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Abstract 

Water quality within a watershed is strongly linked to human behavior. Nutrient runoff from 

agricultural lands affects water quality through eutrophication and the emergence of harmful algal blooms 

(NOAA), causing serious concerns for policy makers, scientists, and residents. Understanding dynamic 

feedbacks between economic decisions and water resources is essential for long-term policies that balance 

agricultural management and ecosystem services.  We develop a spatial-dynamic model of agricultural 

decisions in a simulated watershed to examine the welfare implications of targeted policies in landscapes 

with different levels of spatial heterogeneity. At the steady state, we show that shadow prices of increased 

phosphorous loading are equal for all farms. We find the socially optimal steady state fertilizer input for a 

representative farm and derive the optimal tax to that would achieve the socially optimal outcome. Results 

show that the welfare gains from spatially targeted policies increase with higher levels of heterogeneity in 

both soil quality index and distance to the lake. When policy implementation costs are proportional to the 

heterogeneity in the landscape, we show that the welfare gains from targeted policies decrease beyond a 

certain threshold. This study provides policy insight to help design cost-effective long-term optimal 

agricultural policies in spatially heterogeneous landscapes and an essential first step towards a coupled 

model that explores interactions between economic activities and ecosystem services.  
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Land-lake Dynamics: Are there Welfare Gains from Targeted Policies in a     

Heterogeneous Landscape 

 

1. Introduction 

Water quality and access to drinking water significantly impact human lives. Rivers, 

lakes, and reservoirs provid important ecosystem services, recreational amenities, tourism, and 

employment opportunities. However, non-point source pollution poses a growing concern in 

freshwater lakes in the U.S. According to Environmental Protection Agency (EPA)’s National 

Water Quality Assessment, agricultural nonpoint source (NPS) pollution is the leading source of 

water quality impacts on rivers and streams and the third largest source for freshwater lakes.  

Agricultural runoff from heterogeneous landscapes affects water quality, leading to 

potential eutrophication and harmful algal blooms. Spatial heterogeneity plays an important role 

in the nutrient runoff process. With the help of improved technology in remote sensing, soil 

testing, and monitoring, we can gather more information on heterogeneous farmland based on 

their location, and view the nonpoint source pollution as point source pollution (Khanna et al., 

1998; Goetz and Zilberman, 2000; Xabadia, Goetz, and Zilberman, 2008). However, the 

relationship between fertilizer input and the actual addition of phosphorus stock to receiving 

water body is not straightforward. Hydrologic models such as the Soil and Water Assessment 

Tool (SWAT) can help predict the relationship between agricultural decisions and total 

phosphorus outcome in the lake, but other required input information including land use patterns, 

elevation, temperature, and precipitation, may not be readily available. Generally, phosphorus is 

the limiting nutrient in freshwater aquatic systems (Correll, 1999; Michigan Department of 

Environmental Quality on phosphorus), and total phosphorus loading can be used to predict 
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magnitude of HABs (Stumpf et al. 2012). Therefore, in this work, we focus on phosphorus as 

agricultural fertilizer in the model, and use phosphorus stock as the indicator for water quality 

damage in the lake. In this paper, we construct a simplified function to link the addition to 

phosphorus stock in the lake with soil quality and distance to the lake, which represents the 

absorption ability of the land and the absorption of nutrient along the transportation process.  

Understanding dynamic feedbacks between economic decisions and water quality is 

essential for long-term policies that balance agricultural productivity and the land-lake dynamic 

system. Complex tradeoffs between agricultural decisions and water quality emerge because of 

the inter-temporal nature of phosphorus accumulation from heterogeneous farms that vary in 

location and soil quality. Spatial heterogeneity not only affects farmers’ agricultural decisions 

(Antle et al. 2003; Antle and Stoorvogel 2006; Matthews et al. 2007), but also the nutrient runoff 

impact on receiving water (Gassman et al. 2007; Goetz and Zilberman 2000). The nutrient runoff 

from agricultural land accumulates in lakes and reservoirs, and has long-term and even 

irreversible impact, imposing huge costs on ecosystem services, water treatment, tourism, and 

more activities that depend on clean water resources (Carpenter, Ludwig, and Brock 1999; Maler 

et al. 2003). Optimal management of externalities from agricultural decisions therefore presents a 

spatial dynamic problem. Forward-looking economic models of agricultural decisions that 

incorporate costs of nutrient runoff and associated damages to soil and water quality have been 

used to determine optimal fertilizer input and best management practices (BMP) that maximize 

social welfare (Barrett, 1991, De Haen, 1982, Taylor et al., 1992, Matthews et al. 2007). 

Empirical analyses show that spatially differentiated land management policies—for example, 

fertilizer tax or subsidies for buffer strips — are more efficient than semi-uniform instruments 
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(Lankoski and Ollikainen, 2003), and spatial targeting of conservation tillage can jointly improve 

water quality and carbon retention (Yang, Wilson, and Voroney 2005). However, dynamic 

modeling of optimal management policies that account for spatial heterogeneity in land quality 

and the potential impact on NPS pollution remains limited.  

Goetz and Zilberman (2000) set up a framework to determine the optimal management of 

production externalities using a two-stage modeling approach. They solve the spatial problem in 

the first stage and optimize over time in the second stage, and suggest zonal management if 

differentiated optimal policies are not available. In the application to water irrigation system 

problem in California, they further investigate welfare differences between non-differentiated 

policies and differentiated policies with heterogeneous economic agents, and find that welfare 

gains from spatially targeted policy depends on the initial pollution stock and land heterogeneity 

(Xabadia, Goetz, and Zilberman, 2008). However, these studies did not explicitly model distance 

to the receiving water body, implementation costs associated with landscape and policy 

heterogeneity, empirically calibrate the model with agricultural nutrient runoff problem, nor 

simultaneously solve for optimal decisions. Other studies that develop optimization models to 

investigate specific policies and best management practices (BMP), including precision fertilizer 

application, vegetative filter strip, and gypsum amendment, to reduce phosphorus at the source 

and from the stock, find thresholds for economically feasible amendment methods (Iho and 

Laukkanen 2009, 2012). However, these studies fail to capture the spatial features of landscape 

and soil.  

Spatially targeted policies share similarities with precision agriculture: both implement 

field specific farming management practices based on observing, measuring and responding to 
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inter and intra-field variability (McBratney et al., 2005). In the past three decades, precision 

agriculture has advanced tremendously as a means to increase efficiency by enabling farmers to 

optimize agricultural inputs, and improve water quality by reducing excess nutrient runoff 

(Dixon and McCann, 1997). However, the development and spread of precision agriculture have 

been slow due to socio-economic barriers for the new adopters (Robert, 2002), insufficient 

recognition of temporal variations, and lack of farm-level focus among other problems 

(McBratney et al., 2005). High costs of technology adoption and implementation can offset part, 

or even all, of the benefits gained from precision agriculture depending on the size of the farm 

and the extent of heterogeneity in soil quality. Understanding the costs and benefits associated 

with the inter- and intra- farm spatial heterogeneity is essential to inform agricultural decisions 

and policies that can effectively reduce nutrient runoff and control NPS pollution.  

While residents near Lake Erie suffer most from the water quality deterioration impacts, 

the society as a whole also has to pay the price. To incentivize upstream individual profit-

maximizing farmers take water quality damages into account when making the agricultural 

management decisions, policy makers need simple yet practical policy tools to design long-term 

management practices. To this goal, we develop this platform for policy makers, where the 

model derives policy schemes based on inputs of physical landscape features and economic 

parameters. 

In this paper, we build on existing literature and develop a spatial-dynamic model of 

agricultural decisions in a simulated watershed to look for optimal management policies. A 

social planner chooses optimal fertilizer input levels across multiple farms or patches of land to 

maximize social welfare over an infinite time horizon, taking into account both agricultural 
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profits and water quality damages. We show that, at the steady state, shadow costs of small 

changes in phosphorus loading are equalized across farms, which is consistent with economic 

theory of stock pollutants (Conrad and Olson 1992; Gotez and Zilberman 2000; Karp and Zhang 

2012; Titenberg and Lewis 2016). Furthermore, at the optimal steady state, the marginal net 

benefit of agricultural production from applying one more unit of fertilizer is equal to the 

perpetuity value of damage from an additional unit of phosphorus stock in the lake adjusted by 

the individual farm’s contribution share. In a simulated landscape, we find the socially optimal 

fertilizer input based on spatially heterogeneous features for a representative farm and derive the 

optimal tax scheme that would lead to the socially optimal outcome under a private decision-

making model. Comparative analyses show that the social planner’s decision coincides with 

private farmer’s behavior when damages from water pollution are zero or when the private 

farmer care about water quality as much as the social planner, but in other cases, the socially 

optimal fertilizer amount is always less than the private farmer’s optimal decision.  

We simulate landscapes that are heterogeneous in soil characteristics and spatial features 

and find the welfare gains from spatially differentiated taxes on fertilizer input increase with 

increasing level of heterogeneity compared with uniform tax policy that assumes all indices are 

at the mean. In the case where policy implementation costs are proportional to the level of 

heterogeneity of policy, we show that there is an optimal level for implementing spatially 

targeted policy.  

