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Drivers and Synergies in the Adoption of Sustainable Agricultural 

Intensification Practices: A Dynamic Perspective 

 

Abstract 

This paper presents new results on the determinants of adoption of various sustainable 

agricultural intensification practices (SAIPs) which consist of input-intensive and natural 

resource management (NRM) activities, using panel data from Ethiopia. It uses a novel 

statistical approach: a dynamic multivariate probit model which allows for both intertemporal 

and inter-activity correlation between unobserved factors that may drive adoption. We 

complement the analysis using an ordered probit model to estimate the degree of adoption. 

Results reveal complex complementarity and substitution effects, as well as new insights into 

deterministic factors that influence dynamic adoption. We reveal four significant results of 

policy relevance. First, the probability of adoption of each practice significantly increases if 

the household had adopted each practice in a previous period. Second, significant 

complementarities and trade-offs exist between SAIPs over time. In particular, we reveal 

positive synergies between input-intensive and NRM practices, underscoring the importance 

of promoting them as packages. Third, the covariates that drive adoption significantly differ 

between practices, time and appear to reflect synergistic effects implicit in the practices. 

Fourth, the likelihood of adoption of more than two SAIPs increases with the variability of 

historical rainfall, farm size, labour availability, credit, saving, social capital and family 

education. In particular, the likelihood of adoption increases in less fertile soils and steeper 

fields, indicating that farmers use combinations of these practices as an adaptive response to 

soil fertility depletion. By contrast, the likelihood of adoption of more than two SAIPs 

decreases with the variability of lagged (previous year) rainfall, the variability of temperature, 

off-farm income, livestock size and the age of the head. These findings can contribute to 

public and private sector policy design to uplift smallholder agricultural productivity amidst 

increasing land degradation and climate variability. 

 

Keywords: Technology adoption; Maize; Sustainable agriculture; Synergies; Dynamic 

multivariate probit; Smallholder farmers; Africa 
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1. Introduction 

Sustainable agricultural intensification is seen as a feasible strategy to enhance smallholder 

farm productivity with a minimal environmental footprint in Africa. Thus, sustainable 

agricultural intensification practices (SAIPs) have been widely promoted to raise crop yields 

and hence, food security while also enhancing environmental resources. The premise is that 

these twin goals can be achieved by fostering synergistic relationships between the practices, 

conserving nutrients and increasing the economic efficiency of smallholder farmers (The 

Montpellier Panel, 2013, World Bank, 2008, Lee, 2005, Lee David et al., 2006, Gollin et al., 

2005). While there is a consensus that SAIPs are essential for achieving these goals, there is 

no consensus about which types of SAIPs are best suited to smallholder farmers in Africa 

(Wainaina et al., 2016). Broadly, there are two types of SAIPs: input-intensive and natural 

resource management (NRM) practices. The input-intensive practices include external inputs 

(e.g. improved seed, chemical fertilizer). The NRM practices include low-external-input 

agronomic strategies (e.g. reduced tillage, organic manure). In public discussions, these two 

types of SAIPs are often perceived as incompatible (Wainaina et al., 2016, Koppmair et al., 

2017, Hellerstein et al., 2017). Some argue that input-intensive practices with a substantial 

role of private sectors are most appropriate (Stevenson et al., 2013, Pingali, 2007, Borlaug, 

2007), others stress the significant role of NRM practices in light of increasing soil 

degradation and climate variability (Altieri and Toledo, 2011, Altieri, 2002, De Schutter and 

Vanloqueren, 2011). Regardless of these different arguments, adoption rates, especially of the 

NRM practices, remain low despite substantial promotion efforts in the region. 

Most previous adoption studies (Wollni et al., 2010, Melinda and John, 2014, 

Lambrecht et al., 2014, Kathage et al., 2016, Kassie et al., 2010, Becerril and Abdulai, 2010, 

Gebremedhin and Swinton, 2003) have analysed the drivers of adoption of individual SAIPs 

using different data and methods, in which comparisons were not easily possible. Moreover, 

these studies ignore the fact that SAIPs are interdependent (Dorfman, 1996) and can be 

driven by complex factors that may relate to trade-offs and synergistic effects implicit in the 

practices. A few recent studies have addressed these shortcomings by modelling multiple 

SAIPs and a set of covariates simultaneously in a static framework. These studies find that 

input-intensive and NRM practices are not incompatible as often presumed (Wainaina et al., 

