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Are Glyphosate-Resistant Weeds a Threat to Conservation Agriculture?  

Evidence from Tillage Practices in Soybean 

Abstract 

 The use of conservation tillage in American soybean production has become increasingly 

common since the 1950’s, improving soil health, reducing soil erosion, and reducing fuel 

consumption. This trend has been reinforced by the availability of the general-purpose herbicide 

glyphosate and glyphosate-resistant seed genetics since the mid-1990’s. However, weeds have 

since evolved to resist glyphosate, reducing its effectiveness. In this paper, we provide evidence 

that the spread of glyphosate-resistant weeds is responsible for significant reductions in the use 

of conservation tillage in soybean production. To capture the effects of glyphosate-resistant 

weeds on tillage adoption, we estimate a probit model of tillage choice, using a large panel of 

field-level soybean management decisions from across the United States, spanning 1999-2016. 

We find that while the first two glyphosate-resistant weed species have little effect on tillage 

practices, by the time that eight glyphosate-resistant weed species are present, conservation 

tillage use falls by 6.2 percentage points and no-tillage use falls by 9.2 percentage points. We 

conservatively estimate that the spread of glyphosate-resistant weeds has indirectly caused water 

quality and climate damages valued at over $470 million. This total is likely to grow as 

glyphosate-resistance become more widespread and farmers continue to turn to tillage for 

supplemental weed control.  

Introduction 

 Since the mid-1900’s, chemical herbicides have been an essential tool for weed control in 

the conventional production of soybeans and other U.S. field crops. Prior to the first commercial 
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herbicides, farmers typically relied on mechanical weed control, characterized by multiple tillage 

passes to uproot established weeds and disrupt weed seedling emergence. While intensive tillage 

can provide effective weed control, it comes at a cost to the environment, leading to increased 

soil erosion and energy use, which can impair water quality and increase the carbon footprint of 

agricultural production (Uri et al., 1999). In this paper, we explore how the declining efficacy of 

glyphosate, the most widely used herbicide in American soybean production, has led farmers to 

increase the use of tillage as a weed control tool. 

When first introduced, herbicides were rapidly adopted by American field crop farmers.  

Herbicides offered weed control as good or better than tillage at lower cost (Swinton and Van 

Deynze, 2017). The introduction of soybean varieties genetically engineered to resist glyphosate 

(and later other herbicides), has further shifted soybean weed control away from tillage (Perry et 

al., 2016a; Fernandez-Cornejo et al., 2012). Glyphosate is a broad-spectrum herbicide that could 

effectively control virtually all weeds when resistant seed varieties were first introduced. 

Glyphosate-tolerant crops, like Roundup ReadyTM soybean, allow farmers to spray the herbicide 

throughout the growing season without damaging their crop. Farmers utilizing these technologies 

could rely exclusively on glyphosate for weed control, forgoing tillage passes and therefore 

providing cost savings to farmers and averting environmental damages. 

As glyphosate use became more frequent in soybeans and other crops, weeds soon 

evolved to resist the chemical. In 2000, a population of horseweed growing in a soybean field in 

Delaware became the first identified case of glyphosate-resistance in weeds (VanGessel, 2001). 

As of 2017, glyphosate-resistance has been identified in 17 weed species in the United States 

(Heap, 2017). The rise of glyphosate-resistant weeds (GRWs) has led to a growing literature on 

best practices to delay and manage the onset of herbicide-resistance in weeds (Beckie, 2006; 
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Evans et al., 2015; Bonny, 2016; Beckie and Harker, 2017). The increased use of tillage for weed 

control is frequently found amongst these recommendations.  

A smaller literature has focused on how farmers have responded to the onset of GRWs. 

Livingston et al. (2015) reports the results of cross-sectional surveys of corn and soybean 

growers in 2010 and 2012 respectively. They find that farmers experiencing problems with 

GRWs frequently supplemented glyphosate-based weed control with non-glyphosate herbicides, 

increased their use of glyphosate, and increased the use of tillage. Wechsler et al. (2017) find that 

low numbers of GRWs have a fairly small impact on corn farmers’ weed control practices. Perry 

et al. (2016b) observe a sharp increase in the use of non-glyphosate herbicides in corn and 

soybeans from 2007 to 2011 and speculate that this increase is due to GRWs. Most recently, 

Lambert et al. (2017) find that weed control costs increase by $34-55/acre following the 

emergence of GRWs in upland cotton fields as farmers adopt labor-intensive alternatives to 

glyphosate. 

In this paper, we contribute to this literature by providing the first estimate of the impact 

of GRWs on the adoption rates of conservation tillage practices in soybeans. We do so first by 

developing a conceptual model of a cost-minimizing farmer who chooses among multiple 

herbicide and tillage options to meet predetermined weed control targets. This model indicates a 

non-linear response to herbicide-resistance: As more weed species develop herbicide resistance, 

farmers become increasingly likely to make major changes to their weed control practices. We 

then test this model empirically with data on the field-level weed control choices of thousands of 

soybean farmers during 1999-2016. Our econometric results indicate that while low numbers of 

GRWs have little impact on tillage choices, by the time that eight GRWs are present, 

conservation tillage falls by 6.2% and no-till adoption falls by 9.2%. Extrapolating from 
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literature estimates of soil erosion and carbon emissions from tillage, and their costs, we estimate 

that this shift towards more intensive tillage practices has caused damage to water quality and 

climate worth $470 million. 

The rest of this paper is structured as follows: We first present a conceptual model of a 

cost-minimizing farmer who seeks to control several weeds with many herbicide and tillage 

options. We then present our empirical strategy, followed by a discussion of the data. After 

presenting of our econometric results, we conduct a benefit-transfer simulation to illustrate 

potential environmental costs. We close with a discussion of the policy implications of our 

findings and directions for future research. 

Conceptual Model 

 We model a farmer’s tillage decision as a two-stage cost-minimization problem, 

assuming a farmer has already determined optimal levels of weed control that are consistent with 

maximization of expected utility (Lichtenberg and Zilberman, 1986). Letting 𝑘 ∈ {1, ⋯ , 𝐾} 

index different weed species, a farmer sets a weed control target for each of their soybean fields, 

denoted in vector form as 𝒈̅ = (𝑔̅1, ⋯ , 𝑔̅𝐾). This target represents the acceptable density of each 

weed in the field. 

