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1. Introduction

Inference in the linear simultaneous equations model is notoriously difficult when the
instruments are weak. Although there has been an enormous amount of work on this
topic since the seminal paper of Staiger and Stock (1997), much of it has focused
on the properties of estimators (especially their bias) and on the properties of test
statistics. Despite important work by Zivot, Startz, and Nelson (1998), Mikusheva
(2010),1 and many others, there does not yet appear to be a consensus on the best
way to construct confidence sets when instruments are weak. This paper examines
several procedures that are either easy to use and popular or may be expected to
perform well. We obtain a number of striking results.

In principle, one can construct a confidence set by inverting any suitable test statistic,
possibly after it has been bootstrapped in some way. For the linear simultaneous
equations model, the natural candidates are Wald (that is, t) tests, likelihood ratio
(LR) tests, Lagrange multiplier (LM) tests, and the Anderson-Rubin (AR) test.

Partly for reasons of space and readability, we restrict attention to confidence sets
that are based on Wald tests or on the conditional LR (CLR) test of Moreira (2003).
We consider Wald-based confidence sets because they are the most commonly used in
practice and because, contrary to what is widely believed, it is possible to make them
perform well when the instruments are weak by using certain bootstrap methods. We
consider CLR confidence sets because the CLR test often seems to perform very well
and because the results of Mikusheva (2010) suggest that CLR confidence sets also
perform well.

We do not consider confidence sets based on the LM test or the closely related
test of Kleibergen (2002) because the results of Mikusheva (2010) are not at all
encouraging. It is partly for the same reason that we do not consider confidence
sets based on the AR test of Anderson and Rubin (1949). More importantly, as was
shown in Davidson and MacKinnon (2011), AR confidence sets have many undesirable
properties. Although their unconditional coverage is, under classical assumptions,
always correct, their coverage conditional on being bounded intervals can be far from
correct. Moreover, the lengths of AR intervals, when they exist, provide grossly
unreliable information about the precision with which the parameter of interest has
been estimated.

In the next section, we discuss the basic model and some conventional procedures,
both asymptotic and bootstrap, for constructing Wald-based confidence intervals.
In Section 3, we discuss a new procedure for constructing Wald-based bootstrap
confidence intervals. In Section 4, we discuss confidence sets based on the CLR test.
In Section 5, we present a number of simulation results, some of which may be quite
surprising. In Section 6, we summarize our conclusions.

1 We are grateful to Lynda Khalaf for drawing our attention to this paper.
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2. Wald-Based Confidence Intervals

We restrict attention to the two-equation linear model

y1 = βy2 +Zγ + u1 (1)

y2 = Wπ + u2 = Zπ1 +W2π2 + u2. (2)

Here y1 and y2 are n--vectors of observations on endogenous variables, Z is an n× k
matrix of observations on exogenous variables, and W is an n×l matrix of exogenous
instruments with the property that S(Z), the subspace spanned by the columns of Z,
lies in S(W ), the subspace spanned by the columns of W. The n× (l−k) matrix W2

is constructed in such a way that S(Z,W2) = S(W ). Equation (1) is a structural
equation, and equation (2) is a reduced-form equation. The parameter of interest
is β, the coefficient on y2 in equation (1).

The disturbance vectors u1 and u2 are assumed to be serially uncorrelated and
homoskedastic, with mean zero and contemporaneous covariance matrix

Σ ≡
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
.

We assume that the model is either exactly identified or overidentified, which implies
that l ≥ k + 1. The number of overidentifying restrictions is l − k − 1.

Equations (1) and (2) can be estimated in many ways. We restrict attention to
the two most common single-equation methods, namely, generalized instrumental
variables (IV), which is numerically identical to two-stage least squares, and limited-
information maximum likelihood (LIML). The two estimators of β are, in self-evident
notation, β̂IV and β̂LIML, and their standard errors are ŝIV and ŝLIML.

The simplest and most natural way to form a confidence interval for β in (1) is to
invert the t statistic for β = β0, which is the signed square root of the Wald statistic.
This yields the asymptotic Wald intervals

[β̂IV − Φ1−α/2 ŝIV, β̂IV + Φ1−α/2 ŝIV] (3)

and
[β̂LIML − Φ1−α/2 ŝLIML, β̂LIML + Φ1−α/2 ŝLIML], (4)

where Φ1−α/2 denotes the 1−α/2 quantile of the standard normal distribution. How-
ever, as is well-known and will be seen again in Section 5, these intervals often have
poor finite-sample properties when the instruments are weak. This is particularly
true for (3), in part because β̂IV can be severely biased in that case.

A natural way in which to attempt to obtain more reliable Wald intervals is to use the
bootstrap. The oldest, and conceptually the simplest, bootstrap method for the linear
simultaneous equations model is the pairs bootstrap, which was proposed by Freed-
man (1984). The idea is simply to resample the rows of the matrix [y1 y2 Z W2].
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Each such bootstrap sample, indexed by j = 1, . . . , B, is then used to compute a
bootstrap t statistic

t∗j =
β̂∗j − β̂
s(β̂∗j )

,

where β̂ could be either β̂IV or β̂LIML, β̂∗j is the corresponding estimate from the j th

bootstrap sample, and s(β̂∗j ) is the standard error of β̂∗j . Using either β̂IV and ŝIV

or β̂LIML and ŝLIML, together with the B values of t∗j , one then constructs an equal-
tail percentile t confidence interval (also called a studentized bootstrap confidence
interval) in the usual way; see, among many others, Davison and Hinkley (1997) or
Davidson and MacKinnon (2004, Chapter 5). In the IV case, the interval is

[β̂IV − c∗1−α/2 ŝIV, β̂IV − c∗α/2 ŝIV], (5)

where c∗α/2 and c∗1−α/2 denote the estimated α/2 and 1 − α/2 quantiles of the t∗j .
When B = 999 and α = 0.05, for example, these are just numbers 25 and 975 in the
list of the t∗j sorted from smallest to largest.