2016, Koppmair et al., 2017, Kassie et al., 2015). Instead, positive synergies and trade-offs 
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exist between the two types of practices and the covariates that drive adoption could reflect 

the synergies that are implicit between the practices. Furthermore, smallholder farmers can 

make complex sequential adoption decisions. That is, adoption of one technology may drive 

the adoption of another technology or same technology over time. Therefore, interactivity and 

intertemporal dynamics could have a positive or a negatives spill-over effect on the adoption 

behaviour of farmers. In particular, the intertemporal dynamics of SAIPs adoption is critical 

but has rarely been investigated. Lack of intertemporal dynamics is a core limitation of 

technology adoption empirical literature (Feder et al., 1985, Doss, 2006). Smallholder 

farmers’ technology adoption decisions and their determinants are inherently dynamic. The 

likelihood of adoption of SAIPs can depend on whether or not farmers had tried those 

practices before and evaluated for accrued benefits against costs.  

This study addresses these shortcomings by investigating the drivers of adoption and 

synergies among SAIPs in a dynamic framework. We use nationally representative, balanced 

panel data of 2031 farm households from maize growing areas of Ethiopia. We consider eight 

SAIPs which consist of both input-intensive and NRM practices in 2009/2010 and 

2012/2013. These SAIPs are improved seed, inorganic fertilizer, crops residue retention, 

animal manure, soil and water conservation (SWC)1 measures, legume rotation, legume 

intercropping, and reduced tillage. We estimate a dynamic multivariate probit (MVP) 

adoption model that accounts for the fact that farmers make adoption decisions 

simultaneously, and that there will be interactions between adoptions over time. The dynamic 

MVP simultaneously models the relationships between multiple SAIPs and a set of covariates 

by allowing individual-specific unobserved effects to correlate both between the SAIPs and 

over time. In our context ‘adoption’ is not an irreversible process, and it is possible for the 

practices to be adopted, and then subsequently abandoned. The dynamic MVP model offers 

new insights not only about the simultaneous nature of multiple technologies adoption 

decisions but also the spill-over effect of time in conditioning sequential adoption. The 

approach is novel: we are not aware of any research that addressed dynamic 

interdependencies between SAIPs. Furthermore, we include historical climate and weather 

variabilities, prices, institutional and policy factors as covariates in the dynamic adoption 

model. We complement an analysis of the determinants of the extent of adoption of SAIPs 

(defined as the number of SAIPS adopted) using an ordered probit model. 

                                                           
1 These include structural techniques such as terraces, soil bunds, stone bunds, grass stripes and box ridges.  
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We reveal four major results of policy relevance. First, there is a consistency in the 

impacts of unobservable effects on the probability of adoption of each practice across time: if 

they were more likely to adopt in the earlier year, then this carries through to the second year.  

The result underscores the positive spill-over effects of time in conditioning the adoption 

behaviour of farmers. Although this result may appear to be obvious, given the items under 

consideration, there is no requirement that once adopted the activity has to be maintained. 

This result is new in the strands of SAIPs literature. Second, significant complementarities 

and trade-offs exist among SAIPs. In particular, we reveal important synergies between the 

input-intensive and NRM practices. Thus, we build on emerging empirical evidence 

(Wainaina et al., 2016, Koppmair et al., 2017, Kassie et al., 2015) by incorporating our 

dynamic perspective to challenge the widely-held misperception that these two types of 

practices are incompatible. Indeed, smallholder farmers adopt input-intensive and NRM 

practices as complements or as substitutes depending upon their needs and prior experience. 

Third, we observe that covariates that drive adoption significantly differ between practices, 

and time, and appear to reflect synergistic patterns implicit in the practices. Fourth, the 

likelihood of adoption of more than two SAIPs increases with the variability of historical 

rainfall, farm size, labour availability, access to credit, saving, social capital and family 

education. In particular, the likelihood of adoption of more than two SAIPs increases in less 

fertile soils and steeper fields, indicating farmers use combinations of these practices as an 

adaptive response to reverse soil fertility degradation. By contrast, the likelihood of adoption 

of more than two SAIPs decreases with the variability of lagged (previous year) rainfall, the 

variability of temperature, livestock size, the age of the head, and off-farm income. 

These results can contribute to the debate within the development economics 

community on designing effective programs because efforts to promote adoption of one 

practice may appear to discourage the adoption of another practice if the interdependency 

between the practices is overlooked. The findings are imperative to design policy across sub-

Saharan Africa given its economic growth is intertwined with smallholder agricultural 

productivity amidst increasing land degradation and climate variability. 

