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In the big data era, agricultural producers and crop consultants are being inundated with data. 

Modern GIS and computer technologies have developed data for applying precision 

agriculture. One of the largest sources of the data comes from yield monitors. Perhaps the 

most critical place yield monitor data could be used is in establishing nitrogen fertilizer 

recommendations. Due to considerable site-specific heterogeneity in farming fields, such as 

soil type, weather, and moisture, optimal input recommendation can vary spatially. 

Therefore, optimal input recommendations across heterogeneous locations ultimately rely on 

the ability to establish well-identified site-specific yield response functions. In this regard, a 

methodological development of obtaining the site-specific recommendations will fuel the 

adoption of precision agriculture. 

Several types of regression models have been employed to obtain optimal input 

recommendations. These models generally fit yield data in response to the different level of 

inputs in the agronomic experimental data. Particularly, many studies have employed spatial 

econometric models due to the existence of spatial correlation of crop yield outcomes. An 

ordinary least squares (OLS) model that assumes spatial independence will produce 

inefficient estimates when there exists the spatial correlation, mainly due to the incorrect 

variance estimates (Anselin et al., 2004; Lambert et al., 2004). To address the spatial 

correlation in the data, therefore, spatial econometric models are mainly used in recent 

studies. The studies include Anselin et al. (2004), Lambert et al. (2004), Hurley et al. (2004), 

Liu et al. (2006), and Lambert et al. (2006). A typical approach of the studies for site-specific 

recommendations is defining sub-districts and impose dummy variables on the districts to 

account spatial heterogeneity. However, the arbitrarily defined district dummies do little to 

explain the causality of the site heterogeneity since the relationship between the input 
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response variability and location characteristics, such as soil type, moisture rate, is not 

thoroughly considered when comparting the districts. More importantly, the approach cannot 

provide the different level of input response coefficients of every site in the farming field.  

The spatial econometric models for the yield response functions are mostly based on 

the classical statistical inference, which assumes the non-stochastic parameter and random 

input variables. Therefore, the estimation results of such methods only provide a 

representative yield response to the input level changes of arbitrarily defined sub-districts. To 

obtain input response coefficients for every site, therefore, we should regress the model 

independently by sites. For instance, if we have N number of the sites, then we should 

regress N times separately by using each site’s own observations. If we have sufficiently 

large enough number of historical outcomes for each site with variable input uses, we might 

get good estimator of the input response coefficient. However, current field monitoring data 

has small historical observations and uniform input rates. 

In this regard, insufficient historical observations of the monitoring data can be the 

most critical obstacle when estimating site-specific parameter estimates. Although the field 

monitoring data includes large locations with high-quality spatial information, most datasets 

have less than ten years observations in each location. Therefore, we cannot expect accurate 

site-specific coefficient estimates from the general spatial econometric models. Moreover, a 

uniform rate of nitrogen has been applied to most fields. Therefore, we cannot expect 

sufficient variation of input uses for single locations over time as well. This can be another 

obstacle to apply the general spatial econometric methods to fit the field monitoring data.  

Ultimately of interest is how can these yield monitor data be used to estimate some of 

the parameters of a production function in order to make variable rate nitrogen 
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recommendations. Variable rates can now be applied at low cost, but the problem of how 

best to determine the rate applied has not been solved. We address the problem by using 

Bayesian Kriging (Gaussian process regression) method. The method assumes that the input 

response coefficients are stochastic and spatially correlated. The method produces spatially 

smoothed site-specific coefficients based on the latent spatial correlation structure. We adopt 

the method because crop yields in the field monitors show strong spatial correlation. Since 

Bayesian statistic assumes stochastic parameters, spatially correlated stochastic coefficients 

can describe the spatial correlations in crop yields. The spatial structure is updated under the 

Bayesian inference by using the yield outcomes and site-specific information (locational 

distance, soil type, etc). We assume a linear stochastic plateau production function as in 

