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Abstract.  Since the advent of hybrids in the 1930’s, commercial maize yields have increased at a rate 
of more than 1.8 bushels per acre per year. Much of these gains have been mediated through increasing 
plant populations. From 1964 to the present, U.S. corn plant populations more than doubled, from 
14,000 to nearly 30,000 plants per acre. In this paper, we use detailed farm-level data to investigate the 
mechanisms underlying rising planting rates. In particular, we assess whether the positive rate of 
change in planting rates can be purely explained by breeding improvements to hybrid maize varieties, 
or whether farmers’ observed planting rate choices are also consistent with other factors such as inertia 
and learning. Through a series of regressions, we estimate how observed corn planting rates change 
with each additional year of commercial availability. After controlling for both varietal and farm-level 
heterogeneity, we find that much of the increase in planting rates cannot be explained by a simple 
diffusion story in which adopters of new varieties immediately jump to the higher economically 
optimal rate. Rather, we find that farmers tend to plant the same variety at higher rates over time. 
Through a series of additional regressions, we find that historical based inertia with learning is the 
most plausible explanation for this observed tendency.  
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Introduction 

One of the remarkable facts in modern agriculture is the sustained increase in maize yields that 

followed the diffusion of hybrid varieties in the 1930s. Over the ensuing 80 years, USDA-NASS data 

show that US maize yields increased more than eight-fold, from roughly 20 bu/acre in the mid-1930s 

to nearly 175 bu/acre in 2016. Research has found that these yield gains have been the result of a 

complex interaction between genomic advances due to plant breeding and improved agronomic 

practices (e.g., pesticide and fertilizer use) (Duvick, 2005). While the exact contribution of each factor 

remains unclear, there is one unambiguous statistical fact: virtually all observed yield increases have 

been mediated through increasing plant populations (i.e., plants per acre), rather than increases in yield 

per plant. For example, from the early 1960s to the present, yields have a little more than doubled 

(from about 75 bu/acre to 175 bu/acre), while corn plant populations have also roughly doubled 

(from about 14,000 plants/acre to 29,000 plants/acre). Thus, remarkably, yield per plant is only slightly 

greater now than it was over 50 years ago. This raises an important issue: why have planning rates 

risen so significantly and what factors have played a role in farmers’ planting rate choices? 

Agronomical research has found that newer maize hybrids possess significantly higher optimal 

planting rates. Thus, one potential explanation is that over time new varieties with higher optimal rates 

enter the market and supplant older varieties with lower optimal rates. This raises an additional 

question, however: do farmers immediately plant new hybrids at their higher optimal rate, or is there 

a transition period during which they “figure out” the optimal rate?  

This paper seeks to understand the mechanisms behind rising planting rates in US maize. We place a 

particular focus on the possibility of learning as a feature of farmers’ planting rate choices. Learning 

is known to matter in product markets with asymmetric information and high complexity. It has been 

widely studied in consumer goods markets, particularly as an explanation for purchase behaviors 

(Dubé, Hitsch and Rossi 2010). Considerably less empirical work on these issues has been conducted 

in an input decision context. Nonetheless, the choice of planting rates in maize constitutes the type of 

decision where continuous learning may be present. The US maize seed market is characterized by a 

large number of differentiated varieties with short commercial life cycles (Magnier, Kalaitzandonakes 

and Miller 2010). Thus, there is significant scope for continuous learning and experimentation in the 

face of uncertainty. 

To conduct our analysis, we draw on a large, farm-level dataset that spans the period 1995-2011. The 

dataset contains detailed information on the seed corn purchase decisions of more than 4,700 U.S. 

farmers per year. Given this information, we investigate the possible sources of increasing planting 
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rates in three steps. First, we estimate regressions in which the planting rate is modeled as function of 

how many years a commercial variety has been available. Importantly, we have information on both 

the variety of corn that was planted and the individual that planted it, allowing for the inclusion of 

variety and farmer fixed effects. Results from these regressions show that planting rates increase 

substantially with commercial age, even after controlling for varietal heterogeneity, thus providing 

strong evidence that the increase in planting rates cannot be explained by a simple diffusion story in 

which new varieties with higher optimal rates supplant old varieties with lower optimal rates. In the 

second step, we estimate how the variance of planting rates changes with commercial age. We find 

that the variance of planting rates for particular varieties decreases significantly over time, a finding 

which is consistent with learning. Learning alone, however, does not necessitate an increasing trend 

in planting rates, as farmers may both overshoot and undershoot the optimal planting rates. Thus, in 

a third step, we estimate regressions in which the maximum and minimum planting rates for different 

varieties are regressed on the commercial age variable. These regressions reveal that the average 

maximum planting rate slightly declines over time, whereas the minimum planting rate increases 

significantly over time. Taken together, we interpret these findings as providing strong evidence that 

biased learning – learning in which farmers are more likely to undershoot rather than overshoot the 

optimal rate – has been a major source of rising planting rates. 