The Wald-based intervals (3), (4), and (5) are easy to construct and commonly
used, but they cannot possibly have correct coverage when the instruments are weak,
because they cannot be unbounded. When the instruments in a linear simultaneous-
equations model are sufficiently weak, a confidence set with correct coverage must
be unbounded with positive probability; see Gleser and Hwang (1987) and Dufour
(1997). Unlike these Wald-based intervals, the confidence sets discussed in the next
two sections can be unbounded with positive probability.

3. RE Bootstrap Confidence Sets

In Davidson and MacKinnon (2008), we proposed the restricted efficient, or RE,
bootstrap in the context of hypothesis tests on β in equation (1). In this section,
we discuss how the RE bootstrap can also be used to form confidence sets. The
simulation results of Section 5 suggest that confidence sets based on the RE bootstrap
generally perform quite well, at least when the instruments are not very weak. The
main disadvantage of these confidence sets is that they are relatively complicated and
expensive to compute.

The RE bootstrap has two key features. The bootstrap DGP is conditional on a
particular value of β (hence “restricted”), and it uses an efficient estimate of π
(hence “efficient”). For any specified value β0, we can run regression (1) to obtain
parameter estimates γ̃ and residuals ũ1. The latter may be rescaled by multiplying
them by a factor of (n/(n− k))1/2. We then run the regression

y2 = Wπ + δũ1 + residuals. (6)

This yields parameter estimates π̃ and adjusted residuals ũ2 ≡ y2−Wπ̃. The latter
should be rescaled by multiplying them by a factor of (n/(n− l))1/2. It can be shown
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that π̃ is asymptotically equivalent to the estimate one would obtain by using FIML
or 3SLS. This estimate was used by Kleibergen (2002) in a different context. In
addition, Moreira (2009) explains why using π̃ rather than any other estimator of π
leads to a version of the LM test of the hypothesis that β = β0 that is asymptotically
similar with weak instruments. See also Moreira, Porter, and Suarez (2009), where
bootstrap validity is shown for that version of the LM test.

Generating a bootstrap sample using the RE bootstrap is quite simple. We form
two vectors of bootstrap disturbances, u∗1 and u∗2, with elements u∗i1 and u∗i2 for
i = 1, . . . , n, resampled from the pairs of rescaled residuals, that is, from the joint
empirical distribution of the rescaled residuals. We then set

y∗2 = Wπ̃ + u∗2, and

y∗1 = β0y
∗
2 +Zγ̃ + u∗1.

(7)

If we generate B bootstrap samples, we can compute an equal-tail bootstrap P value
for the hypothesis that β = β0. It is simply

p̂∗(β0) =
2

B
min

(
B∑

j=1

I(τ∗j < τ̂),

B∑

j=1

I(τ∗j ≥ τ̂)

)
, (8)

where I(·) is the indicator function, τ̂ = (β̂−β0)/s(β̂), and τ∗j = (β̂∗j−β0)/s(β̂∗j ). Here
β̂ may denote either β̂IV or β̂LIML, and β̂∗j then denotes the corresponding estimate
for the j th bootstrap sample. It is important to calculate the standard errors s(β̂)
and s(β̂∗j ) in the same way. By using the equal-tail P value (8), we do not impose
symmetry on the distribution of τ .

Using the RE bootstrap to obtain a confidence set is a bit complicated. Consider
the upper limit, β̂u. Start with an initial estimate, say β̂1

u (one obvious candidate
is the upper limit of the asymptotic confidence interval) and compute p̂∗(β̂1

u) using
equation (8). If p̂∗(β̂1

u) > α, then β̂1
u is too small; if p̂∗(β̂1

u) < α, then it is too large.
Try another candidate, say β̂2

u, which must be larger than β̂1
u in the former case and

smaller in the latter case. Calculate p̂∗(β̂2
u) and repeat if necessary. The way in which

β̂2
u is chosen may have a significant impact on computational cost, but it should have

no effect on the properties of the RE bootstrap confidence set.

If, after m tries, we have found β̂m−1
u and β̂mu such that p̂∗(β̂m−1

u )− α and p̂∗(β̂mu )− α
have opposite signs, then β̂u must lie between them. At this point, various numerical
methods can be used to find it. Since p̂∗(β0) is not differentiable, we must use a
method that does not need derivatives. In our simulations, we use bisection, which
is easy to program and reasonably fast. Note that exactly the same set of random
numbers must be used for every set of B bootstrap samples. Otherwise, the value of
p̂∗(β0) would be different each time we evaluated it.

The procedure for finding the lower limit, β̂l, is essentially the same as the one for
finding the upper limit, with obvious changes in sign at various points.
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In the above description of the algorithm, we have implicitly assumed that, if β0 is
sufficiently large or sufficiently small, p̂∗(β0) must be less than α. However, that is
not always true. The confidence set has no upper bound if p∗(β0) > α as β0 tends to
plus infinity, and it has no lower bound if p∗(β0) > α as β0 tends to minus infinity.
In practice, we may reasonably conclude that the confidence set is unbounded from
above (below) if p∗(β0) > α for a very large positive (negative) value of β0.

