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Agricultural productivity and price
volatility in France: a dynamic stochastic

partial equilibrium approach

Yu Zheng, Alexandre Gohin ∗

Abstract

In this paper, we estimate the link between output price risks and TFP in a dynamic stochastic
farm decision model, with controlling the measurement issues from the unobserved capital data
and the simultaneously problem. A representative producer makes production, consumption,
capital investment, and financial borrowing decisions and faces production (climate), output
price and interest rate risks. We allow for structural changes in the drift term and the standard
deviation of the shocks in the output price processes before and after the CAP reform.

Based a generalized maximum entropy (GME) approach, econometric estimation is per-
formed on data for farms specialized in COP (cereals, oilseed and protein crops) production in
three French regions (Centre, Picardie and Pays de la Loire), covering the period 1988-2015.
We show that the estimated TFP grows steadily with small fluctuations in the first regime when
prices were declining. The growth pattern becomes much more volatile, and the upward trend
in TFP growth become insignificant following the increase in price volatility.

∗INRA, UMR 1302 SMART, 35000, Rennes, France
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1 Introduction

The European Union has adopted many reforms of the Common Agricultural Policy

(CAP) in the past 25 years. Price support has decreased and decoupled payments were

introduced. Accordingly, European agricultural prices become more volatile, in line with

the volatility of world prices. While this new context generates many debates on the

optimal EU farm policy, critical questions remain on the real impacts of the rising agri-

cultural price volatility on farm decisions. Farmers may have modified their production

(such as investment) and financial (such as borrowing) decisions while facing incomplete

contingent markets for subsequent production periods. This may have contributed to the

observed decline of the farm partial productivity growth (European Commission 2016).

There are currently mixed empirical evidence on the linkage between price volatility

and productivity (either partial or total factor productivity(TFP)). In the macroeconomic

literature, Ramey and Ramey (1995) find a negative relationship between economic fluc-

tuation and productivity growth. More recently, Liu et al. (2013) model quantitatively the

co-movement between land price fluctuation and macroeconomic fluctuation. Cavalcanti

et al. (2015) show that commodity price volatility impacts negatively on productivity

growth, but this effect is counterbalanced by the positive effect of increased price levels.

In the agricultural economic literature, Hu and Antle (1993) indirectly analyze this link-

age by assessing the impact of farm policy price supports on the total factor productivity.

They find that price support only has a negative impact on TFP when this support is

high. More recently, Kazukauskas et al. (2010) find a negative effect of price volatility

on productivity in Irish dairy farms. On the other hand, Frick and Sauer (2017), Lien

et al. (2017) find, respectively, a positive relationship while focusing on the German and

Norwegian dairy sectors.

The mixed results on the linkage between price volatility and TFP invite us to explore

the underlying structural mechanisms. The macroeconomic literature stresses the impor-

tant role of the credit market. For instance, Aghion et al. (2009) show that exchange
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rate volatility has a negative impact on productivity growth, especially in the countries

with highly constrained financial markets. Aghion et al. (2010) develop a growth model

in which the exogenous risks generate productivity movement through the interaction

with financial markets. They show that higher economic volatility induced by tightening

credit constraints leads to a lower productivity growth rate. Regarding the sources of

linkage that are explored in the agricultural economic literature. Frick and Sauer (2017)

capture the heterogeneity of farmers, and find that the interplay of deregulation and price

volatility has a positive aggregate effect by forcing inefficient farmers to exit. Further-

more, the mixed results may also come from the different economic framework (primal

vs dual, static vs dynamic, etc.), the different econometric strategies (endogeneity solved

with instrumental variables or fully structural estimation, etc.), datasets (periods, type

of farming, etc.).

This paper originally contributes to the literature in three main aspects. First, to

assess the link between TFP and price risk, the first essential step is to estimate the

production function and its residual, total factor productivity (TFP). The accuracy of

the input data, especially the capital data series, impacts directly on the accuracy of the

estimated TFP. We avoid the capital measurement problem by treating the capital data

series as a latent variable. We use the observed decision data series to estimate the latent

capital data series. The depreciation rate, instead of being assumed or calibrated, is a

structural parameter to be estimated simultaneously. In this way we have ensured the

accuracy of the capital data series.

Indeed, from the data perspective, Griliches (1960) points out the agricultural input

data measurement errors such as quality change among the inputs and heterogeneity

products. Griliches and Jorgenson (1966) emphasize the major difficulty in measuring

the capital time series because it is not directly observable. The capital accumulation

is a dynamic process, the investment goods purchased in one period contribute to the

capital stock in the future periods. However, what amount of investment contributes

to the capital stock in which future period is unobservable, not to say to be recorded
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accurately in the account. Consequently, the capital input measure relies heavily on

assumptions. Economists devote efforts in improving the productivity data series ever

since. Ball et al. (1997), Ball et al. (2015) and Shumway et al. (2016) review the U.S.

Department of Agricultural (USDA) agricultural productivity account. They describe in

detail the labor, land, and intermediate inputs data selection and calculation process,

as well as the measurement improvements over time. Nevertheless, the capital data se-

ries is always obtained indirectly using the investment flow by making assumptions on

depreciation, replacement, and obsolescence of the assets, while not knowing if the as-

sumed rates are the true ones. Andersen et al. (2011) compare the measurement of the

annual capital services flows from two major databases in the U.S., they show that cap-

ital measurements are extremely sensitive to the assumptions such as depreciation rate

and interest rate. Moreover, they show that the TFP measurement is, correspondingly,

very sensitive to these assumptions. Butzer et al. (2012) show that different measures

on capital yield different Cobb-Douglas elasticities. Above all, all this literature high-

lights the capital measurement problem, indicating that the available capital data, which

are approximated by calibrated assumptions, can be inaccurate to retrieve TFP. As is

explained, this problem is, however, treated property in our paper.