The rest of the paper proceeds as follows. First, we provide some important background details on 

planting rates and discuss the possible sources of rising planting rates. We then describe our empirical 

approach. This is followed by a detailed description of the data and a discussion of the regression 

results. We conclude with some implications of our findings, as well as possible avenues for future 

work.  

 

Background  

Plant Population vs. Planting Rate 

There is an important distinction between the concepts of “plant population” and “planting rate” (also 

referred to as the “seeding rate”). The plant population is the number of plants per acre that are 

standing at the end of the growing season, whereas the planting rate is the number of planted seeds 

per acre. The concepts are connected by the concept of “stand establishment”, which is the percentage 

of planted seeds that actually germinate and become standing plants. Given information on any two 

of these variables, one can infer the value of the third variable. For example, if a farmer plants 30,000 
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seeds per acre and at the end of the growing season the plant population is 28,500, then stand 

establishment is 95%. 

In the empirical section of this paper, we analyze the planting rate, and not plant populations. Our 

conclusions, however, will generally extend to the concept of plant populations given the tight 

definitional connection between the two. One important issue to note about planting rates is that 

farmers can substitute higher planting rates for various types of inputs and vice versa. For example, in 

recent years, most seed corn is dressed with a neonicotinoid insecticide. If seed treatments better 

protect roots from insects, then the germination rate will increase, thus reducing the required seeding 

rate for a targeted plant population (need source).  

Trends in U.S. Maize Planting Rates 

Farmers have been steadily increasing planting rates since the commercialization of hybrids in the 

1930’s (Assefa et al., 2018). From 1964 to 2016, plant populations increased at a rate of about 290 

plants per year. This was concomitant with a steady increase in corn yields, which rose at a rate of 

about 1.82 bu/acre/year during the same time frame (Figure 1).  

--Figure 1-- 

A wealth of agronomical research has demonstrated the close link between maize yield gains and 

higher planting rates. In a series of experiments, Duvick planted new and old hybrids at different 

planting rates. He found that at low planting rates, where water stress is not an issue, the yield gains 

for newer hybrids compared to old hybrids was relatively small. At high planting rates, however, the 

yield gap between new and old hybrids was substantial (Duvick, 2005). Thus, the primary advantage 

of modern commercial hybrids is that they can better withstand high stress conditions. Duvick’s 

experiments not only demonstrate the link between yields and plant populations, but they also suggest 

a likely mechanism for the observed increase in planting rates: over time new varieties that produce 

higher yields at high populations supplant older varieties with lower optimal planting rates.  

--Figure 2-- 

Figure 2 contains average planting rates for the top 14 corn producing states during the 1995-2011 

period. Three important regularities emerge from this figure. First, planting rates have unsurprisingly 

risen at about the same rate as plant populations during this period: a fitted linear trend indicates that 

planting rates increased at a rate 272 kernels/acre/year. Second, certain states typically have 

significantly higher planting rates than others. For example, Minnesota consistently had the highest 
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mean planting rate, whereas states like South Dakota and Kansas had significantly lower rates. This is 

consistent with the agronomical literature, which has found that the benefits of higher planting rates 

are limited by precipitation and soil conditions (Assefa et al., 2018). Third, not only does it appear that 

certain states have consistently lower planting rates, but there also appear to be differences in the 

trends for each state. Lower production states such as Texas, for example, demonstrate significantly 

slower rates of increase compared to high production states. 

As it concerns our empirical approach, the fact that there are significant differences in planting rates 

across states suggests that controlling for regional heterogeneity is very important. In addition, our 

empirical framework should allow for differences between high production and low production states.  

Why Have Planting Rates Steadily Increased? 

