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PRICE BASED POLICIES FOR MANAGING RESIDENTIAL DEVELOPMENT: 

IMPACTS ON WATER QUALITY  

 

Abstract: Land plays a critical part in determining the health of an urban ecosystem. One of its key 

roles is regulation of nutrient delivery. In this paper, we combine results from an IV duration model 

with a water quality model in a series of land use simulations to examine the impact that different 

land use policies have in limiting or enhancing nutrient pollution in an urban setting. Our results 

reveal significant tradeoffs between objectives for managing urban growth and those for managing 

water quality. A uniform tax on development significantly reduces acreage developed, but increases 

nitrogen and phosphorus loads. A green tax for development on forested parcels is the most 

effective at mitigating water quality impacts, albeit with the lowest reduction of acreage developed. 

Our results suggest that policymakers and planners should use a multi-objective approach in 

designing land use policies. 
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1. INTRODUCTION 

Land plays a critical part in determining ecosystem health. (Lawler et al. 2014). This is particularly 

true in urban environments where heterogeneous land uses can produce different environmental 

outcomes. One of the key roles played by land in an urban setting is in the regulation of nutrient 

delivery (e.g., nitrogen and phosphorus) to local waterbodies (Wu, 2008). Given this role, an 

important policy question relates to how, and to what extent, different policies land use policies may 

limit or enhance this association. One particularly important consideration is the extent to which 

urban land use policies – those designed to limit urban growth – may produce outcomes that are 

consistent with goals related to water quality management. Specifically, can anti-sprawl policies 

simultaneously reduce sprawl and nitrogen and phosphorus loadings, or should policymakers alter 

current policies to handle multi-objective outcomes?   

To answer these questions, we develop a simulation framework and combine it with a model 

of nutrient pollution to examine how a common set of price-based land use policies, which lead to 

differential changes in residential development patterns, influence nitrogen and phosphorus loading 

in a large metro area. The specific objectives of this study are to: (1) estimate an instrumental 

variable land use model to identify the responsiveness of residential land use change to changes in 

housing prices; (2) combine model output with a water-quality model and develop a simulation 

framework suitable for analyzing policy; and (3) use the simulation framework to analyze the success 

of various land use policies in achieving water quality outcomes. 

To address these objectives, we estimate an instrumental variable duration model using a 

unique dataset on residential subdivision development from the Baltimore, MD metro region.1 Our 

                                                           
1 Choice models are frequently used to analyze spatially explicit micro-level land conversion decisions (e.g., Irwin and 
Bockstael, 2002; Cunningham, 2007; Towe et al. 2008; Lewis et al. 2009; Wrenn and Irwin, 2015). Operating at the 
landowner or parcel level these models incorporate spatially and temporally varying parcel and neighborhood attributes, 
including prices, which impact development decisions. In several recent studies, econometric land use change models 
have been used to conduct spatial simulations to analyze the effectiveness of incentive-based policies on environmental 
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residential subdivision data are manually reconstructed using information from historic subdivision 

plat maps and GIS parcel data. These data reproduce all residential development activity in the 

Baltimore metro region from 1994-2007 and include information on the size and location of the 

original parent parcel for each subdivision as well as information on zoning, the number of lots 

created, and various other parcel and neighborhood characteristics. To address price endogeneity 

and identify the response of land conversion to changes in housing prices, we use a control function 

methodology for nonlinear land use models developed in Wrenn et al. (2017). 

To analyze the effectiveness of different types of land use policies in influencing residential 

development and water quality outcomes, we combine the results from our land use model with land 

cover data and nitrogen and phosphorus loading rates from the Chesapeake Bay Program (CBP) 

watershed model in a series of land use simulations. The CBP watershed model is the most policy 

relevant model for our study region as it is used by both the EPA and all jurisdictions in the 

watershed to evaluate compliance with the Chesapeake Bay total maximum daily load (TMDL) 

requirements. We focus on nitrogen and phosphorus loads as measures of water quality impacts 

because: (1) the EPA regulates both nutrients under the Chesapeake Bay TMDL and (2) these 

nutrients serve as the primary water quality measures in the region. 

We use our model and simulation framework to analyze three tax policies which are both 

relevant to the Baltimore region and generally applicable for land use planning across the U.S. 

Specifically, we focus on three price-based policies designed to manage residential development and 

water quality. In Scenario 1, we implement a uniform tax on all parcels. This scenario mimics the 

uniform way in which property taxes and impact fees are implemented. In Scenario 2, we implement 

a tax on parcels in rural areas without municipal sewer service and a subsidy on parcels in designated 

                                                           
outcomes related to carbon sequestration (Lubowski et al. 2006), water quality (Langpap et al. 2008), biodiversity (Lewis 
et al. 2011), and tradeoffs with multiple ecosystem services (Nelson et al. 2008; Lawler et al. 2014).  
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urban areas with municipal sewer service. This “compact development” scenario aims to reduce 

sprawl in rural areas, while using incentives to encourage infill development in designated urban 

areas with existing infrastructure capacity. Given that neither of these first two scenarios are 

specifically designed to manage water quality, our main interest is in evaluating how effective, 

indirectly, they are at doing so. Finally, in Scenario 3 we implement a “green tax” policy based on the 

existing forest cover on each parcel with the goal being to preserve large, contiguous chucks of 

forest cover as a means of reducing nitrogen and phosphorus runoff. For each policy, we implement 

land use simulations based on marginal (1%) changes to housing prices and compare our results with 

a baseline simulation where prices are held fixed. The outputs of interest from these simulations are 

changes in development outcomes – changes in the total number of number of subdivision created 

and changes in total acreage developed – and changes in water quality outcomes – total nitrogen and 

phosphorus delivered on a yearly basis. 

Our model and simulations provide several key insights. Overall, we find that there is a clear 

tradeoff between traditional land use policies seeking to manage growth (anti-sprawl policies) and 

policies seeking to impact environmental outcomes, such as water quality. In the case of a uniform 

tax, while we observe a large reduction in both the number of developments created and total 

acreage developed this policy leads to an increase in annual nitrogen and phosphorus delivered. 

While this may seem counterintuitive, it has a clear explanation. The mechanism behind this result is 

that, while the uniform tax increase does reduce developed acreage overall, most of this reduction 

takes place on agricultural land parcels in rural areas of our study region which have higher baseline 

nutrient loads relative to rural residential development. Thus, the uniform tax policy effectively 

preserves, or maintains, many existing farm parcels, which contribute more to nitrogen and 

phosphorus pollution than low-density residential. 
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In the case of the compact development policy, which attempts to limit urban spatial 

expansion and concentrate development in areas with public sewer, we find a similarly perverse 

outcome as Scenario 1 – an overall decrease in both the number of developments created and total 

acreage developed, and an increase in nitrogen and phosphorus loadings. The mechanism behind 

this result is like that of Scenario 1. Finally, in the case of our green tax policy, which we designed to 

preserve forest cover and reduce nitrogen and phosphorus loads, we observe significant decreases in 

both nitrogen and phosphorus loadings, albeit with a lower overall reduction in acreage developed. 

Specifically, we find that while our green tax policy leads to a significant reduction in nitrogen and 

phosphorus, it results in only about a third as much of a reduction in acreage developed as Scenarios 

1 and 2. 

The previous results are policy relevant for several reasons. First, they suggest that the goal 

of traditional, anti-sprawl-type polices may not always be consistent the goals of more 

environmentally-minded policies. In our context, water quality outcomes are reduced in the case of 

the anti-sprawl policy. Second, they suggest that using targeted land use taxes (price-based land use 

policies) may be an effective tool for achieving environmental outcomes that are impacted by land 

use change. And finally, our results suggest that policymakers need to consider multiple objectives 

when designing land use policies – i.e., they need to optimize both anti-sprawl, tax, and 

environmental objectives when designing future policies. Our outcomes provide clear evidence that 

single-objective policies are unlikely to achieve the heterogeneous impacts desired of most land use 

outcomes.  