Second, from the estimation perspective, we eliminate the important endogeneity

problem by applying a fully structural estimation approach. The basic criticism of esti-

mating TFP as a residual of the production function is the endogeneity problem caused

by simultaneity (Griliches and Mairesse 1998). That is, the producers choose the inputs

knowing their level of productivity, while productivity is not observed by econometri-

cians. We do not suffer from this problem because we construct a full structural model

in which all farm decisions, including production, consumption, investment, and financial

borrowing decisions, are considered. These choices are decided by state variables such as

price, productivity, interest and current capital, while the state variables are only decided

by last period states and exogenous shocks. Our model form is a state-space model and

no endogeneity issue is raised from the modeling process. Another well-known approach
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in solving the endogeneity problem is Olley and Pakes (1996) approach. They correct

the simultaneity issue by proxing productivity as an inverted function of investment, and

estimate TFP in a two-step approach. Levinsohn and Petrin (2003) extend this approach

by using intermediate inputs as a proxy for productivity. However, they do not treat

the capital measurement problem in this approach. Other productivity measurement

methods include, the nonparametric indexes such as Fisher index, Tornqvist index, etc.,

are the most straightforward measurement for TFP. These Indexes are widely used to

compute the USDA agricultural productivity account (e.x., Ball et al. 1997, Ball et al.

2013). It is convenient to use them to gain a general view on TFP, but they are limited

by the static property and the calibrated elasticities (Van Biesebroeck 2007).

Third, we model quantitatively the dynamic link between TFP and price volatility,

with potential risks arise from output price, productivity and interest rate. To account

for the change in price volatility before and after the CAP reform, we allow for structural

changes in the drift term and standard deviation of the shocks in the output price and

productivity evolution process. Our model is similar to the dynamic stochastic general

equilibrium (DSGE) models in macroeconomics. The estimation technique for linearized

DSGE models is highly developed in macroeconomics (e.g., Smets and Wouters 2007). To

apply similar estimation technique in the agricultural sector, we need to first deal with the

less aggregate and more volatile agricultural data series. In particular, the agricultural

producers may experience significant production risks from the weather, pesticide use,

etc.. The increasing agricultural price fluctuations also results in larger price risks for the

producers. To take the larger shocks into consideration, linear estimation is not sufficient

for the application in the agricultural sector, nonlinear estimation techniques are indeed

required. Moreover, the time series data in the agricultural are usually not sufficiently

long, especially for the investment data. This requires us to do the estimation on small

samples.

We use the generalized maximum entropy method (GME) proposed by Golan et al.

(1996) to estimate simultaneously the structural parameters and the latent state variables
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in this dynamic farm decision model. This method is preferred because it is applicable

to highly nonlinear systems. It evaluates the equilibrium conditions directly, and we

only use the approximated policy functions to obtain next period expectations. As re-

sult, the computational burden is much small compared to the Bayesian estimation with

the particle filters. Golan et al. (1996) show that the unknown parameters and the un-

known states in the dynamic estimation problems are recovered by the maximum entropy

method. Performing the Monte-Carlo experiments, Zheng and Gohin (2018) show that

the GME approach recovers accurately all the structural parameters in a neoclassical

growth model with large shocks.

The structure of the paper is organized as follows. Section 2 contains a sketch of

the model and the specification of expectations. Section 3 describes the GME method.

Section 4 presents the estimation results. Section 6 concludes.

2 The Model

Consider the following model in which a farmer uses capital Kt and variable inputs Xt

to produce one good Yt. Land owned by the farmer and family labor are considered as

fixed. The farm income comes from the production sales, the subsidies St and the new

debt Dt+1, and is used for personal consumption Ct, buying variable inputs Xt, making

investment It on capital Kt, and paying back the matured debt Dt with interest. The

farmer’s goal is to maximize the expected utility stream of consumption,

max
It,Ct,Xt,Dt+1

E0

∞∑
t=0

βtu(Ct). (1)

where β is the discount factor. The utility function takes the power utility form: u(ct) =

c1−γt /(1−γ), where γ is the inverse elasticity of intertemporal substitution. We call γ the

preference parameter in this paper, as it captures a mixture of risk preference and time
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preference under the power utility function. The farmer’s budget constraint is

ptYt + St +Dt+1 = It + wtXt + Ct + (1 + rt)Dt (2)

where pt is the potentially risky real price for output, wt is the variable input price, and

rt is the borrowing rate. The consumption good is used as the numeraire, and capital has

the same price as the consumption good. Importantly, our underlying assumption is that

capital investment decision It, financial borrowing decisions of acquiring new debt Dt+1
1,

and the action of paying back current debt Dt, are made at the end of the production

year when the production income has been achieved. These two dynamic decisions are

impacted by future production, price and interest rate risks. On the other hand, variable

inputs decision is made at earlier stage of the year. We assume the farmer adjusts the

variable inputs with the production and price risks during the crop growing season, so

that the short-term risks within one year are not concerned for this decision. Finally, the

budget constraint is balanced for the production (fiscal equivalent) year.

The production function follows a Cobb-Douglas production process,

Yt = AtK
αk
t Xαx

t (3)

where αk and αk is output elasticity of capital and variable inputs.

Physical capital is owned by the farmer, and is quasi-fixed in each period once in-

stalled. Its level depends on the last period capital stock Kt and investment It. So that

the law of motion for capital is,

Kt+1 = (1− δ)Kt + It (4)

where δ is the depreciation rate.