This work contributes to the literature in three ways. We develop a platform to look for 

long-term policy instruments to maximize social welfare and empirically parameterize the 

optimal control model to find welfare gains from spatially targeted policies. We contribute to the 
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growing literature that captures the spatial and dynamic features of natural resource management 

models. Examining the optimal level of implementing spatially targeted policies based on level 

of heterogeneity in physical features provides policy insight that helps in designing long-term 

cost-effective agricultural policies in spatially heterogeneous landscapes. Our findings also 

provide insight into potential bargaining opportunities and payment schemes in the presence of 

strategic interactions between farmers within heterogeneous landscapes.  

2. Spatial-Dynamic Model of Agricultural Decisions 

We set up a social planner’s problem to maximize the present value of social welfare, 

which incorporates agricultural profits, production costs, and the associated water quality 

damage costs. We develop a dynamic optimal control model to look for policy instruments to 

balance the tradeoffs between agricultural decisions and water quality and compare the welfare 

gains from spatially targeted policies versus uniform policy on a heterogeneous landscape. 

Consider a watershed (Figure 1), which is an area where all rivers draining ultimately to 

particular water body, with heterogeneous landscape and one lake. Within the watershed, all 

nutrient runoff that is not absorbed by the soil will end up in this same receiving lake. For 

simplicity, we consider each unit of farmland to be one acre in size, with spatial features 

including soil and land surface characteristics index s (0<s<1) and location index d (km) (0 <

𝑑 < �̅�) (See Table 1). s represents the soil fertility and absorption ability related physical 

features, where bigger s represents higher productivity and better absorption ability, thus more 

yield and less nutrient runoff. In Figure 1, different shades of color represent different values of 

soil indices. s is generated by combining information on soil test, physical features including 

slope and soil type, and soil erosion index. To simplify notation, we will name s the “soil index” 
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from now on and it is normalized between 0 and 1. Location index d denotes the distance from 

farmland to the receiving lake. We denote the maximum distance from farm to the lake in this 

watershed is �̅�, that is, any farm that is located farther away would be outside of this watershed. 

The distance negatively affects the amount of nutrient added to the lake phosphorus stock 

because more nutrient is absorbed along the transportation process in longer distance. 

Heterogeneity is determined by the variance in the distribution of these two indices, reflecting 

the differences in spatial characteristics.  

In a simulated agricultural landscape, we assume for simplicity that in the watershed a 

single crop is produced – corn, which is a major crop and the largest contributor to nutrient 

runoff in the Midwest. The amount of fertilizer input in the agricultural production for farm i, 

denoted as 𝑢𝑖 (>0), is the control variable. We assume the unit cost of fertilizer is cu. The state 

variable that represents the state of this land-lake dynamic system is the phosphorus stock x 

(x>0) in the lake. Every time period, the stock increases with the phosphorus runoff added to the 

lake and decreases at rate 𝛾 that represents all natural decrease processes including decay, 

decomposition, sedimentation, and carried out by flow. To simplify notation, we call it “natural 

decay rate” in this paper.   

The social planner makes socially optimal management decisions in the watershed with n 

heterogeneous farms to maximize the present value net benefits from agricultural production 

while accounting for the water quality damage associated with nutrient runoff. The agricultural 

profits occur at the farm level but the water quality damage occur at the aggregate level at the 

receiving lake. The value function 𝑉(𝑥) for the social planner’s problem is defined as: 



EARLY DRAFT – PLEASE DO NOT CITE 

   

 

9 

𝑉(𝑥) = 𝑚𝑎𝑥𝑢𝑖(𝑡) ∫ 𝑒−𝛿𝑡 {∑{[𝑝𝑄(𝑢𝑖(𝑡), 𝑠𝑖) − 𝑐𝑢𝑢𝑖(𝑡)]}

𝑛

𝑖=1

− 𝐷(𝑥(𝑡))} 𝑑𝑡         [1]
+∞

0

 

subject to 

 �̇�(𝑡) = ∑ 𝑅(𝑠𝑖, 𝑑𝑖)𝑢𝑖(𝑡)

𝑛

𝑖=1

− 𝛾𝑥(𝑡)                                [2] 

where p is the exogenous market price for the agricultural output (corn). 𝑢𝑖(𝑡) denotes 

the quantity of fertilizer input applied on each farm at time period t, the soil index and location 

index are represented by 𝑠𝑖 and 𝑑𝑖, i=1,2 ... n. 𝐷(𝑥(𝑡)) denotes the damage function associated 

with phosphorus stock x, which is determined at the lake level. To ensure an interior solution, we 

assume the damage function to be convex in phosphorus stock 𝑥(𝑡). 𝑅(𝑠𝑖, 𝑑𝑖) represents a 

simplified nutrient runoff function, which reflects the relationship between fertilizer input at the 

farm level, farm-specific soil and location characteristics, and the addition to phosphorus stock 

𝑥(𝑡). The phosphorous runoff decreases with high soil index 𝑠𝑖 (which could reflect a higher 

absorptive capacity, for example) and distance to the lake 𝑑𝑖. The agricultural yield function is 

quadratic in fertilizer input, and increase with better soil quality.  

Production, damage, and runoff functions, Q(*,*), D(*), and  R(*,*) have the following 

features: 

𝜕𝑄

𝜕𝑢𝑖
> 0,          

𝜕2𝑄

𝜕𝑢𝑖
2

< 0                                                       [3] 

𝑑𝐷

𝑑𝑥
> 0,          

𝑑2𝐷

𝑑𝑥2
> 0                                                        [4] 

𝑑𝑅

𝑑𝑠𝑖
< 0,          

𝑑𝑅

𝑑𝑑𝑖
< 0                                                        [5] 
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To be more specific, we assume the production function, damage function, and runoff 

functions take the following forms and are parameterized by my empirical estimates and existing 

studies: 

                                  𝑄(𝑢𝑖, 𝑠𝑖) = 𝜌𝑠𝑖(−𝑎𝑢𝑖
2 + 𝑏𝑢𝑖 − 𝑐)                                             [6] 

                                                𝐷(𝑥) = 𝑚𝑥2                                                                              [7] 

                               𝑅(𝑠𝑖, 𝑑𝑖) = 𝜃(1 − 𝑠𝑖) (1 −
𝑑𝑖

�̅�
)                                                [8] 

To solve the optimal control model, the corresponding Current Value Hamiltonian (CVH) 

function is given by3:  

   𝐻(𝑢𝑖 , 𝑥, 𝜆) = ∑{[𝑝𝑄(𝑢𝑖 , 𝑠𝑖) − 𝑐𝑢𝑢𝑖]}

𝑛

𝑖=1

− 𝐷(𝑥) + 𝜆[∑ 𝑅(𝑠𝑖, 𝑑𝑖)𝑢𝑖

𝑛

𝑖=1

− 𝛾𝑥]        [9] 

The costate variable 𝜆(𝑡) is interpreted as the shadow cost of water quality damage from 

an additional unit of phosphorus stock in the receiving lake. The solution of this problem has to 

satisfy the corresponding first order conditions: 

𝜕𝐻

𝜕𝑢𝑖

(𝑢𝑖 , 𝑥, 𝜆) = 𝑝
𝜕𝑄

𝜕𝑢𝑖
− 𝑐𝑢 + 𝑅(𝑠𝑖, 𝑑𝑖)𝜆 = 0                  [10] 

                                  �̇� − 𝛿𝜆 = −
𝜕𝐻

𝜕𝑥
=

𝜕𝐷

𝜕𝑥
+ 𝛾𝜆                                     [11] 

and the transition function: 

                                      �̇� = ∑ 𝑅(𝑠𝑖, 𝑑𝑖)𝑢𝑖

𝑛

𝑖=1

− 𝛾𝑥                                [12] 

where Eq.[11] can be simplified as:  

                                                 
3 To simplify the notation, the arguments t are suppressed. 
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                                                         �̇� =
𝜕𝐷

𝜕𝑥
+ (𝛾 + 𝛿)𝜆                                          [13] 

We solve for the optimal steady state, where all the decision variables and state variable 

are stabilized:  

                                                    �̇�𝑖 = 0,     �̇� = 0                                                 [14] 

The shadow price will also remain constant at steady state: 

�̇� = 0                                                                  [15] 

Combining Eq. [13] and Eq. [15] we have 

                                                         𝜆 =
−

𝜕𝐷
𝜕𝑥

(𝛾 + 𝛿)
                                                      [16] 

Optimality condition Eq. [16] implies that the shadow price of an additional unit to the 

phosphorus stock equals to the discount and decay rate adjusted marginal damage of phosphorus 

stock in the lake. It can also be interpreted as the perpetuity value of damage from an additional 

unit of phosphorus. 