A farmer can achieve these weed control targets through a combination of tillage systems 

and chemical herbicides. A farmer selects a single tillage system 𝜏 from the choice set {𝜏𝐶𝑇 , 𝜏𝐼𝑇}, 

where CT denotes conservation tillage systems and IT denotes conventional, intensive tillage 

systems. A farmer can select any combination of 𝐿 alternative herbicides to supplement weed 

control provided by his tillage system. Let ℎ𝑙 denote the (non-negative) quantity of herbicide 𝑙 ∈
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{1, ⋯ , 𝐿}, so that a farmer’s herbicide choice set is 𝑯 = ℝ+
𝐿 .1 Together, a farmer’s weed control 

choice set is {𝜏𝐶𝑇 , 𝜏𝐼𝑇}  × 𝑯. 

These choices provide weed control through a “kill function” for each weed, denoted by 

𝑔𝑘(𝒉, 𝜏). We assume that for all weeds 𝑔𝑘(𝒉, 𝜏) is twice continuously differentiable, that larger 

quantities of herbicide increase control at a decreasing rate (𝜕𝑔𝑘 𝜕ℎ𝑙⁄ > 0 and 𝜕2𝑔𝑘 𝜕ℎ𝑙
2⁄ < 0, 

∀𝑘, 𝑙), and that intensive tillage provides greater weed control than conservation tillage for any 

given choice of herbicides (𝑔𝑘(𝒉̅, 𝜏𝐼𝑇) >  𝑔𝑘(𝒉̅, 𝜏𝐶𝑇), ∀𝑘, 𝒉̅ ∈ 𝑯). Notice that when weed 𝑘 has 

adapted to resist herbicide 𝑙, 𝜕𝑔𝑘 𝜕ℎ𝑙⁄ = 0 for all quantities of that herbicide. 

We now turn to the costs of weed control. Denote the per unit costs of herbicide 𝑙 as 𝑤𝑙 

and the costs of tillage system 𝜏 as 𝑐(𝜏). These costs include labor, fuel, and chemical expenses, 

as well as potential capital investments for new tillage equipment if adopting a system for the 

first time. A farmer’s objective is to minimize these costs while achieving their weed control 

target. To do so, the farmer first determines the herbicide combination that minimizes total weed 

control costs for each of the two tillage systems subject to 𝐾 constraints (one for each weed 

species): 

min
𝒉

𝒘 ∙ 𝒉 + 𝑐(𝜏̅)  

𝑠. 𝑡. 𝒈(𝒉, 𝜏̅) ≥ 𝒈̅ 

The optimality conditions for this problem are: 

𝑤𝑙 = ∑ 𝜆𝑘 𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄𝑘  ∀𝑙 (1) 

                                                           
1 Note that farmers can combine different products via tank mixes. We envision 𝑯 as a farmer’s herbicide choice set 

accounting for all feasible tank mixes and other combinations of retail products. 
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𝜆𝑘[𝑔𝑘(𝒉, 𝜏̅) − 𝑔̅] = 0 ∀𝑘 (2) 

where 𝜆𝑘 are Lagrange multipliers for each constraint. Call the solution to the above 

minimization problem 𝒉∗(𝜏̅), and call the value function for this solution 𝑉(𝜏̅): 

𝑉(𝜏̅) ≡ 𝒘 ∙ 𝒉∗(𝜏̅) + 𝑐(𝜏̅) 

A farmer then compares the solutions to these first-stage cost-minimization problems for 

each tillage type and selects the least-cost option: 

𝜏∗ = argmin
𝜏∈{𝜏𝐶𝑇,𝜏𝐼𝑇}

{𝑉(𝜏𝐶𝑇), 𝑉(𝜏𝐼𝑇)} 

The full solution to a farmer’s weed control problem is thus the tillage-herbicide pairing, 

(𝜏∗, 𝒉∗(𝜏∗)). 

Comparative statics of herbicide resistance 

Now we use an exercise in comparative statics to consider how a decrease in the 

effectiveness of herbicide 𝑙, 𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄ , would affect  𝒉∗(𝜏̅). Let 𝒉̃∗(𝜏̅) denote the optimal 

herbicide choices in a scenario with 𝜕𝑔̃𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄ < 𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄ , ceteris paribus. Under 

what conditions does 𝒉̃∗(𝜏̅) ≠ 𝒉∗(𝜏̅)? 

If the weed control constraint for weed 𝑘 is binding in either scenario (hence 𝜆𝑘 > 0), 

then 𝒉̃∗(𝜏̅) ≠ 𝒉∗(𝜏̅), as 𝜕2𝑔𝑘 𝜕ℎ𝑙
2⁄ < 0 and therefore, by the continuity and strict monotonicity 

of 𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄ , 𝒉∗(𝜏̅) cannot satisfy optimality condition (1) if 𝜕𝑔̃𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄ <

𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄ . 

But if the weed control constraint for weed 𝑘 is non-binding in both scenarios (hence 

𝜆𝑘 = 0), then 𝒉̃∗(𝜏̅) = 𝒉∗(𝜏̅), as 𝜕𝑔𝑘(𝒉, 𝜏̅) 𝜕ℎ𝑙⁄  would be multiplied by zero in optimality 
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condition (1) and play no role in the solution. Thus, decreasing herbicide effectiveness has no 

effect on herbicide or tillage choices for weeds that were “over-controlled” prior to evolving to 

resist the herbicide. 

Further, this result implies that decreasing herbicide effectiveness weakly increases weed 

control costs for a given tillage choice, and therefore a single weed evolving to resist a single 

herbicide is likely not to influence tillage choices. As more weeds develop resistance to a 

herbicide, changes in the usage of the herbicide become more likely. But because some weeds 

may and are in fact likely to be over-controlled (i.e. the constraint is non-binding) the response to 

herbicide resistance is inherently non-linear. If the herbicide costs associated with conservation 

tillage outweigh savings in tillage costs, then a farmer will switch to intensive tillage. 

The case of glyphosate and glyphosate-resistant weeds 

  Glyphosate is a broad-spectrum herbicide which, prior to the onset of resistance, is 

highly effective at controlling essentially all weeds. The introduction of glyphosate-resistant 

varieties allowed farmers to rely heavily (sometimes exclusively) on this specific herbicide for 

weed control in soybean at relatively low cost. Glyphosate was rapidly adopted as the use of 

other herbicides declined (Livingston et al., 2015). Swinton and Van Deynze (2017) attribute this 

trend to the cost-dominance of a glyphosate-based weed control system. When used in 

conjunction with glyphosate-resistant seed, pre- and post-emergent applications of glyphosate 

make tillage passes for weed control redundant, providing no additional weed control but 

incurring additional fuel, machinery, and labor costs for a farmer. 