Unbounded confidence sets can occur as a consequence of the fact, shown in Davidson
and MacKinnon (2008), that, for weak enough instruments, the distribution of the
t statistic for a test of β = 0 when the true β is indeed zero overlaps the distribution in
the limit in which β tends to infinity. Thus the bootstrap distribution of a statistic
that tests a true hypothesis can overlap the distribution of a statistic that tests
a hypothesis that assigns a value to β arbitrarily far from the true value, if the
instruments are sufficiently weak.

RE bootstrap confidence sets may contain holes. In fact, simulations suggest that
they frequently contain a hole when they are unbounded. It is therefore important
to check for holes and for unboundedness even if the procedure described above has
apparently located both β̂u and β̂l. If there are values of β0 greater than β̂u or less
than β̂l for which p∗(β0) > α, it is easy enough to locate the other end of the hole.
However, we do not recommend using unbounded confidence sets to make inferences.
The fact that a confidence set is unbounded strongly suggests that the instruments
are so weak as to make reliable inference impossible.

The fact that RE bootstrap confidence sets may be unbounded (and in fact often are
unbounded when the instruments are very weak) is actually a desirable feature, as we
noted at the end of the preceding section; see Gleser and Hwang (1987) and Dufour
(1997). Because RE bootstrap confidence sets can be unbounded, it is possible for
them to have very good coverage.

Unless heteroskedasticity is clearly absent, it is generally wise to use confidence sets
that are robust to it. One advantage of using confidence sets based on t statistics
is that it is very easy to do so. We simply replace the ordinary t statistic with
one based on a heteroskedasticity-consistent standard error and employ a slightly
modified version of the RE bootstrap.

The wild restricted efficient, or WRE, bootstrap was proposed by Davidson and
MacKinnon (2010). It is very similar to the RE bootstrap, except that the ith

pair of rescaled residuals is always associated with the ith observation. To generate
the bootstrap disturbances, we simply multiply each pair of rescaled residuals by a
random variable v∗i with mean zero and variance one. See Davidson and Flachaire
(2008) for more about the wild bootstrap. In samples of reasonable size (more than
a few hundred observations) with heteroskedastic disturbances, this should work just
about as well as using ordinary standard errors and the RE bootstrap when the
disturbances are actually homoskedastic.
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4. CLR Confidence Sets

Because the CLR test of Moreira (2003) seems to work better than other asymptotic
tests for the value of β, it is natural to consider confidence sets obtained by inverting
CLR tests. Mikusheva (2010) discusses confidence sets of this type. In this section,
we present a different derivation which emphasizes computational issues.

The CLR test statistic and all associated quantities, including β̂IV, β̂LIML, and their
standard errors, depend on the data only through the six quantities

P11 ≡ y1
>P1y1, P12 ≡ y1

>P1y2, P22 ≡ y2
>P1y2,

M11 ≡ y1
>MWy1, M12 ≡ y1

>MWy2, and M22 ≡ y2
>MWy2,

(9)

where MW ≡ I−W (W>W )−1W>, P1 ≡MZ−MW , and MZ ≡ I−Z(Z>Z)−1Z>.
These six quantities just depend on sums of squared residuals and/or sums of cross-
products of residuals from the regressions of y1 and y2 on Z and W.

In order to compute the CLR test statistic for the hypothesis that β = β0, we also
need the quantities

Q11 ≡ P11 − 2β0P12 + β2
0P22, Q12 ≡ P12 − β0P22, Q22 ≡ P22,

N11 ≡M11 − 2β0M12 + β2
0M22, N12 ≡M12 − β0M22, and N22 ≡M22.

(10)

From these, we calculate

SS(β0) ≡ nQ11/N11, (11)

ST (β0) ≡ n

∆1/2

(
Q12 − Q11N12

N11

)
, and (12)

TT (β0) ≡ n

∆

(
Q22N11 − 2Q12N12 +

Q11N
2
12

N11

)
, (13)

where
∆ ≡ N11N22 −N2

12 = M11M22 −M2
12. (14)

It is easy to verify that ∆ does not depend on β0. In Mikusheva (2010), it is shown
that the eigenvalues of the 2× 2 matrix

[
SS(β0) ST (β0)
ST (β0) TT (β0)

]

also do not depend on β0. These eigenvalues are

1−
2

(
SS(β0) + TT (β0)±

√(
SS(β0)− TT (β0)

)2
+ 4ST 2(β0)

)
.

It follows that I1 ≡ SS(β0) +TT (β0) and I2 ≡
[(
SS(β0)−TT (β0)

)2
+ 4ST 2(β0)

]1/2
are also independent of β0.
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The LR statistic for testing the hypothesis that β = β0 takes the form

LR(β0) = n log
(
1 + SS(β0)/n

)− n log
(
1 + (I1 − I2)/2n

)
; (15)

see, among others, Davidson and MacKinnon (2008). The LR statistic depends
on β0 only through SS(β0). The concentrated loglikelihood function for model (3)
is a deterministic, decreasing, function of SS(β0). It is therefore maximized by
minimizing SS(β0), for which the minimizer is β̂LIML. It follows that the LR statistic
is also minimized at β0 = β̂LIML and that LR(β̂LIML) = 0.