The remainder of the paper is structured as follows. In Section 2, we present our 

econometric model and a brief overview of our instrumentation strategy. In Section 3, we present 

our data. Section 4 presents our results; Section 5 presents our policy simulations; and Section 6 

provides some discussion and concludes.  
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2. ECONOMETRIC MODEL 

Land use outcomes are the result of many individual land conversion decisions linked through 

market processes. As landowners decides to convert undeveloped land, they consider not only 

attributes of their own parcel but also the prices and subsequent revenues this conversion will 

provide (Capozza and Helsley, 1989). Housing prices are equilibrium outcomes and are functions of 

both observable and unobservable attributes. Thus, the inclusion of prices in housing supply models 

requires accounting for endogeneity problems generated by omitted variables. In nonlinear models, 

handling these types of endogenous attributes is a challenge.  

Nonlinear duration models are frequently used to capture housing supply decisions in a 

reduced-form setting (Irwin and Bockstael, 2002; Newburn and Berck, 2006; Cunningham, 2007; 

Towe et al. 2008; Lewis et al. 2009; Wrenn and Irwin, 2015; Newburn and Ferris, 2017). Operating 

at the parcel level, these models easily accommodate micro-level land-use features that vary spatially 

as well as temporally. We extend the standard duration modeling framework by combining a 

nonlinear IV technique to instrument for price using a control function methodology (Wrenn et al. 

2017). The instruments used in this control function model are formed from equilibrium 

relationships – a method commonly used in structural models of housing demand (Bayer et al. 2007; 

Walsh, 2007; Klaiber and Phaneuf, 2010).  

Duration models of land conversion assume that in each period 𝑡 the landowner of an 

undeveloped parcel 𝑖 located in neighborhood 𝑗 decides whether to convert their parcel to a 

residential subdivision. Conversion decisions depend on parcel-level attributes 𝐼𝑖𝑡 and 

neighborhood-level attributes 𝑋𝑗𝑡, where we define neighborhoods as Census 2000 block groups. 

We use discrete annual time-steps to define the time dimension of our duration model consistent 

with much of the empirical housing supply literature. To operationalize the model, we specify a 

reduced-form latent profit function underlying the duration model as  
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 Π𝑖𝑡
∗ = 𝐼𝑖𝑡

′ 𝛽 + 𝑋𝑗𝑡
′ 𝛼 + 𝑃𝑗𝑡

′ 𝛾 + 𝑢𝑖𝑡 (1) 

where Π𝑖𝑡
∗  is the latent profitability on parcel 𝑖, 𝐼𝑖𝑡 and 𝑋𝑗𝑡 are parcel and neighborhood 

characteristics affecting profitability, respectively, 𝑃𝑗𝑡 is the price of housing services at the 

neighborhood level, and 𝑢𝑖𝑡 is an idiosyncratic error term. Based on equation (1), the parametric 

proportional hazard we adopt is 

 ℎ(𝑡) = ℎ0(𝑡)ℎ(𝐼𝑖𝑡
′ 𝛽 + 𝑋𝑗𝑡

′ 𝛼 + 𝑃𝑗𝑡
′ 𝛾) (2) 

where ℎ0(𝑡) is the baseline hazard, which is shifted proportionally by changes in the variables in the 

model.  

To address the endogeneity of housing prices, we apply a control function approach. This 

approach uses a two-step estimation procedure to instrument for endogenous variables using 

residual variation derived from a first-stage regression that includes exclusionary instrumental 

variables 𝑍𝑗𝑡 that control for the correlation between price and the error term. The first-stage OLS 

regression in our model is specified as 

 𝑃𝑗𝑡 = 𝑋𝑗𝑡
′ 𝛽 + 𝑍𝑗𝑡

′ 𝛿 + 𝑣𝑗𝑡 (3) 

where the exogenous neighborhood variables, 𝑍𝑗𝑡 are a set of excluded variables that affect price, 

but not latent profit Π𝑖𝑡
∗ , and 𝑣𝑗𝑡 is an idiosyncratic error term.2 

 In the presence of endogeneity, the error term from equation (1) is given as 

 𝑢𝑖𝑡 = 𝑣𝑗𝑡
′ 𝜃 + 𝑒𝑖𝑡. (4) 

Assuming joint normality between 𝑢𝑖𝑡 and 𝑣𝑗𝑡 , the residual vector, 𝑣𝑗𝑡 from the first stage is added 

to the second-stage duration model as an additional covariate. If the instruments in the first stage are 

valid, we can rewrite equation (1) as  

                                                           
2 As is the case in a standard 2SLS IV model, identification depends on having at least as many excluded variables in the 

first stage (𝑍𝑗𝑡) as there are endogenous regressors in the main model. 
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 Π𝑖𝑡
∗ = 𝐼𝑖𝑡

′ 𝛽 + 𝑋𝑗𝑡
′ 𝛼 + 𝑃𝑗𝑡

′ 𝛾 + 𝑣𝑗𝑡
′ 𝜃 + 𝑒𝑖𝑡 (5) 

Where, assuming joint normality between the errors in both stages, we get the following discrete-

time duration model  

 
𝑃(Π𝑖𝑡

∗ = 1|𝐼𝑖𝑡, 𝑋𝑗𝑡, 𝑃𝑗𝑡 , 𝑣𝑗𝑡) = Φ [
𝐼𝑖𝑡

′ 𝛽+𝑋𝑗𝑡
′ 𝛼+𝑃𝑗𝑡

′ 𝛾+𝑣𝑗𝑡
′ 𝜃+𝜏𝑡−𝑡0

√1−𝜌2
]. (6) 

The inclusions of time fixed effects (𝜏𝑡−𝑡0
) in model accounts for the baseline hazard function.  

The price instruments we construct to include in the first stage borrow from the intuition 

developed in structural urban demand models of location choice. These models use the logic of 

Nash equilibrium to form instruments in a residential sorting context. The primary insight from this 

literature is that distant attributes impact prices in focal neighborhoods through spatial equilibrium – 

i.e., they impact demand and price in distant locations and thus impact the overall equilibrium price 

level in the urban area. By isolating these distant, exogenous attributes it is possible to form 

instruments that are uncorrelated with unobservables in the focal neighborhood. We adopt this same 

methodology in the Baltimore metro region.  

Figure 1 shows a map of our study region displaying both county and neighborhood (2000 

Census block group) boundaries to provide the intuition for our instrumentation procedure. As an 

example, this figure depicts a single “focal” neighborhood with a six-mile distance ring drawn 

around the centroid of the focal neighborhood. Our instrumentation strategy uses variation in 

exogenous attributes from “distant” neighborhoods located outside the distance cutoff defined by 

this ring as a means of controlling for price endogeneity. “Local” neighborhoods are defined as 

those that are located within the distance cutoff, but not including the focal neighborhood. To 

determine the extent of local versus distant neighborhoods, we use a series of statistical tests to 

examine the validity of our distance thresholds. To do this, we exclude an increasing number of local 

neighborhoods around each focal neighborhood and create an IV matrix (𝑍𝑗𝑡
𝑛) that consists of area-
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weighted average values of exogenous attributes from neighborhoods outside of the boundaries 

defined by these local neighborhoods, where the superscript 𝑛 indexes the distance cutoff used in 

forming the 𝑍 matrix. We add these weighted instrumental variables to the right-hand side of 

equation (3) and estimate 

 𝑃𝑗𝑡 = 𝑋𝑗𝑡
′ 𝛽 + 𝑍𝑗𝑡

𝑛𝛿 + 𝑣𝑗𝑡 . (7) 

For each of these models, we use overidentification tests to choose the optimal distance cutoff used 

in forming our instruments based on the Chi-squared statistics (Stock et al. 2002; Wooldridge, 2010). 

By increasing the distance used in forming our instruments, we can net out local sources of 

variation, while retaining the power of the instrument, a result that is predicted by urban spatial 

theory (Bayer and Timmins, 2007). 