When and where weeds are susceptible to glyphosate and it is cost-competitive with 

alternative herbicides, our conceptual model implies that glyphosate will become prevalent as a 

cost-effective way to meet all of a farmer’s weed control targets. We expect glyphosate to 
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continue to be used even as glyphosate-resistance becomes more frequent, because it can still 

control still-susceptible weeds at a low cost. However, we expect intensive tillage and 

supplemental use of non-glyphosate herbicides to become more frequent, as our conceptual 

model implies that farmers will need to rely on more tools to attain their weed control targets. 

Because non-glyphosate herbicides and intensive tillage behave as substitutes in our model, with 

both options providing supplemental weed control when glyphosate alone does not suffice, we 

expect the use of non-glyphosate herbicides to be positively associated with conservation tillage. 

Empirical Model 

To test the implications of the conceptual model presented above, we estimate a dynamic 

probit model with the tillage decision as the dependent variable. We include farm-level random 

effects and a first-stage control function to account for endogenous herbicide use. The unit of 

analysis, is the field-level (𝑗) tillage decision on each farm (𝑖) in a year (𝑡). With 𝑦𝑗𝑖𝑡
𝐶𝑇 as an 

indicator for the use of conservation tillage, 𝑧𝑖𝑡 as the number GRWs, 𝑦𝑗𝑖𝑡
𝑁𝐺𝐻 as an indicator for 

the use of non-glyphosate herbicides, 𝑚𝑖𝑡 as an indicator for conservation tillage machinery 

stock, 𝒑𝑡 as a vector of input prices, 𝒙𝒊𝒕 as a vector of farm-level conditioning variables, and 𝑑𝑖 

as a time-invariant, normally-distributed, farm-level random effect to account for unobserved 

heterogeneity, the core structural function we seek to estimate is the probability that conservation 

tillage is chosen: 

Pr(𝑦𝑗𝑖𝑡
𝐶𝑇 = 1|𝑧𝑖𝑡, 𝑦𝑗𝑖𝑡

𝑁𝐺𝐻, 𝑠𝑖𝑡, 𝒑𝒕, 𝒙𝑖𝑡, 𝑡, 𝑑𝑖)

= Φ(𝛽0 + 𝑧𝑖𝑡𝛽1 + 𝑧𝑖𝑡
2 𝛽2 + 𝑦𝑗𝑖𝑡

𝑁𝐺𝐻𝛽3 + 𝑝𝑡
𝑚𝑚𝑖𝑡𝛽4 + 𝑚𝑖𝑡𝛽5 + 𝒑𝑡𝜷𝟔 + 𝒙𝑖𝑡𝜷𝟕 + 𝑡𝛽8

+ 𝑑𝑖) 

where Φ(∙) is the standard normal cumulative distribution function. 
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In this specification, we account for a non-linear response to additional reported GRWs, 

suggested by our conceptual model, by including the variable in quadratic form. The input price 

vector, 𝒑𝒕, include price indices for glyphosate, non-glyphosate herbicides, fuel, and agricultural 

machinery. As machinery prices, 𝑝𝑡
𝑚, are particularly relevant if the farm does not yet own the 

necessary equipment, we include an interaction term between this variable and the equipment 

stock. Because certain farm-level variables, 𝒙𝒊𝒕, are likely to affect tillage choices, we include 

measures of farm size (for scale economies in use of tillage equipment), soil quality (which 

affects tillage difficulty and soil water retention), and drought incidence (as tillage tends to 

reduce water retention). We include a time trend 𝑡 to capture the effects of other unobserved 

time-varying factors that may have contributed to shifts in the use of conservation tillage over 

time. 

Before estimating this structural function via maximum likelihood, we must first address 

two issues: missing data on each farm’s equipment portfolio and endogeneity of non-glyphosate 

herbicide use. 

 Because the equipment stock, 𝑚𝑖𝑡, is not directly observed, we proxy for it using 

evidence that the farmer had previous access to conservation tillage equipment.  Formally 

speaking, we use as a proxy the maximum of the farmer’s lagged tillage decisions, 𝑦𝑖,𝑡−1
𝐶𝑇 =

max
𝑗

{𝑦𝑗𝑖,𝑡−1
𝐶𝑇 }, assuming that previously used conservation tillage equipment remains available in 

following period. However, including the lagged dependent variable in a panel data model forces 

us to address the initial conditions problem (Arellano and Honore, 2001). This problem occurs 

when the modelled process is not observed from its beginning. Therefore, the initial condition, 

𝑦𝑖0
𝐶𝑇, is likely correlated with the farm-level random effect, 𝑑𝑖. 
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One approach to address this issue in non-linear models is to explicitly model the 

distribution of the random effect conditional on the initial condition and the other explanatory 

variables (Wooldridge, 2005). While this method can take several forms, we follow a 

specification for the random effect that has been shown to produce unbiased estimates for 

parameters: 

𝑑𝑖 = 𝛼0 + 𝛼1𝑦𝑖0
𝐶𝑇 + 𝜶𝟐𝒘̅𝑖 + 𝜶𝟑𝒘𝑖0 + 𝑎𝑖;  𝑎𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑎

2) 

where 𝒘𝑖0 is a vector of all initial period explanatory variables and 𝒘̅𝑖 is a vector of explanatory 

variables averaged across all periods (Rabe-Hesketh and Skrondal, 2013). While Wooldridge 

(2005) originally suggests including all explanatory variables from all time periods in this 

auxiliary model, doing so results in a model that is often computationally unwieldly due to the 

large number of incidental parameters. Rabe-Hesketh and Skrondal (2013) show that the above 

constrained model performs similarly to the original Wooldridge solution. In this form, the 

random effect 𝑑𝑖 is constrained to depend on 𝒘𝑖𝑡 in the same fashion for 𝑡 > 0. But because the 

presence of any non-zero parameters in the tillage model implies that 𝑦𝑖0
𝐶𝑇 is directly dependent 

on 𝒘𝑖0, we include 𝒘𝑖0 separately from 𝒘̅𝑖 to account for this effect. This expression can be 

substituted into the structural equation and estimation can proceed. 

 The second issue relates to the use of non-glyphosate herbicides, 𝑦2𝑖𝑡, which is very 

likely to be endogenous to the tillage decision. As our primary goal is to achieve consistent 

estimation of the parameters on the GRW terms, one could consider omitting this variable to 

avoid the issue of endogeneity entirely. However, the use of non-glyphosate herbicides is almost 

certainly correlated with GRWs, so its omission will induce omitted variable bias in the 

parameters of interest. 
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 To address this problem, we use a control function approach for binary endogenous 

variables in binary dependent variable models (Wooldridge, 2014; Terza et al., 2008). Prior to 

estimating the structural function, we estimate a first-stage reduced form model for the 

distribution of the endogenous variable, calculate generalized residuals of this model, and 

include these residuals, denoted as 𝑟̂𝑗𝑖𝑡 in the structural model as an explanatory variable. The 

idea is that the residuals serve as a sufficient statistic for the degree of endogeneity in the 

explanatory variable. The unobserved variables that are the source of the endogeneity, for 

example unobserved latent weed pressure, are captured in the error term of the first-stage model. 