Moreira (2003) and Mikusheva (2010) simplify the LR statistic (15) by Taylor ex-
panding the logarithms and discarding terms that tend to zero as n → ∞. This
yields

LR0(β0) = 1−
2

(
SS(β0)− TT (β0) + I2

)
= M − TT (β0), (16)

where M ≡ 1
2 (I1+I2). The rightmost expression in (16) tells us that TT (β̂LIML) = M

and that LR0(β̂LIML) = 0. This implies that β̂LIML belongs to any confidence set
found by inverting the test based on LR0(β0).

The idea behind the CLR test is that, even though LR0(β0) is not pivotal with weak
instruments, its distribution conditional on TT (β0) is asymptotically pivotal. This
distribution can be estimated in various ways. We discuss two of them, one based on
asymptotic theory and one based on the pairs bootstrap, in the Appendix. For now,
we simply let F

(·, TT (β0)
)

denote the estimated cumulative distribution function
(CDF) of LR0(β0) conditional on TT (β0), and let cα denote the 1 − α quantile of
that CDF.

The P value for the hypothesis β = β0 is 1 − F
(
LR0(β0), TT (β0)

)
, and so the

confidence set at nominal confidence level 1− α is

{
β0 | 1− F

(
LR0(β0), TT (β0)

)
> α

}
. (17)

Using (16), we can replace LR0(β0) by M −TT (β0). The inequality inside the braces
in (17) can then be rearranged as

F
(
M − TT (β0), TT (β0)

) ≤ 1− α. (18)

It is shown in the Appendix that, for given M, the function F (M − c, c) decreases
monotonically for 0 ≤ c ≤ M. This implies that the equation F (M − c, c) = 1 − α
has a unique solution cα ∈ [0,M ] for given α and M, provided that α > 1−F (M, 0).
Because F (M − c, c) is decreasing in c, it follows that the inequality (18) is satisfied
for all β0 such that TT (β0) ≥ cα.

The values of β0 that satisfy the inequality TT (β0) ≥ cα can now be found. By using
the Qij and Nij from (10) in the definition of TT (β0), it can be seen after some
algebra that

TT (β0) =
n

∆

Aβ2
0 − 2Bβ0 + C

M22β2
0 − 2M12β0 +M11

,
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where
A = P22M

2
12 − 2P12M12M22 + P11M

2
22,

B = P22M11M12 − P12M11M22 − P12M
2
12 + P11M12M22, and

C = P22M
2
11 − 2P12M11M12 + P11M

2
12.

(19)

The inequality TT (β0) ≥ cα is then equivalent to the quadratic inequality

( 1−
n
M22∆cα −A

)
β2

0 − 2
( 1−
n
M12∆cα −B

)
β0 + 1−

n
M11∆cα − C ≤ 0. (20)

Except for notational differences, this inequality is the same as that given following
Lemma 1 in Mikusheva (2010).

Observe that, since TT (β0) is positive, all real values of β0 must satisfy the inequality
TT (β0) ≥ 0, so that, when cα = 0, the confidence set is the entire real line, R. As is
shown in the Appendix, there always exists α small enough that the confidence set
is R. If α is so small that the inequality α > 1 − F (M, 0) is not satisfied, then the
confidence set is again R.

If the quadratic equation that sets the left-hand side of (20) to zero has real roots,
they are

b± =
M12∆cα/n−B
M22∆cα/n−A ±

√
D, where (21)

D ≡ (M12∆cα/n−B)2

(M22∆cα/n−A)2
− M11∆cα/n− C
M22∆cα/n−A . (22)

If D here is negative, then the left-hand side of (20) is either everywhere positive
or everywhere negative. But if it is positive, then (20) cannot be satisfied, which
would imply an empty confidence set, contrary to the fact already established that
the LIML estimate β̂ always belongs to the confidence set for any α. This implies
that, if D < 0, then the coefficient M22∆cα/n−A in (20) must also be negative.

If D > 0, the b± are the boundary points of the confidence set. If M22∆cα/n−A > 0,
the set is the bounded interval [b−, b+]. If M22∆cα/n − A < 0, it is the real line
with a hole in it, the hole being the same bounded interval. In the knife-edge case in
which M22∆cα/n−A = 0, the confidence set is an unbounded interval which may be
open either to the left or to the right, depending on the signs of the other coefficients
in (20).

We now set out explicitly an algorithm for constructing CLR confidence sets.

1. Compute the six quantities defined in (9) and use them to calculate the quantities
A, B, and C defined in (19).

2. Compute M = TT (β̂LIML) using (10), (11), (12), (13), and (14).

3. Obtain either the asymptotic or pairs bootstrap critical value cα using one of
the procedures discussed in the Appendix.
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4. Evaluate D defined in (22). If D < 0, the confidence set is R.

5. If D > 0, compute b− and b+ using (21). If M22∆cα/n − A > 0, the set is the
bounded interval [b−, b+]. Otherwise (ignoring the knife-edge case), it is the real
line except for the bounded interval [b−, b+].

Note that the CLR confidence set, when it is a bounded interval, is not centered at
β̂LIML, although, as we have seen, it must always contain β̂LIML.

5. Simulation Evidence

Following Davidson and MacKinnon (2008), we use the DGP:

y1 = βy2 + u1,

y2 = aw + u2,
(23)

where w ∈ S(W ) is an n--vector with ‖w‖2 = 1, and

u1 = rv1 + ρv2,

u2 = v2,

[
v1

v2

]
∼ N(0, I), r2 + ρ2 = 1. (24)

It may seem curious that there is just a single instrument w in the DGP when there
are l of them in equation (2). But the only property of W that matters is S(W ),
the subspace spanned by the columns of W. In effect, we have performed a linear
transformation on W so that all of the explanatory power comes from the vector w
and the other columns of W are simply noise. Of course, such a transformation has
no effect on S(W ).

