks in the production process and farmers’ risk-attitudes 

may be captured by the inefficiency term. See Smith (2008) for further details about such dependency.  
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�̂�[𝑢|𝛿] =
𝜎𝜆

1+𝜆2
[

𝜙(
𝛿𝜆

𝜎
)

1−Φ(
𝛿𝜆

𝜎
)

− (
𝛿𝜆

𝜎
)]                                                 (8) 

Where, 𝜎 = √𝜎𝑣
2 + 𝜎𝑢

2, 𝜆 =
𝜎𝑢

𝜎𝑣
, 𝜙 and Φ stand for the standard normal and cumulative density 

functions, respectively, and 𝛿 = 𝑣 − 𝑢. In the JLMS formula, 𝑒𝑖 = 𝑦𝑖 − �̂�′𝒙𝒊 is the estimator 

of 𝛿𝑖. This estimator allows us to obtain observation-specific TE and TI scores. 

Among others, Kumbhakar, Ghosh, and McGuckin (1991), Reifschneider and Stevenson 

(1991), Huang and Liu (1994), and Battese and Coelli (1995) argue that the assumption of a 

truncated-normal distribution (𝜇 ≠ 0) enables us to parameterise the expected value of the non-

negative error term. Thus, 𝜇 is a linear function of a vector of exogenous variables, 𝒛, that 

determines technical inefficiencies:  

𝜇𝑖 = 𝑓(𝒛𝒊) = 𝛾0 + ∑ 𝛾𝑚𝑧𝑚𝑖
𝑀
𝑚=1                                          (9) 

Where, 𝛾𝑚  are the corresponding parameters. Since both moments of 𝑢𝑖  are observation-

specific, we can account for heteroscedasticity in the TI term and parameterise 𝜎𝑢
2 as in Caudill 

and Ford (1993), Caudill, Ford, and Gropper (1995) and Hadri (1999). 

Following Caudill and Ford, Caudill, Ford, and Gropper and Hadri, Wang (2002) proposes a 

model in which both 𝜇𝑖 and 𝜎𝑢
2 are linear functions of the same vector of exogenous variables 𝒛. 

Wang adds the production uncertainty (𝜎𝑖
2) equation to the traditional model in Kumbhakar, 

Ghosh and McGuckin (1991), Huang and Liu (1994) and Battese and Coelli (1995)26, which is 

as follows: 

𝜎𝑖
2 = 𝑓(𝒛𝒊) = exp(𝜗0 + ∑ 𝜗𝑚𝑧𝑚𝑖

𝑀
𝑚=1 )                                  (10) 

This model relaxes the assumption that TI increases (decreases) monotonically with the 

corresponding inefficiency effect. In such a case, the relationship between a variable in the 

                                                           
26 Equations (6) or (7) and the parameterisation of μi in equation (9) 
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inefficiency equation and technical inefficiency may alternate signs within the sample. This 

extension of the SFA model adds more complexity to the analysis because the single-step 

method estimates the parameters of the frontier, technical efficiency (𝜇𝑖 ) and production 

uncertainty (𝜎𝑢
2) equations simultaneously.   

Using Wang’s (2002) model, the marginal effect of the 𝑚-th inefficiency effect on 𝜇𝑖 is as 

follows27: 

𝜕𝜇𝑖

𝜕𝑧𝑚
= 𝛾𝑚 [1 − Λ𝑖 [

𝜙(Λ𝑖)

Φ(Λ𝑖)
] − [

𝜙(Λ𝑖)

Φ(Λ𝑖)
]

2

] + 𝜗𝑚
𝜎𝑖

2
[(1 + Λ𝑖

2) [
𝜙(Λ𝑖)

Φ(Λ𝑖)
] + Λ𝑖 [

𝜙(Λ𝑖)

Φ(Λ𝑖)
]

2

]     (11) 

Where  Λ𝑖 = 𝜇𝑖/𝜎𝑢,𝑖  and 𝜗𝑚  is the 𝑚 -th corresponding coefficient in the production 

uncertainty equation. These marginal effects are observation-specific and their signs reveal the 

direction of the effect of elements in 𝒛 on TI. 

Linking observation-specific TE scores and marginal effects allows us to see if there are 

differential effects of PROCAMPO on TE in the sample. Furthermore, we use RIF-regressions 

to examine differential effects of PROCAMPO on farms’ TE. This method is similar to a 

standard OLS regression but the dependent variable (𝑢 = − ln(𝑇𝐸)) is replaced by its RIF 

function. For a quantile analysis, Firpo et al. (2009) defines the RIF function as follows: 

𝑅𝐼𝐹(𝑢; 𝑞𝜏) = 𝑞𝜏 +
𝜏−𝟙(𝐮≤𝑞𝜏)

𝑓𝑢(𝑞𝜏)
                                             (12)    

Where 𝑞𝜏 is the 𝜏-th quantile of the unconditional distribution of 𝑢 (maximum value of 𝑢 in the 

corresponding quantile),  𝜏  is the quantile, 𝑓𝑢(𝑞𝜏) is the probability density function of 𝑢 

evaluated at 𝑞𝜏, and 𝟙(𝐮 ≤ 𝑞𝜏) is an indicator variable equals one if the outcome value (𝑢) is 

less than or equal to 𝑞𝜏 and equal to zero otherwise.28      

                                                           
27 If σu

2  is not parameterised, the second term in the right-hand side of Wang’s (2002) formula vanishes in equation (11). 
28 For a further discussion about the advantages of unconditional over conditional quantile regressions approaches refer to 

Borah and Basu (2013). Overall, the conditional quantile regression (alternative method) identifies the effect of an explanatory 

variable on a specific quantile of the outcome (dependent) variable. To do that, the conditional quantile regression assess such 

an effect using specific values of the remaining covariates. Borah and Basu (2013) argue and provide empirical evidence that 
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3.3. Data description 

To estimate the SFA model, we use information from the 2014 National Agricultural Survey 

(NAS). The National Institute of Statistics and Geography in Mexico (INEGI) releases the NAS. 

It contains data on 66,483 farms and is a representative sample of the 34 major agricultural 

commodities. The lack of information on perennial crops and livestock, e.g. value of milking 

cows, age of perennial trees/plants or age of breeding pigs/cows, prevents us to compute the 

cost of capital for these farms. Moreover, the production cycle of some perennial crops and 

livestock activities typically last more than one year, e.g. the production of avocado or fattening 

cattle, and then some farms may not report the corresponding annual value of output in the 

NAS.29 Additionally, PROCAMPO does not cover perennial crops and livestock activities. 

Therefore, the dependent variable in the production frontier is the value of output(s) from arable 

activities that last at most one agricultural year. To aggregate all agricultural commodities 

produced within the corresponding farm into a single category, we use self-reported farm gate 

prices. 30 Since we use the value of the produce and not the marketed output, the dependent 

variable does not suffer from the storage effect.  

In line with the literature review in section 2, the SFA model includes measures of capital, land, 

labour and intermediate inputs purchased from outside the farm in the OO frontier equation. 

The total ownership cost of capital per farm controls for different capital endowments. The 

NAS contains detailed information on all types of machinery and equipment, which allows us 

to compute the corresponding ownership costs. According to Edwards (2015), the ownership 

cost is equal to capital recovery cost (total depreciation times the corresponding capital 

                                                           
the results from the conditional quantile regression are not always interpretable in a policy or population context. These 

quantile effects are usually valid for the corresponding quantile and not for the whole sample or population. Conversely, 

unconditional quantile regressions such as the RIF-function provide generalizable results since this method computes quantile-

specific marginal effects using the (entire) distributions of other covariates in the model. 
29 For instance, a farmer cultivating avocados may report zero output in 2014 because avocado trees are not in the productive 

phase.  
30 If the farmer does not report farm gate prices, we use averages of farm gate prices at municipality-level instead. 
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recovery factor plus the salvage value times the real interest rate) plus taxes, insurance and 

housing costs (0.05 times the purchase price of the corresponding equipment plus the salvage 

value).31 Some farms substitute tractors with a yoke of oxen. In this regard, the NAS only 

collects data on whether the farmer uses oxen or not. Since 20% of farms in the sample use this 

type of capital, we account for this using a dummy variable in the frontier equation. 

Unfortunately, data on buildings and facilities is not available in the NAS. Total land utilised 

to produce the composite output is also included in the SFA equation. To control for the amount 

of labour, we use the total number of working hours spent on farming activities per farm in the 

2014 agricultural year. It includes working hours from full-time workers, temporary workers, 

‘jornaleros’32 and family members. Regarding intermediate inputs, we aggregate together all 

annual expenses into a single indicator (see Appendix 1 for further details).  

To explain technical inefficiencies in farming activities, we use the standard set of explanatory 

variables in the literature. Characteristics of the farmer include their age and years of schooling. 