By including the residuals of the first-stage model in the second-stage, structural model, we 

essentially control for endogeneity by including an imperfect but sufficient aggregate measure of 

the unobserved variables which induce the problem in the first place. 

 The reduced form model we estimate for the first-stage model of non-glyphosate 

herbicide use is: 

Pr(𝑦𝑗𝑖𝑡
𝑁𝐺𝐻 = 1|𝑧𝑖𝑡, 𝑦𝑖,𝑡−1

𝐶𝑇 , 𝑝𝑡
𝐺𝐻−𝑁𝐺𝐻, 𝒙′𝑖𝑡, 𝑡, 𝑏𝑖)

= Φ(𝛾0 + 𝑧𝑖𝑡𝛾1 + 𝑧𝑖𝑡
2 𝛾2+, 𝑦𝑖,𝑡−1

𝐶𝑇 𝛾3 + 𝑝𝑡
𝐺𝐻−𝑁𝐺𝐻𝛾4 + 𝒙′

𝒊𝒕𝜸𝟓 + 𝑡𝛾6 + 𝑏𝑖) 

The price variable, 𝑝𝑡
𝐺𝐻−𝑁𝐺𝐻, is the difference between the indexed price of glyphosate and an 

index of non-glyphosate herbicide prices, while 𝒙′
𝒊𝒕 is farm size dummies, omitting the soil and 

drought measures included in the tillage model. The farm-level random effect, 𝑏𝑖, is assumed to 

follow a normal distribution with zero-mean and variance 𝜎𝑏
2. To account for the possible joint-

determination between tillage and herbicide choices, we include lagged tillage choice 𝑦𝑖,𝑡−1
𝐶𝑇 , to 

avoid a recursive loop of endogeneity. Previous research has observed that the first adoption of 

new tillage systems often requires expensive equipment investments, creating an inertia of sorts 
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in tillage decisions (Krause and Black, 1995). This first-stage model is estimated following 

standard maximum likelihood procedures for probit models with random effects. 

To ensure identification of the second-stage, tillage choice model, at least one exclusion 

restriction is required so that the first-stage residuals have variation that is not entirely 

determined by variables already in the model (Wooldridge, 2014). We therefore exclude 

herbicide prices (both glyphosate and non-glyphosate) from the structural function, leaving 𝒑𝑡
− as 

a vector of fuel and machinery prices. This restriction assumes that herbicide prices drive 

variation in tillage decisions only through their effect on herbicide choices. 

With residuals from the first-stage model and the auxiliary model for 𝑑𝑖 in hand, the 

structural function we ultimately estimate is: 

Pr(𝑦𝑗𝑖𝑡
𝐶𝑇 = 1|𝑧𝑖𝑡, 𝑦𝑗𝑖𝑡

𝑁𝐺𝐻, 𝑦𝑖,𝑡−1
𝐶𝑇 , 𝒑𝑡

−, 𝒙𝑖𝑡, 𝑡, 𝑟̂𝑖𝑡, 𝑦𝑖0
𝐶𝑇 , 𝒘̅𝑖, 𝒘𝑖0, 𝑎𝑖)

= Φ(𝛽′0 + 𝑧𝑖𝑡𝛽1 + 𝑧𝑖𝑡
2 𝛽2 + 𝑦𝑗𝑖𝑡

𝑁𝐺𝐻𝛽3 + 𝑝𝑡
𝑚𝑦𝑖,𝑡−1

𝐶𝑇 𝛽4 + 𝑦𝑖,𝑡−1
𝐶𝑇 𝛽5 + 𝒑𝑡

−𝜷𝟔 + 𝒙𝑖𝑡𝜷𝟕

+ 𝑡𝛽8 + 𝑟̂𝑖𝑡𝛽9 + 𝛼1𝑦𝑖0
𝐶𝑇 + 𝜶𝟐𝒘̅𝑖 + 𝜶𝟑𝒘𝑖0 + 𝑎𝑖) 

This structural function can be estimated using standard maximum likelihood procedures for 

probit models with random effects.2 

Data 

The core of our data are field-level survey data, representative at the Crop Reporting 

District level, collected by the market research company GfK. These data contain observations 

on chemical and mechanical weed control practices of 22,151 farmers from 1999 through 2016 

in 31 soybean-growing states across the United States, for a total of 93,345 field-level 

                                                           
2 We specifically use a Laplace approximation of the likelihood function. Estimation is performed using the R 

package “lme4”. 
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observations. Importantly, many farms provide data for multiple fields per year and responses in 

multiple years, giving the data a panel structure necessary to estimate the proceeding empirical 

model. Tillage decisions, non-glyphosate herbicide use, herbicide prices, and farm size variables 

are all sourced from this dataset. 

The GfK survey data include three levels of tillage intensity: conventional, conservation, 

or no-till. Following Perry et al. (2016a), where the same data is used, we define two binary 

tillage decision variables: a conservation tillage indicator equal to one when either conservation 

or no-till is used, and no-till indicator equal to one when no-till is used, grouping other 

conservation tillage practices along with conventional tillage. Because the effect of GRWs on 

no-till practice use is of particular interest, we estimate our empirical model twice, once with 

each of our two definitions of tillage practices as the dependent variable. The proportion of fields 

in the sample classified at no-till and conservation tillage is presented in Figure 1. 

The GfK data also identify the herbicide products applied over each field in each year. 

We identify the active ingredients in each of these products and define a binary variable equal to 

one whenever the field is treated with a product containing a non-glyphosate active ingredient. 

The proportions of fields in the sample treated with glyphosate and non-glyphosate herbicides is 

presented in Figure 2. Early in the sample period, the use glyphosate became increasingly 

common, and the use of non-glyphosate products fell rapidly, likely due to the advent of 

glyphosate-tolerant soybean seed. Starting in 2006, this trend reversed, and non-glyphosate 

products were used more and more commonly. Glyphosate use reached near-saturation in the 

same year, and continued to be used on over 90% of fields through 2016 (though noticeably less 

in later years). 
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We use the GfK data to compute price indices for both glyphosate and non-glyphosate 

herbicides. For glyphosate prices, we calculate the mean price paid in dollars per pound each 

year. For non-glyphosate herbicides, we construct a Laspeyres index of all non-glyphosate 

herbicide products used throughout the sample period, with the mean dollar per pound and 

volume shares from across the full sample used as the base. These indices are scaled so that both 

equal one in 1999, the first year of our sample. These input price indices enter the empirical 

model as relative prices, and are therefore differenced as  𝑝𝑡
𝐺𝐻−𝑁𝐺𝐻 = 𝑝𝑡

𝐺𝐻 − 𝑝𝑡
𝑁𝐺𝐻. These price 

indices are present in Figure 3. Because glyphosate prices dropped significantly following the 

expiration of Monsanto’s patent in 2000 while non-glyphosate prices remained steady, 𝑝𝑡
𝐺𝐻−𝑁𝐺𝐻 

is negative in all years. 