Tembo et al. (2008) and estimate the plateau and its variance for each point in the field. To 

evaluate the accuracy of the proposed model, we conduct a Monte-Carlo simulation under the 

three different scenarios on the spatial correlation structure: (a) strong spatial correlation on 

the plateau, (b) randomly distributed plateau, and (c) uniformly distributed plateau over 

space. Each scenario has datasets with a different number of locations and historical 

observations. We then compare the accuracy of the proposed model with the maximum 

likelihood estimation (MLE) method. The root mean squared error (RMSE) is used as a tool 

to measure the accuracy. The results are strongly favorable to the new method in all 

combinations in each scenario with more than 50 locations. The new method shows great 

accuracy even when each location has 5 observations if the dataset has sufficient number of 

locations (more than 50 locations). Specifically, the new method more significantly 

outperforms to the general MLE when there exists a strong spatial correlation. 

Recommendations are then made using Bayesian decision theory. 
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The objective of the study is to answer the question of how to use yield monitor data 

to determine nitrogen recommendations. To address the issue, we develop a new estimation 

routine that provides site-specific coefficient estimates based on the Bayesian Kriging 

method. The estimated site-specific coefficient are used to suggest variable nitrogen 

recommendations to maximize an expected yield and profit of farms. 

 

Data 

The data we use for this analysis are collected from about 491 acres of corn production fields 

in Mississippi. Those fields are adjacent to each other and provide a very good sample for 

spatial analysis. The major soil types are Dubbs silt loam and Dundee silt loam, with around 

0 to 2% slopes. A small portion of the land area is covered by Dundee silty clay loam.  

Consecutive corn was planted in those fields from 2011 to 2016.  However, only four years 

have complete input data records (2012, 2014, 2015, and 2016), which are used in the 

modeling of this study. 

The original yield data are geospatially referenced point records collected from yield 

monitor. The corn harvesting usually happened between August 1 and 23 during the sample 

years. The yield monitor was installed on the John Deere corn harvester, and with 6 sensors 

in a row mounted on the header of the harvester. The distance between those sensors is about 

2 meters. The sensors recorded the instantaneous yield and moisture data at 1 second 

intervals during harvesting. The length of the intervals depends on the speed of the driving.  

At an average speed of about 7 km/h, the length is about 2 meters. Therefore the original 

yield data are geo-referenced points about 2 meters apart from each other. An illustration of 
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the yield point data is shown in Figure 1. The farm also kept records of seeding rates and 

nitrogen fertilizer application data. Those are also geospatially referenced point data 

collected by planting machine and fertilizer sprayer, which are in similar data format as yield.  

The seeding rate points are about 0.45 meter apart. Fertilizer application rate points are 3 

meters to 12 meters apart, depending on the types of sprayer used. 

We then aggregate the point data (yield, seeding rates, and nitrogen fertilizer rates) 

into grids with a square cell size of 100 meters. The value for each grid cell is the mean of 

the original point readings falling within the 100 meters by 100 meters grid cell. The border 

areas of the field usually have some abnormal values in the original point readings. Those are 

likely due to the turning and speed changing of farming machines during operation. While it 

is very cumbersome to correct for those data errors, we simply discarded all points within 20 

meters of the border line. Certain portions of the field had missing data in some years. Those 

portions were discarded as well. In the end we obtained a balanced panel of 160 grids 

covering 4 years (2012, 2014, 2015, and 2016). The locations of those grids are visually 

presented in Figure 2 (using yield as an example). 

The average yield was relatively stable over time. The pooled average yield for all 

grids of all years is 216.2 bu/acre. Year 2012 had the highest average yield of 229.9 bu/acre, 

while year 2015 had the lowest of 207.8 bu/acre. The across space variability in yield was 

much more substantial.  In the pooled data, the highest-yield grid was 274 bu/acre, while the 

lowest was 163.5 bu/acre. The spatial variability in corn yield can be easily detected as in 

Figure 2.  Seeds were usually planted during March 26 and April 4 in those sample years.  