Regarding managerial practices, we use the share of owned land to total land, the share of hired 

labour to total labour, the Herfindahl (diversification) index33, the share of irrigated area to 

total area and a dummy variable for farms selling agricultural commodities abroad directly, 

especially in the US market. According to section 2.3.2, total debt and off-farm income may 

determine the size of TIs. However, the NAS does not collect information on off-farm activities, 

remittances or total debt.  In this regard, we acknowledge that not all forms of financial capital 

are accounted for in the model since there is a delay between incurring expenditures and 

receiving revenue from harvest even in the production of annual crops. To investigate the effect 

                                                           
31 The capital recovery factors and salvage values are available on https://www.extension.iastate.edu/agdm/crops/html/a3-

29.html.  For purchase prices of equipment and machinery refer to 

http://www.sagarpa.gob.mx/agricultura/Precios/Paginas/PreciosdeMaquinariaAgricola.aspx  
32 Employees hired for sporadic activities (per day) such harvesting activities.  

33 The Herfindahl index is equal to 𝐻𝐼𝑖 = ∑  (𝐴𝑗𝑖 𝑇𝐴𝑖⁄ )
2𝐽

𝑗=1  , where 𝐴𝑗𝑖 is the total area allocated to crop 𝑗 and 𝑇𝐴𝑖 total land 

in farm 𝑖. 

https://www.extension.iastate.edu/agdm/crops/html/a3-29.html
https://www.extension.iastate.edu/agdm/crops/html/a3-29.html
http://www.sagarpa.gob.mx/agricultura/Precios/Paginas/PreciosdeMaquinariaAgricola.aspx
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of PROCAMPO on farms’ TI, we use a dummy variable. The NAS comprises self-reported 

data on whether the corresponding farm receives PROCAMPO or not. 

After removing entries with missing data, impossible values and farms with perennial crops or 

livestock activities, the database contains 33,721 valid observations. We exclude 5,070 farms 

that do not report socio-demographic characteristics of the farmer, age and years of schooling. 

Also excluded from the database are the 5,371 farms that do not report or report impossible 

information on output(s), working hours, intermediate inputs and proportions of irrigated areas 

(e.g. none working hours in the agricultural year, zero expenses on intermediate inputs or 

proportions of irrigated land to total land greater than 100%). We also remove 22,321 farms 

from the sample, which allocate their production efforts to perennial crops or livestock 

activities. Thus, the final sample comprises data on 33,721 farms that derive 100% of their 

revenue from annual (or seasonal) crops. Table 2 displays definitions, summary statistics and 

expected signs of the corresponding variable in the frontier and technical inefficiency models. 

Table 2 shows that 46% of farms in the sample received the subsidy payment in the 2014 

agricultural year. In average, we observe that beneficiaries of PROCAMPO obtain higher 

revenues but also, utilise larger amounts of capital, land and intermediate inputs that non-

recipients. Conversely, non-beneficiaries tend to use labour more intensively than farmers 

receiving PROCAMPO. 

Agriculturalists are on average 57 years old and have 6 years of academic studies, which is 

equivalent to a primary school education. Overall, most of the farmers are the owners of the 

sampled fields (82% of the total farmland). The production of agricultural commodities mainly 

relies on family labour (76% of total working hours). There exists a farmers’ specialisation 

towards particular crops such as corn, beans, sorghum and wheat (Herfindahl index equals 

0.91).   
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Table 2. Definitions, descriptive statistics and expected signs 

 

Variable Description Units Mean SD Min. Max. Sign 

Stochastic Frontier equation 

   P WP P WP P WP P WP  

Output Value of the produce (all agricultural commodities)  $*1,000 449.47 372.28 1,335.31 1,435.63 0.15 0.15 23,900.00 23,800.00 NA 

Capital Total ownership cost of capital $*1,000 92.16 40.35 212.19 144.02 0.00 0.00 3,867.87 2,799.85 + 

Land Total utilised agricultural land to produce  has 36.43 23.92 117.47 126.68 0.02 0.01 6,055.41 8,221.00 + 

Labour 
Total labour including full-time, temporary, 

‘jornaleros’ and family workers  
hrs*1,000 5.54 6.34 12.74 23.26 0.05 0.05 575.33 1,288.28 + 

Inputs Annual expenses on intermediate inputs  $*1,000 283.36 201.32 1,616.29 3,239.09 0.00 0.00 174,000.00 427,000.00 + 

Oxen Farms using a yoke of oxen 0,1 0.19 0.21 - - 0.00 0.00 1.00 1.00  

Technical inefficiency equation 

Age Age of the farmer  years 58.81 55.24 13.74 14.47 16.00 16.00 100.00 100.00 + 

Schooling Farmer’s education  years 6.01 6.22 4.83 4.84 0.00 0.00 24.00 26.00 - 

Owned Ratio of owned land to total agricultural land  % 83.48 80.98 32.87 37.19 0.00 0.00 100.00 100.00 - 

Hired Ratio of hired labour to total labour % 24.58 23.41 32.29 32.98 0.00 0.00 100.00 100.00 - 

Herfindahl 
Herfindahl index (the closer to one, the closer to full 

specialisation) 
0-1 0.89 0.93 0.19 0.16 0.17 0.21 1.00 1.00 + 

Irrigated Ratio of irrigated land to total agricultural land % 32.23 27.99 43.67 42.50 0.00 0.00 100.00 100.00 - 

Abroad 
Farm directly selling some of the produce abroad 

(1=yes and 0=no) 
0,1 0.004 0.004 0.06 0.06 0.00 0.00 1.00 1.00 - 

Procampo Farm receives PROCAMPO  (1=yes and 0=no) 0,1 0.46 - 0.00 1.00 + 

P: the farmer receives PROCAMPO (15,420 farms), NP: the farmer does not receive PROCAMPO (18,301 farms) 

Source: National Agricultural Survey (2014) and SAGARPA (2014)   
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Almost one third of the sampled fields have an irrigation system (30% of total farmland). In 

addition, few farms sell their produce abroad directly (0.4% of farms). Although Mexico 

exports large quantities of agricultural commodities, farmers usually sell their output(s) to 

intermediaries (42% of the total number of arable-farms in Mexico), food processors (9%) and 

other buyers, who finally sell these products abroad, especially in the US market.34  The 

following section examines the effect such variables on farms’ TE. 

4. Results 

To present the set of findings, we organise this section as follows. First, we analyse the 

parameter estimates of the frontier model, the ATE scores and the corresponding input 

elasticities. Second, we discuss the implications of parameter estimates of the TI equation. We 

perform a set of RIF-regressions to compute marginal effects of the subsidy variable on TE for 

each percentile of the distribution and show the distribution of the observation-specific 

marginal effects of PROCAMPO on farms’ TE scores. Third, we develop a set of robustness 

checks to verify the consistency of our findings.  

4.1. Production frontier 

The SFA model uses equations (6-7), (9) and (10) to examine the PROCAMPO-TE link. Table 

3 shows the parameter estimates of the OO production frontier. To identify the functional form 

that better fits out data, we estimate both the CD and the TL models with and without technical 

inefficiencies. To minimise biases resulting from omitted variables, we use regional fixed 

effects to control for heterogeneous climate, economic policies, traditions and other regional 

factors in the frontier models35. SFA models (1) and (4) in Table 3 assume that there are no 

                                                           
34 http://www.inegi.org.mx/est/contenidos/proyectos/encuestas/agropecuarias/ena/ena2014/doc/tabulados.html   
35 Using the SAGARPA’s regionalisation, we create four dummy variables. Region 1 (Centre): Ciudad de Mexico, Hidalgo, 

Estado de Mexico, Morelos, Puebla, y Tlaxcala. Region 2 (Centre-West): Aguascalientes, Colima, Guanajuato, Jalisco, 

Michoacan de Ocampo, Nayarit, Queretaro, San Luis Potosi, y Zacatecas. Region 3 (North): Baja California, Baja California 

Sur, Chihuahua, Coahuila de Zaragoza, Durango, Nuevo Leon, Sinaloa, Sonora y Tamaulipas. Region 4 (South-East): 

Campeche, Chiapas, Guerrero, Oaxaca, Quintana Roo, Tabasco, Veracruz, y Yucatan. The inclusion of state fixed effects adds 

more complexity to the model and sometimes prevent it to converge. 

http://www.inegi.org.mx/est/contenidos/proyectos/encuestas/agropecuarias/ena/ena2014/doc/tabulados.html
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technical inefficiencies in production activities, that is, all parameters in the mean and variance 

TI equations are equal zero. So that, all deviations from the frontier arise from random shocks. 

SFA models (2) and (5) parameterise the mean TI equation but assume that all parameters in 

the variance TI equation are zero. Allowing for non-monotonic effects, SFA models (3) and (6) 

parameterise both moments of the TI error term as in Wang (2002).  