From first order condition Eq. [10] we find the shadow value for each farm is equalized:  

                                                 𝜆 = −
(𝑝

𝜕𝑄
𝜕𝑢𝑖

− 𝑐𝑢)

𝑅(𝑠𝑖, 𝑑𝑖)
                                                [17] 

Combing Eq. [16] and Eq. [17] we find 

                             𝜆 = −
(𝑝

𝜕𝑄
𝜕𝑢𝑖

− 𝑐𝑢)

𝑅(𝑠𝑖, 𝑑𝑖)
=

−
𝜕𝐷
𝜕𝑥

(𝛾 + 𝛿)
                                    [18] 

If we arrange the terms of Eq. [18], we have:        

          𝑝
𝜕𝑄

𝜕𝑢𝑖
− 𝑐𝑢 =

𝜕𝐷
𝜕𝑥

(𝛾 + 𝛿)
𝑅(𝑠𝑖, 𝑑𝑖)                                                     [19] 
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On the left hand side of the equation: 𝑝
𝜕𝑄

𝜕𝑢𝑖
− 𝑐𝑢is the marginal agricultural net benefit 

from applying one more unit of fertilizer. On the right hand side, 

𝜕𝐷

𝜕𝑥

(𝛾+𝛿)
 is the marginal damage of 

additional phosphorus in the stock adjusted by discounted rate and natural decay rate, and 

𝑅(𝑠𝑖, 𝑑𝑖) is the contribution share of each farm to the phosphorus stock in the lake. Eq. [19] 

shows the fundamental tradeoff between agricultural productivity and water quality. It shows 

that, at the steady state, for each farm, the forgone agricultural net benefit is equal to the 

perpetuity damage of additional phosphorus in the lake adjusted by the farm’s contribution to the 

phosphorus stock. This value is equalized for all farms, where each farm adjusts its fertilizer 

input to equate its marginal net benefit to the marginal adjusted damage, thus ensuring the 

socially optimal outcome.  

3. Model Calibration  

We parameterize the model with corn production data in Ohio using USDA National 

Agricultural Statistics Service (NASS) quickstats corn yield data from 1990 to 2005, and the 

corresponding fertilizer usage from EPA agricultural fertilizer report. The yield function is fitted 

using ordinary least squares (OLS) regression model and the fertilizer price is obtained from 

Agricultural Prices, USDA NASS. Runoff coefficient θ, represents the share of fertilizer applied 

on the farmland that will eventually end up in the lake, is estimated based on mass calculation, 

the annual total amount of fertilizer applied in Maumee River watershed divided by the total 

phosphorus addition to Lake Erie in a year. The damage coefficient is based on estimates from 

existing studies, but these estimates can vary significantly across different lakes and reservoirs 

(Bingham et al. 2015). Natural decay rates also vary across different geographical locations and 

climates (Maler et al. 2003; Reitzel et al. 2007). In the following analysis, we assume a moderate 
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decay rate of 0.3. The discount rate is assumed to be 0.1. We normalized the soil index to [0, 1]. 

The maximum distance from watershed boundary to the lake is denoted as �̅� based on existing 

literature. The parameters are shown in Table 1. More robustness analysis of the parameters is in 

the steady state analysis section. 
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4. Numerical Analysis 

4.1 Representative Farm Problem Steady States Analysis 

We solve the model, first focusing on a representative farm to determine the optimal 

outcome of the dynamic system when it reaches the steady state, where constant policies induce 

constant choices and the state remains constant level as in Eq. [14]. We plug the functions Eq. 

[6], Eq. [7], and Eq. [8] into the Hamiltonian function Eq. [9] to solve for the analytical solutions 

of the optimal combination of fertilizer input amount and phosphorus stock in the lake. We 

derive how fertilizer inputs change over time based on the shadow price from Eq. [10] and Eq. 

[13]: 

�̇�𝑖 = (𝛾 + 𝛿)𝑢𝑖 +
(𝛾 + 𝛿)

2𝑝𝜌𝑎𝑠𝑖

(𝑐𝑢 − 𝑝𝜌𝑏𝑠𝑖) +
𝜃𝑚(1 − 𝑠𝑖)(1 −

𝑑𝑖

�̅�
)

𝑝𝜌𝑎𝑠𝑖
𝑥                [20] 

Transition function Eq. [12] shows how the stock changes over time in response to 

fertilizer inputs at the farm level. Combining the two equations, we solve for the optimal steady 

state fertilizer amount and phosphorus stock level, denoted as 𝑢𝑖
∗ and 𝑥∗ respectively, for i=1, 

2,…n. We first solve the problem with a representative farm with soil index (𝑠𝑖) and location 

index (𝑑𝑖). Analytical solution for the representative farm determines the optimal fertilizer input 

(𝑢𝑖
∗) and phosphorus stock level (𝑥∗): 

𝑥∗ =
𝜃(1 − 𝑠𝑖) (1 −

𝑑𝑖

�̅�
) (𝛿 + 𝛾)(𝑝𝜌𝑏𝑠𝑖 − 𝑐𝑢)

2𝜃2(1 − 𝑠𝑖)2 (1 −
𝑑𝑖

�̅�
)

2

𝑚 + 2(𝛿 + 𝛾)𝛾𝑝𝜌𝑎𝑠𝑖

                      [21] 

𝑢𝑖
∗ =

(𝛾 + 𝛿)𝛾(𝑝𝜌𝑏𝑠𝑖 − 𝑐𝑢)

2𝜃2(1 − 𝑠𝑖)2 (1 −
𝑑𝑖

�̅�
)

2

𝑚 + 2(𝛿 + 𝛾)𝛾𝑝𝜌𝑎𝑠𝑖

                     [22] 



EARLY DRAFT – PLEASE DO NOT CITE 

   

 

16 

The first and second order derivatives of the optimal fertilizer amount on soil index and 

location index shows how the optimal choice should change with farm physical features:  

𝜕𝑢𝑖
∗

𝜕𝑠𝑖
> 0, 𝑎𝑛𝑑 

𝜕2𝑢𝑖
∗

𝜕𝑠𝑖
2

< 0                                               [23] 

𝜕𝑢𝑖
∗

𝜕𝑑𝑖
> 0, 𝑎𝑛𝑑 

𝜕2𝑢𝑖
∗

𝜕𝑑𝑖
2 < 0                                               [24] 

The optimal quantity of fertilizer input increases with better soil quality and with distance 

from the receiving lake but at a decreasing rate. In Figure 2, we show the 3-D surface of optimal 

fertilizer input for combinations of 𝑠𝑖 and 𝑑𝑖. We find that the impact of soil index on optimal 

fertilizer input decisions is larger than the impact of distance from the lake. Farms with low soil 

quality, located close to the lake should apply the lowest amount of fertilizer, and farms with 

high soil quality and located far away from the lake could apply more fertilizer. The complete 

table of optimal fertilizer amount for every combination of soil index and location index is in 

Appendix A. 

 

4.2 Private Farmers’ Problem and Optimal Fertilizer Tax 

Although private farmers are profit maximizers, they may also care about the water 

quality, especially those who are more environmental conscious (Kalcic 2013). We assume there 

is a coefficient for water quality consciousness (𝜁𝑖) associated with individual’s perception of 

water quality damage for private farmers (0 ≤ 𝜁𝑖 ≤ 1), where higher value means the private 

farmer cares more about water quality. The private farmer’s profit maximization problem is then 

defined as:  
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𝑚𝑎𝑥𝑢𝑖(𝑡) ∫ 𝑒−𝛿𝑡{𝑝𝑄(𝑢𝑖(𝑡), 𝑠𝑖) − 𝑐𝑢𝑢𝑖(𝑡) − 𝜁𝑖𝐷(𝑥(𝑡))}𝑑𝑡              [25]
+∞

0

 

subject to 

 �̇�(𝑡) = 𝑅(𝑠𝑖 , 𝑑𝑖)𝑢𝑖(𝑡) − 𝛾𝑥(𝑡)                                      [26] 

where the private famer chooses the fertilizer amount (𝑢𝑖) to maximize his/her net 

benefit, while partially taking into account his/her nutrient runoff impact on the receiving water 

body. The solution of this optimization problem is denoted as �̅�𝑖:  

�̅�𝑖 =
(𝛾 + 𝛿)𝛾(𝑝𝜌𝑏𝑠𝑖 − 𝑐𝑢)

2𝜁𝑖𝑚𝜃2(1 − 𝑠𝑖)2 (1 −
𝑑𝑖

�̅�
)

2

+ 2(𝛿 + 𝛾)𝛾𝑝𝜌𝑎𝑠𝑖

                     [27] 

This water quality conciseness coefficient is likely to vary among individual farmers 

(Burnett et al. 2015) but we assume it to be the same (𝜁𝑖 = 0.1) for simplicity for now and will 

relax this assumption later. When private farmers’ optimal decisions deviate from the social 

planner’s optimal outcome, policy instruments, such as fertilizer tax, are necessary to incentivize 

farmers to reduce fertilizer input. A fertilizer tax, or fertilizer usage fee, places an additional cost 

to the price of fertilizer thus decreases farmer’s fertilizer usage. The goal of a fully differentiated 

tax (𝜏𝑖) is to correct the private farmers’ decisions to achieve the socially optimal outcome, 

which requires making the socially optimal fertilizer usage amount (𝑢𝑖
∗) the solution to the 

following private farmer profit maximization problem: 