Different varieties and target seeding rates were applied, ranging from 28k to 36k seeds per 

acre. The farm applied uniform rate seeding at field level (or a large part of the field). But 
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during the operation the actually applied rates may deviate from the target rates. Those 

operation “errors” created important sources of variations in seeding rates for the analysis. In 

the sample the lowest grid level seeding rate is 25.3k seed/acre, and the highest is 36.5k 

seed/acre. Several types of liquid nitrogen fertilizer were applied in the fields, including 28-

0-0-5, 30-0-0-2, and 32-0-0. The split applying pattern was used, with starters usually applied 

at the seeding (March 26 to April 4), and sidedress applied in early May (May 01 to May 05).  

The total nitrogen amount was calculated by summing up the actual nitrogen pounds in the 

different nitrogen types. It should be noticed that the timing of nitrogen fertilizer application 

also critically impacts corn yield. But the timing issue is by itself a complicated research 

question, and large number of studies have looked into it yet without consensus conclusions.  

Some studies found no effects of split nitrogen application while some found positive effects.  

It is beyond the scope of this paper to explore the timing effect. We only look at the effect of 

total nitrogen amount at this point, and leave the timing effect for future research. Similar to 

seeding rates, the farm applied uniform rate nitrogen fertilizer at field level. But in the actual 

application operations some random variations happened in the applied rates from the target 

rates. Because those variations can be regarded as operation errors, most likely they can be 

treated as random variations. The descriptive statistics of the major variables are presented in 

Table 1.  

 

Bayesian Modeling Framework 

Crop response function 
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Many agronomic studies on crop yield response to nitrogen input have suggested using a 

plateau function, but the plateau can vary across locations and years. In this regard, we adopt 

a stochastic linear response plateau function (Tembo et al. 2008; Ouedraogo and Brorsen 

2017). They introduce methods of estimating a response function with a stochastic plateau 

that addresses field and year random effects based on classical (Tembo et al. 2008) and 

Bayesian econometric methods (Ouedraogo and Brorsen 2017). Unlike their models, we 

assume that the plateau means 𝑷 and variation 𝝐 of fields are spatially correlated and vary 

across locations. Our model assumes a single nitrogen input, a linear response, and 

normality. The proposed site-specific stochastic plateau function can be defined as 

(1)  𝑦𝑖𝑡 = min(𝛼 + 𝛽𝑥𝑖𝑡, 𝑃𝑖 + 𝜖𝑖) + 𝜀𝑖𝑡 

where 𝑥𝑖𝑡 and 𝑦𝑖𝑡 are the level of the nitrogen input and response yield on 𝑖th plot at year 𝑡, 

𝑖 = 1, … , 𝑁 and 𝑡 = 1, … , 𝑇, the plateaus 𝑃𝑖 are assumed to be spatially correlated by 

distance and multivariate normally distributed, 𝑷~𝑀𝑉𝑁(�̅�,Σ𝑃), where 𝑷 = [𝑃1, … , 𝑃𝑁]′, 

Σ𝑃 = 𝜌
𝑃

𝑒−𝐷𝑖𝑗/𝜃𝑃, 𝜖𝑖 is a spatially correlated plateau error (plateau variance), 𝝐~𝑀𝑉𝑁(𝟎,Σ𝜖), 

where 𝝐 = [𝜖1, … , 𝜖𝑁]′, Σ𝜖 = 𝜌𝜖𝑒−𝐷𝑖𝑗/𝜃𝜖 and 𝜀𝑖𝑡 is an independently identically distributed 

error term 𝜺𝒕~𝑀𝑉𝑁(𝟎, 𝜎2𝑰𝑁𝑇), where 𝜺𝒕 = [𝜀1𝑡, … , 𝜀𝑁𝑡].  