 

2. The theoretical framework of the adoption decision 

Households choose a technology or a package of technologies which maximize their expected 

utility (Von Neumann and Morgenstern, 1947) conditional upon the adoption decision. The 
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farmers value their profits or benefits against costs of adoption of a particular technology. 

Here, the underlying behavioural assumption is risk aversion. Most technology adoption 

studies apply the expected utility theory assuming a large proportion of smallholder farmers 

in developing countries are risk-averse (Wollni et al., 2010, Wainaina et al., 2016, Kassie et 

al., 2013, Feder et al., 1985, Dorfman, 1996, Arslan et al., 2014). However, there are other 

competitors to the expected utility theory, such as the prospect theory (Kahneman and 

Tversky, 1979) based on the assumption of loss aversion. That means smallholder farmers 

might value losses much more than gains depending on their production circumstances.  

We assume that smallholder farmers maximize their expected benefit from adoption 

as compared from non-adoption of SAIPs. The expected benefits could include labour or 

input saving as well as increases in output because of improved soil fertility or reduced soil 

erosion (Wollni et al., 2010, Knowler and Bradshaw, 2007). There can be environmental 

(ecosystem) benefits beyond farm-level such as reduced downstream sedimentation, reduced 

flooding and better river flow or wetland resources and carbon sequestration, which can 

enhance food security and biodiversity to the community (World Bank, 2008, Wollni et al., 

2010, Knowler and Bradshaw, 2007). However, the costs of adoption are borne at the farm-

level by farmers even though the benefits are also gained by the society as a whole (World 

Bank, 2008, FAO, 2007). Since smallholder farmers are not getting the full benefits of 

adoption, they are less likely to adopt NRM practices, and adoption rates often remain below 

the expected levels (Shiferaw and Holden, 2000, World Bank, 2008).  

 Nevertheless, smallholder farmers implement both capital-incentive and NRM 

practices. The input-intensive techniques include improved seed, chemical fertilizer, pesticide 

and irrigation. Ethiopian farmers rarely use pesticide and irrigation for maize production, 

similar to Kenyan farmers (Wainaina et al., 2016). Thus, we focus on improved maize seed 

and chemical fertilizer in our adoption analysis. Here, improved maize seed includes fresh 

hybrid seeds and open-pollinated varieties recycled at most for three production seasons. The 

NRM practices involve different low–external input strategies which are mostly implemented 

to curb soil erosion and hence, reverse land degradation. These NRM practices include 

improved agronomic strategies such as conservation agriculture (crop residues, legumes 

rotation, legumes intercropping and reduced tillage), SWC measures, and organic manure. A 

detailed description of these practices and their agro-environmental benefits can be found in 
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the literature (Wollni et al., 2010, Wainaina et al., 2016, Teklewold et al., 2013, Stevenson et 

al., 2014, Lee, 2005, Kassie et al., 2013) and references therein.  

 

3. The dynamic multivariate probit model 

 Adoption decisions of multiple technologies are interdependent on the same farm. 

Smallholder farmers deal with multiple agricultural production constraints, which 

necessitates the adoption of both input-intensive and NRM practices. A few recent studies 

have employed a static multivariate probit model to reveal such interrelationships (Wainaina 

et al., 2016, Koppmair et al., 2017, Kassie et al., 2015). However, technology adoption 

decisions and their driving factors are inherently dynamic. Therefore, we use a dynamic 

multivariate probit (MVP) model that accounts for correlation in unobserved and unmeasured 

factors (error terms) across practices, a set of covariates and time.  

The dynamic MVP model consists of eight binary choice equations in each period. 

The eight binary choices represent the SAIPs, namely improved seed, chemical fertilizer, 

crop residues, reduced tillage, SWC measures, legumes rotation, legume intercropping and 

organic manure. The general model can be written as: 

 

* ' ,itm itm m itmy x            (1) 

1  * 0
,

0 

itm

itm

if y
y

otherwise

 
  
 

       (2) 

 

where: *itmy  is a latent variable that captures the expected benefit from adopting a SAIP m  

in the period t . In a dynamic perspective, a farm household could use a SAIP in a previous 

period, have trailed it and seen accrued benefits which may have  positive or negative effects 

on the adoption of the practice in the next period. The dynamic model consists of eight SAIPs 

in each period ( t =1, 2) giving a total of 16 binary choices. The latent variable *itmy  is 

assumed to be a linear combination of various covariates 'itmx  and the unobserved error term, 

it . Because *itmy  is implicit (latent) which means not observable, the estimation is based on 
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the observed binary choices
itmy , which indicates whether or not a farm household i

implemented a particular SAIP m in the reference period t . The error terms itm  jointly 

follow a multivariate normal distribution each with mean zero and a variance normalized to 

one. The model generates a variance-covariance matrix that describes correlation of 

unobserved factors across the two periods, and the SAIPs. A positive correlation indicates 

complementary technologies or positive spill-over effect of time, whereas a negative 

correlation indicates substitution or an adverse spill-over effect of time. The maximum-

likelihood function of the multivariate normal distribution requires multidimensional 

integration, which can be correctly estimated by simulation methods (Cappellari and Jenkins, 

2003). 