In each period, the farmer chooses strategy {It, Xt, Ct, Dt+1}t=∞t=0 to maximize the ex-

1The debt subscript t+ 1 also ensures the time subscripts of the two flow variables, capital and debt,
are in accordance.
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pected lifetime utility subject to the intertemporal budget constraint (Eq.(2)), production

function (Eq.(3)), and the capital evolution function (Eq.(4)). The first order conditions

are given as,

ptαxAtK
αk
t Xαx−1

t = wxt (5)

C−γt = βEt
[
C−γt+1

(
1− δ + αkpt+1At+1K

αk−1
t+1 Xαx

t+1

)]
(6)

C−γt = βEt[C
γ
t+1(1 + rt+1)] (7)

Eq.(5) is the variable input demand function which shows that the marginal product

of variable input equals the marginal cost. Eq.(6) is the Euler condition for capital

investment. It shows that the shadow price of capital equals the present value of marginal

product and the resale value of depreciated capital, whereas the shadow price of capital

equals marginal utility of consumption. Eq.(7) is the debt Euler equation, and is also a

standard asset pricing equation.

Price and interest rate evolution We assume that output price is exogenous at

the farm level, and the logarithm of output price pt follows a random walk with drift

processes. Furthermore, to capture the volatility change in price before and after the

CAP reform, we estimate the price evolution by allowing for a structural change in the

drift term and the volatility.

ln(pt+1) = µp(st) + ln(pt) + σp(st)εpt+1 (8)

where µp is the drift parameter, σp is the standard deviation of output price volatility.

µp(st), σp(st) varies with the regime st. s1 represents the regime of low price volatility,

and s2 represents the regime of high volatility. εpt is the price shock, it is identically and

independently distributed (i.i.d) and follows a Gaussian distribution εpt ∼ N(0, 1). This

specification allows a stochastic trend in the price evolution process, and is to match the

decreasing trend in agricultural prices (at least a decreasing trend before 2000).
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We model the interest rate in a similar way. Considering that the interest rate in

France is decreasing in the last decades, and there is no observable strucural break, we

model it as a random walk with drift process for the modeling period,

rt+1 = µr + rt + σrεrt+1 εrt ∼ N(0, 1) (9)

with µr the drift term and σr the standard deviation of the interest rate shock.

TFP evolution We assume the total factor productivity follows a random walk with

drift process, and that the productivity process has a cross correlation with the price

shocks.

ln(At+1) = µa + ln(At) + ρapσpεpt+1 + σaεat+1 (10)

where µa is the drift term, εat+1 is the productivity shock which is i.i.d. and normal

distributed, εat ∼ N(0, 1), and σa denotes the standard deviation of productivity shock,

εpt+1 is the price shock specified in the stochastic price process (Eq.8), ρap is the cross

correlation term which denotes the impact of price shock on the TFP process. It is not

known, however, if such cross correlation exists or not in reality. In the estimation part,

we will test the models by allowing ρap = 0 and ρap 6= 0. Furthermore, similar to price,

we allow for a structural change in the TFP evolution process,

ln(At+1) = µa(st) + ln(At) + ρapσpεpt+1 + σa(st)εat+1 (11)

where s1 is the regime of low price volatility, and s2 is the regime of high price volatility.

We introduce a stochastic trend into the productivity evolution and model it as a

random walk with drift process. This is to account for the economic growth in agri-

culture and to capture the trend in the real data. There are several ways to fit the

non-stationary real data into the theoretical model. The most used approach is to re-

move the trend from the real data by the filters (Hodrick-Prescott filter, first difference

filter), and estimate the model with the transformed data. This approach, in particular,
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the Hodrick-Prescott filter, is criticized because it apply univariate technique to data

series with different characters, and it comes with a cost that we loss relevant informa-

tion in the data series. Canova (2014) show that the parameters estimates depend on

the filter chosen, and the choice of the filters are arbitrary. Moreover, the objective of

the paper is to estimate productivity and evaluate the growth pattern, detrending the

data would lead to a stationary productivity process. As a result, we use an alternative

approach, which models the trend directly into the model. This approach is applied by

An and Schorfheide (2007) and Fernández-Villaverde and Rubio-Ramı́rez (2007), where

the technology process is modeled as a random walk with drift process.

State space representation The entire model described above can be considered as

a state space model, with Xt the vector of decision variables, St the vector of state

variables, and Θ the structural parameter set:

Xt = [Yt, It, Ct, Xt, Dt+1]
T ,

St = [Kt, At, pt, rt, Dt]
T ,

Θ = [β, γ, αx, αk, δ, µp, µa, µr, σp, σa, σr, ρap]
T .

In a general form, the model can be presented as,

Xt = f(St,Vt; Θ) (12)

St = g(St−1,Wt; Θ) (13)

where f and g are nonlinear functions with the vector of structural parameters Θ. Equa-

tion (12) is the observation equation in which the observable decisions variables Xt are

derived from the unobservable state variables St. Vt are the exogenous shocks such as

measurement errors (to avoid singularity). Equation (13) is the state equation which

describes the intertemporal evolution of state variables St. Wt are exogenous shocks

such as innovations. The underlying idea is that St is not directly observable, but we
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could estimate these unobservable states from the observable data Xt, given the function

form and the structural parameter set. Meanwhile, the structural parameters can also be

estimated from the observable data Xt.

3 Data

We use the Farm Accountancy Data Network (FADN) Type of Farming (TF) data for

farms specialized in COP (cereals, oilseed and protein crops) production, covering the

period 1988 to 2015. We focus on three regions in France: Centre, Picardie and Pays de

la Loire, as the main agricultural activity in the three regions is crop production. It also

allows us to compare if the policy effect on productivity is homogeneous across the regions.

The data are the average annual survey data for individual farms, containing also the

information on the financial statements (balance sheet, cash flow statement and income

statement). We use seven data series: output volume per farm, investment per farm,

consumption per farm, variable inputs per farm, debt per farm, output price, interest

rate, and the subsidies.