3. DATA AND CONSTRUCTION OF VARIABLES 

The data used in our model covers a three-county region the Baltimore, MD metro: Baltimore, 

Carroll and Harford counties (Figure 2). To produce our subdivision data, we obtained GIS parcel 

data and the historical archive of subdivision plat maps for the three counties from the Maryland 

Department of Planning (MDP). Using the scanned images of subdivision plat maps, we manually 

reconstructed the panel of residential subdivisions for the years 1994-2007.3 The subdivision 

reconstruction process allowed us to determine all the individual residential lots in the original 

“parent” parcels. The year of subdivision approval for each plat is used to determine the timing of 

each conversion event. From this process, we reconstruct the landscape for the parcel boundaries as 

they were at the beginning of the study period in 1994. 

                                                           
3 Plat maps are the residential subdivision plan that the developer submits for approval to the local government. It 
includes the location and exact boundaries of each residential lot as well as other information, such as year of subdivision 
approval. 
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 In addition to the creation of subdivision data, we obtained historical information on zoning 

boundaries and municipal sewer service availability for each county. Using these zoning data, we 

calculate the number of residential lots permitted on each parcel. This process provides a micro-level 

land use dataset for the panel of developable parcels that are eligible for residential subdivision 

development from 1994 through 2007. For the econometric model, we define subdivision eligibility 

as any parcel that can, based on zoning, accommodate a subdivision development of two or more 

residential lots. Because our focus is on modeling the subdivision conversion process for single-

family residential development, we screened out parcels zoned for commercial, industrial, multi-

family dwellings (apartments), and institutional uses as well as parcels in protected status for parks 

and conservation easements. Combining our subdivision data with our method of determining 

subdivision eligibility results in a dataset of 15,015 parcels that were developable as of 1994. Among 

these parcels, there were 2,394 residential subdivision events during our study period in 1994-2007, 

and the other parcels remained undeveloped (censored) at the end of 2007.  

Summary statistics for the variables used in our model are given in Table 1. The variables are 

separated based on their level of spatial variation. The top portion of Table 1 lists the variables that 

control for parcel-level characteristics. First, to control for locational parcel attributes, we include 

the distance, in kilometers, from each parcel to the center of Baltimore City (Dist), which reflects 

accessibility to the largest employment center in the region. We also include the distance to the 

closest major highway (DistMajRoad) as a measure of accessibility to transportation infrastructure. 

Both variables are expected to decrease the value of the parcel and its propensity to develop the 

farther the parcel is to the central business district (CBD) or major highway.  

 Zoning is also expected to play a role in determining the likelihood of conversion as the 

more densely zoned a parcel is the greater the number of building lots allowed. We obtained historic 

zoning maps for each county from the Maryland archives and overlaid these maps with our parcel 
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data. The variable ZndLots captures the zoned lot capacity for each parcel based on parcel size, 

zoning type, and maximum density regulations. While zoning did change slightly in Baltimore 

County during our study period, these changes were relatively small with most zoning designations 

for the entire region established in the mid-1970s. To account for the slight changes in zoning 

during our study period, we obtained the set of all historic zoning boundary maps for Baltimore 

County that enabled us to accurately calculate the zoned capacity for each parcel and each year in 

our data. We use historic sewer boundary maps for each county and create an indicator variable 

(Sewer) for parcels with municipal sewer services.4 Using the set of historic zoning and sewer 

boundary maps, the zoned capacity and sewer variables are temporally lagged to represent these 

variables prior to the development decision in each year. We expect that parcels that have more 

development rights or with sewer service are likely more valuable and thus more likely to develop.  

The final set of parcel-level variables control for the physical features of the parcel. These 

include variables for the land area in acres for each parcel and soil quality characteristics derived 

from the SSURGO data provided by the Natural Resource Conservation Service (NRCS). We 

expect larger parcels are more likely to develop due to economies of scale. The NRCS soil 

classifications capture the hydrology, slope, percolation rate, and permeability of the soil. By 

combining these factors, we construct development suitability measures for each parcel. First, to 

proxy for septic systems and basement suitability, we develop a septic suitability indicator 

(SepticSuit) based on soil permeability and percolation. We expect that parcels with a value of one 

will be more likely to develop as the soils on the parcel are more suitable for installation of septic 

systems and basements. Second, we use the slope classification for each parcel to develop a variable 

                                                           
4 Zoning designations were created for the entire region in the mid-1970s—Baltimore (1976), Harford (1977), and 
Carroll (1978). Zoning GIS shapefiles were also obtained to capture the minor zoning revisions that occurred in 2000 
and 2004 for Baltimore County. The number of zoned lots on developable parcels in Baltimore County changed by less 
than 1 percent between 1994 and 2007. Sewer service boundaries were also created historically in Baltimore County 
(1967) and Harford County (1977) and have remained unchanged, thereby effectively act as urban growth boundaries to 
limit sewer service. 



13 

 

(Slope) for the percentage of each parcel that has a slope of more than 15%. We also overlay our 

parcel data with maps for 100-year floodplains from the Federal Emergency Management Agency 

(FEMA) and create an indicator variable for whether the parcel is located in a floodplain zone 

(FloodPlain). We expect that parcels with steeper slopes or those located in floodplains are less likely 

to develop due to development limitations. Finally, we include an indicator variable for whether the 

parcel has an existing structure (ExHouse) as well as a variable for percentage of the parcel with 

forest cover (ForestPrcnt).  

 The neighborhood-level variables in Table 1 comprise time-varying factors most likely to 

influence the probability of development in each neighborhood and year. First, we develop measures 

of the percentage of land in each neighborhood that is either preserved or protected from 

development (Preservation). Maryland has an extensive farmland preservation program which we 

use to develop a time-varying measure for the percentage of land area in each neighborhood and 

year that is preserved. We also control for the percentage of land area in each neighborhood that 

remains undeveloped and developable (UDArea). Second, we capture competitive effects among 

developers using a one-year lag of subdivision activity (total lots approved) at the neighborhood 

level (ApprvLots). Finally, we estimate neighborhood land (LandPrice) and housing (HousePrice) 

prices using auxiliary regressions. Both the land and house-price variables are created by estimating a 

series of yearly hedonic models on arms-length land and housing transactions obtained from a 

statewide database of sales provided in the Maryland Property View (MDPV) database. Each model 

includes, among other controls, a set of block-group fixed effects which serve as our quality adjusted 

neighborhood land and housing-price indices (Sieg et al. 2002). The details of the data and 

estimation procedures for our housing and land-price variables are given in the Appendix.5 It is the 

                                                           
5 This method of estimating prices is commonly used in the urban demand and supply literature (Walsh, 2007). 
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housing-price variable produced from this process that is the focus of our econometric model and 

subsequent policy simulations. 

4. MODEL RESULTS 

4.1 Instrument Formation and Diagnostics 

The control function residual used in our IV model is obtained by estimating the pooled OLS price 

regression in equation (7). This first-stage regression includes all exogenous neighborhood 

characteristics for the focal neighborhood, time and county fixed effects, and a set of instrumental 

variables based on average values of exogenous, demand-side attributes from distant neighborhoods. 

The instruments used in this paper are the percentage of land in each neighborhood that is 

preserved from development (PreservationAvg) and the percentage of land that is undeveloped 

(UndevelopedAvg).6 These variables are assumed to impact the location choices of households and 

developers in distant neighborhoods, thereby influencing the equilibrium price, but not to directly 

impact developer decision-making in the focal neighborhoods. We estimate models based on the 

omission of local neighborhoods falling within the distance cutoffs ranging from four to six miles 

and use a series of diagnostics test to pick the optimal distance cutoff. 