By normalizing the instrument vector w to have squared length unity, that is,
w>w = 1, we are implicitly using weak-instrument asymptotics; see Staiger and Stock
(1997). The strength of the instruments is measured by the parameter a, the square
of which is the scalar concentration parameter; see Phillips (1983, p. 470) and Stock,
Wright, and Yogo (2002). Because we are only concerned with confidence sets, the
error variances have all been normalized to unity, which is something we could not
do if we were concerned with bias.

The first three figures each contain six panels, two for each of the IV Wald, IV
LIML, and CLR confidence sets. In all cases, the left-hand panel of each pair shows
coverage for asymptotic 95% confidence sets (which are based on the standard normal
distribution for the two Wald intervals), and the right-hand panel shows coverage for
95% confidence sets based on the pairs bootstrap. Asymptotic results are based on
500,000 replications, and bootstrap results are based on 100,000 replications, each
with B = 999 bootstrap samples.

Figure 1 shows the effect of varying the number of instruments that are not also
regressors in the structural equation, that is, l−k, for six values of a2. The six values
are 4, 8, 16, 32, 64, and 128, and l − k varies from 1 to 18. The sample size is fairly
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large (n = 400), and the correlation between the structural and reduced-form errors
is quite high (ρ = 0.8).

For the asymptotic IV Wald intervals, there is generally severe undercoverage unless
l − k is small and a2 is large. The pairs bootstrap generally helps somewhat, except
when l − k is small. For the bootstrap intervals, undercoverage is moderate when
a2 ≥ 64 and l − k ≤ 10, but it is still severe in most cases.

The asymptotic LIML Wald intervals always work better than the corresponding
asymptotic IV ones. Undercoverage is nonexistent or quite moderate when a2 ≥ 64
for all values of l − k. However, the pairs bootstrap actually makes undercoverage
worse, especially for small values of a2.

The asymptotic CLR confidence sets perform extremely well. They always under-
cover, but only very slightly when l − k is small. The undercoverage gradually
increases as l− k increases, especially when a2 is small, but it is never very great. In
contrast, the pairs bootstrap CLR confidence sets almost always overcover, and they
do so severely when a2 is small and l − k is large.

Figure 2 shows the effect of changing the sample size for l − k = 10, ρ = 0.8, and
the same six values of a2. The sample sizes are 50, 70, 100, 141, 200, 282, 400, 565,
800, 1131, and 1600; each of these is approximately

√
2 times its predecessor. The

performance of all the Wald intervals is strikingly insensitive to sample size. There
tend to be slight improvements in coverage as n increases, which is most noticeable
for a2 = 128.

In contrast, the performance of the CLR confidence sets depends greatly on the
sample size. The undercoverage of the asymptotic CLR confidence sets diminishes
rapidly as n increases. The overcoverage of the pairs bootstrap CLR intervals also
diminishes, but less rapidly, especially for the smaller values of a2.

Figure 3 shows the effect of changing ρ. For the asymptotic results, there are 100
values between 0.00 and 0.99 increasing by 0.01. For the bootstrap results, there
are 34 values between 0.00 and 0.99 increasing by 0.03. The sample size is 50, and
l − k = 10.

Coverage of all the confidence sets depends strongly on ρ, except sometimes when
a2 is large. This is most true for the asymptotic IV Wald intervals, which actually
overcover for both a2 and ρ small, even though they undercover very severely for a2

small and ρ large. As in Figure 1, the pairs bootstrap generally improves coverage
for IV Wald intervals (but not when ρ is small). However, except when a2 is large,
it actually causes LIML Wald intervals to undercover more severely.

The CLR confidence sets are only moderately sensitive to ρ. They do not perform
particularly well in Figure 3, because the sample size is only 50. Based on the results
in Figure 2, we can be confident that the undercoverage of asymptotic CLR intervals
would be very much less severe if n were substantially larger.

Figure 4 shows the coverage of RE bootstrap confidence sets based on both IV and
LIML t statistics for the same case as Figure 1, that is, ρ = 0.80, n = 400, and l− k
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varying between 1 and 18. Note the scale of the vertical axis. Although coverage is
certainly not perfect, it is vastly better than for the asymptotic and pairs bootstrap
Wald intervals. For larger values of l − k and a2, it is even better than for the
asymptotic CLR confidence sets.

Figure 5 shows the coverage of RE bootstrap confidence sets for the same case as
Figure 2, that is, ρ = 0.80, l − k = 10, and n varying between 50 and 1600. Once
again, coverage is vastly better than for the asymptotic and pairs bootstrap Wald
intervals. It is also better than the coverage of the CLR confidence sets for most
sample sizes, but not for the largest sample sizes when a2 is small.

The results for the IV and LIML cases in Figure 5 are often quite different, and
there are a few results that are hard to explain. The LIML confidence sets all work
essentially perfectly for n ≥ 200 and a2 ≥ 32. However, it is only for a2 ≥ 128 that
we can make a similar statement for the IV confidence sets. Not coincidentally, all
of the LIML confidence sets for n ≥ 200 are bounded for a2 ≥ 64, and nearly all
are bounded when a2 = 32, while a significant fraction of the IV confidence sets are
unbounded even when a2 = 64.