The price of soft wheat is used as output price, as the price movement and price level

are highly similar among the crop products (soft wheat, barley and maize). The price

is computed by dividing the gross production of soft wheat (in euro) by the volume of

soft wheat (in kilo), while the volume of soft wheat is yield multiplied by the area of

soft wheat production. Output volume is the difference between total crop production

and the variation in stock, divided by output price. Variation in stock is the variation

of crop products stocked by the farmer. According to the FADN variable definition, fi-

nal consumption is obtained by deducting the capacity of self-financing by self-financing.

Variable costs are used as variable inputs, they are the sum of intermediate consump-

tion, personnel expense for hired labor, rent, and insurance expense. Subsidies are total

subsidies net of tax.
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Figure 1: Evolution of real output price in Centre, Picardie and Pays de la Loire (base
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Figure 2: Evolution of interest rate in Centre, Picardie and Pays de la Loire
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Regarding the financial data series, according to the budget constraint,

ptYt + St − rtDt −Xt − Ct = It + ∆Stockt+1 −∆Dt+1 (14)

where ∆Dt+1 = Dt+1−Dt is the variation in debt, and debt is the sum of long-term, mid-

term and short-term debt. ∆Stockt+1 is the variation in stock. It is total investment. The

left hand of Eq. (14), according to the FADN variable definition, equals the self-financing

data series. We check the series we computed to make sure Eq.(14) holds. Interest rate

is computed as the financial charge divided by initial debt.

Consider that the sample size is decreasing in the survey because the total farm

number is decreasing. In the meantime, the farm size is growing with time - the sample

contains more large farms in recent years. As a result, the average of the sample cannot

represent a farm with a constant size. To control such size effect, we rescale the data by

the total farm number. Finally, we deflate the investment, consumption, variable inputs,

debt, subsidies, output price, and interest rate data series with the national consumption

index. It is worth mentioning that the data construction shows that the individual

level choice data are noisy at certain level, which infers the necessary of introducing

measurement errors.

Figure 1 and 2 depict the evolution process of output price and interest rate. The price

dynamics are similar across regions: it decreases steadily during the period 1988− 2002.

Follows with a low level fluctuation in 2002− 2005, the real output price becomes highly

volatile after 2005. The borrowing rate shows a decreasing trend over the years for the

three regions, which is consistent with the decreasing market interest rate in France.

However, the borrowing rate in the Centre region is generally lower than that of the

other two regions before 2006. Besides, in Pays de la Loire, the borrowing rate is more

volatile than the other two regions.
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4 Estimation Methods

The generalized maximum entropy (GME) approach we use here is described in Golan

et al. (1996). In particular, their approach is used to estimate a dynamic model with

unobserved data, such as land quality, unobserved shocks, technical process, etc.. The

dynamic model of Golan et al. (1996) matches explicitly the state space representation so

they do not need to solve the model. The advantages of the GME approach in estimating

DSGE or DSGE-like models are that, it evaluates the equilibrium conditions directly,

so that the estimation applies to nonlinear systems. Besides, it recovers the unknown

parameters and the unknown states simultaneously given the prior support values, which

results in a higher computational efficiency compared to other sampling based methods.

Moreover, the consistency of the GME estimate does not depend on the validity of as-

sumptions on the distribution of the error terms. The disadvantages of the method are,

the statistical inference of this method is not well developed, and the results can be

sensitivity to the choices of the prior information of the parameters and the error terms.

In a general form, Jaynes (1957) proposes finding the probability distribution that

satisfies the constraints and maximizes the Shannon’s entropy criterion (Shannon 1948),

H(p) = −
∑
n

pnln(pn) (15)

where p = (p1, ..., pN)′ is a discrete probability distribution for discrete prior information.

For our empirical estimation, we need to recover the probability distribution of the

structural parameter set Θ, and the time-varying error terms, including εat,pt,rt which

represent the productivity shocks, price shocks and interest rate shocks, and εmea which

represent the measurement errors and other approximation errors. With the recovered

structural parameters and structural shocks, we are able to recover the evolution process

of the latent productivity and capital.

To construct the GME framework, first, we reparameterize the structural parameters

θi(i = 1, 2, . . . , I) and the errors εjt(j = 1, 2, . . . , J ; t = 1, 2, . . . , T ). Here i is the index
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for the parameters, j is the index for the errors, t is the time index. Given the prior

information, suppose that the value of each parameter θi lies within the interval [zi1, ziK ].

We define a set of discrete points (support values) zi = [zi1, zi2, . . . , ziK ]′, with associated

probability weights pi = [pi1, pi2, ..., piK ]′. The unknown Θ , which is a I-vector is,

Θ = Zp =



z′1 0 . . . 0

0 z′2 . . . 0

...
...

. . .
...

0 0 . . . z′I





p1

p2

...

pI


(16)

where Z is an I × IK matrix and p is an IK vector. For each parameter θi,

z′ipi =
∑
k

zikpik = θi for i = 1, 2, . . . , I (17)

Similarly, suppose the error terms εjt lies within the interval [vjt1, vjtD]. Note here we have

one more dimension, time t. We define a set of discrete points vjt = [vjt1, vjt2, . . . , vjtD]′,

with associated probability weights wjt = [wjt1, wjt2, ..., wjtD]′. The unknown shocks εt at

time t, which is a J-vector, is,

εt = Vtwt =



v′t1 0 . . . 0

0 v′t2 . . . 0

...
...

. . .
...