Results from the first stage of our control function model are presented in Table 2. The 

distance cutoffs used in forming the instruments are shown along the top of Table 2; Panel A 

presents parameter estimates for the instrumental variables as well as estimates for the parameters of 

those same variables in focal neighborhoods; and Panel B presents results for a set of joint 

hypothesis tests that the coefficients on our instruments are equal to zero in the first stage. Based on 

the F-statistics in Panel B, our instruments pass the first-stage tests for all distance bands (Stock et 

                                                           
6 Our instruments are broadly based on a traditional Hausman-type price instrumentation strategy (Hausman, 1997). 
Specifically, we assume that exogenous attributes in distant neighborhoods impact housing prices in those 
neighborhoods which in turn impact housing prices in focal neighborhoods via the spatial equilibrium outcome in the 
urban housing market. This is like using prices in distant markets as instruments for local prices in the industrial 
organization literature. 
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al. 2002). We also find that our instrumental variables are statistically significant and have opposite 

signs from those same variables in focal neighborhoods which suggests that they serve as credible 

sources of exogenous variation (Bayer et al. 2007). 

Table 3 presents our overidentification tests. We use these to determine the optimal distance 

cutoff for our instrument. For these tests we include, in addition to the residuals generated from the 

first-stage OLS model, one of the two excluded instruments to the right-hand side of the duration 

model and perform a series of Chi-squared hypothesis tests. The results from these tests are 

presented in column (2) of Table 3 and show that we reject the null hypothesis that the excluded 

variables are not correlated with the error terms in each of the models. As we exclude additional 

neighborhoods, the p-values for these tests rise and become less significant. Based on these results, 

the optimal distance cutoff used in forming our instruments is six miles. We use the results from this 

six-mile model in the remainder of the paper.  

4.2 Duration Model Estimation 

Estimation results for the IV duration models are shown in Table 4. We separate the results into 

parcel and neighborhood characteristics. Standard errors are based on a nonparametric block 

bootstrap procedure with blocks based on parcel ID numbers. We now provide a brief review of the 

main findings in Table 4, followed by an analysis of the coefficients on housing price in each model.  

For the parcel-level characteristics, the coefficient estimates on zoned lot capacity (ZndLots), 

which accounts for the number of allowable lots based on the zoning designation of the parcel, is 

positive and significant, which suggests that zoned capacity plays a key role in determining the 

likelihood of development. The coefficient on distance to nearest major highway is positive and 

significant. The coefficient on floodplain is negative and significant suggesting that development is 

less likely in areas prone to flood risk. Finally, the coefficient on septic suitability is positive and 
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significant indicating that development is more likely on parcels with suitable soils to allow septic 

systems. 

 For the neighborhood-level characteristics, we find that an increase in the number of prior 

lots approved at the neighborhood level has a positive impact but insignificant impact. The 

coefficient on preservation is negative and significant. Finally, the coefficient on land price is 

negative and significant, which is as expected if land serves as an input in the production of housing. 

 Turning attention to our primary variable of interest, the coefficient on the housing price, we 

find that it is both positive and significant. In addition, the coefficients for the housing price 

residuals (control functions) are negative and significant indicating a downward bias (endogeneity) in 

price in a model without instrumentation. These results demonstrate that accounting for price 

endogeneity is important.  

4.3 Robustness Checks 

Before proceeding with our land use simulation, we provide a brief discussion of several robustness 

checks of our IV model. Full results of these models are contained in Appendix B. All models use 

an identical dataset to the previous subsection with a six-mile distance cutoff for the instruments. 

The first model addresses the concern that land prices, in addition to house prices, may be 

endogenous. To address this, we assume endogeneity for land prices and include them as a second 

equation in our first-stage regression model. This implies that we will have two sets of controls – 

one set of residuals from the housing-price regression and another set from the land-price 

regression. Each can be used to test for endogeneity. The results from this model are shown in 

Tables B1 and B2 in Appendix B. Based on these tables, we find that: (1) land prices do not appear 

to be endogenous, at least after controlling for housing prices and (2) the results for our housing-

price variable continue to hold.  
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 The second robustness check addresses a concern that our results may be driven by 

development outcomes in the abnormal housing market boom from 2005 through 2007. To address 

this, we drop these years from our data and re-estimate the entire model using only the data for 

1994-2004. The results based on these abbreviated data are shown in Table B3. The results remain 

largely the same as the model using the full dataset with the full study period.  

 Our third robustness check addresses the potential for spatial error autocorrelation to impact 

our results. While spatial error autocorrelation is an efficiency issue in linear spatial models, in 

nonlinear models it represents both a consistency and an efficiency issue (McMillen, 1992). To 

address this concern, we: (1) implement a spatial sampling procedure on our data to reduce the 

impact of local spatial effects (Carrion-Flores and Irwin, 2004) and (2) run a spatial autocorrelation 

test designed for nonlinear panel models to test for spatial error autocorrelation. For the spatial 

sampling procedure, we create 100 and 200-meter buffers around each of the parcels in our data. We 

then sequentially sample parcels based on parcel IDs and drop all parcels that fall within the distance 

cutoffs defined by the two distance buffers (100 and 200 meters). We continue this procedure until 

there are no remaining parcels to drop. That is, we create two samples: one sample where each 

observation has no neighbors within 100 meters and a second sample with no neighbors within 200 

meters. Using these two abridged samples, we re-estimate our main IV model. Additionally, we 

conduct a series of spatial error autocorrelation tests for nonlinear panel models (LM tests) using the 

generalized residuals from the probit to test for spatial error correlation (Pinkse and Slade, 1998; 

Baltagi et al. 2003). 

The results from our spatial error models are shown in Table B4, where Panel A1 presents 

results from the sample data constructed using a 100-meter buffer and Panel B1 from the sample 

data constructed using a 200-meter buffer. The LM tests in Panels A2 and B2 are based on two 
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different specifications for the spatial weights matrix: a 100-nearest neighbor specification and an 

800-meter distance cutoff. Based on these results, we find that our findings continue to hold.  

For our final robustness check, we address the concern of a violation of the joint normality 

assumption (an assumption of the control-function method) and examine how a nonlinear 

functional form may impact our results. To address this, we reclassify our model in linear form and 

estimate a generalized method of moments linear probability model (GMM LPM) with the 

instruments from our control-function model used as instruments in the GMM model.  

The results from our GMM LPM model are shown in Table B5. The results for the first-

stage F-stat and second-stage J-stat are very similar to those produced by the control-function 

model. We also observe that the GMM test of endogeneity is significant at the 10% level. Based on 

these results, and the other robustness checks in Appendix B, we feel confident in proceeding with 

our policy simulation analysis using the results from our IV duration model.  

5. POLICY SIMULATIONS AND WATER QUALITY OUTCOMES 

We now describe the implementation and results from our policy simulations. The purpose of these 

simulations is to examine precisely how different land use policies impact development outcomes, 

land use patterns, and water quality indicators. For each policy we analyze, we compare simulation 

results for that policy with baseline results where housing prices remain fixed. For each simulation, 

we employ a nested looping structure where the outer loop is over the parameter distribution from 

the duration model and the inner loop is over time in yearly time steps.  

5.1 Simulating Development Patterns 

We begin by establishing a baseline set of at-risk parcels for each period (year) and baseline land 

cover. All simulations use the 15,015 developable parcels from the original data, where each parcel is 

assumed to be developable in period (year) of the simulation – i.e., all parcels that were developable 
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at the beginning of our study period are used in the simulations and we assume each can be 

developed in each period. Using these data, we overlay them with a GIS shapefile of land cover for 

the Baltimore region in 1992. This overlay determines the baseline land cover for each at the 

beginning of our study period. We use the USGS Chesapeake Bay Watershed Land Cover data from 

1992 because it is the baseline land cover that is available immediately prior to the beginning of our 

study period in 1994. From these data, we are interested in the percentage of agricultural and forest 

land cover on each parcel at the beginning of our study period. To determine forest cover, we 

combine all forest cover types (deciduous, evergreen, mixed forest, and shrub) into a single land 

cover class. To determine agricultural land cover, we combine hay, pasture, and cultivated crops. To 

account for potential urban infill development, we also determine the 1992 baseline land cover in 

very-low and low-density development. For the developable parcels, the baseline land cover is 

primarily in agriculture (55%) and forest (39%) with a smaller amount in very-low-density 

development (4%) and low-density development (2%) occurring mainly inside sewer service areas. 