Figure 6 shows the coverage of RE bootstrap confidence sets for the same case as
Figure 3, that is, n = 50, l − k = 10, and ρ varying from 0.00 to 0.99 by 0.03. Once
again, coverage is very much better in most cases than it was in Figure 3. As ρ
increases, coverage generally deteriorates, especially for very large values of ρ in the
LIML case when a2 ≤ 16.

Figures 7 and 8 report results from a different set of experiments in which n = 400
and l−k = 2. Thus the sample size is fairly large, and there is only one overidentifying
restriction. This is a situation that may be typical of quite a few applied studies, and
in which we would expect all of the better methods to work well. We do not report
results for coverage, because they do not vary a lot with ρ and are therefore similar
to the results for l − k = 2 in Figures 1 and 4.

Figure 7 shows the fraction of confidence sets that are bounded intervals. This
fraction is highest for the CLR intervals and lowest for the RE bootstrap IV Wald
intervals. In the case of the latter, it drops sharply as ρ increases. The figure shows
results only for a2 = 8 and a2 = 16. For a2 ≥ 32, the asymptotic CLR and RE
bootstrap LIML Wald intervals are bounded almost all the time. That is also the
case for the RE bootstrap IV Wald intervals for a2 ≥ 64.

Figure 8 shows the median length of bounded confidence intervals for four values of a2.
When a2 = 8, the CLR intervals are, on average, the longest, probably because there
are quite a few cases in which the CLR interval is bounded and one or both of the RE
bootstrap ones are not. When a2 = 16, the CLR intervals continue to be longer than
the RE bootstrap LIML ones, but they are a little bit shorter than the RE bootstrap
IV ones for small values of ρ. In both cases, the median length of the bootstrap IV
intervals drops sharply as ρ increases, presumably because the fraction of confidence
sets that are bounded also drops sharply. When a2 = 32, the CLR intervals are
generally the shortest, except for large values of ρ where the RE bootstrap IV ones
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are sometimes unbounded. When a2 = 64, the CLR intervals are always the shortest,
and the RE bootstrap IV ones are always the longest.

Because the performance of the various confidence sets depends on so many aspects
of the experimental design (n, a2, l − k, and ρ), it is difficult to draw definitive
conclusions. Nevertheless, the following are some tentative conclusions.

• Asymptotic CLR confidence sets seem to perform remarkably well whenever
the sample size is sufficiently large, even when the instruments are very weak.
However, there can be substantial undercoverage when the sample size is small.
In contrast, pairs bootstrap CLR confidence sets always overcover, often severely,
even when the sample size is very large.

• RE bootstrap confidence sets based on IV and LIML t statistics perform very
much better than either asymptotic or pairs bootstrap confidence intervals based
on the same test statistics, even when the sample size is small.

• RE bootstrap confidence sets based on LIML t statistics are generally preferable
to ones based on IV t statistics, even though their coverage may be either better
or worse. The former more frequently consist of a single, bounded interval, and
they tend to be shorter whenever the instruments are strong enough that all
or almost all the confidence sets of both types are bounded intervals. However,
when the instruments are strong enough for this to be the case, asymptotic CLR
intervals seem to be slightly shorter than RE bootstrap LIML ones.

6. Conclusion

We have proposed a new bootstrap procedure for constructing confidence sets for the
coefficient of the single right-hand-side endogenous variable in a linear equation with
weak instruments. This procedure is based on the RE bootstrap that was proposed in
the context of hypothesis testing in Davidson and MacKinnon (2008). A very similar
procedure based on the WRE bootstrap of Davidson and MacKinnon (2010) can be
used when there may be heteroskedasticity of unknown form. We have also provided a
new derivation of, and computational procedure for, the asymptotic CLR confidence
interval proposed by Mikusheva (2010), along with a pairs bootstrap variant.

Even though the new RE bootstrap procedure is based on t statistics, it generally
produces quite reliable confidence sets. These have far better coverage than asymp-
totic and pairs bootstrap intervals based on the same test statistics. For small sample
sizes, they are often more reliable than asymptotic CLR confidence sets. For large
sample sizes, however, the latter seem to be slightly preferable, especially when the
instruments are very weak, and the CLR intervals are certainly much less computa-
tionally intensive.

One important advantage of the RE bootstrap procedure is that it can easily be
modified to handle heteroskedasticity of unknown form. In principle, it can also deal
with cases in which there are two or more endogenous variables on the right-hand
side of a structural equation. These are both subjects for further research, as is the
possibility of using the RE bootstrap to form CLR confidence sets.
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Appendix: Asymptotic and Bootstrap CLR Critical Values

The asymptotic approximation

The distribution of the CLR statistic LR0(β) evaluated at β = β0, with β0 the true
value of the parameter, does not depend on β0. Similarly, the distribution of LR0(β0)
conditional on TT (β0) does not depend on β0. Thus we can without loss of generality
set β = 0 in what follows, and drop the explicit dependence of LR0, SS, ST, and TT
on β0. We denote the CDF of LR0 conditional on TT by F (·, TT ).

We begin with the asymptotic approximation to F (·, TT ). It is shown in Moreira
(2003) and in Davidson and MacKinnon (2008) that, asymptotically, the random
variables Z ≡ ST/

√
TT and Y ≡ SS − ST 2/TT are independent conditionally

on TT , with distributions N(0, 1) and χ2
l−k−1, respectively. It is easy to see that

2 LR0 = SS − TT +
√

(SS − TT )2 + 4ST 2

= Y + Z2 − TT +
√

(Y + Z2 − TT )2 + 4TT Z2. (A1)

Thus

F (x, TT ) = E
[
I(LR0 ≤ x) |TT ]

= E
[
I(Y + Z2 − TT +

√
(Y + Z2 − TT )2 + 4TT Z2 ≤ 2x) |TT ].