 The model allows spatially varying plateau variance. Tembo et al. (2008) assume a time 

random effect for the plateau, which implicitly assumes spatial correlation equal to one.  

Yield monitor data typically have a short time series, but a large number of cross-section 

observations. Since we are estimating different plateau parameters for every area of the field, 

Bayesian Kriging offers a way to use the spatial information in estimating the plateau 

parameters. 
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Hierarchical structure 

The Bayesian Kriging regression model (Gaussian process regression) in the study has three 

hierarchical layers. First, in the likelihood layer, the crop yields are assumed to follow a 

normal distribution. Second, the process layer models the spatial structure of the density 

parameters. This second layer produces spatially varying (site-specific) parameters (plateau 

and its variance for each site). The model updates the spatial structure within the Markov 

Chain Monte Carlo (MCMC) procedure. The third layer imposes priors for the explanatory 

variables and Kriging parameters to conduct spatial smoothing, called hyper priors. 

The hierarchy we use can be structured as, 

(2) 

𝒀| 𝝁, 𝑷, 𝝐, 𝜺𝑡, 𝚯 ~ 𝑝1(𝒀| 𝝁, 𝑷, 𝝐, 𝜺𝑡, 𝚯) 

𝝁, 𝑷, 𝝐, 𝜺𝑡| 𝚯 ~ 𝑝2(𝝁, 𝑷, 𝝐, 𝜺𝑡| 𝚯) 

𝚯 ~ 𝑝3(𝚯) 

where 𝑝1, 𝑝2, and 𝑝3 are the densities associated with each layer of the hierarchy, likelihood 

layer, process layer, and prior layer, 𝒀 is a 𝑁 × 𝑇 matrix of crop yield observations that spans 

all sites (𝑛 = 1, … , 𝑁) and years (𝑡 = 1, … , 𝑇), 𝝁 is the input response of the crop yields, 

𝝁 = 𝛼 + 𝛽𝑿, 𝑿 is a 𝑁 × 𝑇 matrix of nitrogen inputs spanning all sites and years, 𝑷 is a 

vector of plateau process for each site, 𝑷 = [𝑃1, … , 𝑃𝑁]′, 𝝐𝑡 is spatial correlated plateau error 

(variance) process, 𝝐 = [𝜖1, … , 𝜖𝑁]′, 𝜺𝑡 is an independently identically distributed error, 𝜺𝑡 =

[𝜀1𝑡, … , 𝜀𝑁𝑡], and 𝚯 is a vector of hyper priors, 𝚯 = [𝑃𝑖  , 𝜖𝑖 , 𝜌𝑃, 𝜌𝜖 , 𝜃𝑃 , 𝜃𝜖 , 𝜎2]′. 

By Bayes’ theorem, the joint posterior distribution of the model is  
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(3) 𝑝(𝝁, 𝑷, 𝝐, 𝜺𝑡, 𝚯 | 𝒀)  ∝  𝑝1(𝒀 | 𝝁, 𝑷, 𝝐, 𝜺𝑡, 𝚯)𝑝2(𝝁, 𝑷, 𝝐, 𝜺𝑡| 𝚯)𝑝3(𝚯). 

  

Therefore, the joint posterior density of the model 𝑝(𝝁, 𝑷, 𝝐, 𝜺𝑡, 𝚯 | 𝒀) is proportional to the 

multiplication of the three layers, which are specified in the following subsections. 