To help understand the potential mechanisms behind rising planting rates, Figure 3 depicts a 

hypothetical diffusion scenario with four varieties over a seven-year time period (2000-2006). We 

assume that each variety has a four-year commercial life cycle, and that each variety has a different 

optimal planting rate.  

--Figure 3-- 

Variety 1, for example, is introduced in the year 2000 and has an optimal planting rate of 24,000 kernels 

per acre. Over time, new varieties with progressively higher optimal planting rates enter the market 

and older varieties with lower optimal rates exit the market; by the year 2006, the only variety left is 

Variety 4, which has an optimal planting rate of 30,000 kernels. The black trend line plots average 

planting rates over time. It has been constructed under the key assumptions that each of the available 

varieties are adopted in equal proportions and that farmers immediately and always plant the varieties 

at their optimal rate (assuming no heterogeneity and no changes in other possibly relevant factors such 

as seed and output prices). The upwards trend is therefore solely a consequence of the diffusion of 

new varieties with higher optimal planting rates. Whether this is true in reality is an open question, but 

irrespective of whether it is, it produces a testable prediction: the within-variety trend (i.e., the 

estimated trend with variety fixed effects) will have a slope equal to zero (as evidenced by the flat trend 

lines for each of the four varieties). Moreover, if we allow for optimal planting rates to be 

heterogeneous among farmers, and we allow for changes in seed and output prices, both realistic 

assumptions, the prediction remains the same as long as we control for these factors: the within-variety 

trend will have a slope of zero. Conversely, if we find that the within-variety trend is positive, even 

after controlling for prices and farmer heterogeneity, then there must be other factors underlying the 
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positive trend. In particular, it must either be the case that optimal rates have changed over time, or if 

optimal rates have not changed, that there are either adjustment costs or there is uncertainty about 

optimal rates.  

Consider first the possibility that the optimal rates for particular seed varieties have been increasing 

over time. This could be because seeding technologies have steadily improved, the optimal rates for 

complementary factors have steadily changed, or some other type of gradual technological 

improvement that raises the optimal seeding rate. It was already noted, for example, that the use of 

seed treatments has become widespread. In addition, adoption of no-till has also steadily increased. 

Alternatively, it may be the case that the optimal rate for a particular variety doesn’t change 

significantly over time, but farmers’ knowledge about the optimal rate does. In a given region there 

can be hundreds of different varieties available, and the commercial life-cycle for a typical variety is 

relatively short, usually five years or less (Magnier et al., 2010). Thus, uncertainty plays a major role in 

farmers’ choices of what planting rate to use. Interestingly, learning per se does not imply increasing 

planting rates. The presence of uncertainty can just as well imply that farmers overshoot the optimal 

planting rate and then correct downwards in the future. Thus, additional assumptions about the 

underlying production function or about farmer preferences (e.g., risk aversion) are required to explain 

what may be described as “biased learning”.    

Empirically, we need to be able extract signals from the data that only indicate learning, and not 

changes in optimal rates. Of course, both mechanisms may partially hold. It may very well be the case 

that both learning and improved seeding technology have contributed to rising trends. However, as 

the evidence bears below, learning seems to have played the most important role in rising trends. To 

this end, we look at two tendencies in the data that will tend to manifest as a consequence of learning 

but not improvements in seeding technology. The first is a reduction in the variance of planting rates 

for specific varieties over time. The second is a difference in the trends of the maximum observed 

planting rate (for a particular variety) and the minimum observed planting rate. Learning will imply 

that the variance decreases, and biased learning will imply that the maximum rate increases at a slower 

rate (possibly decreases) compared to the minimum rate. Improvements in optimal rates, however, 

imply neither, and thus if we find that both are present, learning is likely to be present. 
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Methods 

We conduct the empirical analysis in three stages. In the first stage, we estimate the following 

regression equation: 

(1)  

where  is the planting rate (kernels/acre) for variety  in year  by farmer  and  is the 

ratio of the seed price ($/80,000 kernels) to the corn futures price ($/bu) for variety  in year  by 

farmer . The key variable of interest is , which measures the number of years variety 

 has been commercially available as of year . For example, this variable would take on a value of 

two in the year 2002 for a variety introduced in 2001. The vector  contains variables for the share 

of acres planted with no-tillage operations and the share of acres planted with neonicotinoid treated 

seed.  