Finally, the GfK dataset describes farm size as one of five categories: less than 100 acres, 

l00-249 acres, 250-499 acres, 500-999 acres, and 1,000 acres or more. These are included as 

dummy variables in the empirical model, with less than 100 acres as the baseline. 

We supplement the GfK field-level data with state-level data on the number of reported 

glyphosate-resistant weed species at the beginning of the growing season, as reported by the 

International Survey of Herbicide Resistant Weeds (Heap, 2017).3 The number of species 

resistant to glyphosate in each state in our sample in 2004, 2008, 2012, and 2016 is presented in 

Figure 4. To the best of our knowledge, the ISHRW is the best available measure for this 

variable, providing consistent reporting on the development of herbicide resistance by mode of 

action across the full timeframe and the geographic region of our panel. As the primary 

contributors to the ISHRW data are university extension weed scientists, we assume that these 

                                                           
3 These data were provided to us through personal communication with Ian Heap, via email, as a custom report on 

herbicide-resistance in the United States generated from the ISHRW database. These data are consistently updated 

and can be viewed publicly on the ISHRW website. 
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counts represent the knowledge available to a typical farmer when making tillage decisions 

through an extension weed control guide (e.g., Sprague and Burns, 2017). 

For fuel and farm machinery prices, we rely on NASS annual price indices for diesel fuel 

and farm implements, including planters and tillage equipment (National Agricultural Statistics 

Service, 2018). As conservation tillage typically requires lighter field implements and therefore 

less fuel, we expect its use to be more frequent when fuel prices are higher (Lal, 2004). As first 

adoption of conservation tillage can require a costly equipment investment (Krause and Black, 

1995), we include machinery prices interacted with a dummy variable indicating whether a farm 

used conservation tillage on any of its fields in the previous season. 

Finally, we include a pair of variables to control for a field’s soil conditions. Previous 

studies have shown that conservation tillage systems are more likely to be adopted on highly-

erodible lands (Uri, 1999; Soule et al., 2000). Past research has also found that the use of 

conservation tillage (but not no-till) is more likely in years following drought conditions (Ding et 

al., 2009). Therefore, for each farm we include the proportion of the land in a farm’s county that 

National Resources Inventory has classified as highly-erodible (National Resource Conservation 

Service, 2018). We also include the Palmer’s Z-index of a farm’s climate division in the 

September of the prior year, where a more negative Z-index score indicates drier conditions 

(National Environmental Satellite, Data, and Information Service, 2018). 

Results 

In this section, we present the results of our empirical model. First, we discuss the 

coefficients and goodness-of-fit for our structural models of tillage adoption, after a brief 

discussion of our first-stage models of non-glyphosate herbicide use. We present multiple 

measures of goodness-of-fit: the percentage of observations correctly predicted and pseudo-R2 
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measures widely used when generalized linear mixed-effects models are reported (Nakagawa 

and Schielzeth, 2013). We then turn to the implications of our tillage decision models, examining 

predicted probabilities of conservation tillage and no-till adoption at extant GRW species counts. 

Finally, we use our tillage decision model for conservation tillage adoption to explore a counter-

factual scenario in which no weed species adapt to resist glyphosate to get a sense at the degree 

of environmental damages induced by GRWs through farmers’ tillage responses. 

First-stage non-glyphosate herbicide use models 

The first-stage model of non-glyphosate herbicide use is estimated twice, once with past 

no-till use and once with past conservation tillage use as independent variables for the estimation 

of control functions for corresponding second-stage models. Results from each are presented in 

Table 1. In both estimations, coefficients on both GRW terms indicate that glyphosate-resistant 

weed species are statistically significant and similar in scale. The negative coefficient on the 

linear term and positive coefficient on the quadratic term indicate that although the first GRW 

species to appear have relatively little impact on the use of non-glyphosate herbicides, the 

probability of non-glyphosate herbicide use rises faster as GRW counts reach higher levels. 

The coefficient on the price differential between glyphosate and non-glyphosate 

herbicides is positive and statistically significant for both models, indicating that this variable is 

an eligible candidate for an exclusion restriction (Wooldridge, 2014). As expected, in years when 

glyphosate is expensive relative to alternatives, non-glyphosate herbicides are more likely to be 

used. 

No-till and conservation tillage models 
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The results from the second-stage, tillage choice models are presented in Table 2, 

estimated for both no-till and conservation tillage use as the dependent variable. Both models 

correctly predict the tillage decision for a field about 80% of the time. Perhaps more importantly, 

the models correctly predict tillage decisions at roughly the same rate for fields regardless of the 

observed outcome. This balance is important for modelling counter-factual scenarios, because if 

the model’s accuracy depended largely on its target, then prediction would be systemically 

biased towards the model’s naturally favored outcome. 

  Both models explain the majority of the variance in tillage adoption outcomes, as 

measured by the pseudo-R2 metrics proposed for generalized linear mixed-effect models by 

Nakagawa and Schielzeth (2013). Marginal R2 measures the variance explained by fixed factors 

alone (i.e. the observed independent variables), while conditional R2 measures the variance 

explained by the full model, including random effects. These measures are preferred to 

alternatives such as the commonly used McFadden’s pseudo-R2 because (a) they can be 

interpreted on the same unit-scale as the usual R2 commonly reported for ordinary least-square 

models, and (b) they separately identify the contributions of fixed and random effects. For both 

models, around two thirds of the total explained variance is accounted for via the observed 

heterogeneity (i.e. the fixed effects), and allowing for a random intercept for each farm to 

account for unobserved heterogeneity improves model fit substantially. 

 The statistical significance of the residuals from the first-stage, non-glyphosate herbicide 

use models in both second-stage models allows us to reject a null hypothesis that non-glyphosate 

use is exogenous to tillage decisions (Wooldridge, 2014). The use of non-glyphosate herbicides 

is positively associated with the use of conservation tillage and no-till practices, as the 

coefficients on this term are positive and statistically significant in both models. When farmers 
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move away from intensive conventional tillage practices, they give up a weed control tool and 

must supplement lost weed control through other means. As glyphosate is used on nearly all 

fields in our sample regardless of tillage system, this means supplementing with non-glyphosate 

herbicides. 