After setting up the data, we proceed with our nested simulation procedure. The outer loop 

is an iteration over the parameter distribution from the duration model. Specifically, for each outer 

iteration we take draws from the estimated 1,000 𝑘𝑥1 parameter vectors of the bootstrapped 

parameter matrix. Using these draws, we combine them with the data constructed above and the 

probit link function from the discrete-time duration model to form a predicted probability of 

development for each parcel. For each outer iteration, we step through time (the inner loop) and 

determine which parcels develop and which remain undeveloped. To do this, we employ an 

accept/reject strategy by taking a random draw from a uniform distribution for each parcel and 

comparing those draws with the predicted probability of development generated from the probit 

model, our data, and our bootstrapped parameter estimates. We assume that a parcel is developed if 

its predicted probability is larger than its random draw from the uniform distribution. To replicate 
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the dynamic nature of the development process in our original data, these probability comparisons 

take place sequentially. That is, for each iteration of the outer loop we iterate over time at annual 

time steps making comparisons in each period and dropping parcels that are predicted to develop 

from all subsequent periods, which reflects the terminal nature of the residential development 

process in the raw subdivision data. We repeat this inner loop procedure for each of the 1,000 outer-

loop parameter vectors.  

Each of the 1,000 iterations in our simulation produces a vector of parcel IDs for residential 

conversion events – i.e., each iteration provides the land development outcomes for the number of 

residential subdivision events that occur and thus the total acreage developed within each iteration. 

To use these events for policy evaluation on water quality outcomes, we link each set of 

development outcomes (parcel IDs from the GIS data) with information on existing land cover and 

nitrogen and phosphorus loading rates to generate measures for the change in loading rates 

following the implementation of a given policy scenario.  

5.2 Simulating Water Quality Impacts 

Assessing the water quality impacts of different post-policy land use outcomes involves combining 

the CBP model loading-rate data with the predicted changes in land use produced by our different 

policy simulations. This involves using the loading rates from the CBP watershed model to 

determine both the baseline nitrogen and phosphorus loads on each developable parcel and the 

predicted changes in loading rates following a policy-driven tax change. Specifically, we determine 

baseline nitrogen and phosphorus loads according to edge-of-stream loading rates and the acreage 

for each baseline land cover type and a post-policy loading-rate change based on predicted 

development density. 

The relationship between development density and loading rates for nitrogen and 

phosphorus is once again taken from the CBP watershed model, with loading rates increasing for 
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higher development density. The duration model, while effective at modeling the optimal timing 

decision, does not explicitly model density. To assign a density to each simulated development, we 

calculate average density values from our observed subdivision data. Specifically, we use the actual 

data for the 2,394 residential subdivision events observed from 1994-2007 in our raw subdivision 

data, where residential density is calculated using the number of residential lots and land area of the 

parent parcel. We then calculate the average density values for each year and county, which is done 

separately for areas with and without municipal sewer service. We use these density values to assign 

development densities to each predicted subdivision development based the timing and location of 

the development. Using this information, we calculate the post-policy, post-development loading 

rates for each developed parcel and compare it to what would have happened had the parcel 

remained undeveloped. This comparison – of pre and post-policy outcomes – is repeated for each 

of the 1,000 simulated development patterns, and we examine the distribution of these outcomes for 

each policy scenario described below.  

5.3 Policy Scenarios 

While there are numerous policies that we could analyze with our model, our main interest is in 

examining and comparing water quality outcomes produced using standard land use policies – those 

focused on reducing sprawl and raising revenue – with water quality outcomes produced using some 

type of “green tax” policy.  Thus, we focus on three policy scenarios which are both relevant to the 

Baltimore metro region and are generally applicable for land use planning in other regions.  

In Scenario 1, we implement a uniform 1% property tax on all parcels. This uniform tax 

scenario reflects the way in which residential property taxes or impact fees are implemented in the 

United States. In Scenario 2, we implement a 1% tax on all parcels located in areas without 

municipal sewer service and a 1% subsidy on all parcels located in areas with municipal sewer 

service. This scenario reflects the approach used by planners whereby an impact fee is assessed to 
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reduce sprawl in rural areas without municipal services, while aiming to encourage infill development 

in designated urban areas with existing municipal services. In Scenario 3, we implement a green tax 

based on the existing forest land cover on each parcel. The goal is to reduce forest conversion, 

which has the lowest nitrogen and phosphorus loading rate. Our specific policy is to implement a 

1% tax for development on parcels with 50% forest cover greater than 50%. This last scenario is 

focused on enhancing water quality outcomes, as opposed to managing urban spatial expansion 

based on existing municipal services. In all three scenarios, we compare simulation results with 

baseline results where prices remain unchanged.  

Before turning to our simulation results, it is important to assess how well our baseline 

simulation can predict development outcomes in the original subdivision data. To do this, we 

compare our baseline simulation results, where prices remain unchanged, with the original 

subdivision data. Based on the 1,000 iterations of our simulation, the baseline simulation predicted 

that the mean number of subdivision developments is 2,396, with the bootstrapped 95% confidence 

intervals ranging from 2,283 to 2,518 subdivisions. Hence, the mean number of subdivisions for the 

baseline simulation model is very close to the actual number of observed subdivisions (2,394 

subdivision developments in 1994-2007).  

5.4 Simulation Results  

In Table 5, we display the simulation results (changes) across all three policy scenarios for our land 

development outcomes (indicators) – changes in the number of subdivisions created and changes in 

total acreage developed. The results reported are for mean differences for each policy scenario 

relative to the baseline simulation. Land development outcomes are also provided separately for 

developments occurring inside and outside of sewer service areas. The region with sewer service is a 

proxy for development in urban areas, while the region outside sewer service represents 

development in rural areas. Bootstrapped 95% confidence intervals (CIs) are included based on the 
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1,000 iterations, where the null hypothesis is a test on whether the bootstrapped 95% CIs contain 

zero.  

 From Table 5, we first observe that for the uniform tax we get a significant reduction in 

both the number of developments created and in total acreage developed, particularly in the rural 

areas outside sewer service. For a 1% property tax on all parcel, we reduce the number of 

developments created by 52 and reduce the total amount of developed land by 1,393 acres, of which 

91% of this acreage reduction is lower-density development located outside sewer service areas. The 

reduction of 52 subdivision events represents a 2.17% overall reduction in subdivision activity. Next, 

while the results for Scenario 2 also indicate a net reduction in both the total number of 

developments created and acreage converted, the total reduction in developments created is 

significantly lower than in the first scenario. This result is not surprising given that the purpose of 

this policy is not to reduce overall development, just to reduce acreage developed (reduce sprawl) 

and concentrate new development in areas with public sewer and water. Finally, the green tax in 

Scenario 3 also leads to a reduction in both the number of developments created and the total 

acreage developed. However, the total amount of acreage lost to development is about 33% lower 

than in the first scenarios.   

Turning to Table 6, we present simulation output for our water quality indicators across each 

of the policy scenarios. The results reported are for mean differences, across the entire study region, 

in total nitrogen and phosphorus loads relative to a baseline scenario with no price change. In 

Scenario 1, the results indicate a statistically significant increase in nitrogen and phosphorus loads. 

While the uniform tax in Scenario 1 decreases the acreage converted to residential development, it 

leads to a perverse effect of increasing nutrient loads. This result stems from the fact that most 

residential development in Scenario 1 occurs in rural areas outside sewer service boundaries, which 

is predominantly agricultural land. Because the nitrogen and phosphorus loading from agricultural 
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land is higher than for residential development the reduction in the amount of residential 

development in Scenario 1 increases nutrient loads significantly relative to the baseline simulation. 

This becomes particularly clear when looking at column (2) in Table 5 for this first scenario. From 

this column, we observe that following the uniform tax increase most of the reduction in 

development – counts and acreage – come from more rural areas without public sewer. The land 

that is being left undeveloped here is agriculture land, which contributes much more in terms of 

nitrogen and phosphorus loading than low-density, rural residential development does.  

In Scenario 2, the results indicate a significant increase in nitrogen and phosphorus loads. 