 

Likelihood layer 

A likelihood function of the crop yield distribution forms the first layer of the model. Let 𝒚𝑡 

is a vector of crop yield at year 𝑡 that spans all locations, 𝒚𝑡 = [𝑦1𝑡, … , 𝑦𝑁𝑡]′. Since the model 

assumes normality of crop yield distributions, the first layer of the model in equation (2) is,  

(4) 

       𝑝1(𝒀| 𝝁, 𝑷, 𝝐, 𝜺𝑡, 𝚯) 

         =
1

√(2𝜋)𝑁𝜎2
exp (−

1

2𝜎2
∑[(𝒚𝑡 − 𝝁)′𝚿(𝒚𝑡 − 𝝁) + (𝒚𝑡 − 𝑷)′(𝐈 − 𝚿)(𝒚𝑡 − 𝑷)]

𝑇

𝑡=1

) 

where 𝒀 is a matrix of historical yield outcomes spans all locations and years, 𝒀 =

[𝒚1, … , 𝒚𝑇], 𝚿 is a 𝑁 × 𝑁 diagonal matrix where the 𝑛th diagonal elements are 1 if 𝜇 < 𝑃𝑖 +

𝜖𝑖, 0 otherwise, 𝐈 is an 𝑁 × 𝑁 identity matrix, and 𝜎2 is a variance of the i.i.d error 𝜺𝑡 of the 

model. 

 

Process layer 

The process layer is the key part of the model. The process layer models spatial structure of 

the site-specific coefficients. The theoretical background to produce the parameters is based 

on a Gaussian spatial process
1
. The process assumes that the location specific coefficients are 

spatially correlated. The correlation structure is determined by the Kriging parameters (range 

𝜃 and sill 𝜌) and Euclidean distances (𝐷𝑖𝑗) among locations
2
.  
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 We transform the stochastic plateau function in equation (1) to the process layer form of the 

Bayesian Kriging regression model, 

(5) 𝒀𝒕 = min(𝝁, 𝑷 + 𝝐) + 𝜺𝒕. 

where 𝝁, 𝑷, 𝝐, and 𝜺  are input response yield, site-specific plateau, spatially correlated 

plateau error (variance), and i.i.d. error which are defined in equation (2) such that, 

(6) 

                                                    𝝁 = 𝛼 + 𝛽𝑿, 

                                                    𝑷 ~ 𝐺𝑃(�̅�,Σ𝑃) 

                                                    Σ𝑃 = 𝜌𝑃𝑒−𝐷𝑖𝑗/𝜃𝑃 ,   

                                             𝝐 ~ 𝐺𝑃(𝟎,  Σ𝜖), 

                                                    Σ𝜖 = 𝜌𝜖𝑒−𝐷𝑖𝑗/𝜃𝜖 , 

                                                    𝜺𝑡 ~𝑀𝑉𝑁(𝟎,  𝜎2𝑰) 

where 𝑿 is a 𝑁 × 𝑇 matrix of uniform nitrogen inputs spanning all sites and years, 𝑷 is a 

vector of plateau levels for each site that is assumed to follow a Gaussian spatial process with 

covariance matrix
3
 Σ𝑃, the spatially correlated plateau error 𝝐 is also assumed to follow the 

Gaussian spatial process with a covariance matrix Σ𝜖, 𝐷𝑖𝑗 is the Euclidean distance between 

two locations 𝑖 and 𝑗, and 𝜺𝑡 is an independently identically distributed (i.i.d) error that is 

assumed to follow multivariate normal distribution with zero mean and constant variance 

over space with no spatial correlation4.  

The discussion here is to model the input response yields 𝝁 to match the empirical 

model. Ideally, if the data are cross-section time-series data with multiple plots across sites 
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and years then variable stochastic responses over sites and years would be needed. Instead of 

the stochastic response, we model that the deterministic input response in all sites and years 

to reflect the reality of the empirical dataset uniform nitrogen application
5
. We estimate a 

stochastic plateau model to find good priors of the 𝝁.  

The two stochastic spatial processes for the plateau (mean 𝑷 and variance 𝝐) are 

assumed to be independent each other in the MCMC. Therefore, the second part of equation 

(3), which is the process layer of the model is the multiplication of two stochastic processes,  

(7) 

𝑝2(𝝁, 𝑷, 𝝐, 𝜺𝑡| 𝚯) 

  =  
1

√(2𝜋)𝑁|Σ𝜖|
exp [−

1

2
𝝐′Σ𝜖

−1𝝐] ×
1

√(2𝜋)𝑁|Σ𝑃|
exp [−

1

2
(𝑷 − �̅�)′Σ𝑃

−1(𝑷 − �̅�)]. 