 Both fuel price and machinery price have statistically significant coefficients of the 

expected signs in both models. The positive coefficients on fuel price likely stem from the fact 

that conservation tillage systems require less fuel than conventional tillage, and are therefore 

more likely to be selected when fuel is costly (Lal, 2004). This is consistent with recent studies 

of tillage adoption (Perry et al., 2016a). More expensive machinery leads to less frequent 

conservation tillage use, due to the investment cost of the equipment (Krause and Black, 1995). 

This explanation is further supported by the positive and statistically significant coefficient on 

the interaction term between past tillage decisions (equal to one when a farm has been observed 

using no-till or conservation tillage in the previous period) and machinery price. When a farm 

has used no-till in the past, the coefficient on machinery price is reduced by two fifths; when a 

farm has used conservation tillage in the past, the coefficient is nearly zero. 

 Previous use of conservation tillage has a statistically significant and positive effect. This 

indicates that some unexplained “inertia” is present for conservation tillage: farms that use 

conservation tillage today are more likely to use it in the future, perhaps due to increased 

familiarity with the system (Uri, 1999). However, this pattern does not hold when no-till is 

modelled separately from other conservation tillage systems, suggesting that the primary avenue 

through which previous no-till decisions impact current ones is through changes to a farm’s 

equipment portfolio. 
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 The remaining coefficients follow their expected signs. Fields experiencing recent 

drought (represented with negative Palmer’s Z-index values) are more frequently under 

conservation tillage, but not no-till. This pattern follows results found in previous studies (Ding 

et al., 2009). Fields in counties with more highly-erodible land are also more likely to be under 

conservation tillage systems. The positive time trend likely reflects the effects of payments 

through federal conservation programs and state-level extension efforts to promote conservation 

tillage adoption, as well as increased familiarity with these practices over time. Medium sized 

farms are slightly more likely to adopt conservation tillage than the largest (1,000 acres or more) 

and smallest farms (less than 100 acres), while the largest farms are slightly less likely to adopt 

no-till. 

Effects of GRWs on tillage decisions 

 The primary focus of this paper is the effects of glyphosate-resistant weeds on farmers’ 

tillage practices. In models for both conservation tillage and no-till, the coefficient on the linear 

term for GRWs is positive but statistically insignificant and the coefficient on the quadratic term 

is negative and statistically significant. This indicates that GRWs have a negative effect on 

conservation tillage use, and the emergence of additional GRWs has increasing impact. 

The predicted probabilities of adoption of conservation tillage and no-till for a range of 

GRW counts, with other variables held at their means, are presented in Figure 5. These curves 

show the negative and non-linear effect of GRWs on the use of conservation tillage, consistent 

with the expectations of the conceptual model. Through the first two glyphosate resistant weed 

species, the predicted rate of no-till use remains statistically indistinguishable from the rate at 

zero GRWs (44% adoption). However, by the eighth GRW, the predicted rate of adoption falls 

by 9.2 percentage points, a 21% reduction among no-till users. The impact of GRWs on 
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conservation tillage is similar, though less severe. Through the first two GRWs, conservation 

tillage is used at rates not statistically different from zero GRWs (66.9% adoption). But by the 

eighth reported GRW, conservation tillage rates fall by 6.2 percentage points, a 9.3% reduction 

among CT users generally. The magnitude of predicted reduction in conservation tillage and no-

till use due to eight identified GRWs corresponds with that of the increase in use attributed to the 

introduction of glyphosate-resistant soybean seeds (Perry et al., 2016a).  In effect, the advent of 

GRWs is undoing the stimulus to adoption of conservation tillage that was prompted by the 

introduction of glyphosate tolerant crop varieties. 

Simulation of GRW proliferation on tillage use 

To demonstrate the impact GRWs have had on farmers’ tillage decisions over time and 

space, we compute the shares of acres under conservation tillage predicted by the model given 

realized GRW emergence patterns (denoted 𝐴𝑐 for “actual”) and a counterfactual scenario in 

which no weed species evolve to resist glyphosate, all else equal (denoted 𝐶𝑓 for 

“counterfactual”). The counterfactual scenario is simulated by setting 𝑧𝑖𝑡 = 0 for all observations 

in a counterfactual dataset, leaving all other variables the same as observed. 

We first simulate farmers’ field-level tillage decisions in the counterfactual scenario, 

giving us for each field in the sample 𝑃𝑗𝑖𝑡
𝐶𝑓

, the counterfactual predicted probability of 

conservation tillage use on field 𝑗, operated by farmer 𝑖, in year 𝑡. We then simulate the same 

predicted probabilities of conservation tillage use under realized GRW emergence patterns (i.e. 

the original data), denoted for each field as 𝑃𝑗𝑖𝑡
𝐴𝑐. 
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The shares of soybean acres in each year under conservation tillage in both scenarios 

(𝑆𝑡
𝐴𝑐 and 𝑆𝑡

𝐶𝑓
) are calculated by summing the predicted probabilities weighted by the number of 

acres each field represents in the population of soybean acres in a given year, denoted 𝐴𝑗𝑖𝑡: 

𝑆𝑡
𝑛 =

∑ ∑ 𝑃𝑗𝑖𝑡
𝑛 𝐴𝑗𝑖𝑡

𝐽𝑖𝑡
𝑗=1

𝐼𝑡
𝑖=1

∑ ∑ 𝐴𝑗𝑖𝑡
𝐽𝑖𝑡

𝑗=1
𝐼𝑡

𝑖=1

, 𝑛 ∈ {𝐴𝑐, 𝐶𝑓} 

As a display of the spatial variation in the effect of GRWs on tillage decisions over our 

sample period, the differences between the acre-shares under conservation tillage, 𝑆𝑡
𝐶𝑓

− 𝑆𝑡
𝐴𝑐, are 

calculated separately for each state and presented in four maps for 2004, 2008, 2012, and 2016 in 

Figure 6. On the majority of soybean acres, GRWs have had negligible impact on tillage 

practices, with increases in intensive tillage adoption less than 5%. However, the impact of 

GRWs on tillage decisions is particularly noticeable where GRWs are most prevalent: southern 

states such as Mississippi, Missouri, Arkansas, and Tennessee where glyphosate is commonly 

used as the primary weed control tool on glyphosate-resistant cotton in addition to soybeans and 

corn. In Mississippi in 2016 for example, intensive tillage would be used on 8.5% fewer soybean 

acres had GRWs been absent. 