The term  is a farmer-variety fixed effect. In the results section, we actually provide estimation 

output for several different levels of fixed effects. In the simplest case, we set . In another case, 

we only allow for varietal heterogeneity: . In another case, still, we model varietal and farmer 

heterogeneity through additive fixed effects: . In total, we report estimation output for six 

different levels of fixed effects, with the finest level consisting of a separate intercept for each farmer-

variety combination (i.e., ). In general, both variety fixed effects and farmer fixed effects are 

essential for identifying the coefficient on the commercial age variable. For example, if the adoption 

of new varieties proceeded from high to low density regions over time, then the coefficient would be 

biased downward. The coefficient will also be biased downward if varieties introduced late in the 

sample are planted at higher rates (which they are). 

The main purpose of this first stage is to test for whether “” is statistically different from zero. If the 

null is rejected, then an instantaneous adjustment story in which farmers immediately plant new and 

improved hybrid varieties at their higher optimal rates cannot fully account explain slope of the trend 

in planting rates.  

Planting Rate Variance Regressions 
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In the second stage, we regress the variance of planting rates for individual varieties on the commercial 

age variable. If there is learning, we would expect a decrease in variance over time: as farmers learn 

about the optimal density through observed yields, the distribution of planting rates should cluster 

more closely around the true optimal value. To investigate this econometrically, the dependent variable 

of our regression is the standard deviation of planting rates for a particular variety in a given year. 

Specifically, we estimate 

(2)   

where  is the standard deviation of planting densities for variety  at time in location , 

 is the number of years variety  has been available at time , and  is a variety fixed 

effect. Unlike the planting rate regressions, these regressions cannot be estimated with farm-level 

observations because in a given year we observe a farmer’s planting rate choice for specific variety at 

most once (i.e., there will only be one observation). A certain level of aggregation therefore needs to 

be chosen.  We estimate equation (2) for three different aggregation levels: state-year, regional-year 

(the region is the central corn belt), and national. Learning would be consistent with . 

Maximum and Minimum Planting Rate Regressions 

The variance regressions allow us to test for whether a general type of learning was present, but as 

noted, the presence of learning doesn’t necessitate a positive planting rate trend. Thus, for learning to 

have played role in rising rates, there needs to have been additional factors present such as risk 

aversion. To investigate this possibility, we re-estimate equation (1), but with the dependent variable 

as the maximum and minimum planting rates. Like the variance regressions, this cannot be done at 

the farm level, so we compute the varietal specific maximum and minimum planting rates at the state-

year level. If the coefficient on the commercial age variable is significantly smaller for the maximum 

planting rate compared to the coefficient for the minimum planting rate, then we interpret this as 

evidence of “cautious learning”.  

 

Data and Results  

The empirical analysis relies on detailed farm-level data spanning the period 1995-2011. In particular, 

we use the corn TraiTrak® dataset developed by GfK Kynetec. The dataset was assembled from 

annual surveys of randomly sampled US farmers, with the samples designed to be representative at 
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the crop reporting district level. Over the period of analysis, the data contains an average of 4,716 

farmers per year. For each sampled farmer, we observe the identities of the varieties planted, prices 

paid, and the rate at which seeds were planted.  

In the original dataset, we observe 342,771 purchase events. In order to estimate the model, we trim 

the dataset in two ways. First, in some cases a farmer did not report the identity of the variety planted, 

which is coded as “unknown” in the data. Because we cannot include fixed effects for these 

observations, we drop them from the dataset, which reduces the sample by 44,555 observations. A 

second issue is that for varieties observed in the first year of the sample we do not know how many 

years they had already been commercially available. Thus, we also drop all purchase events with 

varieties that were first observed in 1995, which further reduces the dataset by 45,533 observations. 

This issue is also potentially present for varieties first observed in later years, such as 1996 or 1997. 

For example, a variety observed for the first time in 1996 may have actually been commercially 

available prior to this year if (by chance) it was not sampled in 1995. Thus, we also considered 

specifications that further truncate the dataset, but found that the results were not measurably affected. 

Our finalized dataset consists 252,683 observations across the 1996-2011 period. In some 

specifications, we also include variables for the share of acres (at the CRD level) that were no-till and 

for the share of acres (at the CRD level) planted in seed that was dressed with a neonicotinoid 

insecticide. These variables are only available from 1998-2011 and thus the specifications that include 

these variables have a further reduced sample size of 241,052. 