 

 

Prior layer 

The prior payer imposes priors for the hyper-parameters 𝚯. The hyper-parameters include the 

plateau (𝑷), spatially correlated plateau error (𝝐), Kriging parameters for each spatially 

correlated parameter (sill: 𝜌𝑃 and 𝜌𝜖, range: 𝜃𝑃 and 𝜃𝜖), and the i.i.d. error variance 𝜎2 in the 

process layer. The model assumes that the priors for the hyper-parameters are independent 

each other. Therefore, multiplication of all priors for the hyper parameters forms the prior 

layer. First, we impose spatial Gaussian priors (multivariate normal priors) for the location 

specific plateau 𝑷 and spatially correlated error 𝝐. For the i.i.d. error variance 𝜎2 and two 

Kriging sill parameters (𝜌𝑃 and 𝜌𝜖), we impose general inverse gamma priors. For the two 

Kriging range parameters (𝜃𝑃 and 𝜃𝜖), which describe the length of spatial correlation among 

the location specific parameters, however, more carefully considered priors should be 
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imposed. Bayesian statistics literature (Banerjee, Carlin, and Gelfand 2004; Cooley, Nychka, 

and Naveau 2007) argue that improper priors induce bad convergence and improper 

posteriors. Following to the suggestions of the literature (Banerjee, Carlin, and Gelfand 2004; 

Sahu, Gelfand, and Holland 2006; Cooley, Nychka, and Naveau 2007) and agricultural 

economics literature (Park, Brorsen, and Harri 2016, 2017), we impose informative priors on 

both the Kriging parameters (𝜌𝑃, 𝜌𝜖, 𝜃𝑃, 𝜃𝜖) and the coefficient parameters (𝝁, 𝑷, 𝝐) using the 

empirical information. We use the information (maximum distance among the all locations in 

the dataset) because the range parameter could neither fall below zero nor exceed the 

maximum distance in the dataset.  

 To impose proper priors for coefficient parameters, we run a stochastic linear plateau 

model under the classical econometric manner
6
 and use the estimates to impose priors. We 

impose multivariate normal priors for the plateau 𝑃 with 𝑃 ~ 𝑁(264.76, 103) and the 

plateaus means are allowed to vary spatially with 𝐺𝑃(�̅�,Σ𝑃) where E(𝑷) = �̅� and Σ𝑃 =

𝜌𝑃𝑒−𝐷𝑖𝑗/𝜃𝑃, and impose general inverse gamma priors on the Kriging sill parameter 

𝜌𝑃 ~ 𝐼𝐺(0.1, 0.1). For Kriging range parameter for the plateau mean, we impose uniform 

prior 𝜃𝑃  ~ 𝑈(0, max(𝐷𝑖𝑗)), where max(𝐷𝑖𝑗) is maximum distance among the all locations in 

the dataset. For all the spatially correlated plateau error 𝝐, we impose the multivariate normal 

priors 𝝐 ~ 𝑀𝑉𝑁(𝟎, 103𝑰). They are allowed to vary spatially with 𝐺𝑃(𝟎,Σ𝜖), where 

E(𝝐) = 𝟎 and Σ𝜖 = 𝜌𝜖𝑒−𝐷𝑖𝑗/𝜃𝜖. We impose inverse gamma prior and uniform prior for sill 

and range parameter of the 𝝐, where 𝜌𝜖 ~ 𝐼𝐺(0.1, 0.1) and 𝜃𝜖 ~ 𝑈(0, max(𝐷𝑖𝑗)). Finally, we 

impose general inverse gamma prior for the i.i.d. error variance 𝜎2, where  𝜎2~ 𝐼𝐺(0.1, 0.1). 