0 0 . . . v′tD





wt1

wt2

...

wtD


(18)

where Vt is an J × JD matrix and w is an JD vector. For each shock at time t εjt,

v′jtwjt =
∑
d

vjtdwjtd = εjt for j = 1, 2, . . . , J ; t = 1, 2, . . . , T (19)

Given the reparameterization, our objective is to find the optimal probability distri-

bution (p,w) of the corresponding support values, which maximize the objective entropy.
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The empirical program is,

max
p,w
−
∑
i

∑
k

pikln(pik)−
∑
j

∑
t

∑
d

wjtdln(wjtd) (20a)

Subject to the equilibrium conditions of the dynamic decision program, and the adding

up constraints,

C−γt = βEt
[
C−γt+1

(
1− δ + αkAt+1pt+1K

αk−1
t+1 Xαx

t+1

)]
(20b)

C−γt = βEt[C
γ
t+1(1 + rt+1)] (20c)

ptαxAtK
αk
t Xαx−1

t = 1 (20d)

Kt+1 = (1− δ)Kt + ptYt + Sy +Dt+1 −Xt − Ct − (1 + rt)Dt (20e)

Yt = AtK
αk
t Lαlt (20f)

ln(pt+1) = µp + ln(pt) + σpε̃pt+1 , ε̃pt ∼ N(0, 1) (20g)

rt+1 = µr + rt + σr ε̃rt+1 , ε̃rt ∼ N(0, 1) (20h)

ln(At+1) = ρA ln(At) + σAε̃At+1 , ε̃At ∼ N(0, 1) (20i)∑
k

pik = 1 for i = 1, 2, . . . , I (20j)

∑
d

wjtd = 1 for j = 1, J ; t = 1, 2, ...T − 1 (20k)

pik > 0, wjtd > 0 for ∀i, j, t, k, d (20l)

where pik and wjtd are the probability weights of the supporting values which we have

specified in the reparameterization part, and Eq.(20d) - (20f) correspond to the equilib-

rium conditions in Eq.(2) - (6).

The expectation operator

To bring the above program, especially the Euler equation Eq.(20d) and Eq.(20b) to the

data, one important assumption is rational expectation. The central idea is that the
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expectation is in accordance with the model prediction. The farmer cannot precisely

predict the point values of the next period shocks, but he or she knows the distribution

of the shocks. In reality, while the CAP reform in 2003 induces high price fluctuation, the

EU farmers are able to form their expectations on price volatility based on the historical

world price fluctuation.

To evaluate the conditional expectation operator, regarding the state variables, we

observe price and interest rate, and we do not observe capital and TFP. First, we estimate

the exogenous price and interest rate evolution processes (Eq.(20g) and Eq. (20h)) outside

of the structural model, based on the observed price and interest rate data. Meanwhile,

the latent TFP evolution (Eq. (20i)) is to be retrieved in the GME program of the

structural model. Second, we evaluate the TFP shocks, price shocks, and interest rate

shocks via Gaussian Quadrature.

This evolves modeling the error terms as a random variable with Gaussian Quadrature

nodes and the corresponding Gaussian Quadrature weights. For shocks that follow a

normal distribution with zero mean and standard deviation 1, ε ∼ N(0, 1), we use a

5-point Gaussian Quadrature grid with the nodes and weights specified in Table 1 to

describe the anticipated shocks:

Table 1: Gauss-Hermite approximation

i εi wi

1 -2.8570 0.0113
2 -1.3556 0.2221
3 0 0.5333
4 1.3556 0.2221
5 2.8570 0.0113

Accordingly, the nodes for the anticipated next period price, interest and TFP are,

ln(pipt+1) = µp + ln(pobst ) + σpε
ip (21)

rirt+1 = µr + robst + σrε
ir (22)

ln(Aia,ipt+1 ) = µA + ln(At) + ρapσpε
ip + σAε

ia (23)
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where ip, ir, ia denote the nodes index for price, interest rate and TFP shocks, which

correspond to i in table 1.

Regarding the decision variables, at time t, we observe 4 decision variables, consump-

tion Cobs
t , production Y obs

t , variable inputs Xobs
t , and debt Dobs

t . The entrepreneur cannot

precisely predict the point value of next period consumption. However, under rational

expectation, the nodes of the anticipated consumption can be decided by the nodes of

anticipated state from the policy functions. The policy functions are approximated based

on the current period t policy variables and states by Chebyshev polynomials. Mathe-

matically, the Mth degree approximation of the policy function is,

Cobs
t =

MK∑
mK=0

Md∑
mD=0

MA∑
mA=0

Mp∑
mp=0

Mr∑
mr=0

bmK ,mD,mA,mp,mr

ψmK (φ(Kt))ψmD(φ(Dt))ψmA(φ(At))ψmp(φ(pobst ))ψmr(φ(robst )) + εcst (24)

Cia,ip,ir
t+1 =

MK∑
mK=0

Md∑
mD=0

MA∑
mA=0

Mp∑
mp=0

Mr∑
mr=0

bmK ,mD,mA,mp,mr

ψmK (φ(Kt+1))ψmD(φ(Dt+1))ψmA(φ(Aiat+1))ψmp(φ(pipt+1))ψmr(φ(rirt+1)) + εcnet

(25)

X ia,ip
t+1 =(αxp

ip
t+1A

ia
t+1K

αk
t+1)

1
1−αx (26)

In Eq.(24), The Chebyshev coefficients bdK ,dA,dp,dr are jointly estimated in the GME pro-

gram by interpolating the basis functions of the state variables Kt, At, pt Dt and rt

into the observed consumption data series. m. is the degree of approximation, ψd.(.) are

Chebyshev polynomials, φ(.) are linear mapping of state variables to [−1, 1]. εcst is the

approximation error of the policy function from consumption data series. Adding one

measurement errors series εcst avoids the singularity problem because we need to have

the same number of shocks as the number of observable data series (detailed singular-

ity problem is discussed in Fernández-Villaverde and Rubio-Ramı́rez 2005, Ruge-Murcia

2007).
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In Eq.(25), the next period consumption is obtained using the anticipated next period

states, and the estimated Chebyshev policy function in Eq. (24). Eq.(26) shows the next

period variable inputs are obtained using the anticipated next period price and TFP.