--Table 1-- 

Table 1 reports summary statistics for each of the variables used in the finalized sample. The mean 

overall planting rate was 29,179 seeds per acre. We also disaggregate planting rates by the central Corn 

Belt (CCB) and the non-CCB, where the CCB encompasses IA, IL, IN, and the southern crop 

reporting districts in MN and WI. The average planting rate in the CCB was 30,521, which compared 

to the non-CCB rate of 27,797, was significantly higher. On average, the number of years since the 

first year of commercial introduction was 1.75, though some varieties were actually observed for the 

maximum possible value of 15 years. A related variable is the life-cycle of a variety, which measures 

how many years a variety was commercially available. The average life cycle for a variety was just 4.63 

years, a relatively short time span. Seed prices averaged $129.04 per 80,000 kernels, and the corn 

futures price averaged $3.42; the mean ratio of these prices was $37.68.  

--Table 2-- 
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To give context to the regression results, we report national and regional specific planting rate trends 

for the finalized sample (Table 2). Nationally, seed rates increased at a rate of about 255 seeds per 

year, which is about 10% of the national average in 1996. The rate in the CCB was considerably higher 

at about 326 seeds per year, whereas in the non-CCB it was lower at 182 seeds per year.   

--Table 3-- 

Table 3 contains regression results for the baseline model. We report results for six specifications, 

each differing by the type of fixed effects included. The importance of fixed effects is demonstrated 

most starkly by comparing column 1, which contains no fixed effects, to column 2, which contains 

variety fixed effects. In column 1, the coefficient on the price ratio variable is large and significant, 

contrary to expectations, and the coefficient on the commercial length variable is negative and 

significant. Both coefficients flip in sign upon introducing variety fixed effects. Intuitively, the 

estimated coefficient is in part based on comparisons of planting rates for newer varieties, i.e. those 

with short commercial life spans, to planting rates for older varieties that are still on the market. 

Consider, for example, the unconditional comparison of the planting rate for a variety released in 2011 

to the planting rate for a variety released in 2005. In 2011, the commercial life span of the 2011 variety 

would be zero and the life span of the 2005 variety would be six. If both varieties were planted at the 

same rate, the estimator would be zero, despite the fact that the variety introduced in 2005 may have 

been planted at significantly lower rates in previous years. By contrast, the fixed effects estimator in 

column 2 is based on within-variety variation.  

The final four columns introduce different levels of regional and individual specific effects. In general, 

they confirm the presence of unobserved factors that are both correlated with seed age and planting 

rates. Column 3, for example, adds CRD fixed effects in addition to variety fixed effects, which results 

in a larger estimate for the seed age variable (about 118 kernels compared to 74 kernels). This suggests 

that newer varieties are first introduced in higher planting rate regions (such as the CCB), and then 

diffuse to lower planting rate regions. Column 4 replaces CRD fixed effects with farmer fixed effects, 

which has the effect of increasing the coefficient on seed age even further to a point estimate of more 

than 224 kernels per year. This indicates that early adopters of new varieties tend to plant at 

significantly higher rates compared to late adopters.  

--Table 4-- 

Table 4 builds on the results in Table 3 by adding additional controls and allowing the commercial age 

effect to differ by region. The first two columns add variables for the share of acres (at the CRD level) 
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planted with neonicotinoid treated seeds and the share of acres (at the CRD level) that were no-till. 

Column 1 uses CRD by variety fixed effects and the second column uses farmer by variety fixed 

effects. Overall, the coefficients on both variables are consistent with expectations: no-till is associated 

with higher planting rates and neonicotinoid treated acres are associated with lower rates. However, 

statistical significance is only estimated for the neonicotinoid variable in the CRD by variety 

specification. Moreover, the coefficient on the commercial age variable is not measurably affected by 

the addition of these variables. 

Columns 3 and 4 permit the effect of commercial age to be different in the CCB and the non-CCB. 

The estimated coefficients are significantly different by region, with the CCB coefficient being much 

larger than the non-CCB coefficient. As noted, this is likely due to poorer soil condition and lower 

precipitation levels, which not only results in a lower average planting rate but a lower upwards trend 

as well. One implication of this is that under this mode of technological progress, yields will gradually 

diverge in the CCB and non-CCB region over time.  