 We complement our analysis by estimating determinants of the number of practices 

adopted per farm (degree of adoption) using an ordered probit model. Because of partial 

adoption (Wollni et al., 2010, Teklewold et al., 2013), it is difficult to quantify the area under 

the SAIPs packages and hence, we use the number of SAIPs as a dependent variable. Here, 

the ordered probit model is justified because SAIPs are interdependent and the probability of 

adoption of each of the practices differ (Wollni et al., 2010). The underlying assumption for 

the ordered probit model is again a random utility framework. The ordinal dependent variable 

is defined as 0,1,2...6ity  . The ordinal dependent variable indicates that farmers may adopt 

zero ( 0)ity  , one ( 1)ity  , two ( 2)ity  , three ( 3)ity  , four ( 4)ity  , five ( 5)ity   or 

adopt more than five ( 6)ity  different SAIPs. The latent variable (Greene, 2016) can be 

written as: 

 

* ' , it it ity x           (3) 

  

where: *ity  denotes the latent choice variable, itx  for covariates and a vector of parameters 

to be estimated,  . The unobserved random error term it with mean zero and variance of 

one. While we do not observe *ity  but we know: 
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y

j y



 

 

 

 

  

  

 

       (4) 

 Where: 1 2 1.. J      are unknown threshold parameters to be estimated with  . The 

ordinal dependent variable for the number of SAIPs ity  0,1,... j . The probabilities of 

adoption of SAIPs is Prob[ ]ity j  which is equivalent to the probability of *ity in the j -th 

range. We also calculate marginal effects using the delta method ( /dy dx ) at the means 

following the recent literature (Wollni et al., 2010, Greene, 2016). 

 

4. Research context, data and adoption covariates 

 

4.1 Research context 

Ethiopia’s economic performance is heavily dependent on rainfed agriculture. The agriculture 

sector contributes about 40% of the national GDP, 90% of exports and 85% of employment. 

Smallholder farm households cultivating land areas below a hectare for subsistence purposes 

account for about 95% of the national agricultural output. Climate variability poses serious 

risks to the stability of crop yields and food security (Di Falco and Veronesi, 2014, Di Falco, 

2014). Soils also tend to be degraded. Cereals production account for 73% of the cropped 

land. Among cereals, maize is the key national staple crop grown by millions of smallholder 

farm households. These farm households account for more than 95% of the total maize area 

and production in the country. Maize production is predominantly rainfed, and only 1% of the 

total maize area is irrigated (Abate et al., 2015). The majority of farm households are 

resource-poor and often forced to pursue continuous maize mono-cropping and undertake 

extractive farming practices such as the removal of crop residues and animal manure. Such 

extractive farming practices coupled with other factors have resulted in varying and stagnant 

maize yields associated with depletion of soil resources. As such, sustainable intensification 

of crop production systems has become an important economic and policy issue in the 

country. Smallholder farm households use a range of SAIPs to mitigate the negative effects 

of soil fertility depletion and climate variability. The general farming context is also similar 

across many countries in sub-Saharan Africa.  
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4.2  Data 

This study is based on farm household data collected from maize growing areas of Ethiopia. 

The data were collected in 2010 and 2013 by the Ethiopian Institute of Agricultural Research 

(EIAR) in collaboration with the International Maize and Wheat Improvement Centre 

(CIMMYT). The data are nationally representative and collected to ensure complete 

geographic and agro-ecological coverage of maize farming system (Figure 1).  

A multistage sampling procedure was used to select study villages from each district and 

farm households from each village. First, about 39 districts were selected based on maize 

production potential from five regional states namely, Oromia, Amhara, Tigray, Ben-

Shangul-Gumuz, and Southern Nations and Nationalities Peoples Region (SNNPR). A 

proportionate random sampling procedure was used to select 3 to 6 villages in each district 

and 10 to 24 farm households in each village. The surveys used to collect these data were 

comprehensive and included detailed information about production activities and farm 

management practices.  We use a balanced panel of 2031 farm households in 2009/2010 and 

2012/2013 for our dynamic adoption analysis.  