Before analysing the set of findings, we test for the existence of technical inefficiencies in the 

agriculture sector (hypothesis 1) and for the appropriateness of the Wang’s model (hypothesis 

2). Hypothesis 1 states that farms are fully efficient, and consequently, parameters in the (mean 

and variance) TI equation are simultaneously zero. Regarding hypothesis 2, it states that the 

parameterisation of the variance of TI is not appropriate, then, all coefficients are zero. Table 

12 in the Appendix indicates that all slopes in the (mean) TI equations are different from zero, 

that is, we can reject hypothesis 1. This result holds for both the TL and CD functions. 

Moreover, table 12 shows evidence in favour of the appropriateness of Wang’s model rather 

than the standard approach. The likelihood ratio test indicates that we can reject hypothesis 2. 

This test indicates that the parameterisation of production uncertainty matters. Therefore, SFA 

models (3) and (6) should be preferred over models (1-2) and (4-5). 

Table 3. Parameter estimates of the production frontier 

Variables Frontier 

  Cobb-Douglas Translog 

  (1) (2) (3) (4) (5) (6) 

Capital 0.0245*** 0.0178*** 0.0172*** 0.1417*** 0.1164*** 0.1204*** 

 (0.0017) (0.0016) (0.0016) (0.0179) (0.0169) (0.0169) 

Capital square    0.0002 0.0015* 0.0012 

    (0.0009) (0.0008) (0.0008) 

Land 0.3523*** 0.4136*** 0.4156*** 0.4129*** 0.4229*** 0.4253*** 

 (0.0077) (0.0077) (0.0077) (0.0633) (0.0606) (0.0609) 

Land square    -0.0935*** -0.0941*** -0.0936*** 

    (0.0041) (0.0041) (0.0041) 

Labour  0.1018*** 0.0939*** 0.0918*** 0.1104* 0.3108*** 0.3008*** 

 (0.0074) (0.0071) (0.0072) (0.0630) (0.0597) (0.0606) 

Labour square    0.0255*** 0.0120*** 0.0128*** 

    (0.0040) (0.0038) (0.0039) 

Inputs 0.6569*** 0.5536*** 0.5465*** -0.0424 -0.0018 -0.0043 

 (0.0052) (0.0057) (0.0058) (0.0482) (0.0463) (0.0466) 

Inputs square    0.0657*** 0.0552*** 0.0549*** 

    (0.0020) (0.0020) (0.0021) 
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Capital*Land    0.0242*** 0.0225*** 0.0228*** 

    (0.0016) (0.0016) (0.0016) 

Capital*Labour    0.0073*** 0.0061*** 0.0060*** 

    (0.0018) (0.0016) (0.0016) 

Capital*Inputs    -0.0223*** -0.0203*** -0.0205*** 

    (0.0013) (0.0013) (0.0013) 

Land*Labour    0.0753*** 0.0665*** 0.0661*** 

    (0.0075) (0.0071) (0.0072) 

Land*Inputs    -0.0284*** -0.0151*** -0.0151*** 

    (0.0046) (0.0046) (0.0046) 

Labour*Inputs    -0.0610*** -0.0570*** -0.0569*** 

    (0.0054) (0.0052) (0.0052) 

Oxen -0.4586*** -0.3931*** -0.3864*** -0.4200*** -0.3652*** -0.3622*** 

 (0.0171) (0.0173) (0.0174) (0.0167) (0.0169) (0.0170) 

Constant 2.9033*** 4.1287*** 4.2659*** 5.9658*** 5.6361*** 5.7669*** 

 (0.0707) (0.0816) (0.0850) (0.3690) (0.3522) (0.3572) 
       

Observations 33,721 33,721 33,721 33,721 33,721 33,721 

Log-likelihood  -53495 -52288 -52226 -52537 -51533 -51489 

Fixed effects (regions) Yes Yes Yes Yes Yes Yes 

Inefficiency effects (mean) No Yes Yes No Yes Yes 

Inefficiency effects (variance) No No Yes No No Yes 

Subsidy variable (Dummy) No Yes Yes No Yes Yes 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Using the parameter estimates in models (3) and (6) and the JLMS formula in Jondrow et al. 

(1982)36, we encounter that ATE scores are 43% and 46% respectively (see Table 4). Farm-

specific TE scores vary between 0.42% and 90.23% in these models. Other things equal and 

using sample means, Table 4 shows the elasticities of the corresponding inputs. These results 

show that farms in the sample exhibit increasing RTS since we cannot reject the null hypothesis 

of sum of elasticities equal 1.08 in model (3) and equal 1.14 in model (6) at the 1% significance 

level. Furthermore, we can reject the null hypothesis of constant RTS at the 1% significance 

level.    

Annual expenses on intermediate inputs (seeds, fertilisers, herbicides, etc.) are the main 

determinants of total output. A 1% rise in intermediate inputs increases total output by 

approximately 0.55-0.56%. 37  Such finding is in line with other studies (see for example 

                                                           
36 Technical efficiency via: 𝑇𝐸 = exp(−𝐸(𝑢|𝑒)). 
37 One may argue that the aggregation of intermediate inputs in a single category assumes that the production process is 

separable. It implies that, for example, the marginal rate of technical substitution (MRTS) between seeds and fertilisers is 

independent of the number of tractors, working hours, and land. This assumption seems slightly unrealistic; however, we do 

not address this issue in this analysis and the reader may be aware of the implications of such assumption. 
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Latruffe et al. 2017). These findings suggest that the allocation of one additional hectare of 

land38 to (annual or seasonal) crops leads to a 1.40-1.56% rise in total output (at means). 

Among others, Zhu and Lansink (2010) and Giannakas et al. (2001) encounter a similar land-

output elasticity in crop farms in Sweden (0.43) and wheat farms in Saskatchewan, Canada 

(0.44), respectively.  

Table 4. ATE, elasticities in the frontier, and returns to scale 

  Model (3) Model (6) 
 Average Technical Efficiency 

Mean 42.70% 45.80% 

SD 20.22% 19.78% 

Range [0.42%-89.66%] [0.47%-90.23%] 

Variable Estimated elasticities (at means) 

Capital 0.0172*** 0.0165*** 

 (0.006) (0.0039) 

Land 0.4156 ** 0.4636 ** 

 (0.0077) (0.0087) 

Labour  0.0918*** 0.0889*** 

 (0.0072) (0.0077) 

Inputs 0.5465*** 0.5654*** 

  (0.0058) (0.0063) 
 Returns to scale 

Null hypothesis: CRTS (Chi-2) 73.25*** 170.15*** 

Probability (Chi-2) [0.0000] [0.0000] 

Null hypothesis: IRTS (Chi-2) 1.14 0.31 

Probability (Chi-2) [0.2857] [0.5805] 

CRTS: Constant Returns to Scale.  

IRTS: Increasing Returns to Scale (sum of elasticities equal 1.08 CD and 1.14 TL)  

*** p<0.01, ** p<0.05, * p<0.1 

 

Regarding labour, farmers need to spend or hire 650-672 additional working hours 39  on 

farming activities to increase total output by 1%. Hadley (2006) computed similar labour-

output elasticities in England and Wales. Surprisingly, the capital-output elasticity is slightly 

small. However, Brumer and Loy (2000) identified an output elasticity of capital of 0.049 in 

Northern Germany. We acknowledge that the capital variable suffers from measurement errors, 

                                                           
38 One hectare represents 3.37% of the sample average (29.64 has). 
39 It represents 11% of the current sample mean. 
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e.g. it does not include the cost of buildings and oxen, and that may influence the size of the 

corresponding elasticity. 

4.2. Technical inefficiencies 

The TI equation uses the JLMS estimator of 𝑢𝑖 in equations (9) and (10) as dependent variable. 

Table 5 shows the parameter estimates of inefficiency effects. Regardless of the functional 

form of the frontier, all coefficients are in line with our initial expectations. Since age of the 

farmer proxies experience in farming activities, the negative sign on the associated coefficient 

indicates that older farmers are more efficient than young agriculturalists. This finding is in 

line with previous estimations (e.g. Coelli and Batesse, 1996). More years of schooling may 

improve farmers’ abilities to acquire knowledge related to farming activities, especially to 

avoid waste of resources. The corresponding coefficient on education suggests that additional 

years of schooling reduce technical inefficiencies. This result further support the view of 

education contributes to the efficient allocation of resources and the optimal use of existing 

technology (Sotnikov, 1998; Dinar et al., 2007). 