One reason that Scenario 2 leads to higher loads is that this policy, relative to Scenario 1, is aimed at 

increasing residential development in areas with sewer service. The infill development at higher 

density that is incentivized in Scenario 2 is mainly converting either remnant forest cover or very-

low-density residential land cover that leads to higher loads.7 Specifically, this policy achieves both 

reduced low-density development – leaving agriculture land in production – and increased high-

density urban development – which contributes more nitrogen and phosphorus than low-density 

residential development. 

Finally, Scenario 3 is the price-based policy that most effectively mitigates the water quality 

impacts of residential development. The results from this scenario show a significant decrease in 

both nitrogen and phosphorus loadings. While the green tax on forest cover in Scenario 3 has the 

lowest reduction in acreage developed, it is the most targeted in terms of achieving a specific water 

quality outcome. In this scenario, the preservation of forest cover occurs at the expense of farmland 

loss in rural areas, and the forest cover retained in urban areas allows development to shift to create 

more infill development. Furthermore, in addition to water quality improvements, the preservation 

                                                           
7 Agricultural land is less common inside the sewer service areas. 
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of forest cover may have other public benefits such as carbon sequestration, enhanced wildlife 

habitat, and reduction in air pollution and urban heat island effects for the Baltimore metro region.  

6. DISCUSSION AND CONCLUSIONS 

In this paper, we estimate a parcel-level duration model of residential development and combine our 

results with a nutrient loading rates from a watershed model to analyze the influence of price-based 

policies on residential development patterns and water quality. Our results indicate that there are 

potential tradeoffs when seeking to manage urban growth and environmental objectives. For 

instance, compact development policy (Scenario 2) we implement in our simulation framework, 

which aims to reduce sprawl in rural areas and encourage infill development in urban areas, leads to 

a significant overall reduction in the amount of acreage converted to residential development. This 

policy reflects the smart-growth goals of limiting urban spatial expansion and leapfrog development, 

but it nonetheless increases the nitrogen and phosphorus loads entering local waterways and the 

Chesapeake Bay. The primary reason for this result is that agricultural land has higher baseline loads 

than would occur if this land was converted to low-density residential development. Bigelow et al. 

(2017) find an analogous result for consumptive water use when analyzing the effect of land use 

policies for urban growth boundaries for three cities in Oregon. They find that in one simulation 

scenario the most sprawling development patterns lead to a reduction in consumptive water 

withdrawals because the increased residential development removes irrigated agricultural land from 

production, which uses relatively more water than low-density residential development.  

 Our results suggest that the price-based policies focused on forest preservation are the most 

effective in mitigating the water quality impacts. An important aspect in our analysis is that we 

estimate the relative amount of land use conversion in rural and urban areas. Most of acreage 

developed occurs as rural residential development outside sewer service areas. Our subdivision data, 

which is painstakingly reconstructed for the Baltimore metro region, allows us to represent the 
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residential development activity more accurately and simulate both rural and urban land use 

conversion under various price-based policies. By contrast, most prior literature on spatial policy 

simulations for land use change and environmental impacts is modeled primarily for urban 

development, thereby not fully accounting for the amount of rural residential land conversion. 

 In conclusion, incentive-based policies are increasingly popular options for managing land-

use change and the impacts on ecosystem services related to water quality, biodiversity, carbon 

sequestration and others. Our analysis demonstrates that an accurate understanding of the 

effectiveness for price-based land use policies depends on an empirical strategy that accounts for the 

potential bias from price endogeneity. Due to the growing availability of micro-level data on 

residential development and housing prices, we anticipate that this novel instrumentation strategy 

may be applied in future research to analyze various policy options for spatial land-use simulation 

and the associated environmental impacts in both the United States and elsewhere. 
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Figures 

 

Figure 1. Instrumental variable strategy using exogenous variation in demand-side variables from “distant” neighborhoods. 
 
 
 

 

Note. – Neighborhoods are defined based on 2000 Census block group boundaries. The “local” neighborhoods are those with centroids that fall within the 

6-mile distance cutoff drawn around the centroid of the “focal” neighborhood; “distant” neighborhoods are those with centroids that fall outside of this 

circle. 
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Figure 2. Baltimore metro region with subdivision development activity 1994-2007. 
 

 
 
 

 
 

Note. – The figure shows the subdivision developments in 1994-2007 (blue), parcels that remain 

undeveloped in 2007 (red), and boundaries for each of the three counties. Neighborhoods are defined 

based on 2000 Census block group boundaries. 
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Tables 

Table 1. Descriptive Statistics for Parcel and Neighborhood Variables 

 

 

 

 

 

 

 

 

 

Variables Mean St. Dev. Min. Max.

Parcel

Dist Kilometers to Baltimore City 30.54 16.74 0.00 76.31

DistMajRoad Kilometers to closest major highway 0.71 0.72 0.00 5.34

Area Parcel area in acres 19.38 36.74 0.07 946.95

ZndLots Count of zoned lots allowed 9.71 32.20 2.00 1378.00

Sewer Indicator for municipal sewer service 0.46 0.50 0.00 1.00

FloodPlain Located in 100-year flood plain 0.18 0.38 0.00 1.00

SepticSuit Indicator for septic suitability 0.54 0.50 0.00 1.00

Slope % of parcel with slope > 15% 9.81 23.22 0.00 100.00

ExHouse Has an existing structure 0.54 0.50 0.00 1.00

ForestPrcnt % of parcel with forest cover 38.77 34.98 0.00 100.00

Neighborhood

Preservation % of neighborhood in preservation 5.76 10.23 0.00 88.18

UDArea % of neighborhood undeveloped 26.31 15.94 0.03 100.00

ApprvLots Count of lots approved - 1-year lag 25.96 40.86 0.00 519.00

LandPrice In $1,000s per acre 77.21 66.02 4.22 718.84

HousePrice In $1,000s 128.42 44.68 20.25 493.73

Baltimore Located in Baltimore County 0.58 0.47 0.00 1.00

Carroll Located in Carroll County 0.24 0.43 0.00 1.00

Harford Located in Harford County 0.19 0.39 0.00 1.00

Note - The statistics for the parcel variables are based on the 15,015 land parcels that were developable or developed during our study 

period (1994-2007). The statistics for the neighborhood variables are based on the 667 block groups (neighborhood boundaries) over the 

same time period.
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Table 2. First-Stage Price Regression Results for Control Function Model 

 

 

Coef. St. Err. Coef. St. Err. Coef. St. Err.

Panel A

Neighborhood Characteristics

PreservationArea (%) 0.0027 ** 0.0011 0.0030 *** 0.0011 0.0034 *** 0.0011

UndevelopedArea (%) 0.0020 *** 0.0007 0.0021 *** 0.0007 0.0022 *** 0.0007

Instruments

PreservationAreaAvg (%) -0.5893 *** 0.0727 -0.3864 *** 0.0477 -0.2533 *** 0.0370

UndevelopedAreaAvg (%) -0.0490 * 0.0303 -0.0311 * 0.0182 -0.0329 * 0.0182

Panel B

First-Stage F-Statistic

N = 9,213

* Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level

Distance Cutoffs for Instrumental Variable Formation

54.03 48.08 37.45

Note - This table presents first-stage price regression results with different distance cutoffs used in forming the instrumental 

variables. The dependent variable in each model is the natural log of the quality-adjusted hedonic price index for each focal 

neighborhood in each time period. The instrumental variables for the focal neighborhoods are area-weighted averages based on 

values in distant neighborhoods with distance defined by miles from the border of each focal neighorbood. All models include 

time and county fixed effects. The top portion of the table specifies the distance cutoffs used in constructing the instrumental 

variables. Panel A presents results for the neighborhood and instrumental variables in each model. Panel B presents results for 

joint hypothesis tests of statistical significance for the instrumental variables in each model.   