 

< Insert Figure 1 around here > 

The data on production inputs and output, SAIPs and farm-related covariates were 

collected at the plot level. Typically, farm households vary the size and type of plot they 

allocate to maize production over different periods. Thus, we constructed panel data at the 

farm (household) level. Such aggregation strategies are common in empirical research 

(Ndlovu et al., 2014, Bezabih and Sarr, 2012, Udry, 1996, Alem et al., 2010). The household 

level data are matched with village level climate data using global positioning system (GPS) 

coordinates that were obtained during the farm household surveys.  

 

4.3 Technology adoption covariates  

A range of factors (covariates) can drive the adoption of SAIPs. These include but are not 

limited to climatic factors, input-output prices, farm characteristics, socioeconomic and 

institutional factors as well as personal factors. We include a number of such covariates in 
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our dynamic adoption model following the existing theoretical and empirical literature (Doss, 

2006, Wainaina et al., 2016, Marenya and Barrett, 2007, Lee, 2005, Knowler and Bradshaw, 

2007, Kassie et al., 2010, Gollin et al., 2005, Feder et al., 1985). The significance and 

direction of influence of these covariates can depend on the nature of the technology, as well 

as interdependencies between practices and temporal dynamics. A few studies provide an 

estimate of the prior direction of influence of these covariates on SAIPs (Wainaina et al., 

2016, Knowler and Bradshaw, 2007). We briefly describe these covariates in the context of 

our study. 

Climate and weather patterns can influence adoption behaviour. Both past and current 

weather patterns can shape smallholder farmers’ livelihood portfolios as well as, the 

management practices they implement (Sesmero et al., 2018, Asfaw et al., 2016, Arslan et al., 

2015). Thus, we include historical annual rainfall and its variability in the analysis. We also 

included the variability of lagged year (previous year) rainfall because of its expected 

negative impact on the adoption of input-intensive practices (Teklewold et al., 2017, Bezabih 

and Sarr, 2012, Alem et al., 2010). Likewise, we control for historical maximum temperature 

and its coefficient of variation. 

 Prices of inputs and output could also influence the adoption of technologies. We 

include the prices of chemical fertilizer, labour and seed, which are normalized by the maize 

grain price. Most adoption studies do not include prices in their analysis due to either lack of 

data or variation within the sample. 

 Farm characteristics can drive the adoption of SAIPs. We include soil fertility status 

and slope of the farm as crucial covariates. We also include altitude to capture agro-

ecological differences of the farming households. The proximity of cultivated land to 

homestead also can influence the adoption of technologies. 

Socioeconomic and institutional factors can affect technology adoption. We include 

age, education and gender of the farming household head. We also control for the education 

level of other household members to capture the intra-household dynamics in the adoption 

decision (Asfaw and Admassie, 2004; Doss, 2006). Farm size (maize area), total livestock 

units (TLU), adult equivalent labour are included as indicators of resource availability. We 

also include policy-related variables such as credit, cash savings and off-farm income. We 

also included asset value as a measure of household's wealth. Furthermore, we included 

indicators of institutional/social capital: access to supportive institutions, relatives, a trust of 
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grain traders, information, tenure status, and distance to the nearest input market. As also 

highlighted by Wainaina et al. (2016), some of these covariates may be endogenous, which 

means that the parameter estimates in the results section should not be interpreted as causal. 

Here, our main focus is on the direction and the significance of covariates with SAIPs 

adoption. Table 1 presents descriptive statistics for SAIPs and the covariates used for the 

empirical analysis. 

  < Insert Table 1 around here > 

 

5. Results and Discussion 

 

5.1 Trade-offs and synergies between practices 

Before presenting the drivers of SAIPs adoption, we discuss the results of the error term 

correlation matrix which provides the interrelationships between the practices. Based on the 

likelihood ratio test, we reject the null hypothesis of zero correlation between the error terms 

at 1% significance level. This result suggests that the dynamic MVP model is preferred over 

the single-equation probit models. In this section, we focus on trade-offs and synergies 

between the different practices as well as the spill-over effects of time in conditioning the 

adoption of SAIPs. A positive correlation indicates complementary technologies or positive 

spill-over impact of time, whereas a negative correlation indicates substitution or an adverse 

spill-over effect of time. In some cases, the negative correlation also could reflect 

compatibility of the practices across a range of production domains (Wainaina et al., 2016). 