Parameter estimates of the TI equation reveal that the ratio of owned area to total farmland 

shrinks the gap between the current output and the frontier. In this case study, borrowing, 

renting or using land under the ‘a medias’ scheme40 leads to technical inefficiencies. Rezitis et 

al. (2003) argue that renting land increases TE but we do not encounter evidence in favour of 

such conjecture. Such finding might be an indication that tenants or farmers borrowing land 

through the ‘a medias’ scheme exhaust the properties (fertility) of land and therefore, such 

fields are less productive. Hiring labour incentivises farmers to operate closer to the frontier. 

This effect contradicts the hypothesis that family labour is better skilled or more involved in 

                                                           
40 Agreement between landowners and farmers in which both parts split production costs and total revenue (or losses) in halves. 
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farming activities than hired labour (Zhu and Lansink, 2010). Thus, the pressure for clearing 

labour costs forces farmers to be more efficient. 

Specialisation alienates farmers from the frontier. The associated coefficient to the Herfindahl 

index indicates that higher proportions of land allocated to the production of a single crop 

increases TIs. Such a finding suggests that benefits from diversification exceed benefits from 

specialisation. The standard assumption that specialisation boosts efficiency does not hold 

(Latruffe et al., 2011). In line with the initial expectations, as the ratio of irrigated area to total 

farmland increases, TI goes down. Since the share of irrigated land is an indicator of land with 

unreliable rainfall, this effect captures to what extent famers can cope with shortages of water 

by replacing rainfall with irrigation (Karagiannis and Sarris, 2002).  

The associated coefficients to the abroad variable are not statistically different from zero. It is 

been argued in the literature that farms selling some of or the produce abroad tend to use 

resources more efficiently due to high competition in such markets. Surprisingly, we do not 

encounter evidence supporting this argument. There are few farms in Mexico selling their 

products abroad directly. Most producers sell raw products to intermediaries and food 

processors, who finally export such agricultural commodities to the US and other markets. The 

NAS survey does not collect information about the value chain of crops. Therefore, 

measurement errors of this variable may lead to insignificant results.   

The SFA model identifies a negative subsidy-TE link in crop farms in Mexico. The negative 

effect is consistent under various specifications of the SFA model. The subsidisation 

programme indirectly pushes farmers to operate further away from the maximum attainable 

output. Such result suggests that PROCAMPO discourages farmers’ to use available resources 

more efficiently in order to obtain higher revenues. PROCAMPO subsidy payments might 

compensate low-income farmers, and then such farmers put less effort on farming activities. 
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Furthermore, some beneficiaries might not use inputs, purchased with the subsidy payment, 

optimally, or might never use such inputs. This behaviour leads to higher inefficiencies. 

Table 5. Parameter estimates of the inefficiency effects model 

Variables   Technical inefficiency (mean) 

  Cobb-Douglas Translog 

  (1) (2) (3) (4) (5) (6) 

Age  0.0004 -0.0049*  0.0001 -0.0078*** 

  (0.0016) (0.0026)  (0.0018) (0.0029) 

Schooling  -0.0353*** -0.0618***  -0.0451*** -0.0734*** 

  (0.0057) (0.0110)  (0.0069) (0.0119) 

Owned area  -0.0171 -0.1060***  -0.0303** -0.1171*** 

  (0.0132) (0.0185)  (0.0150) (0.0211) 

Hired labour  -0.2921*** -0.2214***  -0.3042*** -0.2851*** 

  (0.0212) (0.0274)  (0.0264) (0.0387) 

Herfindahl  2.3092*** 0.6779**  2.2954*** 1.0188** 

  (0.2874) (0.3234)  (0.3360) (0.4107) 

Irrigated area  -0.5871*** -0.3750***  -0.6422*** -0.4545*** 

  (0.0455) (0.0414)  (0.0597) (0.0550) 

Abroad  -0.1936 0.3365  -0.0188 0.5321 

  (0.6136) (0.6980)  (0.6957) (0.7926) 

Procampo (dummy)  0.3587*** 0.7289***  0.4435*** 0.7109*** 

  (0.0460) (0.0890)  (0.0566) (0.0906) 

Constant  -0.7258** 1.1612***  -0.9732*** 0.9965*** 

   (0.3028) (0.3068)  (0.3676) (0.3546) 

Variables   Technical inefficiency (variance) 

  Cobb-Douglas Translog 

  (1) (2) (3) (4) (5) (6) 

Age   0.0037*   0.0051*** 

   (0.0020)   (0.0019) 

Schooling   0.0204***   0.0205*** 

   (0.0067)   (0.0062) 

Owned area   0.0962***   0.0836*** 

   (0.0161)   (0.0153) 

Hired labour   -0.0166   0.0213 

   (0.0170)   (0.0181) 

Herfindahl   0.8711***   0.4884* 

   (0.2586)   (0.2518) 

Irrigated area   -0.0487***   -0.0268 

   (0.0186)   (0.0192) 

Abroad   -0.3834   -0.3316 

   (0.4683)   (0.4275) 

Procampo (dummy)   -0.3975***   -0.2732*** 

   (0.0589)   (0.0544) 

Usigma_constant -0.8162*** 0.6073*** -0.6143** -0.9010*** 0.6333*** -0.4798** 

  (0.0347) (0.0697) (0.2485) (0.0348) (0.0860) (0.2381) 

Vsigma_constant -0.0249* -0.2348*** -0.2549*** -0.0712*** -0.2259*** -0.2547*** 

 (0.0139) (0.0179) (0.0190) (0.0137) (0.0172) (0.0182) 

Sigma_u 0.6649*** 1.3548***  0.6373*** 1.3725***  

 (0.0115) (0.0472)  (0.0111) (0.0590)  
E(sigma_u)   1.2182   1.2633 

       
Sigma_v 0.9876*** 0.8892*** 0.8803*** 0.9650*** 0.8932*** 0.8804*** 

 (0.0069) (0.0080) (0.0084) (0.0066) (0.0077) (0.0080) 

Lambda 0.6732*** 1.5236***  0.6604*** 1.5366***  

 (0.0168) (0.0474)  (0.0161) (0.0590)  
       

Observations 33,721 33,721 33,721 33,721 33,721 33,721 

Log-likelihood  -53495 -52288 -52226 -52537 -51533 -51489 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Interestingly, parameter estimates of the variance TI equation in Table 5 indicate that 

PROCAMPO reduces production uncertainty, that is, the variance of TI (Wang, 2002). 

Somehow, these cash transfers ensure a portion of farmers’ revenues. We also encounter 

empirical evidence in favour of the standard assumption that specialisation increases 

production uncertainty (risk). The associated coefficient to the Herfindahl index in the variance 

TI equation suggests that as diversification of crops increases (lower values of the Herfindahl 

index) the variance of TI goes down. As expected, irrigation also reduces uncertainty in the 

production of crops. 

Before we analyse observation-specific marginal effects from the single-step estimation, let us 

examine the marginal effects along the entire distribution of TI using RIF-regressions. Using 

the JLMS formula in equation (8) and parameter estimates in Table 3, we compute the values 

of the predicted values of the non-negative error term 𝑢�̂�. Figures 4a and 4b display the results 

of the RIF-regressions for each percentile of the TI distribution41 in the CD and TL models 

respectively. The horizontal axis indicates the percentile of the predicted non-negative error 

term (𝑢�̂� = − ln 𝑇𝐸𝑖). Thus, the closer to zero the more efficient the farm is. The vertical axis 

measures the marginal effect (coefficient associated to PROCAMPO in the RIF-regression). 

To adjust standard errors, we use the bootstrapping method with 100 repetitions for each 

percentile-specific coefficient. Using the adjusted standard errors, dashed lines are the lower 

and upper limits of the 95% confidence intervals of the percentile-specific marginal effects. 

Figures 4a and 4b suggest that the negative effect of PROCAMPO on farms’ TE is not the 

same for all farms. Interestingly, we encounter differential effects, that is, the size of the 

negative association between PROCAMPO and TI increases with TI. The marginal effect of 

the subsidy payments is larger for those farms that operate further away from the frontier. For 

                                                           
41 The set of RIF-regressions uses the same model specification for the mean TI equation as in Table 5. 
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example, Figure 4b shows that at the 10-th percentile, PROCAMPO increases TI by 3.70%. In 

contrast, at the 90-th percentile, PROCAMPO rises TI by 15.15%. Both figures show that the 

subsidy-TI link is not monotonic, which also justifies the use of Wang’s model. 

Figure 4. Percentile-specific marginal effects of PROCAMPO on technical inefficiency 

 

 

  

Figure 4a. Model (3) Figure 4b. Model (6) 

 

Turning now to the observation-specific effect of PROCAMPO on farms’ TE, we use equation 

(11), to compute such effects. Table 6 displays the distribution of marginal effects of all 

variables in the mean TI equation. On average, and other things equal, one additional year of 

experience reduces TI by 0.02%. Taking the mean of the marginal effect, a 38 years old farmer 

is approximately 0.38% less efficient than a 57 years old agriculturalist.42 Thus, experience on 

farming activities slightly reduce inefficiencies in the production process. 