𝑚𝑎𝑥𝑢𝑖(𝑡) ∫ 𝑒−𝛿𝑡{𝑝𝑄(𝑢𝑖(𝑡), 𝑠𝑖) − (𝑐𝑢 + 𝜏𝑖)𝑢𝑖(𝑡) − 𝜁𝑖𝐷(𝑥(𝑡))}𝑑𝑡              [28]
+∞

0

 

subject to 

 �̇�(𝑡) = 𝑅(𝑠𝑖 , 𝑑𝑖)𝑢𝑖(𝑡) − 𝛾𝑥(𝑡)                                      [29] 
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We solve for the optimal tax for every combination of soil index (𝑠𝑖) and location index 

(𝑑𝑖) and show the optimal tax as percentage increase in unit cost of fertilizer in Figure 3:  

𝜏𝑖 = 𝑝𝜌𝑏𝑠𝑖 − 𝑐𝑢 −
2𝜃2𝜁𝑖(1 − 𝑠𝑖)

2 (1 −
𝑑𝑖

�̅�
)

2

𝑚 + 2(𝛿 + 𝛾)𝛾𝑝𝜌𝑎𝑠𝑖𝑢𝑖
∗

(𝛾 + 𝛿)𝛾
      [30] 

 

The optimal tax scheme (Figure 3), shown as percentage increase in fertilizer usage fee, 

results in highest tax on farms with poor soil quality and are located close to the lake. The tax 

decreases as the soil quality increases, or as the distance increases. We find the optimal tax varies 

from 0 to 35%, which is in line with other tax policy suggestions (Sohngen et al. 2015). The 

complete table of optimal tax for every combination of soil index and location index is shown in 

Appendix B.  

We also solve for optimal transition paths and find that whether with high or low initial 

values, the dynamic system reaches steady state in about 10 time periods (years).   

 

4.3 Comparative Static Analysis of Fertilizer Application Rates to Changes in Parameters 

We conduct comparative static analyses to examine optimal fertilizer usage in response to 

changes in one parameter and how it may affect the private farmer and social planner’s decisions 

differently. We develop a baseline scenario where the soil index and distance to the lake are set 

at the mean: 𝑠𝑖=0.5, 𝑑𝑖=2.5 km, and other parameters are set as in Table 1.  

1) Optimal Response to Changes in Agricultural Output (corn) Price (p). 

Analytically taking the first and second order derivatives of output price p from Eq. [22], 

we find: 
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𝜕𝑢𝑖
∗

𝜕𝑝
> 0, 𝑎𝑛𝑑 

𝜕2𝑢𝑖
∗

𝜕𝑝2
< 0                                                    [31] 

Steady state optimal fertilizer amount for both private farmer and social planner increases 

with output price . Higher output price increases agricultural profits, making agricultural 

production more favorable in the tradeoff between agricultural decisions and water quality. 

However, this marginal impact diminishes as output price increases. At any given output price, 

the private farmer always applies more fertilizer than socially optimal to maximize his/her 

profits.  

 

2) Optimal Response to Changes in Water Damage Coefficient (m) 

Similarly, we derive the first and second order derivatives of the water quality coefficient 

from Eq. [22]: 

𝜕𝑢𝑖
∗

𝜕𝑚
> 0, 𝑎𝑛𝑑 

𝜕2𝑢𝑖
∗

𝜕𝑚2
< 0                                               [32] 

When the water damage coefficient is set at zero, which means there is no cost associated 

with water quality deterioration, the private farmer and the social planner will make the same 

decision on fertilizer usage. In this case, the social welfare coincides with the sum of private 

agricultural profits. However, as the water damage coefficient increases, there is higher water 

quality damage cost associated with phosphorus stock in the lake, the socially optimal and 

private farmer level of fertilizer amount decrease (Figure 4). As long as the coefficient is bigger 

than zero, the private farmer always applies more fertilizer than socially optimal.  

 

3) Optimal Response to Changes in Natural Decay Rate (𝛾) 
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For natural decay rate, the first and second order derivatives are: 

𝜕𝑢𝑖
∗

𝜕𝛾
> 0, 𝑎𝑛𝑑 

𝜕2𝑢𝑖
∗

𝜕𝛾2
< 0                                                   [33] 

Natural decay rate represents the self-restoration ability of the lake. With higher natural 

decay rate, the phosphorus stock from last time period can be decomposed or carried out of the 

phosphorus cycle in the lake, which allows farmers in this watershed to apply more fertilizer 

(Figure 5). As the natural decay rate increases, the social planner’s decisions will converge to the 

private farmer’s decision. In contrast, if natural decay rate is close to zero, which means the 

phosphorus in the lake does not recover by itself and has accumulating impact in the lake, the 

socially optimal and environmentally conscious private farmer’s choice of fertilizer usage will go 

to zero.  

4) Optimal Response to Changes in Water Quality Consciousness Coefficient (𝜁𝑖) 

The first and second order derivatives of the water quality consciousness coefficient are: 

𝜕𝑢𝑖
∗

𝜕𝜁𝑖
< 0, 𝑎𝑛𝑑 

𝜕2𝑢𝑖
∗

𝜕𝜁𝑖
2 > 0                                            [34] 

Water quality consciousness coefficient represents how much a private farmer cares 

about water quality in the lake and higher coefficient means higher value associated with water 

quality. In the extreme cases: 𝜁𝑖 = 0 is for private farmers maximizing profits without taking into 

account their impact on water quality, which makes the private farmer’s decision a static profit-

maximizing problem that does not change over time. As the coefficient increases, the private 

farmer’s decision will converge to the social planner’s problem because the private farmer 

internalizes the social cost of water quality damage. When 𝜁𝑖 = 1, the private farmer fully 
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internalizes the water quality deterioration cost, and the private farmer’s decision will be the 

same as social planner’s.  

 

4.4 Welfare Analysis of a Spatially Targeted Tax in a Heterogeneous Landscape 

Finally we expand the analysis to a watershed with heterogeneous landscape. Eq. [12] 

establishes that the aggregate impact on phosphorus stock comes from every individual farm, 

implying the interactions among heterogeneous farms. In this case, it is very hard to display 

every possible combination of watersheds when each farm’s optimal fertilizer decision depends 

on other farms. We define the uniform policy here as the uniform tax designed assuming every 

farm’s soil quality index is equal to the mean of all farms. In this example to illustrate the 

welfare gains from spatially targeted policies versus uniform policy, we simulate a watershed 

with 10 farms that vary in soil quality, where each farm is 200 acres large, which is the average 

farm size in Ohio. We assume all farms are located 2.5 km from the lake, and we simulate 

different levels of heterogeneity in soil quality by changing the variance of the soil index 

distribution while holding the mean at 0.5. We compare a fully differentiated tax policy with a 

uniform fertilizer tax and results show that compared with the uniform tax, the welfare gains 

from spatially targeted policy increases with increasing level of heterogeneity (Figure 6).  

 

4.5 Optimal Level of Policy Heterogeneity  

We see the welfare gains from spatially targeted policies, however, in real world 

situations, spatially targeted policies are expensive. The implementation costs are higher with 

higher level of heterogeneity in spatial features because of the additional costs of soil testing, 
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implementation, and enforcement, which turns policy makers to second best zonal policies 

(Xabadia, Goetz, and Zilberman 2008). Therefore, we examine if there is an optimal level for 

implementing spatially targeted policy.  

In this simulation, we assume the watershed is 2000 acres large with varying soil quality 

indices drawn from a uniform distribution with mean 0.5 and variance 0.3. We test dividing the 

watershed into 1 to 10 zones and assume the policy implementation cost is proportional to the 

number of zones we divide into. Here we represent level of policy heterogeneity by the number 

of zones. We compare the social welfare of differentiated management policies that manage 

based on zonal specific soil quality with optimal uniform policy that is based on mean soil 

quality of the watershed. Figure 7 shows that there is an optimal level of dividing the zones, or 

policy heterogeneity, for spatially targeted policy. In this specific example, implementing 

targeted policy by dividing the watershed into 3 zones generates the highest social welfare. We 

test for different watershed sizes and different implementation costs and find similar peak in 

welfare gains with different levels of policy heterogeneity.  

 

5. Discussion and Conclusion 

Agriculture and water quality are two important components of the social welfare. This 

paper develops a dynamic optimal control model that balances the tradeoffs between agricultural 

productivity and the associated nutrient runoff impact on the water quality based on 

heterogeneous spatial characteristics. We develop a platform to solve the social planner’s 

problem of maximizing social welfare on heterogeneous landscapes. We show that the shadow 

price is equalized for all farms and is equal to the marginal damage of additional unit of 
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phosphorus in the stock adjusted by the discount rate and natural decay rate. The marginal net 

benefit of each farm is equal to the perpetuity damage of additional unit of phosphorus stock in 

the lake adjusted by the farm’s contribution to the phosphorus stock.  