Environmental Damages via Farmers’ Tillage Response to GRWs 

The use of conservation tillage systems is known to reduce soil erosion and carbon 

emissions, which can impair water quality and contribute to global climate change respectively 

(Uri et al., 1999). An intuitive follow-up to the proceeding analysis of farmers’ tillage responses 

to GRWs is to estimate the resulting environmental damages from increased tillage. 

We develop rough estimates of the social costs of increased intensive tillage use on two 

environmental outcomes, soil erosion and carbon emissions from fuel, by drawing upon values 



22 
 

from the literature, applying a simple benefit transfer model to monetize social costs (Wilson and 

Hoehn, 2006). Tillage practices have wide-ranging impacts on the environment (Uri et al., 1999), 

and a full accounting of these impacts is outside the scope of the present study. However, this 

exercise suggests that the spread of GRWs is a problem not just for farmers, but for society. Our 

general approach follows the methods presented in Perry et al. (2016a). 

To quantify the soil erosion impact of increased use of conventional tillage, we rely on 

median erosion rates for soils under conventional and conservation tillage as reported in a review 

of 495 studies (Montgomery, 2007). For conventional tillage, the reported median erosion rate is 

1.54 mm per acre-year. For conservation tillage, the median erosion rate is 0.08 mm per acre-

year. Assuming a soil density of 1,200kg/m3, this implies a 6.8 ton/acre-year reduction in soil 

erosion in fields under conservation tillage (Montgomery, 2007). 

Conventional tillage leads to increases in carbon emissions over conservation tillage both 

through increased fuel consumption and by reducing the capacity of the soil to retain carbon. 

However, given that the potential carbon sequestration ability of soil is highly variable and 

dependent on the sustained practice of conservation tillage over time, we choose to focus on 

carbon emissions from fuel consumption (Uri et al., 1999). Lal (2004) synthesizes the literature 

on fuel consumption required for various tillage operations, reporting the results as mean 

kilograms CO2-equivalent emissions (CE) per hectare. We convert these means to metric tons 

CE/acre. The resulting increase in carbon emissions when switching from conservation to 

conventional tillage is 0.0234 metric tons CE/acre. 

To monetize the effects these environmental impacts, we use prices previously used by 

federal policymakers for benefit-cost analysis. The National Resource Conservation Service 

estimates the costs of increased soil erosion at $4.93 per ton in water quality damage (National 
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Resource Conservation Service, 2009). For carbon emissions, we rely on the global Social Cost 

of Carbon (SSC), as reported by the United States Government (Interagency Working Group on 

Social Cost of Greenhouse Gases, 2016). This measure, widely used in policymaking prior to 

2017, estimates the social costs of a metric ton of CO2 released into the atmosphere for each year 

beginning in 2010. We rely on the reported average SCC estimate at a 3% discount rate, a 

conservative estimate. As the annual growth in this measure is almost exactly linear, we estimate 

the SCC for years prior to 2010 by regressing the SCC on a year trend (R2 = 0.987). These prices 

are adjusted using the Consumer Price Index to reflect the real value of damages in each year. 

Finally, the conservation tillage acre-share differentials computed in the previous 

subsection are multiplied by the acres planted to soybean in each year (National Agricultural 

Statistics Service, 2018), providing an annual estimate of the number of acres that would be 

under conservation tillage in the absence of GRWs, but are instead under conventional practices. 

The environmental impact and social value coefficients are applied to these acres, providing an 

estimate for the value of damages to water quality and the climate. Annual social and 

environmental damages are presented in Table 3. Social damages are presented as lost value in 

current year price levels and as 2016 present value (𝑃𝑉𝑡 =  𝐶𝑉𝑡/(1 + 𝑟)𝑡−𝑇; 𝑟 = 0.03; 𝑇 =

2016). 

 In total, we estimate the net present value of water quality and climate damage from 

farmer’s tillage responses to GRWs is approximately $470 million. This social cost has been 

growing by over $70 million annually in recent years. Water quality damage will be greatest in 

regions where GRWs are most prevalent, while the climate damage will be realized globally. If 

weed species continue to adapt to resist glyphosate across the country, and farmers continue 
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increase tillage to achieve similar levels of weed control, we expect the rate at which these 

damages grow to accelerate. 

Discussion and Conclusion 

Herbicide resistant weeds, and GRWs in particular, have become a widespread issue for 

farmers across the United States. This paper contributes to the literature on herbicide resistant 

weeds by providing new and robust evidence that farmers respond to the decreasing 

effectiveness of glyphosate by increasing tillage intensity. We do so by observing the field-level 

weed control decisions of thousands of soybean farmers across the country during the period that 

GRWs first emerged and subsequently spread. We find evidence that farmers’ tillage responses 

to GRWs follow a non-linear pattern. Our empirical model further allows us to estimate the 

marginal, causal effects of additional GRWs on the use of alternative tillage systems. We use 

these estimates to provide a rough calculation of the scale of social damages that GRWs have 

caused by increasing tillage in soybean fields. 

Our approach represents a novel direction in the herbicide resistance literature in two 

ways. First, we focus on how farmers have changed their management behavior in response to 

herbicide resistance, while other economic studies focus on how resistance has affected costs, 

returns, or yields (Livingston et al., 2015; Wechsler et al., 2017; Lambert et al., 2017). Second, 

we quantify the environmental damages from farmers’ responses to herbicide resistance, which 

would not be possible without our focus on practices.  

While this paper focuses on tillage practices, too little is known about how herbicide 

resistance affects the use of other weed control tools available to farmers. Future research should 

explore which non-glyphosate herbicides farmers are choosing to combat GRWs, which seed 

traits farmers select, and what those choices imply for environmental quality. 
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Meanwhile, agrochemical companies have responded to GRWs by developing new seed 

technologies resistant to other herbicides (Mortensen et al., 2012; Green, 2014; Bonny, 2016). 

Farmers remain optimistic that agrochemical companies will develop new solutions that will 

maintain the simplicity of glyphosate-based weed management (Dentzman and Jussaume, 2017). 

However, public weed scientists have questioned whether this path forward is sustainable, as 

weeds will continue to evolve resistance to more and more biochemical modes of action (Duke, 

2011; Mortensen et al., 2012). Davis and Frisvold (2017) suggest that the current dominant weed 

control regime, based on specific herbicides paired with resistant seed, may come to an end 

within the foreseeable future if action is not taken. 