4 Miles 5 Miles 6 Miles
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Table 3. Overidentification Test of Price Endogeneity 

  

 

 

 

 

(1) (2)

Distance 

Cutoff for 

Instrument

OverID 

Test         

(p -value)

4 Miles 0.6531

5 Miles 0.7967

6 Miles 0.9811

* Significant at 10% level

** Significant at 5% level

*** Significant at 1% level

Note - This table presents 

overidentification using different 

distance cutoffs used in forming the 

instruments. Column (1) is the 

distance cutoff used in forming the 

instruments and column (2) is 

overidentification test (p -value) of 

the instruments.All results are based 

on a bootstrapped model with 300 

reps clustered at the neighborhood 



35 

 

Table 4. Results from IV Duration Model 

 

 

 

 

 

Coef. St. Err.

Parcel Characteristics

Dist (km) -0.0006 0.0017

DistMajRoad (km) 0.0426 *** 0.0160

Area (acres) 0.0007 * 0.0004

ZndLots 0.0022 *** 0.0003

Sewer -0.0299 0.0390

FloodPlain -0.0693 ** 0.0285

SepticSuit 0.0535 * 0.0277

Slope -0.0002 0.0005

ExHouse -0.0054 0.0328

ForestPrcnt -0.0018 *** 0.0003

Constant -6.3427 *** 1.1827

Neighborhood Characteristics

Preservation (%) -0.0040 ** 0.0021

UDArea (%) -0.0043 *** 0.0013

ApprvLots 0.0000 0.0004

LandPrice -0.1255 *** 0.0244

HousePrice 1.0070 *** 0.2633

PriceResid -0.5660 ** 0.2689

PriceResid2 -0.3859 *** 0.1430

Log-Likelihood

* Significant at 10% level;

** Significant at 5% level;

*** Significant at 1% level

-12362.042

Note - The table presents results for the IV duration model. The results 

are produced using a control function methodology (Wrenn et al. 2017). 

The residuals are generated using a 6-mile distance cutoff to form the 

price instruments. The model includes time and county fixed effects. The 

standard errors are based on a block bootstrap procedure with 300 

replications and clustered at the neighborhood level.
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Table 5. Simulation Results for Development Counts and Total Acres Developed 
 

 
 

 

 

 

(1)                

Sewer

(2)                

Non-Sewer

(3)                

Total

A: Uniform Tax (Scenario 1)

Developments (Count) -19 -33 -52

[-17,-21] [-30,-36] [-49,-56]

Area (Acres) -119 -1274 -1393

[-72,-165] [-1073,-1475] [-1183,-1602]

B: Compact Development (Scenario 2)

Developments (Count) 21 -34 -13

[23,19] [-31,-37] [-10,-17]

Area (Acres) 131 -1373 -1243

[178,84] [-1181,-1566] [-1045,-1441]

C: Green Tax (Scenario 3)

Developments (Count) -7 -15 -21

[-5,-9] [-12,-18] [-18,-25]

Area (Acres) -19 -437 -456

[28,-67] [-242,-632] [-253,-659]

Note - This table presents results from a series of land use simulations using the results from the IV duration 

model. In Scenario 1 (A), we impose a uniform tax on all parcels in the data set. In Scenario 2 (B), we  impose 

a tax on parcels in areas without public sewer and a subsidy on parcels in areas with public sewer. In Scenario 3 

(C), we impose a tax on parcels with more than 50% forest cover. For each simulation, we impose either a 1% 

tax or subsidy on a parcel based on its location. The baseline land cover values are taken from the USGS land 

cover data for the Baltimore region. For each scenario, we present results for the change in the number of 

developments created and the change in total acres developed. We present results for these total broken out 

between areas with and without public sewer access (columns 1 and 2) and in total (column 3). All changes 

(comparisons) are made relative to a baseline land use simulation without a change in price. The mean values for 

each columns are shown beside of the tax rate and the 95% confidence intervals are shown in brackets. 



37 

 

Table 6. Simulation Results for Nitrogen and Phosphorus Loads 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nitrogen Phosphorus Nitrogen Phosphorus Nitrogen Phosphorus

1610 177 1864 164 -2197 -125

[2626,593] [250,104] [2886,842] [237,92] [-1144,-3250] [-50,-200]

Scenario 1 Scenario 2 Scenario 3

Note - This table presents results from a series of land use simulations using the results from the IV duration model. In Scenario 1, we 

impose a uniform tax on all parcels in the data set. In Scenario 2, we  impose a tax on parcels in areas without public sewer and a subsidy 

on parcels in areas with public sewer. In Scenario 3, we impose a tax on parcels with more than 50% forest cover. The baseline land cover 

values are taken from the USGS land cover data for the Baltimore region. For each scenario, we present results for the change in total 

nitrogen and phosphorus delivered in pounds. All changes (comparisons) are made relative to a baseline land use simulation without a 

change in price. The mean values for each columns are shown beside of the tax rate and the 95% confidence intervals are shown in 

brackets.
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Appendix A – Creation of Price Variables 

Land Price Indices 

To create our land-price variable we select all arms-length land transactions from the Maryland 

Property View (MDPV) databases that occur between 1994 and 2007. We further refine these data 

by excluding any parcels that already contained a farmland preservation easement on the property, 

which precludes it from being sold for development at full market value. We further exclude 

observations that were clearly not land sales based on the improvement value of the parcel. Finally, 

we exclude the top and bottom 1% of the sample based on the sale price per acre of the parcel to 

reduce the potential influence of outliers. The final data set on land transactions includes 10,669 

arms-length land sales from 1994 to 2007.  

 To create our land price variable we estimate the following hedonic regression 

 𝑙𝑛 (𝑟𝑙𝑝𝑝𝑎𝑐𝑟𝑒𝑙𝑡) = 𝑃𝑎𝑟𝑙𝑡
′ 𝛽 + 𝛿𝑗 + 𝜏 + 𝑒𝑙𝑡 (A1) 

where 𝑟𝑙𝑝𝑝𝑎𝑐𝑟𝑒 is the real land price per acre in year 2000 for land parcel 𝑙, 𝑃𝑎𝑟𝑙𝑡 is a set of parcel-

level controls, and 𝛿 and 𝜏 are block group and year fixed effects, respectively. The set of parcel-

level controls includes the size of the parcel in acres as well as an indicator for whether the sale was 

for a previously subdivided lot, which controls for any differences in price between subdivided and 

unsubdivided parcels. We estimate the land price hedonic model using the pooled data set due to the 

limited number of land sales during our study period (Table A2 lists the number of arms-length land 

transactions for each year in our data). After controlling for land parcel characteristics, the year and 

block group fixed effects are used to construct an estimate of mean land price per acre in each 

neighborhood. For block groups and years without a sale we use a distanced weighted average of the 

values of the block group fixed effects for the closest five block groups in space in each year. Since 

land is an input in the production of housing we expect land prices to negatively affect latent 

profitability. 
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Table A2. Number of arms-length land transactions by year 

 

House Price Indices  

The data used to generate our house-price variable also comes from MDPV. Similar to the approach 

for the land price data, we use only arm’s-length single-family housing transactions between 1994 

and 2007. After excluding the top and bottom 1% of the sample to remove outliers and removing 

any transactions that do not appear to be of single-family dwellings, such as multi-family dwellings 

and commercial structures, the final sample for 1994-2007 has 187,497 individual transactions. We 

convert the nominal sale price of each house to year 2000 dollars using the consumer price index 

(CPI) for the Baltimore metropolitan area. 