We derive the optimal fertilizer choice for every combination of soil index and location 

index, and the corresponding tax scheme to achieve the social optimal outcome for a 

representative farm. Further on, we compare the welfare gains from spatially targeted policies 

versus the optimal uniform fertilizer tax on a watershed with 10 heterogeneous farms, and show 

that the welfare gains increase with increasing level of heterogeneity. We also show that there is 

an optimal level of policy heterogeneity in implementing spatially targeted policies when the 

policy implementation cost increases with number of zones. 

We also analyze the interactions between farms when their fertilizer usages have 

aggregate impact on the lake. In the case of two farms where we can find analytical solution, we 

show the tradeoff between their fertilizer input and economic profits, and the spillover effect of 

improving soil quality in Appendix C. We will examine these interactions to look for strategic 

behavior and optimal payment schemes among farms to maximize private farmer’s profits in 

future work. 

This work contributes to environmental and resource economics literature in three major 

ways. 1) We are pushing forward the frontier of empirically grounded modeling of optimal 

resource management by linking valuation with dynamic optimal control models (Iho and 

Laukkanen 2009, 2012; Xabadia, Goetz, and Zilberman, 2008). 2) We contribute to the growing 

literature that captures the spatial and dynamic features of natural resource management models 

(Smith, Sanchirico, Wilen 2009).  3) We show the role of heterogeneity in optimal policy design, 
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which provides insight into optimal zonal policies. The platform we build in this paper can be 

extended in many ways to better simulate the real world situations of agricultural production: 1) 

add BMP as a method to improve soil quality at farm level, and or to reduce phosphorus stock in 

the lake; 2) add an exogenous variable of precipitation with stochastic processes that represent 

climate change that affects the probability of having an algal bloom; 3) empirically test the 

model with farmer behavior of fertilizer management practice adoption data in Western Lake 

Erie water basin. This framework can also be applied to other resource management problems 

such as forest management, invasive species control, and test for different climate change 

scenarios.  
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Figure 1: Illustration of Farms and the Receiving Lake 
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Figure 2 Steady State Optimal Fertilizer Amounts 
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Figure 3 Optimal Differentiated Tax for Private Farmers 
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Figure 4 Comparative Analysis of Water Quality Damage Parameter on 

Fertilizer Amount 
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Figure 5 Comparative Analysis of Natural Decay Rate on Fertilizer Amount 
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Figure 6 Welfare Gains from Spatially Targeted Policies with Variance in Soil 

Quality 
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Figure 7 Welfare Gains from Spatially Targeted Policies with Heterogeneity 

Level in Policies 

 

 

 

 

 

 



EARLY DRAFT – PLEASE DO NOT CITE 

   

 

36 

Table 1 Model Parameter Values 

Parameter Symbol Value 

Yield function 

a 0.133 

𝑏 19.858 

𝑐 611.06 

 ρ 5 

Corn price 𝑝 6.15 ($/bu) 

Fertilizer price 𝑐𝑢 0.351 ($/lb) 

Runoff coefficient  θ 0.1 

Damage coefficient 𝑚 0.0148 ($/kg) 

Natural decay rate 𝛾 0.3 

Discount rate 𝛿 0.1 

Soil quality index 𝑠 0<s<1 

Maximum distance to the lake  �̅� 5 (km) 

Distance to the lake 𝑑 0<d<�̅�(km) 
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Appendix A: Optimal Fertilizer Amount Table 

d     

s              0.05 0.1 0.15 0.2 0.25 0.3 0.35 

0.1 73.4133  74.0519  74.2649 74.3710 74.4342  74.4761  74.5057  

0.2 73.4288  74.0589  74.2690 74.3737 74.4362  74.4775  74.5067  

0.3 73.4439  74.0658  74.2731 74.3765 74.4381  74.4789  74.5077  

0.4 73.4587  74.0725  74.2771 74.3791 74.4400  74.4802  74.5087  

0.5 73.4732  74.0791  74.2811 74.3817 74.4418  74.4816  74.5097  

0.6 73.4873  74.0855  74.2849 74.3843 74.4436  74.4829  74.5107  

0.7 73.5012  74.0918  74.2887 74.3868 74.4454  74.4842  74.5116  

0.8 73.5148  74.0979  74.2923 74.3892 74.4471  74.4854  74.5126  

0.9 73.5280  74.1039  74.2959 74.3916 74.4488  74.4866  74.5135  

1 73.5409  74.1098  74.2994 74.3939 74.4504  74.4878  74.5143  

1.1 73.5535  74.1155  74.3028 74.3962 74.4520  74.4890  74.5152  

1.2 73.5658  74.1210  74.3061 74.3984 74.4536  74.4901  74.5160  

1.3 73.5778  74.1265  74.3094  74.4006  74.4551  74.4912  74.5168  

1.4 73.5895  74.1318  74.3125  74.4027  74.4565  74.4923  74.5176  

1.5 73.6008  74.1369  74.3156  74.4047  74.4580  74.4933  74.5184  

1.6 73.6118  74.1419  74.3185  74.4067  74.4594  74.4943  74.5192  

1.7 73.6225  74.1467  74.3214  74.4086  74.4607  74.4953  74.5199  

1.8 73.6329  74.1514  74.3242  74.4105  74.4620  74.4963  74.5206  

1.9 73.6430  74.1560  74.3270  74.4123  74.4633  74.4972  74.5213  

2 73.6528  74.1604  74.3296  74.4140  74.4645  74.4981  74.5219  

2.1 73.6622  74.1647  74.3321  74.4157  74.4657  74.4990  74.5226  

2.2 73.6714  74.1688  74.3346  74.4174  74.4669  74.4998  74.5232  

2.3 73.6802  74.1728  74.3370  74.4189  74.4680  74.5006  74.5238  

2.4 73.6887  74.1766  74.3393  74.4205  74.4691  74.5014  74.5244  

2.5 73.6968  74.1803  74.3415  74.4219  74.4701  74.5021  74.5249  

2.6 73.7047  74.1839  74.3436  74.4233  74.4711  74.5028  74.5255  

2.7 73.7122  74.1873  74.3456  74.4247  74.4720  74.5035  74.5260  

2.8 73.7194  74.1905  74.3476  74.4260  74.4729  74.5042  74.5265  

2.9 73.7263  74.1937  74.3494  74.4272  74.4738  74.5048  74.5269  

3 73.7329  74.1966  74.3512  74.4284  74.4746  74.5054  74.5274  

3.1 73.7392  74.1995  74.3529  74.4295  74.4754  74.5060  74.5278  

3.2 73.7451  74.2021  74.3545  74.4306  74.4762  74.5065  74.5282  

3.3 73.7507  74.2047  74.3560  74.4316  74.4769  74.5071  74.5286  



EARLY DRAFT – PLEASE DO NOT CITE 

   

 