Overall, the results from Tables 3 and 4 rule out the possibility that the upwards trend in planting rates 

is purely, or primarily, due to the diffusion of varieties immediately planted at higher optimal rates, at 

least in the sense that farmers immediately recognized this and acted accordingly (as, e.g., 

demonstrated in Figure 3). Rather, particular varieties tend to be planted at significantly higher rates 

over time, and the estimate for this tendency actually increases upon controlling for locational and 

individual heterogeneity. The increased prevalence of no-till and neonicotinoid treated seeds can also 

not explain the conditional upwards trend. Among the possible mechanisms that can explain this 

finding, learning appears most consistent with the results presented shortly. As noted previously, one 

general prediction of learning is that as farmers gather information from observed yields, they will get 

closer to the optimal rate, and thus the variance in planting rates will decrease over time.  

--Table 5-- 

Table 5 presents results for the variance regressions. Recall that a certain level of aggregation needs to 

be chosen. We report results for three different aggregation levels. Column 1 reports results with the 

dependent variable – the standard deviation in planting rates – calculated at the state-year level (i.e., 

an observational unit is a variety-state-year). Column 2 aggregates observations to the regional level 

(CCB and non-CCB) and column 3 aggregates observations to the national level. In all cases, we 

include varietal fixed effects. The benefit of the more finely aggregated specifications is that can we 

also include regional dummies to control for locational heterogeneity. All specifications in Table 5 
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demonstrate statistically significant evidence of a decline in planting rate variance over time. The 

results in Column 1, for example, indicates that the standard deviation in planting rates falls by about 

55 kernels per ace per year.   

An alternative explanation to learning is general technological creep, or an increase in total factor 

productivity. For example, gradual improvements in seeding technology may have fed through to 

gradually higher seeding rates. All of these forces would get absorbed by the commercial age 

coefficient. Given the foregoing results, we consider this an unlikely explanation, at least in terms of 

importance, for two reasons. First, seeding rates in other crops such as soybeans have actually trended 

downwards over time. In fact, recent field trials suggest that soybean growers could further benefit 

from reducing seeding rates (De Bruin and Pederson 2008). Thus, it would need to be the case that 

general technological improvements that make higher seeding rates more profitable in maize have 

note made higher seeding rates more profitable in soybeans. Second, overall improvements in seeding 

technology do not imply a reduction in the variance of planting rates, nor do they imply that maximum 

rates will evolve differently than minimum rates.  

Conclusion 

Recall that the unconditional trend in seed planting rates was about 255 kernels per acre increase per 

year. The estimates for the relationship of commercial age to planting rates, those that control for 

varietal and spatial heterogeneity, suggest that a large portion of this trend – somewhere between 74 

and 230 kernels per year – cannot be explained by the diffusion of technologically superior varieties. 

Consider the following scenario. Suppose that of the 255 per kernel increase, learning was responsible 

for 150 kernels. What would happen if all uncertainty were eliminated and thus no learning was 

necessary? In short, the trend for seeding rates would shift up and rotate downwards. At the individual 

level, each time a farmer would adopt a new variety with a higher optimal planting rate, they would 

immediately “jump up” to this new rate and then plant at that rate throughout the variety’s commercial 

life cycle. This would eliminate inefficiencies in the sense that farmers, and society as a whole, would 

not sacrifice yields during a transition period. 

There is continuing interest in understanding the root causes of the amazing technical progress that 

has characterized modern American agriculture. Our paper contributes unique empirical evidence 

concerning an important link between improved maize varieties and increased yields: higher planting 

rates. We find that learning has played a major role in rising planting rate, which suggests scope for 
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additional efficiency gains through extension education. In reducing the cost of trying newer varieties, 

extension activities might also foster the rollout of better genetic varieties 
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Figures and Tables 

Figure 1. U.S. Mean Yield (left, bu/acre) and Plant Population (right, plants/acre): 1964-2016 

  

Note: Plant population data is for the top 8 corn producing states. Source: USDA 

 

Figure 2. Mean Planting Rates by State and Year for the Top 14 Corn Producing States 

 

Note: the equation for the fitted line is: planting_rate = 26,172 + 272*trend. Source: GfK Kyenetec 
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Figure 3. Hypothetical Diffusion Process for Technologically Superior Varieties  

 

 