 The third layer in equation (3) is then structured as 
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(8) 𝑝3(𝚯) =  𝑝(𝑷)𝑝(𝝐)𝑝(𝜌𝑃)𝑝(𝜌𝜖)𝑝(𝜃𝑃)𝑝(𝜃𝜖)𝑝(𝜎2). 

 

 

Monte-Carlo Simulation of the model 

To evaluate accuracy of the model, we conduct Monte-Carlo simulation. We generate the 

spatially correlated plateau parameters and the correlated error in the hypothetical farming 

field, and re-estimate those known parameters using the Bayesian Kriging regression model. 

The Monte-Carlo datasets are generated under the three different scenarios for the spatial 

structure: (a) strong spatial correlation on the plateau, (b) randomly distributed plateau, and 

(c) uniform plateau over all locations. To impose reliable level of inputs and plateau level, 

we estimate a Bayesian stochastic linear plateau model by using the dataset we have, and get 

the average and standard deviation of the parameter values. Then we generate each location’s 

(say location 𝑖) different plateau levels, say 𝑃𝑖, that are spatially correlated (by distance). We 

first create 1,000 bootstrapped samples for each observation / location combination based on 

the hypothetical true parameter values, and re-estimate the parameters by using both the 

Kriging regression model and a general maximum likelihood estimation (MLE) model 

(regress by locations) to get each location’s plateau parameters. Then we calculate the RMSE 

for the estimated parameters from each model (�̃�𝑖 = 𝐾𝑟𝑖𝑔𝑖𝑛𝑔,  �̂�𝑖 = 𝑀𝐿𝐸) compared to the 

true known plateau parameter values 𝛽1𝑖 and 𝛽2𝑖, 

(9)           𝑅𝑀𝑆𝐸𝐾𝑟𝑖𝑔𝑖𝑛𝑔 = √
1

𝑁
∑ (𝑃𝑖 −  �̃�𝑖)

2
 𝑁

𝑖=1  ,   𝑅𝑀𝑆𝐸𝑀𝐿𝐸 = √
1

𝑁
∑ (𝑃𝑖 −  �̂�𝑖)

2
 𝑁

𝑖=1 , 

and calculate the ratio of RMSE, which can be defined as, 
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(10)                                                     𝐷 =  
𝑅𝑀𝑆𝐸𝐾𝑟𝑖𝑔𝑖𝑛𝑔

𝑅𝑀𝑆𝐸𝑀𝐿𝐸
. 

We calculate the index 𝐷 for each bootstrapped sample, and count the number of greater than 

1 out of 1,000 samples. Table 2 presents estimated p-values from the bootstrapped samples. 

We find that the Kriging parameter smoothing model performs very well for 5 observations 

but need to have enough number of locations to obtain good estimator. For 50 number of 

observations, the Kriging model less outperforms to the MLE but still works well when we 

have enough locations (50 or 100 locations).  

 

Expected conclusions 
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   Table 1. Descriptive Statistics of Gridded Data 

  Observations Mean St. Dev. Min Max 

Yield (Bu/Acre) 640 216.2 18.3 163.5 274.0 

2012 160 229.9 20.9 174.8 264.5 

2014 160 213.8 18.0 163.5 274.0 

2015 160 207.8 10.8 177.9 226.9 

2016 160 213.4 13.8 166.9 242.8 

Seed (1,000/Acre) 640 32.1 2.4 25.2 36.5 

2012 160 35.0 0.6 34.0 36.5 

2014 160 31.4 1.1 25.2 34.0 

2015 160 28.9 1.1 27.4 31.9 

2016 160 33.1 0.9 31.6 34.9 

Nitrogen (Lb/Acre) 640 145.3 58.8 60.7 887.5 

2012 160 93.4 6.3 81.6 157.5 

2014 160 113.5 71.8 82.0 887.5 

2015 160 162.0 5.8 139.7 183.0 

2016 160 212.2 13.1 60.7 229.5 
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Table 2. Average of 90 Percent Coverage Premium Rates across Counties 