 To construct our housing price indices, we follow Sieg et al. (2002) and estimate a series of 

hedonic models that separate out the price of housing services at the neighborhood level from the 

quantity index of housing determined by structural and lot-specific characteristics of the house. To 

do this, we estimate the following house-price hedonic for each year  

 𝑙𝑛(𝑟𝑙ℎ𝑠𝑝𝑟ℎ) = 𝑃𝑗 + 𝐻ℎ
′ 𝛽 + 𝜖ℎ (A2) 

where 𝑟𝑙ℎ𝑠𝑝𝑟ℎ is the real transaction price for house ℎ in census tract 𝑗, 𝑃𝑗 is a fixed effect for the 

block group in which the house is located, and 𝐻ℎ
′  and 𝜖ℎ are the observable and unobservable 

attributes for house ℎ, respectively. We control for structure and lot-specific attributes of each house 

by combining our house price data with the tax assessor’s data for each house. As shown in Sieg et 

al. (2002), 𝑃𝑗 represents the price of housing services for each block group. Repeating the estimation 

Year Observations

1994 851

1995 754

1996 972

1997 922

1998 1047

1999 1035

2000 909

2001 795

2002 831

2003 617

2004 664

2005 572

2006 376

2007 354
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process in equation (A2) for each of the 14 years in our data provides a value for the price of 

housing services for each block group and year in our model.8 This block group and year house price 

value is used in both our duration model and the first-stage regression as our measure of 

neighborhood house price. 

 One concern with the hedonic estimation strategy above is that by estimating yearly, instead 

of pooled, house price hedonics we implicitly assume that the quantity index is changing from year 

to year. However, estimating the quantity index (the coefficient on the housing characteristics) in 

each year comes at a price as sampling error is likely to increase statistical noise in the neighborhood 

fixed effects estimates. This extra noise is not likely to be a major issue in large samples, though it 

may affect the fixed effect estimates as yearly sample sizes decrease. Given that the sample sizes of 

our housing transactions data in each year are quite large (Table A3 lists the number of yearly arms-

length housing transactions in our data), we are able to run separate hedonic models for each year to 

generate our neighborhood-level house price indices. We did, however, run a pooled regression for 

the land price hedonic model in the previous section due to the smaller number of land transactions 

over time. This is an important consideration in applying our method in other settings. 

 

 

Table A3. Number of arms-length housing transactions by year 

 

                                                           
8 A similar method for estimating the price of housing services has been applied in other structural models (see Klaiber 
and Phaneuf (2010) and Walsh (2007), among others). 

Year Observations

1994 11127

1995 11032

1996 12708

1997 12254

1998 13130

1999 14523

2000 12940

2001 13706

2002 14487

2003 14974

2004 16125

2005 14970

2006 14147

2007 11374
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Appendix B – Robustness Checks 

Table B1. First-Stage Results for Land and Housing Price Regressions 

 

 

 

 

 

 

 

 

 

 

 

Coef. St. Err. Coef. St. Err.

Panel A

Neighborhood Characteristics

PreservationArea (%) 0.0032 *** 0.0010 -0.0167 *** 0.0025

UndevelopedArea (%) 0.0022 *** 0.0007 -0.0083 *** 0.0015

Instruments

PreservationAreaAvg (%) -0.1983 *** 0.0292 0.3531 *** 0.0490

UndevelopedAreaAvg (%) -0.0123 0.0177 0.2124 *** 0.0301

Panel B

First-Stage F-Statistic

N = 9,213

* Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level

Note - This table provides results for land and house-price regressions estimated in the first stage 

of the IV duration model. The dependent variable in each model is the natural log of price (house 

and land) for each focal neighborhood in each time period. The instrumental variables for the 

focal neighborhoods are area-weighted averages based on values in neighborhoods outside of a 6-

mile distance cutoff. All models include time and county fixed effects. The top portion of the 

table specifies the model based on the dependent variable. Panel A presents results for the 

neighborhood and instrumental variables in each model. Panel B presents results for joint 

hypothesis tests of statistical significance for the instrumental variables in each model.   

32.23 78.48

House Price Model Land Price Model
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Table B2. Duration Results Controlling for Land and Housing Price Endogeneity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coef. St. Err.

LandPrice -0.0639 0.1925

HousePrice 1.0600 ** 0.5513

PriceResid -0.6050 0.6192

PriceResid2 -0.3964 *** 0.1508

LandPriceResid -0.0526 0.1915

LandPriceResid2 -0.0088 0.0250

Log-Likelihood

* Significant at 10% level

 ** Significant at 5% level

 *** Significant at 1% level

-12364.040

Note - The table presents results for theIV duration models with 

the IV model dealing with both housing and land price 

endogeneity issues. The IV results are produced using a control 

function methodology. The residuals are generated using a 6-mile 

distance cutoff to form the price instruments for housing and 

land. All models include time and county fixed effects. The 

standard errors are based on a block bootstrap procedure with 

300 replications and clustered at the neighborhood level.
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Table B3. Full Results for Model Estimated Using Data from 1994-2004 

 

 

 

 

 

Panel A. First Stage Results

Neighborhood Characteristics

PreservationArea (%) 0.0044 *** 0.0012

UndevelopedArea (%) 0.0021 *** 0.0007

Instruments

PreservationAreaAvg (%) -0.3258 *** 0.0473

UndevelopedAreaAvg (%) -0.0207 0.0188

First-Stage F-Statistic

Panel B. Overidentification Test

p -Value

Panel C. IV Results

Coef. St. Err.

HousePrice 0.7553 *** 0.2579

PriceResid -0.2759 0.2672

PriceResid2 -0.3208 ** 0.1357

Log-Likelihood

* Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level

-9950.747

Note - The table presents a full set of results for an IV duration model estimated 

using only data from 1994 through 2004. The residuals are generated using a 6-

mile distance cutoff to form the price instruments for housing and land. All 

models include time and county fixed effects. The standard errors are based on a 

block bootstrap procedure with 300 replications and clustered at the 

neighborhood level.

0.7493

36.53
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Table B4. Tests of Spatial Error Autocorrelation 

 

Panel A. 100-Meter Distance Buffer

1. Parameter Estimates Coef. St. Err.

HousePrice 1.1134 *** 0.3566

PriceResid -0.7300 ** 0.3640

PriceResid2 -0.0563 0.1646

N

2. Autocorrelation Tests (p-value for LM Statistic)

Weight Matrix Definition

100 Nearest Neighbor

800-Meter Distance Cutoff

Panel B. 200-Meter Distance Buffer

1. Parameter Estimates Coef. St. Err.

HousePrice 1.2319 *** 0.3783

PriceResid -0.9170 ** 0.3916

PriceResid2 -0.1372 0.1992

N

2. Autocorrelation Tests (p-value for LM Statistic)

Weight Matrix Definition

100 Nearest Neighbor

800-Meter Distance Cutoff

* Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level

0.1817

0.9618

0.7119

0.6595

Note - This table presents results from a series of models and statistical tests of spatial error 

autocorrelation for our IV duration model. All models and tests are developed based on the methods 

described in Carrion-Flores and Irwin (2004) where parcels are randomly sampled and surrounding parcels 

are dropped based on some pre-defined distance cutoff in order to reduce the influence of local 

unobservables. We use two distance cutoffs - 100 and 200 meters - based on distance buffers around each 

parcel in the data to select and drop parcels from the data. The results for the 100-meter models are 

shown in Panel A. and the results for the 200-meter models are shown in Panel B. In both panels, we 

display parameter estimates for the price and control function variables for the IV model as well as results 

for a series of spatial error autocorrelation tests (LM statistics) based on two different weighting matrices. 

The LM test statistics in all models are developed based the theory in Pinkse and Slade (1998) and Baltagi 

et al. (2003) for nonlinear panel data models. The estimation for all models follows the procedure 

developed in the main part of the paper.
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Table B5. Results for LPM Model 

 

 

First-Stage F-Statistic

Hansen's J OverID Stat (p -value)

GMM C-Stat Test of Endogeneity (p -value)

Coef. St. Err.

HousePrice Elasticity 2.8999 *** 0.0093

* Significant at 10% level; ** Significant at 5% level; *** Significant at 1% level

Note - The table presents results for an IV linear probability model (GMM LPM) with 

endogeneous house prices. The instruments used in the model are the same as those used 

in the control function equation in the IV duration model with 6-mile distanced 

buffered used the create the instruments. The table presents results for a first-stage F-

stat, a second-stage OverID test, an endogeneity test, and the coefficient value for the 

house-price elasticity produced from the GMM model. The model includes time and 

county fixed effects. The standard errors are clustered at the neighborhood level.

0.0597

36.53

0.5738
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