Regarding years of schooling, one more year of education improves the manner in which 

farmers use available resources and makes them 1.44-1.45% more efficient. Before 1993, 

primary school education was compulsory and free in Mexico.43 These studies require 6 years 

of schooling (sample mean equals 6.13 years) thus most farmers in the sample were subject to 

such regulation. Since 1993, both primary and secondary education are compulsory and free. 

                                                           
42 Sample mean equals to 58 years. 
43 Most of the farmers born in 1956 and completed their studies before the 1993 reform. 
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Therefore, one may expect that three additional years of (secondary) education of younger 

farmers will rise TE in the subsequent years by approximately 4.32-4.35%. 

The mean of the observation-specific marginal effects of land ownership has opposite signs in 

the CD and TL models. The former (latter) model suggests that land ownership slightly 

increases (reduces) TI. Therefore, the results for the relationship between area-owned and TI 

are not conclusive. In any case, increasing the share of area-owned to total area by 10% leads 

to 0.02% and -0.004% changes in TI scores in average, respectively. Thus, buying or renting 

land does not considerably improve the use of available resources. 

Holding other things fixed if farmers increase the proportion of hired labour to total labour by 

10%, TI diminishes between 0.80% and 0.90%. Using the mean of the corresponding variables, 

hiring an additional full-time worker or 253 jornales (2,024 working hours per annum) 

increases the proportion of hired labour to total labour from 24% to 58%. Consequently, such 

an adjustment leads to a reduction of 3% in TI scores. Further research is required to distinguish 

the size of the corresponding marginal effects between full-time workers, temporary workers 

and jornaleros.  

Results in Table 6 suggest that a 1% increase in the degree of specialisation makes farmers 

0.55-0.64% more inefficient. Currently, 75.54% of the 33,721 farms in the sample allocate all 

their land to a single commodity. This high degree of specialisation might be the reason for 

such an effect. To contextualise the size of the (average) marginal effect in Table 6, if an 

average farmer equally allocates his land to the production of two different crops (Herfindahl 

equals 0.50), we expect that this farmer would be 25-29% more efficient than a fully specialised 

farmer (Herfindahl index equals 1). Therefore, benefits from coping with production risks and 

selecting the most suitable crop for heterogeneous qualities of land (diversification) exceed 

benefits from specialisation, e.g. more experience on the production of a particular crop. Such 
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finding coincides with previous findings in the existing literature (Manjunatha et al., 2013; 

Manevska-Tasevska et al., 2013). 

Table 6 also shows that installing an irrigation system in a rain-fed field, which is a 100% 

increase in the percentage of irrigated area, reduces the waste of resources and makes farmers 

16% more efficient. 44  For some plants, water stimulates fertilisers and nutrients uptake 

therefore, the availability of irrigation is crucial since it guarantees the farmer can cope with 

water shortages form unreliable rainfall. Policy-makers should use this finding to design 

policies that facilitate the acquisition of irrigation equipment and infrastructure. Selling 

agricultural commodities abroad is not significant.  

Table 6. Marginal effects of variables in the technical inefficiency model 

  Model (3) Model (6) 

Variable Mean Min. Max. Mean Min. Max. 

Age -0.0002 -0.0046 0.0013 -0.0002 -0.0073 0.0019 

Schooling -0.0144 -0.0592 0.0028 -0.0145 -0.0704 0.0033 

Owned area 0.0022 -0.0994 0.0388 -0.0004 -0.1103 0.0328 

Hired labour -0.0910 -0.2156 -0.0216 -0.0827 -0.2756 -0.0120 

Herfindahl 0.6388 0.2258 0.8226 0.5490 0.1849 1.0071 

Irrigated area -0.1632 -0.3660 -0.0407 -0.1591 -0.4418 -0.0368 

Abroad -0.0411 -0.1726 0.3125 0.0234 -0.1185 0.5030 

 
    

    

Procampo (dummy) 0.1011 -0.1048 0.6932 0.1075 -0.0659 0.6787 

Source: own elaboration based on inefficiency effects models and Wang (2002) 

 

In average, PROCAMPO increases TI by 10-11% (see Table 6). To examine the distribution 

of observation specific-marginal effects, Figures 5a and 5b shows the relationship between TE 

scores (horizontal axis) and the observation-specific marginal effect of PROCAMPO on TI 

(vertical axis). The vertical (horizontal) dashed line is the ATE in Table 4 (zero line). From 

                                                           
44 This effect does not arise due to a misspecification of the frontier function since the cost of irrigation in part of the 

intermediate inputs variable. 
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Table 6, we find that the subsidy-TI link alternate signs within the sample. This confirms the 

existence of differential effects of subsidy payments on TI encountered in the RIF-regressions. 

By simply looking at Figures 5a and 5b, the positive effect of PROCAMPO on TI decreases as 

TE scores increases. Figures 4a and 4b show similar trends. However, using a more flexible 

specification of the SFA model, via Wang’s model, we encounter that PROCAMPO reduces 

TI in some farms (farms below the zero line in Figures 5a and 5b). According to models (3) 

and (6), 31.48% and 26.46% of the 33,721 farms in the sample are below the zero line in 

Figures 5a and 5b respectively, that is, these farms use PROCAMPO to improve TE. 

Figure 5. Marginal effects of PROCAMPO on technical inefficiency 

  

  

Figure 5a. Model (3) Figure 5b. Model (6) 

 

Models 3 and 6 suggest that PROCAMPO reduces (increases) TI by 3.91% (16.55%) and 2.25% 

(15.43%) in those farms below (above) the zero line, respectively. We notice that farms above 

the zero line use less capital, e.g. machinery and equipment, than those below the zero line 

($37,974 versus $136,471 of average ownership cost of capital). Furthermore, 23.31% of farms 

with a positive PROCAMPO-TI relationship use oxen more frequently than farms with a 

negative subsidy-TI link (10.80%). Farms below the zero line are larger than other farms: 51 
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hectares versus 22 hectares of utilised land, 11,049 versus 4,145 working hours per annum and 

$642,069 versus $93,746 of annual expenses on intermediate inputs.45  

Regarding inefficiency effects, we do not observe significant differences in the age of the 

farmer and area-owned. However, farmers, who use PROCAMPO to increase TE, tend to be 

more educated than their counterparts (9.54 versus 4.90 years of schooling). Moreover, such 

farms hire more labour than other farms (51.27% versus 14.11% of total labour). In this regard, 

farms with a positive PROCAMPO-TI link tend to use more family labour than other farms, 

which the farmer cannot discipline easily. The degree of specialisation is slightly larger for 

farms above the zero line (Herfindahl index equals 0.92 versus 0.89). Farms with a positive 

PROCAMPO-TE association irrigate 82% of total farmland while other farms only irrigate 11% 

of the total area. Thus, policy-makers should reverse the negative association between 

PROCAMPO and TE by: (i) helping farmers to mechanise the production of crops, (ii) 

providing farmers with extension services (or education), (iii) facilitating the procedures to hire 

labour, (iv) incentivising crop diversification practices and (v) helping farmers to install 

irrigation facilities. 

4.3. Robustness checks 

To verify the consistency of previous results, we conduct a set of robustness checks. Table 7 

shows the size of the sample or subsample used in the SFA model, the distribution of ATEs, 

the coefficient associated to the PROCAMPO variable in the mean TI equation and the 

distribution of observation-specific marginal effects of PROCAMPO on TI from the CD and 

TL models respectively. To be consistent with previous results, we use the same functional 

forms as in Tables 3 and 5.  

                                                           
45 All these figures are the corresponding subsample means. 
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We estimate SFA models for both annual and perennial crops. Overall, we do not observe 

significant differences by including farms with perennial crops in the analysis. We also 

estimate SFA models for different farm types. The existing literature uses the proportion of 

revenue attachable to a particular activity to classify farms. Most of the empirical analyses use 

a threshold of 2/3 of total revenue. Using this criterion, we estimate SFA models for all, beef 

cattle, arable, mixed and pigs farms. We encounter strongly significant effects of PROCAMPO 

on farms’ TI in the entire sample and the subsample of arable farms. However, for non-arable 

activities such an effect is not significant. Some of these farms might receive the subsidy since 

at most 1/3 of total revenues comes from arable activities. Under such circumstances, the 

subsidy might not be enough to influence TI at the farm-level. This may also apply to mixed 

farms, which derive less than 2/3 of revenue from arable activities, and therefore the quantity 

of land they can enrol in PROCAMPO might not be sufficiently large to influence TI.     