The inequality in the indicator function above can be rewritten as

√
(Y + Z2 − TT )2 + 4TT Z2 ≤ 2x− (Y + Z2 − TT ).

Since the left-hand side is the positive square root, this is equivalent to

(Y + Z2 − TT )2 + 4TT Z2 ≤ (Y + Z2 − TT )2 − 4x(Y + Z2 − TT ) + 4x2,

which, since the first term on each side of the inequality is the same, implies that

Y ≤ x+ TT − Z2(1 + TT/x) = (x+ TT )(1− Z2/x).

We can now make use of the asymptotic conditional distributions of Y and Z to com-
pute the asymptotic approximation to F (x, TT ). Since asymptotically Y ∼ χ2

l−k−1,

F (x, TT ) = E
[
E
(
I(Y ≤ (x+ TT )(1− Z2/x) |Z) |TT ]

≈ E
[
Fχ2

l−k−1

(
(x+ TT )(1− Z2/x)

) |TT ], (A2)
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where Fχ2
l−k−1

is the CDF of χ2
l−k−1. The argument of this CDF is negative if Z2 > x,

and so its value is zero. Thus, when we approximate (A2) using the asymptotic
distribution Z ∼ N(0, 1), the result is

Fas(x, TT ) ≡ 1√
2π

∫ √x
−√x

Fχ2
l−k−1

(
(x+ TT )(1− z2/x)

)
e−z

2/2 dz

=

√
2

π

∫ √x
0

Fχ2
l−k−1

(
(x+ TT )(1− z2/x)

)
e−z

2/2 dz. (A3)

It is not hard to evaluate this for given arguments x and TT by numerical integration.

Mikusheva (2010) and Andrews, Moreira, and Stock (2007) use the following expres-
sion for this approximation:

F (x, TT ) ≈ 2K4

∫ 1

0

Fχ2
l

(
(x+ TT )/(1 + TT z2/x)

)
(1− z2)(l−k−3)/2 dz, (A4)

where K4 = 1/B(1/2, (l − k − 1)/2), B being the beta function. Expressions (A3)
and (A4) are equal, although derived in different ways.

Recall from (17) that the critical value cα used to construct the CLR confidence set
solves the equation F (M − c, c) = 1 − α, provided a solution exists and is unique.
We now show that, for given M, the function Fas(M − c, c) decreases monotonically
for 0 ≤ c ≤M. From (A3), we have

Fas(M − c, c) =

√
2

π

∫ √M−c
0

Fχ2
l−k−1

(
M(1− z2/(M − c))) e−z

2/2 dz, (A5)

from which it is clear that, for c = M, Fas(M − c, c) = Fas(0,M) = 0. The integrand
in (A5) when evaluated at the upper limit z =

√
M − c is zero, and so the derivative

of Fas(M − c, c) with respect to c is

−
√

2

π

∫ √M−c
0

fχ2
l−k−1

(
M(1− z2/(M − c))) Mz2

(M − c)2
e−z

2/2 dz, (A6)

where fχ2
l−k−1

is the density of χ2
l−k−1. It is obvious that this derivative is negative

everywhere for 0 < c ≤M.

For c = 0, (A5) becomes

Fas(M, 0) =

√
2

π

∫ √M
0

Fχ2
l−k−1

(M − z2)e−z
2/2 dz.

With the change of integration variable z2 = y, this is

1√
2π

∫ M

0

Fχ2
l−k−1

(M − y)
e−y/2√

y
dy =

∫ M

0

Fχ2
l−k−1

fχ2
1
(y) dy,
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where fχ2
1

is the density of χ2
1. The last expression is thus a convolution, expressing

the CDF of the distribution of the sum of a χ2
l−k−1 variable and an independent

χ2
1 variable, that is, of a χ2

l−k variable, evaluated at M. Thus Fas(M, 0) = Fχ2
l−k

(M).

These properties make it clear that the equation Fas(M − c, c) = 1− α has a unique
solution cα ∈ [0,M ] for given α and M, provided that

α > 1− Fas(M, 0) = 1− Fχ2
l−k

(M). (A7)

The confidence set includes all β0 for which TT (β0) ≥ cα. We saw previously that,
since TT (β0) is non-negative, the confidence set is the whole real line when cα = 0,
which is the case when α = 1 − Fχ2

l−k
(M). Since Fχ2

l−k
(M) < 1 for finite M, there

always exists α small enough that the confidence set is R. If α is so small that (A7)
is not satisfied, then a fortiori the confidence set is again R.

Solving for the critical value cα

The derivative (A6) of Fas(M − c, c) with respect to c can be expressed in terms
of elementary functions and the gamma function only, since, for any positive d, the
density of χ2

d is

fχ2
d
(x) =

1

2(d/2Γ(d/2)
xd/2−1e−x/2,

where Γ is the gamma function. Therefore, the derivative (A6) is

− e−M/2M (l−k−1)/2

2(l−k)/2−1
√
π(M − c)Γ((l − k − 1)/2)

∫ 1

0

(1− y2)(l−k−3)/2y2ecy
2/2 dy.