Table 2 presents the results of interactivity and intertemporal adoption of the practices 

based on the correlation matrix from the dynamic MVP model. The estimation results reveal 

evidence of interdependencies among the practices. The results can be read in three panels.  

The top left-hand panel gives the correlation between practices, when t =1.  The lower right-

hand panel gives the correlation between practices, when t =2.  The lower left panel gives the 

correlation between practices, across time.  Hence the leading diagonal of the lower left panel 

shows the correlation for each practice with itself, across the two time periods. These results 

demonstrate a highly statistically significant correlation among the practices in both periods. 

These results suggest that the adoption of one practice could drive the adoption of another 

practice. These results are consistent with recent studies that reported interdependencies 

among SAIPs (Wainaina et al., 2016, Koppmair et al., 2017, Kassie et al., 2015, Kassie et al., 
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2013). These studies, however, were based on a static framework and had not addressed the 

temporal dynamics of the adoption decision. 

Our results demonstrate that the probability of adoption of each practice is 

significantly correlated across time. These are shown by the positive and highly statistically 

significant correlation of each practice over time as shown in the lower-left hand panel of 

Table 2 (e.g. 
2t

CF vs. 
1t

CF , 
2t

CR vs. 
1t

CR , etc.). The results underscore the positive spill-over 

effects of time in conditioning the adoption behaviour of farmers. This result is new in the 

strands of SAIPs literature. 

<Insert Table 2 around here> 

The results also reveal complementarities and trade-offs among SAIPs. In particular, 

the results reveal important synergies between modern inputs and NRM practices. In 

2009/2010, inorganic fertilizer has a significant negative association with crop residues, 

manure and minimum tillage, but a significant positive association with improved seed and 

legume intercropping (top left panel). Also, the use of improved seed has a significant 

negative association with minimum tillage and legume intercropping but a significant 

positive association with legume rotation. We find similar results in 2012/2013 (bottom right 

panel). The interactivity correlations over time also reveal consistent results. Our findings are 

consistent with recent studies that provide evidence on the beneficial synergies using those 

practices in a static framework (Wainaina et al., 2016, Koppmair et al., 2017). Thus, we build 

on this early evidence by incorporating our dynamic perspective to challenge the widely-held 

misperception that these two types of practices are incompatible. Indeed, smallholder farmers 

adopt input-intensive and NRM practices as complements or as substitutes depending upon 

their needs and prior experience.  

Interestingly, we revealed many positive correlations between the two types of 

practices for Ethiopian farmers. This result implies that beneficial synergies or positive 

complementarities can be exploited by use of input-intensive practices (improved seed or 

chemical fertilizer) with the conservation agriculture practices (The Montpellier Panel, 2013, 

World Bank, 2008, Lee, 2005, Gollin et al., 2005, Kassie et al., 2015). This result is in 

contrast with Wainaina et al. (2016) who find a few positive correlations between the input-

intensive and NRM practices for Kenyan farmers. These contrasts underscore the importance 

of niche-tailored development pathways to achieving sustainable agricultural intensification 
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in Africa (Stevenson et al., 2014, Lee David et al., 2006, Knowler and Bradshaw, 2007). It is 

also imperative to assess whether or not the observed interdependencies in the practices 

influence the drivers of adoption. We discuss these issues in the next sections. 

 

5.2 Drivers of dynamic technology adoption  

In the previous section, we analysed interactivity and intertemporal correlation and revealed 

beneficial synergies and trade-offs between input-intensive and NRM practices. In this 

section, we focus on the driving factors of adoption with particular attention to possible 

differences in the covariates between input-intensive and NRM practices. As pointed out by 

Wainaina et al. (2016) systematic differences in the drivers (covariates) could indicate that 

each type of practice is used under different conditions, whereas similarities in the covariates 

could suggest that different types of practices may be possible under similar settings. We also 

investigate whether or not the drivers (covariates) reflect certain patterns of complementarity 

and trade-offs implicit in the practices across both periods.  

Table 3 presents the coefficient estimates from the dynamic MVP model. The 

coefficient estimates indicate the direction and significance of the association between the 

SAIPs and covariates for adoption in a dynamic perspective. We find evidence that factors 

that drive adoption differ between practices. While certain factors mainly drive the adoption 

of NRM practices, others influence the adoption of input-intensive practices, and such 

patterns appear to reflect the complementarity and trade-offs implicit in those practices. We 

also observe that some of the drivers of adoption differ across the two periods2. Below, we 

discuss these results. 