38 

3.4 73.7560  74.2071  74.3574  74.4325  74.4776  74.5075  74.5289  

3.5 73.7610  74.2093  74.3587  74.4334  74.4782  74.5080  74.5293  

3.6 73.7656  74.2114  74.3600  74.4342  74.4788  74.5084  74.5296  

3.7 73.7700  74.2134  74.3612  74.4350  74.4793  74.5088  74.5299  

3.8 73.7740  74.2152  74.3622  74.4357  74.4798  74.5092  74.5301  

3.9 73.7777  74.2169  74.3632  74.4364  74.4803  74.5095  74.5304  

4 73.7811  74.2184  74.3641  74.4370  74.4807  74.5098  74.5306  

4.1 73.7841  74.2198  74.3650  74.4376  74.4811  74.5101  74.5308  

4.2 73.7868  74.2210  74.3657  74.4380  74.4814  74.5104  74.5310  

4.3 73.7892  74.2221  74.3663  74.4385  74.4817  74.5106  74.5312  

4.4 73.7913  74.2230  74.3669  74.4388  74.4820  74.5108  74.5313  

4.5 73.7931  74.2238  74.3674  74.4392  74.4822  74.5109  74.5314  

4.6 73.7945  74.2245  74.3678  74.4394  74.4824  74.5111  74.5315  

4.7 73.7957  74.2250  74.3681  74.4396  74.4825  74.5112  74.5316  

4.8 73.7965  74.2253  74.3683  74.4398  74.4827  74.5112  74.5317  

4.9 73.7970  74.2256  74.3684  74.4399  74.4827  74.5113  74.5317  

5 73.7971  74.2256  74.3685  74.4399  74.4827  74.5113  74.5317  

d     

s              0.4 0.45 0.5 0.55 0.6 0.65 0.7 

0.1 74.5276  74.5444  74.5576  74.5683  74.5770  74.5841  74.5901  

0.2 74.5284  74.5450  74.5581  74.5686  74.5772  74.5843  74.5903  

0.3 74.5291  74.5456  74.5585  74.5689  74.5774  74.5845  74.5904  

0.4 74.5299  74.5461  74.5589  74.5692  74.5776  74.5846  74.5905  

0.5 74.5306  74.5467  74.5593  74.5695  74.5779  74.5848  74.5906  

0.6 74.5313  74.5472  74.5597  74.5698  74.5781  74.5849  74.5907  

0.7 74.5320  74.5477  74.5601  74.5701  74.5783  74.5851  74.5908  

0.8 74.5327  74.5482  74.5605  74.5704  74.5785  74.5852  74.5909  

0.9 74.5334  74.5487  74.5609  74.5707  74.5787  74.5854  74.5910  

1 74.5341  74.5492  74.5612  74.5709  74.5789  74.5855  74.5911  

1.1 74.5347  74.5497  74.5616  74.5712  74.5791  74.5856  74.5912  

1.2 74.5353  74.5502  74.5619  74.5714  74.5793  74.5858  74.5912  

1.3 74.5359  74.5506  74.5623  74.5717  74.5794  74.5859  74.5913  

1.4 74.5365  74.5511  74.5626  74.5719  74.5796  74.5860  74.5914  

1.5 74.5371  74.5515  74.5629  74.5722  74.5798  74.5861  74.5915  

1.6 74.5377  74.5519  74.5632  74.5724  74.5799  74.5863  74.5916  

1.7 74.5382  74.5523  74.5635  74.5726  74.5801  74.5864  74.5917  

1.8 74.5387  74.5527  74.5638  74.5728  74.5803  74.5865  74.5917  
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1.9 74.5392  74.5531  74.5641  74.5730  74.5804  74.5866  74.5918  

2 74.5397  74.5535  74.5644  74.5732  74.5806  74.5867  74.5919  

2.1 74.5402  74.5538  74.5647  74.5734  74.5807  74.5868  74.5919  

2.2 74.5407  74.5542  74.5649  74.5736  74.5808  74.5869  74.5920  

2.3 74.5411  74.5545  74.5652  74.5738  74.5810  74.5870  74.5921  

2.4 74.5415  74.5548  74.5654  74.5740  74.5811  74.5871  74.5921  

2.5 74.5419  74.5551  74.5656  74.5742  74.5812  74.5872  74.5922  

2.6 74.5423  74.5554  74.5658  74.5743  74.5813  74.5872  74.5923  

2.7 74.5427  74.5557  74.5661  74.5745  74.5814  74.5873  74.5923  

2.8 74.5431  74.5560  74.5663  74.5746  74.5816  74.5874  74.5924  

2.9 74.5434  74.5562  74.5664  74.5748  74.5817  74.5875  74.5924  

3 74.5438  74.5565  74.5666  74.5749  74.5818  74.5875  74.5925  

3.1 74.5441  74.5567  74.5668  74.5750  74.5819  74.5876  74.5925  

3.2 74.5444  74.5570  74.5670  74.5752  74.5819  74.5877  74.5925  

3.3 74.5447  74.5572  74.5671  74.5753  74.5820  74.5877  74.5926  

3.4 74.5449  74.5574  74.5673  74.5754  74.5821  74.5878  74.5926  

3.5 74.5452  74.5576  74.5674  74.5755  74.5822  74.5878  74.5927  

3.6 74.5454  74.5577  74.5676  74.5756  74.5822  74.5879  74.5927  

3.7 74.5456  74.5579  74.5677  74.5757  74.5823  74.5879  74.5927  

3.8 74.5458  74.5580  74.5678  74.5757  74.5824  74.5880  74.5928  

3.9 74.5460  74.5582  74.5679  74.5758  74.5824  74.5880  74.5928  

4 74.5462  74.5583  74.5680  74.5759  74.5825  74.5880  74.5928  

4.1 74.5464  74.5584  74.5681  74.5760  74.5825  74.5881  74.5928  

4.2 74.5465  74.5585  74.5681  74.5760  74.5826  74.5881  74.5928  

4.3 74.5466  74.5586  74.5682  74.5761  74.5826  74.5881  74.5929  

4.4 74.5467  74.5587  74.5683  74.5761  74.5826  74.5881  74.5929  

4.5 74.5468  74.5588  74.5683  74.5761  74.5827  74.5882  74.5929  

4.6 74.5469  74.5588  74.5684  74.5762  74.5827  74.5882  74.5929  

4.7 74.5469  74.5589  74.5684  74.5762  74.5827  74.5882  74.5929  

4.8 74.5470  74.5589  74.5684  74.5762  74.5827  74.5882  74.5929  

4.9 74.5470  74.5589  74.5684  74.5762  74.5827  74.5882  74.5929  

5 74.5470  74.5589  74.5684  74.5762  74.5827  74.5882  74.5929  

d     

s              0.75 0.8 0.85 0.9 0.95 

0.1 74.5952  74.5995  74.6032  74.6063  74.6090  

0.2 74.5953  74.5995  74.6032  74.6063  74.6090  

0.3 74.5953  74.5996  74.6032  74.6063  74.6090  
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0.4 74.5954  74.5996  74.6032  74.6063  74.6090  

0.5 74.5955  74.5997  74.6032  74.6063  74.6090  

0.6 74.5955  74.5997  74.6033  74.6063  74.6090  

0.7 74.5956  74.5997  74.6033  74.6063  74.6090  

0.8 74.5957  74.5998  74.6033  74.6063  74.6090  

0.9 74.5957  74.5998  74.6033  74.6064  74.6090  

1 74.5958  74.5999  74.6033  74.6064  74.6090  

1.1 74.5959  74.5999  74.6034  74.6064  74.6090  

1.2 74.5959  74.5999  74.6034  74.6064  74.6090  

1.3 74.5960  74.6000  74.6034  74.6064  74.6090  

1.4 74.5960  74.6000  74.6034  74.6064  74.6090  

1.5 74.5961  74.6000  74.6034  74.6064  74.6090  

1.6 74.5961  74.6001  74.6034  74.6064  74.6090  

1.7 74.5962  74.6001  74.6035  74.6064  74.6090  

1.8 74.5962  74.6001  74.6035  74.6064  74.6090  

1.9 74.5963  74.6001  74.6035  74.6064  74.6090  

2 74.5963  74.6002  74.6035  74.6064  74.6090  

2.1 74.5964  74.6002  74.6035  74.6064  74.6090  

2.2 74.5964  74.6002  74.6035  74.6064  74.6090  

2.3 74.5965  74.6002  74.6035  74.6065  74.6090  

2.4 74.5965  74.6003  74.6036  74.6065  74.6090  

2.5 74.5965  74.6003  74.6036  74.6065  74.6090  

2.6 74.5966  74.6003  74.6036  74.6065  74.6090  

2.7 74.5966  74.6003  74.6036  74.6065  74.6090  

2.8 74.5966  74.6004  74.6036  74.6065  74.6090  

2.9 74.5967  74.6004  74.6036  74.6065  74.6090  

3 74.5967  74.6004  74.6036  74.6065  74.6090  

3.1 74.5967  74.6004  74.6036  74.6065  74.6090  

3.2 74.5968  74.6004  74.6036  74.6065  74.6090  

3.3 74.5968  74.6004  74.6037  74.6065  74.6090  

3.4 74.5968  74.6005  74.6037  74.6065  74.6090  

3.5 74.5968  74.6005  74.6037  74.6065  74.6090  

3.6 74.5969  74.6005  74.6037  74.6065  74.6090  

3.7 74.5969  74.6005  74.6037  74.6065  74.6090  

3.8 74.5969  74.6005  74.6037  74.6065  74.6090  

3.9 74.5969  74.6005  74.6037  74.6065  74.6090  

4 74.5969  74.6005  74.6037  74.6065  74.6090  
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4.1 74.5969  74.6005  74.6037  74.6065  74.6090  

4.2 74.5970  74.6005  74.6037  74.6065  74.6090  

4.3 74.5970  74.6005  74.6037  74.6065  74.6090  

4.4 74.5970  74.6006  74.6037  74.6065  74.6090  

4.5 74.5970  74.6006  74.6037  74.6065  74.6090  

4.6 74.5970  74.6006  74.6037  74.6065  74.6090  

4.7 74.5970  74.6006  74.6037  74.6065  74.6090  

4.8 74.5970  74.6006  74.6037  74.6065  74.6090  

4.9 74.5970  74.6006  74.6037  74.6065  74.6090  

5 74.5970  74.6006  74.6037  74.6065  74.6090  
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Appendix B: Optimal Tax Table 