To examine whether the subsidy-TI link varies among farm size, we split the sample of annual 

crops into small, medium and large-sized farms. The former type comprises those farms with 

less than or 5 hectares of land. Medium-sized farms utilise more than 5 hectares and less than 

20 hectares of land. Large farms use 20 or more than 20 hectares of land. Table 7 suggests that 

the parameter associated to the PROCAMPO variable in the mean TI equation is always 

positive. Nonetheless, observation-specific marginal effects vary among farm sizes. For 

instance, PROCAMPO reduces TI in some small farms. Such finding suggests that scarcity of 

resources forces small farms to use inputs more efficiently (see for example Helfand and 

Levine (2004)).  The PROCAMPO-TI relationship is not statistically significant for irrigated 

farms. However, we encounter a significant subsidy-TI relationship in rain-fed farms. In this 

regard, rain-fed farms receiving PROCAMPO are in average 12%-13% less efficient than rain-

fed farms without the subsidy.    
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Table 7. Robustness checks 

Model/sample Obs. 

Model (3) Model (6) 

ATE PROCAMPO Marginal effect ATE PROCAMPO Marginal effect 

Mean Min. Max. (TI equation) Mean Min. Max. Mean Min. Max. (TI equation) Mean Min. Max. 

Annual and perennial crops 

Annual crops 33,721 42.70% 0.43% 89.66% 0.7289*** 0.10 -0.10 0.69 45.80% 0.47% 90.23% 0.7109*** 0.11 -0.07 0.68 

Annual and perennial 36,719 41.52% 0.42% 89.67% 0.6760*** 0.10 -0.14 0.65 44.71% 0.50% 90.11% 0.6675*** 0.10 -0.08 0.65 

Farm types 

All farms 56,529 47.79% 0.70% 89.84% 0.6349*** 0.04 -0.18 0.58 50.50% 0.56% 90.18% 0.7208*** 0.05 -0.08 0.60 

Beef cattle 5,792 16.72% 8.15% 44.82% 0.0436 0.04 0.04 0.04 9.41% 4.03% 28.14% 0.0244 0.13 0.13 0.13 

Arable 46,300 46.15% 0.57% 89.39% 0.7403*** 0.07 -0.19 0.71 48.55% 0.57% 90.01% 0.6817*** 0.08 -0.09 0.65 

Mixed 3,908 64.26% 1.08% 91.01% 1.7535 0.00 -0.06 1.36 64.60% 0.83% 91.28% 1.0424 0.01 -0.01 0.91 

Pigs 529 66.49% 5.09% 97.98% 1.7521 0.04 -0.33 1.74 37.96% 2.30% 78.26% -0.3697 -0.10 -0.37 0.15 

Farm size 

Small (<=5 has) 13,994 27.73% 3.65% 81.92% 0.3177*** -0.82 -11.89 0.32 27.27% 3.47% 81.81% 0.2905*** -0.75 -10.80 0.29 

Medium (>5 & <20 has) 10,764 51.43% 0.53% 89.47% 28.7912 4.83 -2.50 17.32 49.96% 0.35% 89.77% 0.8540*** 0.10 -0.03 0.73 

Large (=>20 has) 8,963 48.20% 0.04% 92.28% 0.3202 0.02 -0.02 0.31 48.67% 0.04% 91.54% 0.4422* 0.03 -0.03 0.40 

Irrigated and rain-fed farms 

Irrigated 12,439 56.17% 0.10% 92.11% 0.6291 -0.03 -0.07 0.62 55.35% 0.08% 92.79% 0.3243 -0.02 -0.04 0.32 

Rain-fed 21,282 52.64% 0.83% 88.73% 0.7712*** 0.12 0.03 0.52 55.18% 0.74% 88.61% 2.1352** 0.13 0.02 1.00 

Annual crops: 100% of total revenue comes from annual crops. Annual crops and perennial crops: 100% of total revenue comes from annual and perennial crops. 

All farms: all farms with complete information in the NAS. Beef cattle, arable and pigs farm types: at least 2/3 of total revenue comes from the corresponding activity. Mixed: any of the activities account for 2/3 of total revenue. 

Rain-fed farms: farms with share of irrigated area to total area equals zero. Irrigated farms: farms with share of irrigated area to total area greater than zero. 

PROCAMPO (TI equation): this is the coefficient of PROCAMPO in the (mean) Technical Inefficiency equation for the corresponding sample. 

*** p<0.01, ** p<0.05, * p<0.1 
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ATE scores vary among farm types, size and the availability of irrigation. On the one hand, 

mixed farms tend to be more efficient than other farm types. Such result support the previous 

finding about the positive effect of diversification on TE. Farms producing beef cattle have the 

lowest ATE scores. There are two potential explanations for such finding. First, the production 

of beef cattle mainly relies on extensive practices in Mexico therefore larger quantities of land 

appear in the frontier function. Second, the time at which revenues from this type of farm 

become apparent does not necessarily coincide with the 2014 agricultural year. Thus, total 

output reported in the NAS might be below the actual output. Moreover, we use the same 

measure of capital as in the main SFA estimation, which is not a correct measure of capital 

endowments for beef cattle farms. Interestingly, we encounter that medium-sized farms tend 

to be more efficient than small and large farms, which suggests that the optimal size of crop 

farms is within the 5-20 hectares range. Further investigation is needed to confirm such result. 

As expected, irrigated farms are slightly more efficient than rain-fed farms. 

5. Conclusions 

Using the stochastic frontier approach and cross-sectional data on 33,721 crop farms, this 

research investigates the effect of PROCAMPO subsidy payments on farms’ technical 

efficiency in Mexico. This study contributes to the existing literature by providing empirical 

evidence on the link between agricultural subsidies and TE in a large developing country where 

there is no prior evidence concerning any such relationship and computing observation-specific 

and percentile-specific marginal effects of subsidy payments on TI using Wang’s formula and 

RIF-regressions respectively.  

This investigation uses a dummy variable indicating whether the farmer receives the subsidy 

or not in order to identify the subsidy-TI link. The main findings suggest that: i) the average 

technical efficiency in the 33,721 crop farms is between 43% and 46%; ii) the negative effect 

of PROCAMPO on farms’ TE increases as technical inefficiency rises; iii) according to the CD 
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and TL models, PROCAMPO negatively influences farms’ TE in 68.52% and 73.54% of farms 

in the sample respectively (positive effects in the remaining farms); and iv) age, years of 

schooling, area-owned, hired labour, diversification and irrigation increase TE scores. 

The estimation of farms’ TE scores and the examination of inefficiency effects become relevant 

since policy-makers should re-evaluate the effectiveness of public policies on farms’ 

performance. Looking at the characteristics of those farms with a positive subsidy-TE 

relationship, policy-makers should contribute to the mechanisation of production of crops, 

provide farmers with extension services, facilitate the procedure to hire labour, incentivise 

crops diversification and help farmers to install irrigation facilities. Furthermore, policy-

makers should re-formulate the allocation criteria of the subsidisation programme, which may 

not be suitable for the current context, e.g. subsidies linked to the level of TE. 

To interpret the set of findings in this research the reader should be aware of the following 

caveats. First, TE (TI) scores of crop farms may be upward (downward) biased because the 

ownership cost of buildings is not accounted for in the frontier model. Second, some farms 

might put more land into cultivation in order to enrol their lands into the subsidisation 

programme. These fields appear in the frontier equation and might cause some biases in the 

non-negative error term. Further steps of this research should account for endogeneity issues 

since some of the inputs in the frontier equation might be correlated with stochastic events, 

which are usually part of the error term. 
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Appendix 1 

Figure 6. Distribution of PROCAMPO 
 

 

 
8a. Subsidised area and beneficiaries 8b. Total cash transfer 

 

Source: own elaboration based on INEGI (2014) and SAGARPA (2017) 
 

 

Table 8. CCR Data Envelopment Analysis models 

Input-oriented 

Envelopment model Multiplier model 
  

min 𝜃 − 휀 (∑ 𝑠𝑖
− + ∑ 𝑠𝑟

+
𝑠

𝑟=1

𝑚

𝑖=1
) max 𝑧 = ∑ 𝜇𝑟𝑦𝑟𝑜

𝑠

𝑟=1
 

  

subject to subject to 
  

∑ 𝑥𝑖𝑗𝜆𝑗

𝑛

𝑗=1
+ 𝑠𝑖

− = 𝜃𝑥𝑖𝑜   𝑖 = 1, … , 𝑚; ∑ 𝜇𝑟𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 0
𝑚

𝑖=1

𝑠

𝑟=1
 

  

∑ 𝑦𝑟𝑗𝜆𝑗

𝑛

𝑗=1
− 𝑠𝑟

+ = 𝑦𝑟𝑜   𝑟 = 1, … , 𝑠; ∑ 𝑣𝑖𝑥𝑖𝑜 = 1
𝑚

𝑖=1
 

  