 Climate factors are found to have a significant association with SAIPs adoption. We 

find that historical abundance of rainfall has a significant association with the adoption of 

SAIPs, but with different signs. For example, it increases the likelihood of adoption of 

reduced tillage, residue retention, inorganic fertilizer and legume intercropping but decreases 

the probability of adoption of improved seed and legume rotation; all else equal. The 

variability of historical rainfall also has similar effects. However, the variability of lagged 

(past year) rainfall increases the likelihood of adoption of SWC, organic manure, reduced 

                                                           
2 We tested the null hypothesis that the coefficients of covariates for each of the practices across the two periods 

are equal and we reject the null by the likelihood ratio test at 1% level of significance level.  
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tillage and inorganic fertilizer but decreases the probability of adoption of improved seed, 

residue retention and legumes intercropping. The variability of lagged rainfall has a 

significant association with many of SAIPs in both periods. In particular, it had a significant 

positive association with the adoption of improved seed in the first period but had a reverse 

effect in the second period. The result underscores the relevance of understanding the 

temporal dynamics of technology adoption (Doss, 2006, Feder et al., 1985). Not surprisingly, 

higher temperature increases the likelihood of adoption of residue retention, organic manure, 

improved seeds and legume intercropping but decreases the probability of adopting reduced 

tillage. The variability of historical temperature is also more likely to increase the likelihood 

of adoption of crop residues, reduced tillage and legume intercropping but tend to decrease 

the probability of adopting modern inputs (improved seed and inorganic fertilizer). The 

results underscore the importance of climate factors in explaining heterogeneity in the 

dynamic adoption of multiple practices which can have subsequent weather-induced welfare 

impacts (Teklewold et al., 2017, Sesmero et al., 2018, Arslan et al., 2015). However, most 

previous adoption studies do not control climate factors due to lack of georeferenced 

climatology data. 

 

<Insert Table 3 around here> 

Input prices (normalised by maize grain price) also explain dynamic adoption 

decision. The price of fertilizer increased the likelihood of adoption of chemical fertilizer and 

improved seed (complementary inputs) in the first period but decreased their likelihood of 

adoption in the second period, ceteris paribus. It also has a positive association with the 

adoption of crop residues and manure but a negative association with the adoption of SWC 

measures. Higher seed price is more associated with increased adoption of complementary 

practices such as improved seed and chemical fertilizer and, these results are consistent 

across the two periods. By contrast, higher seed price has a negative association with the 

adoption of NRM practices except for SWC measures in the second period. The negative 

association between legume intercropping and higher seed price could be due to its 

complementarity with the input-intensive practices such as improved seed or chemical 

fertilizer. Likewise, labour price appears to be positively associated with the NRM practices 

except legume intercropping and negatively associated with the input-intensive practices. It 

appears that the nature of SAIPs interrelationships, their complementary and trade-off 
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patterns and temporal dynamics play roles in conditioning the adoption process. The results 

underline the relevance of understanding the temporal dynamics and interrelationships among 

practices when investigating the drivers of adoption.  

Among the socioeconomic characteristics, family labour availability has a positive 

association with many of SAIPs but a negative association with reduced tillage. The results 

reinforce the critical role of labour in driving the adoption of SAIPs (Doss, 2006, Lee, 2005, 

Lee David et al., 2006, Gollin et al., 2005). Conversely, the adoption of minimum tillage 

appears to be a response to lack of labour. The results also reveal that education level of 

household members and education level of the household head appear to have differential 

effects on the likelihood of SAIPs adoption. A higher level of education of family members 

has a significant positive association with the likelihood of adoption of modern inputs such as 

(improved seeds or chemical fertilizer) and their NRM complement, legume rotation. 

However, the education level of the household head has the reverse effect. Contrarily, the 

education level of the household head is positively associated with the adoption of reduced 

(minimum) tillage. These results underscore the fact that group decisions are made contrary 

to what is often presumed because of the skewed emphases given to the household head. The 

results are consistent with (Asfaw and Admassie, 2004) who revealed education of family 

members to be more critical than the education level of the household head for fertilizer 

adoption in Ethiopia. Similarly, Wollni et al. (2010) found education level of family members 

to have a positive association with the adoption of SWC measures in the Honduran hillsides. 

Thus, understanding intra-household dynamics sheds light regarding the adoption of SAIPs. 

Age of the household head is also negatively associated with adoption of SAIPs except for 

reduced tillage. Given the rapid youth migration to urban areas for better wages, enhancing 

the sustainability of land degradation in Ethiopia and elsewhere could be undermined 

especially for the labour-intensive NRM practices. Our results also show that male household 

heads are more likely to implement inorganic fertilizer, SWC measures and legume 

intercropping than female-headed households. On the other hand, female-headed households 

are more likely to apply manure possibly because of the proximity of their farms to 

homestead. 