Based on Eq.(21) - (26) and Gaussian Quadrature points in table 1, the empirical

Euler conditions are rewritten as,

(Cobs
t )−γ =

∑
ia

∑
ip

∑
ir

wiawipwirβ
[
(Cia,ip,ir

t+1 )−γ
(
1− δ + αpipt+1A

ia
t+1(Kt+1)

αk−1(X ia,ip
t+1 )αx

)]
(27)

(Cobs
t )−γ =

∑
ia

∑
ip

∑
ir

wiawipwirβ
[
(Cia,ip,ir

t+1 )−γ(1 + rirt+1)
]

(28)

Finally, the objective entropy (Eq.(20a)) is maximized subjective to the constraints

Eq.(20d) - (28). The time-constant parameters dimension I = 7 + 243 = 250 (with 7 the

number of the structural parameters, 243 = 35 the number of Chebyshev coefficients),

and the time-varying shocks dimension J = 4. By forming Lagrange, the first order

conditions provide the basis for the solution pik and wjtd. By the reparameterization

definition, the estimated parameter and shocks are,

∑
k

p̂ikzik = θ̂i (29)

∑
d

ŵjtdv
ε
ktj = ε̂jt (30)

Given the recovered shocks in Eq(30), the estimates of the TFP evolution process are

determined by Eq.(20i).

5 Results

For the GME estimation, it is important to give prior information to the parameters.

Table 2 shows the prior (support values) for the parameters and the shocks. We choose

relatively loose prior to make sure that the results are not manipulated by the prior
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information. The probability of each support point is assigned equal initially. The output

elasticity of the inputs is set between 0 and 1, because by the economic meaning, the

elasticity of one input is smaller than 1. The depreciation rate is set between 0 and 0.2.

The depreciation in agricultural can be as high as to 0.1 considering the intensive use

of the agricultural capital, the value 0.2 makes sure that the estimation will not hit the

bounds. The drift terms for the price, TFP and interest rate evolution are all set between

-0.2 and 0.2, so that we do not fix the direction of the trend in price, TFP and interest

rate, and 20% is a loose level for annual growth rate. The support values for all the shocks

and factor inputs measurement errors are set between -1 and 1. Importantly, the policy

approximation errors are set at a very low level, which indicates that the approximated

policy function is very close to the true one. Consequently, it indicates a small Chebyshev

approximation error such that the preference parameter can be well identified2.

Estimate price and interest rate with structural change

Before estimating the structural model, we estimate first the exogenous price and interest

rate evolution process - followed which the farm entrepreneur form expectations on the

future output price and borrowing rate. Based on the real price evolution in Figure 1, we

observe a possible structural change during the period 2002 − 2005. This is the period

when the price starts to fluctuate, and afterward, the price volatility becomes extremely

high. To capture the volatility change in price, we estimate the price evolution by allowing

for a structural change in the drift term and the volatility.

ln(pt) = µp(st) + ln(pt−1) + σp(st)εpt (31)

where µp(st), σp(st) varies with the regime st. s1 represents the regime of low price

volatility, and s2 represents the regime of high volatility. To detect the actual year of

structural change, we test the model with structural change in 2002 and 2003. The

2Based on the Monte Carlo experiment on simulated data, the preference parameter is accurately
estimated only when the policy approximation error is small.
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Table 2: Prior information for the parameters

Support values (priors)
Parameters Description Low Centre High
β discount factor 0.9 0.95 0.99
γ preference 0 3 7
αk output elasticity of capital 0 0.3 0.7
αx output elasticity of variable inputs 0 0.5 1
δ depreciation rate 0 0.1 0.2
µp drift term in price evolution -0.2 0 0.2
µa drift term in TFP evolution -0.2 0 0.2
µr drift term in interest rate evolution -0.2 0 0.2
ρap correlation between price shock and TFP -1 0 1
σp standard deviation of price shocks 0 0.1 0.3
σa standard deviation of TFP shocks 0 0.1 0.3
σr standard deviation of interest rate shocks 0 0.1 0.3
bdK ,dA,dp,dr Chebyshev coefficients -1 0 1
εpt price shocks -1 0 1
εat TFP shocks -1 0 1
εrt interest rate shocks -1 0 1
εxt(mea) measurement errors -1 0 1
εyt(mea) measurement errors -1 0 1
εcst Chebyshev approximation errors −10−4 0 10−4

εcnet expectation errors −10−4 0 10−4

εxnet expectation errors -1 0 1

Shapiro-Wilk normality test on the residuals shows that a structural change in 2002 best

describes the exogenous price. Consequently, we split the whole period into two, with

the low price volatility regime s1 = [1988 − 2002], and the high price volatility regime

s2 = [2003 − 2015]. The Chow test on the first difference real price data confirms that

there is a structural change in 2002.

Similar to price, we estimate the exogenous interest rate evolution outside the struc-

tural model. The Chow test rejects the structural change in 2002 for the interest rate

data. So that we don’t include a structural change in the interest rate.