d     

s              0.05 0.1 0.15 0.2 0.25 0.3 0.35 

0.1 0.1567  0.1419  0.1269  0.1126  0.0991  0.0863  0.0745  

0.2 0.1504  0.1362  0.1218  0.1081  0.0951  0.0828  0.0715  

0.3 0.1443  0.1306  0.1168  0.1036  0.0911  0.0794  0.0685  

0.4 0.1382  0.1251  0.1119  0.0993  0.0873  0.0761  0.0656  

0.5 0.1323  0.1197  0.1071  0.0950  0.0836  0.0728  0.0628  

0.6 0.1265  0.1145  0.1024  0.0908  0.0799  0.0696  0.0601  

0.7 0.1209  0.1093  0.0978  0.0867  0.0763  0.0665  0.0574  

0.8 0.1153  0.1043  0.0933  0.0828  0.0728  0.0634  0.0547  

0.9 0.1099  0.0994  0.0889  0.0789  0.0694  0.0605  0.0521  

1 0.1046  0.0946  0.0846  0.0751  0.0660  0.0575  0.0496  

1.1 0.0995  0.0900  0.0805  0.0714  0.0628  0.0547  0.0472  

1.2 0.0945  0.0854  0.0764  0.0677  0.0596  0.0519  0.0448  

1.3 0.0896  0.0810  0.0724  0.0642  0.0565  0.0492  0.0425  

1.4 0.0848  0.0767  0.0686  0.0608  0.0535  0.0466  0.0402  

1.5 0.0802  0.0725  0.0648  0.0575  0.0506  0.0441  0.0380  

1.6 0.0757  0.0684  0.0612  0.0542  0.0477  0.0416  0.0359  

1.7 0.0713  0.0644  0.0576  0.0511  0.0449  0.0392  0.0338  

1.8 0.0671  0.0606  0.0542  0.0481  0.0423  0.0368  0.0318  

1.9 0.0629  0.0569  0.0509  0.0451  0.0397  0.0346  0.0298  

2 0.0589  0.0533  0.0476  0.0422  0.0371  0.0324  0.0279  

2.1 0.0551  0.0498  0.0445  0.0395  0.0347  0.0303  0.0261  

2.2 0.0514  0.0464  0.0415  0.0368  0.0324  0.0282  0.0243  

2.3 0.0478  0.0432  0.0386  0.0342  0.0301  0.0262  0.0226  

2.4 0.0443  0.0400  0.0358  0.0317  0.0279  0.0243  0.0210  

2.5 0.0410  0.0370  0.0331  0.0293  0.0258  0.0225  0.0194  

2.6 0.0378  0.0341  0.0305  0.0270  0.0238  0.0207  0.0179  

2.7 0.0347  0.0313  0.0280  0.0248  0.0218  0.0190  0.0164  

2.8 0.0317  0.0287  0.0256  0.0227  0.0200  0.0174  0.0150  

2.9 0.0289  0.0261  0.0233  0.0207  0.0182  0.0159  0.0137  

3 0.0262  0.0237  0.0212  0.0188  0.0165  0.0144  0.0124  

3.1 0.0237  0.0214  0.0191  0.0169  0.0149  0.0130  0.0112  

3.2 0.0212  0.0192  0.0172  0.0152  0.0134  0.0117  0.0101  

3.3 0.0190  0.0171  0.0153  0.0136  0.0119  0.0104  0.0090  
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3.4 0.0168  0.0152  0.0136  0.0120  0.0106  0.0092  0.0079  

3.5 0.0148  0.0133  0.0119  0.0106  0.0093  0.0081  0.0070  

3.6 0.0129  0.0116  0.0104  0.0092  0.0081  0.0071  0.0061  

3.7 0.0111  0.0100  0.0089  0.0079  0.0070  0.0061  0.0052  

3.8 0.0094  0.0085  0.0076  0.0068  0.0059  0.0052  0.0045  

3.9 0.0079  0.0072  0.0064  0.0057  0.0050  0.0044  0.0038  

4 0.0066  0.0059  0.0053  0.0047  0.0041  0.0036  0.0031  

4.1 0.0053  0.0048  0.0043  0.0038  0.0033  0.0029  0.0025  

4.2 0.0042  0.0038  0.0034  0.0030  0.0026  0.0023  0.0020  

4.3 0.0032  0.0029  0.0026  0.0023  0.0020  0.0018  0.0015  

4.4 0.0024  0.0021  0.0019  0.0017  0.0015  0.0013  0.0011  

4.5 0.0016  0.0015  0.0013  0.0012  0.0010  0.0009  0.0008  

4.6 0.0010  0.0009  0.0008  0.0008  0.0007  0.0006  0.0005  

4.7 0.0006  0.0005  0.0005  0.0004  0.0004  0.0003  0.0003  

4.8 0.0003  0.0002  0.0002  0.0002  0.0002  0.0001  0.0001  

4.9 0.0001  0.0001  0.0001  0.0000  0.0000  0.0000  0.0000  

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

d     

s              0.4 0.45 0.5 0.55 0.6 0.65 0.7 

0.1 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

0.2 0.0635  0.0533  0.0441  0.0357  0.0282  0.0216  0.0159  

0.3 0.0609  0.0512  0.0423  0.0343  0.0271  0.0207  0.0152  

0.4 0.0584  0.0491  0.0406  0.0329  0.0260  0.0199  0.0146  

0.5 0.0559  0.0470  0.0389  0.0315  0.0249  0.0190  0.0140  

0.6 0.0535  0.0450  0.0372  0.0301  0.0238  0.0182  0.0134  

0.7 0.0512  0.0430  0.0356  0.0288  0.0228  0.0174  0.0128  

0.8 0.0489  0.0411  0.0340  0.0275  0.0217  0.0166  0.0122  

0.9 0.0466  0.0392  0.0324  0.0262  0.0207  0.0159  0.0117  

1 0.0444  0.0374  0.0309  0.0250  0.0198  0.0151  0.0111  

1.1 0.0423  0.0356  0.0294  0.0238  0.0188  0.0144  0.0106  

1.2 0.0402  0.0338  0.0279  0.0226  0.0179  0.0137  0.0101  

1.3 0.0382  0.0321  0.0265  0.0215  0.0170  0.0130  0.0095  

1.4 0.0362  0.0304  0.0251  0.0204  0.0161  0.0123  0.0091  

1.5 0.0343  0.0288  0.0238  0.0193  0.0152  0.0117  0.0086  

1.6 0.0324  0.0272  0.0225  0.0182  0.0144  0.0110  0.0081  

1.7 0.0306  0.0257  0.0212  0.0172  0.0136  0.0104  0.0076  

1.8 0.0288  0.0242  0.0200  0.0162  0.0128  0.0098  0.0072  
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1.9 0.0271  0.0228  0.0188  0.0152  0.0120  0.0092  0.0068  

2 0.0254  0.0214  0.0177  0.0143  0.0113  0.0087  0.0064  

2.1 0.0238  0.0200  0.0165  0.0134  0.0106  0.0081  0.0060  

2.2 0.0222  0.0187  0.0154  0.0125  0.0099  0.0076  0.0056  

2.3 0.0207  0.0174  0.0144  0.0117  0.0092  0.0071  0.0052  

2.4 0.0193  0.0162  0.0134  0.0108  0.0086  0.0066  0.0048  

2.5 0.0179  0.0150  0.0124  0.0101  0.0079  0.0061  0.0045  

2.6 0.0165  0.0139  0.0115  0.0093  0.0073  0.0056  0.0041  

2.7 0.0152  0.0128  0.0106  0.0086  0.0068  0.0052  0.0038  

2.8 0.0140  0.0118  0.0097  0.0079  0.0062  0.0048  0.0035  

2.9 0.0128  0.0108  0.0089  0.0072  0.0057  0.0044  0.0032  

3 0.0117  0.0098  0.0081  0.0066  0.0052  0.0040  0.0029  

3.1 0.0106  0.0089  0.0073  0.0060  0.0047  0.0036  0.0026  

3.2 0.0095  0.0080  0.0066  0.0054  0.0042  0.0032  0.0024  

3.3 0.0086  0.0072  0.0060  0.0048  0.0038  0.0029  0.0021  

3.4 0.0076  0.0064  0.0053  0.0043  0.0034  0.0026  0.0019  

3.5 0.0068  0.0057  0.0047  0.0038  0.0030  0.0023  0.0017  

3.6 0.0059  0.0050  0.0041  0.0033  0.0026  0.0020  0.0015  

3.7 0.0052  0.0044  0.0036  0.0029  0.0023  0.0018  0.0013  

3.8 0.0045  0.0038  0.0031  0.0025  0.0020  0.0015  0.0011  

3.9 0.0038  0.0032  0.0026  0.0021  0.0017  0.0013  0.0010  

4 0.0032  0.0027  0.0022  0.0018  0.0014  0.0011  0.0008  

4.1 0.0026  0.0022  0.0018  0.0015  0.0012  0.0009  0.0007  

4.2 0.0021  0.0018  0.0015  0.0012  0.0010  0.0007  0.0005  

4.3 0.0017  0.0014  0.0012  0.0010  0.0008  0.0006  0.0004  

4.4 0.0013  0.0011  0.0009  0.0007  0.0006  0.0004  0.0003  

4.5 0.0010  0.0008  0.0007  0.0005  0.0004  0.0003  0.0002  

4.6 0.0007  0.0006  0.0005  0.0004  0.0003  0.0002  0.0002  

4.7 0.0004  0.0004 0.0003  0.0002  0.0002  0.0001  0.0001  

4.8 0.0002  0.0002  0.0002  0.0001  0.0001  0.0001  0.0001  

4.9 0.0001  0.0001  0.0001  0.0001  0.0000  0.0000  0.0000  

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

d     

s              0.75 0.8 0.85 0.9 0.95 

0.1 0.0110  0.0071  0.0040  0.0018  0.0004  

0.2 0.0106  0.0068  0.0038  0.0017  0.0004  

0.3 0.0102  0.0065  0.0037  0.0016  0.0004  
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0.4 0.0097  0.0062  0.0035  0.0016  0.0004  