𝜆𝑗 ≥ 0                                 𝑗 = 1, … , 𝑛; 𝜇𝑟 , 𝑣𝑖 ≥ 휀 > 0 
  

Output-oriented 

Envelopment model Multiplier model 
  

max 𝜑 + 휀 (∑ 𝑠𝑖
− + ∑ 𝑠𝑟

+
𝑠

𝑟=1

𝑚

𝑖=1
) min 𝑞 = ∑ 𝑣𝑖𝑥𝑖𝑜

𝑚

𝑖=1
 

  

subject to subject to 
  

∑ 𝑥𝑖𝑗𝜆𝑗

𝑛

𝑗=1
+ 𝑠𝑖

− = 𝑥𝑖𝑜   𝑖 = 1, … , 𝑚; ∑ 𝑣𝑖𝑥𝑖𝑗 − ∑ 𝜇𝑟𝑦𝑟𝑗 ≥ 0
𝑠

𝑟=1

𝑚

𝑖=1
 

  

∑ 𝑦𝑟𝑗𝜆𝑗

𝑛

𝑗=1
− 𝑠𝑟

+ = 𝜑𝑦𝑟𝑜   𝑟 = 1, … , 𝑠; ∑ 𝜇𝑟𝑦𝑟𝑜 = 1
𝑠

𝑟=1
 

  

𝜆𝑗 ≥ 0                                 𝑗 = 1, … , 𝑛; 𝜇𝑟 , 𝑣𝑖 ≥ 휀 > 0 
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𝜃: efficiency score (ratio) 

𝜑: efficiency score (ratio) 

휀: non-Archimedean element smaller than any positive real 

number 

𝑚: total number of 𝑖-th inputs  

𝑠: total number of 𝑟-th outputs 

𝑛: total number of 𝑗-th farms to be evaluated 

𝑠𝑖
− , 𝑠𝑟

+ : slack variables to transform inequalities into 

equalities  

𝑥𝑖𝑗: amount of input 𝑖 used by farm 𝑗 

𝑥𝑖𝑜: observed input value of the farm to be evaluated 

𝑦𝑟𝑗: level of output 𝑟 produced by farm 𝑗 

𝑦𝑟𝑜: observed output value of the farm to be evaluated 

𝜆𝑗: set of parameters 

𝑧: efficiency score (ratio) 

𝑞: efficiency score (ratio) 

𝜇𝑟: returns to scale parameter (multipliers) 

𝑣𝑖: returns to scale parameter (multipliers) 

Source: adapted from Cooper et al. (2011) 

 

Table 9. An overview of the SFA models 

Input-oriented Output-oriented 
  

𝑦 = 𝑓(𝒙 ∗ exp(−𝜂)),     𝜂 ≥ 0 𝑦 = 𝑓(𝒙) ∗ exp(−𝑢) ,     𝑢 ≥ 0 
  

     or      or 
  

𝑦 = 𝑓(𝑥 ∗ 𝑒−𝜂) 𝑦 = 𝑓(𝑥) ∗ 𝑒−𝑢 
  

where for small values of 𝜂:      where for small values of 𝑢: 
  

TE = exp(−𝜂) = 1 − 𝜂 = 1 − 𝑇𝐼 𝑇𝐸 = exp(−𝑢) = 1 − 𝑢 = 1 − 𝑇𝐼 
  

Functional forms of production functions 
 

Cobb-Douglas production function (Cobb and Douglas (1928)) 
 

ln 𝑦 = 𝛽0 + ∑ 𝛽𝑗

𝐽

𝑗=1
ln 𝑥𝑗 

 

Generalised production function (Zellner and Revankar (1969)) 
 

ln 𝑦 + 𝜃𝑦 = 𝛽0 + ∑ 𝛽𝑗

𝐽

𝑗=1
ln 𝑥𝑗  

 

Transcendental production function (Halter (1957)) 
 

ln 𝑦 = 𝛽0 + ∑ 𝛽𝑗

𝐽

𝑗=1
ln 𝑥𝑗 + ∑ 𝛼𝑗

𝐽

𝑗=1
. 𝑥𝑗 . 

 

Translog production function (Christensen et al. (1973)) 
 

ln 𝑦 = 𝛽0 + ∑ 𝛽𝑗

𝐽

𝑗=1
ln 𝑥𝑗 +

1

2
∑ ∑ 𝛽𝑗𝑘 ln 𝑥𝑗

𝐾

𝑘=1
ln 𝑥𝑘

𝐽

𝑗=1
,        𝛽𝑗𝑘 = 𝛽𝑘𝑗 

 

𝑦: level of output 

𝑓(. ): production function (frontier) 

𝒙:non-negative input vector 

𝜂: measurement of input-oriented technical  

    inefficiency 

𝑢: measurement of output-oriented technical  

     inefficiency 

TE: technical efficiency scores 

𝑇𝐼: technical inefficiency 

𝐽 or 𝐾: total number of inputs  

Source: adapted from Kumbhakar et al. (2015) 
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Table 10. Set of variables in the existing literature (Frontier function) 

Variable Description Units 
 

Stochastic Production Function 
 

𝑦
𝑖
 Total value of output deflated by the corresponding price index (or quantities) $, litres, kg 

𝑙𝑎𝑛𝑑𝑖 Total utilised agricultural land ha 

𝑙𝑎𝑏𝑜𝑢𝑟𝑖 Total labour including hired and family workers hours, $ 

𝑐𝑎𝑝𝑖𝑡𝑎𝑙
𝑖
 Total value of stock of capital or total depreciation value (machinery, buildings, 

equipment, breeding herd, etc.) or total horsepower of agricultural machinery and 

total electric motors 

$, HP 

𝑖𝑛𝑝𝑢𝑡𝑠
𝑖
 Other expenses on purchased inputs (intermediate expenses) or quantities e.g. 

fertilisers, or disaggregated expenses on fertilisers, seeds, crop protection, feed, 

veterinary fees, energy, etc.  

$, kg/ha 

   

Stochastic Production Function (other variables) 
 

𝑒𝑥𝑡𝑖 Use of extension services (public and private) visits 

𝑎𝑟𝑖𝑑𝑖 Aridity index, ratio of annual temperature to total volume of rainfall ºC/mm 

𝑎𝑙𝑡𝑖 Altitude masl 

𝑠𝑜𝑖𝑙𝑖 Soil quality (dummy variables) dummy 

𝑐ℎ𝑎𝑛𝑔𝑒
𝑖
 Dummy variables for policy reforms dummy 

𝑙𝑓𝑎
𝑖
 LFA payments (dummy variables) dummy 

 

 

Table 11. Set of variables in the existing literature (Technical inefficiency function) 

Variable Description Units Expected 

sign 
  

Farmers’ characteristics  
  

𝑒𝑑𝑢𝑖 Farmer’s years of education years + 

𝑎𝑔𝑒
𝑖
 Age of the farmer or farm’s manager  years + 

𝑒𝑥𝑝𝑒𝑟
𝑖
 Number of years as a farmer years + 

    

Farm characteristics (managerial practices and physical characteristics)  
  

𝑟𝑒𝑛𝑡𝑒𝑑𝑖 Ratio of rented/owned land to total agricultural land % -+ 

ℎ𝑖𝑟𝑒𝑖 Ratio of hired/family labour to total labour or dummy variable for farm hiring labour %, dummy -+ 

𝑑𝑒𝑏𝑡𝑖 Ratio of total debt to total assets (cows) or total debt %, $ -+ 

𝑠𝑝𝑒𝑐
𝑖
 Specialisation, share of the main output in total output, or the Herfindahl index, or multiple 

cropping index 

% -+ 

𝑒𝑥𝑡𝑒𝑟𝑖 Share of output sold in the external market % -+ 

𝑚𝑎𝑟𝑘𝑒𝑡𝑖 Share of marketed output in total output (or self-consumption) % -+ 

𝑜𝑓𝑓𝑖𝑛𝑐
𝑖
 Off-farm income or off-farm job $, dummy -+ 

𝑙𝑡𝑜𝑙𝑖 Land to labour or capital to labour ratio ha-$/worker  

𝑠𝑢𝑏𝑖 Share of total, coupled, or decoupled subsidies in total farm income; or total value of subsidies 

(per unit of land); or dummy variables indicating whether a farmer receives a subsidy or not  

$, $/ha,  

dummy 

 

𝑒𝑥𝑡𝑖 Use of extension services or participation in management workshops (years) dummy, 

years 

 

𝑖𝑛𝑠𝑒𝑚𝑖 Use of artificial insemination dummy  

𝑠𝑦𝑠𝑡
𝑖
 Different production/farming systems (dummy variables) dummy  

𝑡𝑟𝑒𝑎𝑡𝑖 Cows under bovine somatotropin treatment %  

𝑠𝑡𝑎𝑙𝑙𝑖 Use of free stall housing dummy  

𝑓𝑒𝑒𝑑
𝑖
 Ratio of purchased feedstuffs to the number of cows %  



56 
 

𝑠𝑎𝑣𝑒𝑖 Family savings  $  

𝑖𝑛𝑣𝑒𝑠𝑖 Investment per cow or total investment $  

𝑖𝑛𝑡𝑒𝑛𝑖 Intensive farming operations or hectares per livestock unit dummy, 

ha/units 

 