Table 3 shows the GME estimates of the price and interest rate evolution process

for the region Centre, Picardie and Pays de la Loire. The price evolutions for the

three regions are similar: for the period 1988 − 2002, the price has a decreasing trend

(−0.064,−0.061,−0.065) with a low-level volatility at 0.018, 0.021 and 0.017. For the
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Table 3: GME estimation of price and interest rate evolution

Centre Picardie Pays de la Loire
µp(s1) -0.064 -0.061 -0.065
σp(s1) 0.085 0.086 0.070
µp(s2) 0.018 0.021 0.017
σp(s2) 0.260 0.209 0.212

Entropy 6080.74 6104.94 6106.20
µr -0.002 -0.002 -0.003
σr 0.007 0.013 0.021

Entropy 3030.61 2923.99 1736.74

period 2003−2015, the price volatility rises to as high as 0.260, 0.209 and 0.212, following

with a small increasing trend (0.018, 0.021, 0.017). Regarding the residuals of the price

evolution before and after the structural change, the Durbin-Watson test statistics accept

the null hypothesis that the serial correlation is zero, and the Shapiro-Wilk test statistics

cannot reject the null hypothesis that the samples come from a population which has

a normal distribution. For the whole period, the interest rate offering for the farms, in

general, has a small decreasing trend with volatility level at 0.007, 0.013 and 0.021. This

decreasing trend is in accordance with the French market interest rate.

Estimate the structural model

Table 4 shows the estimation results of two test models. For both models, output price

follows the estimated random walk with drift process with structural change in 2002

(Table 3). Similarly, for TFP evolution, we assume that there is a structural change

before and after 2002,

ln(At) = µa(st) + ln(At−1) + ρapσpεpt + σa(st)εat (32)

where st = 1988− 2002 is the regime of low price volatility, st = 2003− 2015 is the

regime of high price volatility. The remaining structural parameters such as preference

and input elasticity are constant. For Model 1, there is no correlation between price

shocks and TFP (ρap = 0). For Model 2, the cross-correlation is not zero (ρap 6= 0).
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Table 4: GME estimation of the structural model

Centre Picardie Pays de la Loire
Model 1: ρzp = 0

β 0.943 0.944 0.945
γ 2.325 2.668 2.997
αk 0.461 0.473 0.372
αx 0.770 0.791 0.773
δ 0.120 0.127 0.080

µa(s1) 0.062 0.080 0.047
σa(s1) 0.029 0.054 0.049
µa(s2) -0.029 -0.031 -0.029
σa(s2) 0.061 0.075 0.066

Entropy 1239.352 1236.651 1254.842
Model 2: ρzp 6= 0 (Selected model)

β 0.946** 0.945** 0.946**
γ 3.064** 2.519** 3.161**
αk 0.333** 0.319** 0.348**
αx 0.770** 0.791** 0.773**
δ 0.098* 0.091• 0.094*

µa(s1) 0.052* 0.055* 0.045*
µa(s2) 0 -0.008 0.007
σa(s1) 0.028* 0.062** 0.043**
σa(s2) 0.054** 0.079** 0.045**
ρzp -0.807* -0.876* -0.809*

Entropy 1256.080 1257.959 1263.153

Note: ** denote rejection of the null hypothesis because of infeasible.• and * denote rejection
of the null hypothesis at the 90% and 95% confidence level respectively. The critical values for

the individual test at 90% confidence level is 2.71, and at 95% confidence level is 3.84.

The entropy values show that Model 2 better describes the data and it is the selected

model. The significance of ρap also confirms the existence of the cross-correlation between

TFP and price shock.

Regarding the structural parameter estimation, all the estimated values are changed

from the priors, which indicates all the parameters are identified from the data infor-

mation. Test using the entropy ratio statistic (Judge and Mittelhammer 2011) find the

depreciation rate, the trend in TFP for the period 2003− 2015 for Picardie and Pays de

la Loire to be significantly different from zero. In addition, imposing zero discount factor,

zero input elasticity, zero preference, zero volatility, zero trend for the period 1988−2002,

and zero correlation with price shocks lead to infeasible. The infeasibility may indicate
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that the data are not compatible with the null hypothesis, so that we can reject the null

hypothesis that these structural parameters are zero (Arndt 1999). Since the constraints

for the optimization are nonlinear, it is also possible that feasible solution exits under the

null hypothesis but the routine cannot find it. However, consider that these structural

parameters have receptively their economic meanings, they are not possible to be zero

under the chosen economic framework. As a result, infeasibility is taken as a rejection of

the null hypothesis.

The estimated structural parameters share some similarity across the three regions,

but also have their differences. The discount factor is overall around 0.94, this is in line

with the average borrowing rate of 5− 6% across regions. The variable-inputs elasticity

is rather constant across the regions at the level of 77%. This factor contributes to the

most part of the crop production because we have included intermediate inputs, rented

land and hired labor into the variable inputs. On the other hand, capital contributes to

30−35% to the production across the regions. Overall, the agricultural production in the

three regions exits increasing return to scale. As expected, the estimated depreciation rate

is around 9− 9.8%, which is higher than the macroeconomic depreciation rate (2− 3%).

The high depreciation rate is reasonable for the agricultural capital if we consider the

intense use of machines and equipment for agricultural production. Last, when we allow

for the Chebyshev approximation errors at a low level (lies within the range [0.0001,

0.0001] as the support values), we obtain the estimation of the preference parameters.

The average level of risk-aversion is relatively high in Pays de la Loire and in Centre

(3.064 and 3.161), and is 2.519 in Picardie. It indicates that instead of risk neutral, the

agricultural entrepreneurs in these region prohibits a median-level risk aversion.

The structural shocks parameters which describe the TFP evolution are jointly es-

timated with the structural parameters, and are also depicted in Table 4. To better

illustrate the estimated latent TFP evolution process, we plot in Figure 3 - 5 the es-

timated TFP series, along with real output price and yield (land productivity). First,

regarding the first-order relationship between price and TFP, we find a significant neg-
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ative correlation between price shocks and TFP. The values are −0.807,−0.876,−0.809

respectively for the three regions. This can be explained from a general equilibrium point

of view that, a negative price shock is possibly a result of an increase in supply, which

corresponds to a positive productivity shock such as weather conditions. In addition, this

negative correlation can be a transaction channel for price volatility and TFP.