0.5 0.0093  0.0060  0.0033  0.0015  0.0004  

0.6 0.0089  0.0057  0.0032  0.0014  0.0004  

0.7 0.0085  0.0054  0.0031  0.0014  0.0003  

0.8 0.0081  0.0052  0.0029  0.0013  0.0003  

0.9 0.0077  0.0049  0.0028  0.0012  0.0003  

1 0.0073  0.0047  0.0026  0.0012  0.0003  

1.1 0.0070  0.0045  0.0025  0.0011  0.0003  

1.2 0.0066  0.0042  0.0024  0.0011  0.0003  

1.3 0.0063  0.0040  0.0023  0.0010  0.0003  

1.4 0.0060  0.0038  0.0021  0.0010  0.0002  

1.5 0.0056  0.0036  0.0020  0.0009  0.0002  

1.6 0.0053  0.0034  0.0019  0.0008  0.0002  

1.7 0.0050  0.0032  0.0018  0.0008  0.0002  

1.8 0.0047  0.0030  0.0017  0.0008  0.0002  

1.9 0.0044  0.0028  0.0016  0.0007  0.0002  

2 0.0041  0.0026  0.0015  0.0007  0.0002  

2.1 0.0039  0.0025  0.0014  0.0006  0.0002  

2.2 0.0036  0.0023  0.0013  0.0006  0.0001  

2.3 0.0033  0.0021  0.0012  0.0005  0.0001  

2.4 0.0031  0.0020  0.0011  0.0005  0.0001  

2.5 0.0029  0.0018  0.0010  0.0005  0.0001  

2.6 0.0026  0.0017  0.0010  0.0004  0.0001  

2.7 0.0024  0.0016  0.0009  0.0004  0.0001  

2.8 0.0022  0.0014  0.0008  0.0004  0.0001  

2.9 0.0020  0.0013  0.0007  0.0003  0.0001  

3 0.0018  0.0012  0.0007  0.0003  0.0001  

3.1 0.0017  0.0011  0.0006  0.0003  0.0001  

3.2 0.0015  0.0010  0.0005  0.0002  0.0001  

3.3 0.0013  0.0008  0.0005  0.0002  0.0001  

3.4 0.0012  0.0008  0.0004  0.0002  0.0000  

3.5 0.0010  0.0007  0.0004  0.0002  0.0000  

3.6 0.0009  0.0006  0.0003  0.0001  0.0000  

3.7 0.0008  0.0005  0.0003  0.0001  0.0000  

3.8 0.0007  0.0004  0.0002  0.0001  0.0000  

3.9 0.0006  0.0004  0.0002  0.0001  0.0000  

4 0.0005  0.0003  0.0002  0.0001  0.0000  
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4.1 0.0004  0.0002  0.0001  0.0001  0.0000  

4.2 0.0003  0.0002  0.0001  0.0000  0.0000  

4.3 0.0002  0.0001  0.0001  0.0000  0.0000  

4.4 0.0002  0.0001  0.0001  0.0000  0.0000  

4.5 0.0001  0.0001  0.0000  0.0000  0.0000  

4.6 0.0001  0.0000  0.0000  0.0000  0.0000  

4.7 0.0000  0.0000  0.0000  0.0000  0.0000  

4.8 0.0000  0.0000  0.0000  0.0000  0.0000  

4.9 0.0000  0.0000  0.0000  0.0000  0.0000  

5 0.0000 0.0000 0.0000 0.0000 0.0000 
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Appendix C: Interactions between Two Farms 

We then examine potential strategic interactions between farm decisions with 

heterogeneous farm-specific characteristics. Consider a watershed with 2 different farms, 

each has its soil index (𝑠𝑖) and location index (𝑑𝑖), i = 1, 2. Decisions made by the two 

individual farms have aggregate impact on the same receiving lake, thus linking the farms 

through their shared social water quality damage costs. Combining the transition function 

Eq. [12], Eq. [20] and the steady state condition Eq. [14], we find the analytical solution 

of optimal steady state fertilizer amounts (𝑢1
∗, 𝑢2

∗), and lake phosphorus stock (𝑥∗): 

𝑢1
∗ = −

−𝐵2 ∗ 𝐶1 ∗ 𝐷2 + 𝐵1 ∗ 𝐶2 ∗ 𝐷2 + 𝐴 ∗ 𝐵1 ∗ 𝐸

𝐴(𝐶1 ∗ 𝐷1 + 𝐶2 ∗ 𝐷2 + 𝐴 ∗ 𝐸)
                      [35] 

𝑢2
∗ = −

𝐵2 ∗ 𝐶1 ∗ 𝐷1 − 𝐵1 ∗ 𝐶2 ∗ 𝐷1 + 𝐴 ∗ 𝐵2 ∗ 𝐸

𝐴(𝐶1 ∗ 𝐷1 + 𝐶2 ∗ 𝐷2 + 𝐴 ∗ 𝐸)
                          [36] 

𝑥∗ = −
𝐵1 ∗ 𝐷1 + 𝐵2 ∗ 𝐷2

𝐶1 ∗ 𝐷1 + 𝐶2 ∗ 𝐷2 + 𝐴 ∗ 𝐸
                                                       [37] 

where 

𝐴 = 𝛿 + 𝛾                                                                                                     [38] 

𝐵𝑖 =
(𝛿 + 𝛾)

2𝑝𝜌𝑎𝑠𝑖

(𝑐𝑢 − 𝑝𝜌𝑏𝑠𝑖)                                                                       [39] 

𝐶𝑖 =
𝜃(1 − 𝑠𝑖) (1 −

𝑑𝑖

�̅�
) 𝑚

𝑝𝜌𝑎𝑠𝑖
                                                                       [40] 

          𝐷𝑖 = 𝜃(1 − 𝑠𝑖) (1 −
𝑑𝑖

�̅�
)                                                                           [41] 
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𝐸 = 𝛾                                                                                                              [42] 

                                  𝑓𝑜𝑟 𝑖 = 1, 2                                     

We also derive the optimal decision of farmer 1 and farmer 2 in response to the other 

farmer’s behavior:  

𝑢1
∗ = −

𝐶1𝐷2

𝐴𝐸 + 𝐶1𝐷1
𝑢2 +

𝐵1𝐸

𝐴𝐸 + 𝐶1𝐷1
                                             [43] 

𝑢2
∗ = −

𝐶2𝐷1

𝐴𝐸 + 𝐶2𝐷2
𝑢1 +

𝐵2𝐸

𝐴𝐸 + 𝐶2𝐷2
                                             [44] 

where 𝑢𝑖
∗ denotes the optimal fertilizer choice for farm i the fertilizer amount when 

other farm’s fertilizer choice is 𝑢−𝑖, i =1,2. Because both 
𝐶1𝐷2

𝐴𝐸+𝐶1𝐷1
 and 

𝐶1𝐷2

𝐴𝐸+𝐶1𝐷1
 are 

positive, we find the inverse relationship between fertilizer input decisions in the two 

farms, reflecting the tradeoff between two contributors to the same stock pollutant. If one 

farm applies more fertilizer than socially optimal, the other farm has to reduce fertilizer 

input and therefore reduce its profit to maintain social welfare level. The optimal 

outcome is for the farm with better soil quality and located farther away from the lake to 

apply more fertilizer, while the other farm apply less.  

We further explore the effect of one farm’s physical characteristics on optimal 

fertilizer decisions in the second farm by deriving the first order and second order 

derivatives of the other farm’s soil index (𝑠−𝑖) and location index (𝑑−𝑖): 
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𝜕𝑢𝑖
∗

𝜕𝑠−𝑖
> 0, 𝑎𝑛𝑑 

𝜕2𝑢𝑖
∗

𝜕𝑠−𝑖
2

> 0                                                 [45] 

𝜕𝑢𝑖
∗

𝜕𝑑−𝑖
> 0, 𝑎𝑛𝑑 

𝜕2𝑢𝑖
∗

𝜕𝑑−𝑖
2 > 0                                                [46] 

Results show that higher soil quality in one farm can increase the optimal fertilizer 

application rate in the other farm, and thus increase its agricultural profits. Similarly, 

larger distance of the farm to the lake can also increase the other farm’s optimal fertilizer. 

This result implies spillover effects from improving farmland soil quality in the long 

term. If farms adopt Best Management Practices (BMP) and other soil management 

practices to improve soil quality, they not only benefit their own agricultural production 

and increase their profits, but also improve other farm’s agricultural profits by increasing 

their socially optimal fertilizer input level. These results justify government spending on 

policy incentives for farmers to adopt BMP to improve farmland soil quality, and show 

potential welfare gains from payment transfer between farms.  

 