Fortunately, numerous solutions have been proposed to alleviate the threat posed by 

GRWs and weed resistance to other herbicides. Mortensen et al. (2012) call for increased public 

investment in research and promotion of integrated weed management systems, which rely on a 

more diverse suite of weed management practices in order to delay the onset of resistance of any 

specific method. A recent simulation study suggests that this approach can be profit-maximizing 

for farmers with longer time horizons (Frisvold et al., 2017). Davis and Frisvold (2017) suggest 

adapting current federal subsidies of crop insurance and other conservation programs such as the 

Environmental Quality Incentive Program to create incentives for the adoption of integrated 

weed management and other resistance management strategies. Ervin and Frisvold (2016), 

noting the common pool resource nature of herbicide resistance, envision community-based 

approaches for encouraging resistance management, modelled after drainage districts and insect 

eradication programs. Further research into policies to delay the onset of resistance is needed. 

Such studies should consider not only the private benefits to farmers from the delayed onset of 

resistance, but also the public damages to the environment that could result if resistance 

management is ignored. 
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Figures and Tables 

Table 1: Results from first-stage, non-glyphosate herbicide use models, estimated separately for 

use with no-till and conservation tillage second-stage models. 

  Dep. Var.: Non-Glyphosate Herbicide Use 

    No-Till Model   Cons. Till Model 

    Est. p   Est. p 

(Intercept)   -0.782 <.001   -0.781 <.001 

GRWs   -0.043 <.001   -0.042 <.001 

GRWs (squared)   0.026 <.001   0.026 <.001 

Glyphosate Price Difference   0.433 <.001   0.434 <.001 

Past Tillage Decision   0.033 .017   0.018 .197 

Year Trend   0.040 <.001   0.040 <.001 

Size (100 - 249 Acres)   0.322 <.001   0.323 <.001 

Size (250 - 499 Acres)   0.516 <.001   0.517 <.001 

Size (500 - 999 Acres)   0.636 <.001   0.637 <.001 

Size (1000 Acres or more)   0.737 <.001   0.738 <.001 

Random Effects   Farm-level   Farm-level 

Unique Farms   22,151   22,151 

Observations   93,345   93,345 

Percent Correct (Dep. Var. = 1)  63.1%  62.9% 

Percent Correct (Dep. Var. = 0)  56.3%  56.4% 

Percent Correct  59.6%  59.6% 

Marginal R2  0.119  0.119 

Conditional R2   0.579  0.579 
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Table 2: Results from second-stage, tillage decision models, estimated separately for no-till and 

conservation tillage (no-till included). 

  Dep. Var.: Tillage Decision 

    No-Till Model   Cons. Till Model 

    Est. p   Est. p 

(Intercept)   0.562 <.001   0.191 .184 

GRWs   0.023 .141   0.014 .343 

GRWs (Squared)   -0.010 <.001   -0.006 <.001 

Non-Glyphosate Use   0.385 .003   0.362 .002 

Non-Glyphosate Use (Residuals)   -0.149 .007   -0.147 .003 

Fuel Price   0.090 <.001   0.062 <.001 

Machine Price   -1.107 <.001   -0.328 .012 

Machine Price * Past Tillage Decision   0.392 <.001  0.363 <.001 

Past Tillage Decision   0.029 .597   0.207 <.001 

Palmer’s Z-Index   -0.001 .711   -0.006 .037 

Soil Erodibility Index   0.614 <.001   0.405 <.001 

Year Trend   0.092 <.001   0.027 .001 

Size (100 - 249 Acres)   0.009 .720   0.061 .012 

Size (250 - 499 Acres)   0.008 .782   0.060 .021 

Size (500 - 999 Acres)   -0.010 .751   0.068 .012 

Size (1000 Acres or more)   -0.079 .017   -0.015 .610 

Initial Conditions Correction   Yes  Yes 

Random Effects  Farm-level  Farm-level 

Unique Farms  22,151  22,151 

Observations  93,345  93,345 

Percent Correct (Dep. Var. = 1)  72.4%  82.3% 

Percent Correct (Dep. Var. = 0)  81.2%  74.7% 

Percent Correct (All Obs.)   77.3%  80.0% 

Marginal R2   0.471  0.420 

Conditional R2   0.705  0.626 
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Table 3: Estimated social and environmental damages resulting from increased use of intensive 

tillage in response to GRWs. Prior to 2005, GRWs had yet to reach impactful levels in any state. 

 Social Damages  Environmental Damages 

Year 

Current Value a 

(USD) 

Present Value b 

(USD 2016) 

 
Soil Erosion c 

(Metric Tons) 

Carbon Emissions d 

(Metric Tons CE) 

2005 400,000   600,000    90,000   <1,000  

2006  1,300,000   1,800,000    280,000   1,000  

2007  4,500,000   5,800,000    920,000   3,000  

2008  9,600,000   12,200,000    1,910,000   7,000  

2009  19,700,000   24,200,000    3,910,000   13,000  

2010  26,400,000   31,600,000    5,130,000   18,000  

2011  40,100,000   46,500,000    7,580,000   26,000  

2012  51,100,000   57,500,000    9,390,000   32,000  

2013  57,700,000   63,100,000    10,460,000   36,000  

2014  70,400,000   74,700,000    12,560,000   43,000  

2015  73,200,000   75,400,000    13,090,000   45,000  

2016  80,100,000   80,100,000    14,180,000   49,000  

Total  434,600,000   473,500,000    79,510,000   273,000  
a  Soil erosion priced at $4.93/ton in 2009 dollars, adjusted to current year prices with CPI (National Resource 

Conservation Service, 2009); carbon emissions priced following Social Cost of Carbon at 3% discount rate 

(Interagency Working Group on Social Cost of Greenhouse Gases, 2016). 
b  Computed with a 3% annual discount rate. 
c  Assuming a 6.8 ton/acre reduction in soil erosion from conservation tillage use (Montgomery, 2007). 
d  Accounts only for reduced fuel consumption; assuming a 0.0234 tons/acre reduction in emissions from 

conservation tillage use (Lal, 2004). 
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Figure 1: Percentage of fields in sample under no-till and conservation tillage (including no-till) 

over time. 

 

 
Figure 2: Percentage of fields in sample treated with glyphosate and non-glyphosate herbicides 

over time. 
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Figure 3: Price indices for glyphosate-based and non-glyphosate based herbicides over time. 
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Figure 4: Number of weed species resistant to glyphosate (GRWs) at the start of the growing 

season by state in 2004, 2008, 2012, and 2016. Prior to 2001, no species had been identified as 

glyphosate resistant at the start of the growing season. 
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Figure 5: Predicted adoption of no-till alone and conservation tillage (including no-till) by the 

number of glyphosate resistant weeds identified in a farm’s state. The shaded region indicates a 

95% confidence interval, computed via the delta method. 
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Figure 6: Increases in percentage of soybean acres by state under conventional tillage attributed 

to GRWs in 2004, 2008, 2012, and 2016. 