Table 1. Summary Statistics 

Variable N Mean S.D. Min 0.25 Mdn 0.75 Max 
Planting Rate ( )          
-Overall 252,683 29,179 4,242 8,533 26,667 30,000 32,000 53,333 
--CCB* 128,119 30,521 3,259 10,000 28,444 30,968 32,000 53,333 
--Non-CCB 124,564 27,797 4,670 8,533 25,000 28,160 31,703 50,667 
Years Since Intro 252,683 1.75 1.72 0 0 1 3 15 
Life Cycle 252,683 4.63 3.22 0 2 4 7 15 
Seed Price 252,683 129.04 59.15 0 87.5 111.16 165.6 390 
Corn Futures 252,683 3.42 1.14 2.31 2.47 2.65 4.36 5.68 
Price Ratio 252,683 37.68 11.14 0 31.09 36.98 44.3 114.01 
No-Till Share 241,083 0.26 0.22 0 0.1 0.2 0.36 1 
Neonic Share 241,052 0.45 0.39 0 0 0.5 0.85 1 

*IA, IL, IN, and the southern crop reporting districts in MN and WI. 

 

Table 2. National and Regional Trends in Planting Rates 

 U.S.  Non-CCB CCB 
TrendA 255.04*** 181.75*** 326.34*** 
 (1.90) (3.00) (1.96) 
1996 Mean Planting Rate 26,905.94*** 26,183.72*** 27,603.29*** 
 (18.82) (29.62) (19.37) 
Observations 252,683 124,564 128,119 
R2 0.066 0.029 0.178 

AThe trend in this table is a bit lower than the trend in Figure 2 because the values in Figure 2 are 
based on the top 14 corn producing states and one additional year of data (1995). 
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Table 3. Baseline Regression Results (dependent variable is the planting rate) 

 (1) (2) (3) (4) (5) (6) 
Years Since Intro -73.06*** 74.02*** 117.56*** 224.72*** 130.71*** 230.03*** 
 (4.85) (5.69) (4.94) (4.13) (5.73) (8.67) 
Price Ratio 54.93*** -1.48* -3.47*** -0.06 -4.29*** -0.26 
 (0.75) (0.90) (0.78) (0.63) (0.89) (1.42) 
Fixed Effects None Variety Variety, 

CRD 
Variety, 
Farmer 

Variety
CRD 

Variety
Farmer 

Observations 252,683 252,683 252,683 252,683 252,683 252,683 
R2 0.022 0.276 0.463 0.771 0.610 0.835 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 

 

 

Table 4. Additional Results for the Baseline Model (dependent variable is the planting rate) 

 (1) (2) (3) (4) 
Years Since Intro 141.97*** 231.87***   
 (8.16) (11.20)   
--Non-CCB   91.42*** 196.90*** 
   (9.98) (14.12) 
--CCB   196.09*** 269.66*** 
   (10.22) (14.56) 
Price Ratio -4.00*** 0.28 -4.14*** 0.15 
 (0.89) (1.42) (0.89) (1.42) 
No-Till Share 42.22 54.37 100.62 79.93 
 (98.57) (123.67) (98.76) (123.81) 
Neonic Share -155.85** -61.51 -183.99** -70.27 
 (74.58) (99.97) (74.63) (99.97) 
Fixed Effects Variety

CRD 
Variety
Farmer 

Variety
CRD 

Variety
Farmer 

Observations 241,052 241,052 241,052 241,052 
R2 0.612 0.839 0.612 0.839 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 5. Results with the Standard Deviation of planting rates as the Dependent Variable 

 (1) (2) (3) 
Years Since Intro -55.27*** -49.12*** -34.68*** 
 (7.31) (7.74) (8.17) 
Price Ratio -4.59*** -1.45 -1.79 
 (1.55) (1.84) (2.03) 
Aggregation Level State CCB U.S. 
Fixed Effects Variety, 

State 
Variety, 

CCB 
Variety 

Observations 36,807 29,818 26,228 
R2 0.278 0.404 0.459 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 

Table 6. Regression Results for Min and Max Planting Rate Regressions  

 Max Min 
 Planting Rate Planting Rate 
Years Since Intro -38.53*** 226.20*** 
 (7.74) (8.02) 
Price Ratio -3.79*** -1.64 
 (1.42) (1.44) 
Aggregation Level State State 
Fixed Effects Variety, State Variety, State 
Observations 106,623 106,180 
R2 0.452 0.452 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 

 