Second, regarding the second-order relationship - price volatility and TFP, the in-

creasing price volatility has a negative impact on the TFP growth. In the regime

of low price volatility (year 1988 − 2002), TFP grows steadily with increasing trend

(0.052, 0.055, 0.045) and small fluctuations (0.028, 0.062, 0.043). In the regime with high

price volatility (year 2003 − 2015), the TFP growth has slowed down and the growth

pattern becomes much more difficult to predict. Indeed, the increasing trend becomes

not significant the three regions. The pure TFP shock volatility level has increased to

0.054 for Centre, 0.079 for Picardie, and remains stable at 0.045 for Pays de la Lore. It

indicates that instead of coming from the pure TFP shock such as weather conditions,

the increasing TFP fluctuation is mostly a result of increased price fluctuation. The

estimated parameters are shown more intuitively in Figure 3 - 5. The plotted estimated

TFP imply that, during the period 2002− 2005, TFP still grows with a little larger fluc-

tuation compared to the previous period. It is after 2005 that TFP drops sharply, and

then follows with a big rebound during the period 2007− 2009. After 2009, agricultural

productivity falls again. It rebounds and keeps on growing after 2013. Overall, the esti-

mation results imply that TFP grows slower (or stop growing) and fluctuate more in the

regime of high price volatility.

Being considered as the Solow residual of the production function, productivity has

always been considered as exogenous and is mostly influenced by the technology change,

and in agricultural, influenced by pure exogenous shocks such as weather condition. Ex-

cept learning, how the individual behavior influences productivity remains ambiguous.

Our estimation results show that price risk is also a factor that influences productivity

growth. Based on our model assumption, the producers make expectations on future
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Figure 3: Centre: comparing the estimated TFP with price and yield
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Figure 4: Picardie: comparing the estimated TFP with price and yield
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Figure 5: Pays de la Loire: comparing the estimated TFP with price and yield

27



prices and know the distribution of the price risks. Consequently, in the regime where

price volatility is high, the producers know they are exposed to high risks, and they may

have less incentive for production. This can be a channel with which the price risk is

linked to productivity.

Last, compare the estimated TFP with yield in Figure 3 - 5, we can see that TFP is

different from single factor productivity. On the one hand, there is no growing trend in

land productivity, while TFP keeps on growing in the first period. On the other hand,

the fluctuation in yield is also reflected in TFP. We can learn from the figure that, instead

of the intensity use of land, the source of TFP growth more comes from the intensity use

of capital, the knowledge of labor, and the technology change. It also proves in a way

that TFP is more important than single factor productivity.

6 Conclusion

Measuring agricultural productivity from the observed data series has always been a

challenge for economists. Traditional productivity measurements approximate the unob-

servable capital data series from the investment data and by assuming the depreciation

rate, interest, etc., which can be very critical (Andersen et al. 2012). Moreover, direct

econometric TFP estimation suffers from the endogeneity problem caused by simultane-

ity. This paper tries to solve these two problems, and estimate the dynamic link between

price risk and productivity in a dynamic stochastic farm decision model. We investigate

how the increasing price volatility in France after the CAP reform impact on total factor

productivity (TFP) in agricultural.

Based on the FADN survey data in the region Centre, Picardie and Pays de la Loire

in France from 1988 to 2015, we estimate simultaneously the structural parameters and

the TFP series using the generalized maximum entropy (GME) approach. To assess

the impact of the increasing price volatility, we impose a structural change in the drift

term and volatility in the price and TFP evolution process. Our estimation results
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confirm that there are two regimes for output price: one regime, 1988− 2002, where the

price volatility is low, and the other regime, 2003 − 2015, where the price volatility is

extremely high. We show that the estimated TFP grows steadily with small fluctuations

in the first regime before the CAP reform. The growth pattern becomes much more

volatile following the increase in price volatility, and the upward trend in TFP growth

become insignificant. In addition, we find a negative correlation between the price shocks

and TFP evolution. Regarding the structural parameter estimation, we find a relatively

higher level depreciation rate in agriculture compared to that in macroeconomics. Our

estimation also shows evidence on the existence of a medium level risk aversion for the

farmers in these three regions. Overall, price risk does have an impact on productivity

in the way that when farmers are exposed to high risks, they alter their decisions and

production incentives which in term impact negatively on the realized productivity.

As further extensions, this paper does not model, however, through which channel

productivity is linked with output price fluctuation. For example, Liu et al. (2013) study

the link between land price and macroeconomic fluctuations in a DSGE model. They

introduce land as a collateral asset in the credit constraint, and the credit constraint

and housing demand shock jointly amplify the macroeconomic fluctuation. We have

also introduced the financial debt into the model, but credit constraint is only modeled

implicitly through the interest rate. It will certainly be interesting to enrich the model

by introducing the structural equations for credit constraint. Further applications of the

GME approach method on more flexible production function forms, such as the quadratic

function, more flexible utility function form, such as recursive utility, are to be explored.

In addition, policy implications for enhancing agricultural productivity in the aspect of

controlling price risks is also to be discussed.
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Appendix

The entropy ratio test

We construct the entropy statistics following Judge and Mittelhammer (2011) and Arndt

(1999). The test is similar to the likelihood ratio test. Denote L(Θ̂) the objective value of

the GME problem, L(Θ̂c) is the objective value for the GME problem when a constraint

hypothesis is added to the constraint set (e.g., the capital elasticity is 0). The test

statistics is,

λ = 2n
(
L(Θ̂)− L(Θ̂c)

)
(33)

which follows the usual central Chi-square distribution. n denotes the degree of freedom

which is the number of constraints imposed.
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