𝑠𝑒𝑒𝑑𝑖 Type of seeds (modern variety or not)  dummy  

𝑐𝑟𝑜𝑝
𝑖
 Share of cropped land %  

𝑖𝑛𝑠𝑢𝑟𝑖 Share of crop insurance income to total farm income as proxy to weather conditions (or 

disaster payments) 

%, $  

𝑖𝑛𝑝𝑢𝑡𝑠
𝑖
 Expenses of different inputs per acre (seed, fertiliser, pesticides, veterinary fees, and 

machinery)  

$/acre  

𝑝𝑙𝑎𝑛
𝑖
 Improvement plan is carried out in the farm dummy  

𝑝𝑒𝑠
𝑖
 Farm environmental payments as a proportion of total income or total amount of 

environmental payments 

%, $  

𝑒𝑛𝑡𝑒𝑟𝑖 Entrepreneurial orientation index index  

𝑜𝑟𝑔𝑎𝑛
𝑖
 Organic farms dummy, %  

𝑙𝑒𝑔𝑎𝑙
𝑖
 Legal status of the farm dummy  

𝑚𝑒𝑐𝑖 Number of hours of mechanical operations  hours  

𝑚𝑜𝑏𝑖𝑙𝑒𝑖 Number of telephones per 100 people units  

𝑚𝑎𝑛𝑎𝑔𝑒
𝑖
 Workers per manager persons  

𝑠𝑖𝑧𝑒𝑖 Farm or herd size (farmland or number of animals) ESU -+ 

𝑖𝑟𝑟𝑖𝑔𝑎
𝑖
 Type of irrigation (water pump or not) or irrigation (irrigated or not) or share of irrigated land dummy, % + 

    

External factors  
  

𝑝𝑟𝑖𝑐𝑒
𝑖
 Price of the relevant output $/litre,$/kg  

𝑟𝑒𝑔𝑖𝑜𝑛
𝑖
 Regional dummies dummy  

𝑤𝑎𝑡𝑒𝑟𝑖 Dummy variables for water rights regimes dummy  

𝑟𝑜𝑎𝑑𝑖 Road density in the corresponding region km/km2  

𝑠𝑜𝑖𝑙𝑖 Index of soil quality %,EMZ/ha  

𝑙𝑓𝑎
𝑖
 Less Favoured Areas (dummy variables) dummy  

𝑎𝑙𝑡𝑖 Altitude (proxy of geoclimatic heterogeneities) dummy  

𝑞𝑢𝑜𝑡𝑎
𝑖
 Milk quota kg/year  

𝑡𝑎𝑥𝑖 Simplified sales tax dummy  

𝑣𝑜𝑡𝑒𝑖 Green voters persons  

𝑑𝑖𝑠𝑡𝑖 Distance to the next dairy km  

𝑐ℎ𝑎𝑛𝑔𝑒
𝑖
 Dummy variables for structural changes such as EU accession, policy reforms, etc. dummy  

𝑒𝑛𝑣𝑖 Environmental restrictions dummy  
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Dependent variable: 

a) Total output 

𝑦𝑖 = ∑ 𝑦𝑠,𝑖

5

𝑠=1
 

where, 𝑦𝑖 is the total output per farm and 𝑠 = {crops, crops (protected), beef cattle, milk, pigs}. 

It includes the value of annual crops produced in the 2014 agricultural year46 and the value of 

perennial crops47, beef cattle, milk, and pigs sold in the same period.  

Frontier variables: 

a) Total ownership cost of capital 

b) Total area  

c) Working hours 

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠𝑖 = 𝑤ℎℎ𝑔6,𝑖 + 𝑤ℎℎ𝑙6,𝑖 + 𝑤ℎ𝑗𝑜𝑟,𝑖 + 𝑤ℎ𝑓𝑎𝑚,𝑖 

where, 𝑤ℎℎ𝑔6, 𝑤ℎℎ𝑙6, 𝑤ℎ𝑗𝑜𝑟 , and 𝑤ℎ𝑓𝑎𝑚 are the total number of working hours spend on 

farming activities from workers hired for 6 months or more, workers hired for less than six 

months, ‘jornaleros’, and family members respectively48. 

d) Intermediate inputs 

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑖𝑛𝑝𝑢𝑡𝑠 = ∑ 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠𝑙

𝐿

𝑙=1
 

where, 𝑒𝑥𝑝𝑒𝑛𝑠𝑒𝑠𝑙 are annual expenses and 𝑙 = {preparation of land/substrate, 

sowing/planting, fertilisers, plagues control, irrigation, harvesting activities, balanced feed, 

medicines, vaccines, surgeries, veterinary fees, rent payments (machinery, equipment, and 

facilities), technical support (extension services), gasoline, diesel, oils, additives, electricity, 

freight charges, irrigation rights, other expenses, output for self-consumption (seeds and 

livestock feed)}.  

Technical inefficiency variables: 

a) Age of the farmer 

b) Schooling (years of study) 

c) Owned area 

𝑜𝑤𝑛𝑒𝑑 𝑎𝑟𝑒𝑎𝑖 = (𝑜𝑤𝑛𝑒𝑑 𝑎𝑟𝑒𝑎𝑖/𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎𝑖) ∗ 100 

                                                           
46 Barley, maize, oat, rice, sorghum, wheat, beans, chillies, cotton, potatoes, soy, green tomato, melon, onion, red tomato, 

squash, and watermelon. 
47 Cacao, coffee, apples, avocado, bananas, grapes, lemon, mango, oranges, alfalfa, and sugar cane 
48 There were 253 working days from 1 October 2013 to 30 September 2014. Assuming a working day of 8 hours, the total 

number of working hours per annum is 2,024. Thus, 𝑤ℎℎ𝑔6,𝑖 is the number of workers hired for or more than 6 months times 

2,024. 𝑤ℎℎ𝑙6,𝑖 is the number of workers hired for less than 6 months times 1,012. 𝑤ℎ𝑗𝑜𝑟,𝑖 is the number of ‘jornaleros’ times 

the average number of working hours per day and ‘jornal’ times the total number of working days of the corresponding 

‘jornalero’. Moreover, 𝑤ℎ𝑓𝑎𝑚,𝑖 is the sum over family members of the average number of hours that each member spends on 

farming activities per day times 253.  
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d) Hired labour 

ℎ𝑖𝑟𝑒𝑑 𝑙𝑎𝑏𝑜𝑢𝑟𝑖 = ((𝑤ℎℎ𝑔6,𝑖 + 𝑤ℎℎ𝑙6,𝑖 + 𝑤ℎ𝑗𝑜𝑟,𝑖)/𝑤𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠𝑖) ∗ 100 

e) Specialisation: Herfindahl index 

𝐻𝐼𝑖 = ∑  (𝐴𝑗𝑖 𝑇𝐴𝑖⁄ )
2𝐽

𝑗=1
 

f) Irrigated area 

𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎𝑖 = (𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎𝑖/𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎𝑖) ∗ 100 

g) External market (dummy variable for farms selling abroad) 

h) Procampo (dummy variable) 

𝑃𝑟𝑜𝑐𝑎𝑚𝑝𝑜_𝑑𝑖 = {
1    𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑠 𝑃𝑟𝑜𝑐𝑎𝑚𝑝𝑜
0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

Table 12. Model specification tests 

 
    

Hypothesis 1 LR-Test d.f. Prob>𝝌𝟐 
    

Model (1) nested in model (2) H1: 𝛾0 = 0 and 𝛾𝑚 = 0      ∀ 𝑚  2,414*** 9 0.00 

Model (1) nested in model (3) H1: 𝛾0 = 0 and 𝛾𝑚 = 0      ∀ 𝑚 2,537*** 17 0.00 

Model (4) nested in model (5)  H1: 𝛾0 = 0 and 𝛾𝑚 = 0      ∀ 𝑚  2,007*** 9 0.00 

Model (5) nested in model (6) H1: 𝛾0 = 0 and 𝛾𝑚 = 0      ∀ 𝑚 2,095*** 17 0.00 
     

Hypothesis 2    
    

Model (2) nested in model (3) H1: 𝜗0 = 0 and 𝜗𝑚 = 0      ∀ 𝑚  123*** 8 0.00 

Model (5) nested in model (6) H1: 𝜗0 = 0 and 𝜗𝑚 = 0      ∀ 𝑚 88*** 8 0.00 
     

 

 

 

 

 

 

 

 

 

 