This expression, although messy in appearance, is readily evaluated numerically.
Alternatively, it can be expressed as a coefficient times M(d/2, (d + 3)/2,−c/2),
with d = l − k − 1, where M is Kummer’s confluent hypergeometric function; see
Abramowitz and Stegun (1965), equation (13.2.1). However, since evaluating Kum-
mer’s function numerically is not the easiest of tasks — see Pearson (2009) — it is
doubtful whether much CPU time would be saved by evaluating the function rather
than evaluating the integral numerically.

Solving the equation Fas(M − c, c) = 1−α can be done by Newton’s method, as well
as by more basic methods such as bisection. For any such method, it is good to have
a starting point reasonably close to the actual solution. The graph of the function
Fas(M − c, c), for large M at least, resembles an inverted ‘L’, with the value of the
function close to Fχ2

l−k
(M) for all values of c until c is close to M, at which point the

graph suddenly curves almost vertically downward to 0 as c→M. If we change the
integration variable in (A5) by the formula y = z

√
M/(M − c), we see that

Fas(M − c, c) =

√
2(M − c)
πM

∫ √M
0

Fχ2
l−k−1

(M − y2) exp
(
−y

2(M − c)
2M

)
dy, (A8)
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which depends on c only through the difference M − c. We expect that difference to
be small relative to M, on the basis of the appearance of the graph.

In order to find cα, we need to solve equation (A8). For the purpose of an approxi-
mation to the solution, let us expand the exponential in the integrand, retaining only
the first two terms of the expansion. This gives the approximate expression

Fas(M − c, c) ≈
√

2(M − c)
πM

∫ √M
0

Fχ2
l−k−1

(M − y2)
(

1− y2(M − c)
2M

)
dy.

Now make the definitions

K1 =

√
2

πM

∫ √M
0

Fχ2
l−k−1

(M − y2) dy

and

K2 =

√
1

2πM3

∫ √M
0

y2Fχ2
l−k−1

(M − y2) dy.

It is not hard to evaluate K1 and K2 for given M by numerical integration. The
equation we wish to solve for cα is approximated by

1− α = K1

√
M − c−K2(M − c)3/2. (A9)

A first approximation to the solution of this equation is just c = M − ((1−α)/K1)2,
where we retain only the first term on the right-hand side of (1). A better approxi-
mation is obtained by retaining both terms and using the first approximate solution
in the second term. This gives

c ≈M − (1− α)2

K2
1

(
1 +

K2(1− α)2

K3
1

)2
. (A10)

Numerical experiments show that this is an excellent approximation, starting from
which Newton’s method usually converges in fewer than 4 or 5 iterations.

In the special case in which l − k = 1, there is no need to use an iterative procedure
to find cα. In this case, Y = 0, which by (A1) implies that LR0 is equal to Z2

independently of TT . Thus Fas(x, c) = Fχ2
1
(x), and so the solution to Fas(M−c, c) =

1− α is just c = M − F−1
χ2

1
(1− α).
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The bootstrap approximation

The test that Davidson and MacKinnon (2008) call the CLRb test is a bootstrap test
in which the conditional distribution of LR0 is approximated by generating bootstrap
statistics of the form

LR∗0 = 1−
2

(
SS∗ − TT +

√
(SS∗ − TT )2 + 4TT (ST ∗)2/TT ∗

)
(A11)

conditional on TT from the observed data. Here SS∗, ST ∗, and TT ∗ are calculated
using (11), (12), and (13) from starred versions of the six quantities defined in (9),
computed using data generated by a bootstrap DGP that is intended to approximate
the true DGP for the model specified by (1) and (2), with β = 0. The conditional
CDF F (x, TT ) is then approximated by

Fbs(x, TT ) ≡ 1

B

B∑

j=1

I
(
(LR∗0)j ≤ x

)
, (A12)

and the bootstrap P value is just 1− Fbs(LR0, TT ).

By inverting this procedure, we can obtain a bootstrap version of the critical value cα
needed for a CLR confidence interval. The simplest approach, which was suggested
by Moreira, Porter, and Suarez (2005), is to use the pairs bootstrap DGP described
in Section 2. First, each bootstrap sample is used to calculate starred versions of the
six quantities defined in (9), which are then used to calculate the quantities Q∗ij and
N∗ij for i = 1, 2 using (10) with β0 = β̂LIML. These in turn are used in (11), (12), and
(13) to calculate SS∗, ST ∗, and TT ∗.

In order to invert the CLRb test, we have to solve the equation Fbs(M−c, c) = 1−α,
which can be written more explicitly as

1

B

B∑

j=1

I
(
(LR∗0(c))j ≤M − c

)
= 1− α. (A13)

Here LR∗0(c) is computed using formula (A11) with TT replaced by c.

Solving equation (A13) may require computing LR∗0(c) for quite a few values of c.
Because the sum in (A13) is a discontinuous function of c for finite B, Newton’s
method is not an appropriate way to solve that equation. However, the approximation
(A10) should still provide an excellent starting point for any method that does not
use derivatives, such as bisection.
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Figure 1. Coverage of confidence sets for ρ = 0.80 and n = 400
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Figure 2. Coverage of confidence sets for ρ = 0.80 and l − k = 10
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Figure 3. Coverage of confidence sets as functions of ρ for l − k = 10 and n = 50
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Figure 5. Coverage of confidence sets for ρ = 0.80 and l − k = 10
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Figure 6. Coverage of confidence sets as functions of ρ for l − k = 10 and n = 50
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Figure 7. Fraction of bounded intervals as a function of ρ for l − k = 2 and n = 400
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Figure 8. Median length of bounded intervals as functions of ρ for l − k = 2 and n = 400
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