State / Smoothing Space Physical Space Climate Space 

Model Structure GP AR GP AR 

Iowa Premium 

Rate (%) 
1.73 1.79 1.57 1.59 

Illinois Premium 

Rate (%) 
1.52 1.54 1.54 1.55 

Nebraska Premium 

Rate (%) 
1.38 1.27 1.28 1.31 

Minnesota Premium 

Rate (%) 
1.59 1.57 1.63 1.59 

Indiana Premium 

Rate (%) 
1.65 1.69 1.64 1.75 

Colorado Premium 

Rate (%) 
1.48 1.62 2.41 2.53 
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Figure 1. Illustration of the original yield monitor data.   
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Figure 2. Mapping of grid-level (100 meters) corn yield by year. 
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1
 In the Bayesian statistics, parameters are random. Therefore, spatially varying coefficients (location specific 

parameters) assume to follow the Gaussian spatial process. Every location in the process is normally distributed, 

and the finite collection of those locations follows the multivariate normal distribution. Therefore, the process 

can be regarded as the stochastic joint distribution of all those locations. The Gaussian spatial process is 

stationary and isotropic, which means that the covariance of the random variable (i.e., location specific 

parameters) between any two locations is determined only by Euclidean distance, not by position itself or 

direction of the distance. We assume that spatially correlated stochastic terms in the model follow the Gaussian 

spatial process and non-spatially correlated terms follow a general multivariate normal distribution. 

2
 The Euclidean distances for the model can be used both from the basic 2-dimensional (longitude-latitude) or 

3-dimensional physical spaces (longitude-latitude-altitude). It is also noteworthy that the distances can not only 

be the distance from the physical space but also be from the soil type space, weather space, etc. 

3
 Note that the spatial covariance matrix Σ is 𝑁 × 𝑁 matrix the follows exponential type spatial function, then 

Σ = 𝜌𝑒−𝐷𝑖𝑗/𝜃 = 𝜌 [
1 𝑒−𝐷1𝑁/𝜃

⋮ ⋱ ⋮
𝑒−𝐷𝑁1/𝜃 1

]. 

4
 The location specific coefficients are generated in our MCMC estimation procedure. The model generates 𝐾 

MCMC draws and each random draw creates an 𝑁 × 1 (𝑁 is the number of locations) vector 𝒛= [𝑧1, … , 𝑧𝑁]′. 

Note that for any 𝑘th MCMC draw, 𝒛𝑘~𝑁(0, 1), and therefore ∑ 𝑧𝑖𝑘
𝑁
𝑖=1 ≈ 0. Next, the model conducts a 

Cholesky decomposition for 𝑘th covariance matrix based on the 𝑘th updated Kriging parameter values, 

Σ𝑃𝑘(𝜌𝑃𝑘 , 𝜃𝑃𝑘) = 𝑳𝑘𝑳𝑘
′, where 𝑳𝑘 is a lower triangular matrix. Then using the equation 𝑷𝑘 = �̅� + 𝑳𝑘𝒛𝑘, the 

model draws the 𝑘th posterior value 𝑷, say 𝑷𝑘, from the 𝑘th decomposed covariance matrix 𝑳𝑘 and the random 

draw vector 𝒛𝑘. The model then accepts or rejects the draw under the Metropolis-Hastings algorithm. The 

spatially correlated error term 𝝐𝑡 is updated under the same gaussian spatial process procedure with the plateau 

parameter. 
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5
 It is noteworthy that the proposed Kriging regression model can allow the spatially varying intercept (𝛼) and 

input response parameter (𝛽) as well by using the Gaussian spatial process. We assume the deterministic 

response here just due to the empirical application. 

6
 We use SAS PROC NLMIXED procedure to get estimates for the priors. 