Households’ resource endowment also matter in driving SAIPs adoption. Strikingly, 

farm size is found to drive the adoption of all the SAIPs. By contrast, off-farm income is 

found to have the reverse effect. The result suggests that off-farm work might take away farm 
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labour that could have been used to implement SAIPs. Alternatively, cash from the off-farm 

income may not have been transferred to invest in the use of SAIPs. These results point to the 

need to be cautious when promoting linkages between farm and non-farm activities in 

developing countries where markets are imperfect (Haggblade et al., 1989, Chavas et al., 

2005). Lack of oxen or livestock is also negatively associated with the adoption of modern 

inputs (chemical fertilizer and improved seed), and their NRM complement, organic manure. 

Farmers also appear to implement reduced tillage and legume intercropping when they face 

oxen constraints. Higher assets value (wealth) positively influences the adoption of both 

modern and NRM practices.  

Institutional factors are also key drivers of SAIPs adoption. A having higher 

institutional capital as proxied by the number of supportive institutions has a significant 

positive association with the adoption of SWC measures, improved seed and chemical 

fertilizer. This result could relate to the differential roles of private and public sector 

extension services in expanding these practices. However, the institutional capital is 

negatively associated with the adoption of residue retention and reduced tillage, which are the 

two pillars of conservation agriculture. This result could be due to lack of proper farm power 

to implement conservation agriculture practices (Temesgen et al., 2009, Hobbs et al., 2008, 

Baudron et al., 2015). Ethiopian farmers use inefficient traditional oxen-drawn power for 

ploughing their farm. Farmers are also more likely to implement SWC measures, crop 

residues and legume rotation on their farms relative to rented farms. However, they tend to 

use a relatively more improved seed on rented farms. Access to credit is positively associated 

with the probability of adoption of inorganic fertilizer, and improved seed, which is expected 

given credit is primarily geared toward the promotion of these modern inputs. Savings of 

cash also appear to drive the adoption SAIPs. Having higher social capital as indicated by 

access to trusted grain traders and having many relatives in the village, access to mobile 

phone and proximity of input market also play significant roles in the adoption of SAIPs 

albeit with different signs for the various practices.  

Farm characteristics also significantly influence the adoption behaviour of farmers. 

Consistent with the previous literature (Wollni et al., 2010, Gebremedhin and Swinton, 2003, 

Wainaina et al., 2016, Marenya and Barrett, 2007), the probability of adoption of SWC, 

reduced tillage and crop residue increases in stepper farms where they are needed to curve 

soil erosion. The input-intensive practices (chemical fertilizer and improved seed), as well as 



 
 

18 
 

their NRM substitutes such as legume rotation and manure, are less likely to be implemented 

in stepper farms. Farmers are more likely to adopt input-intensive practices (improved seed 

and chemical fertilizer) in less fertile soils possibly to combat soil fertility depletion. 

However, they are more likely to apply manure around homestead areas because it is labour-

incentive to transport to distant farms. On the other hand, farmers are more likely to use 

chemical fertilizer, crop residues and legume rotation on distant farms. Finally, chemical 

fertilizer, improved seeds and organic manure are more likely applied in the high land areas, 

whereas minimum tillage and legume rotation are more probably constructed in the low land 

areas. These results could be related to the niche of the agro-ecology of the farming system 

that is more favourable to certain SAIPs than others. Such niche-targeting of SAIPs were also 

observed for Kenyan maize farmers (Wainaina et al., 2016). The adoption of legume 

intercropping is found to be time-dependent; positively associated in the first period but 

negatively associated in the second period.  

 

5.3  Determinants of the extent of adoption of practices 

In the previous section, we discussed the factors that drive the probability of adoption of the 

practices. In this section, we discuss determinants of the number of practices used on a farm 

to capture the extent (degree) of adoption. Table 4 shows the results from the random effects 

ordered probit model3. The results show that historical rainfall, variability of lagged rainfall, 

seed price, family labour, farm size, family education, access to credit, household asset, being 

male household head, saving of cash, social capital (traders and relatives) and institutional 

support have significant positive effects on the number of SAIPs adopted. Further, farmers 

appear to implement a relatively higher number of SAIPs on less fertile soils and steeper 

fields. By contrast, off-farm income, livestock size, the age of head, altitude, and distance of 

farm from homestead have a significant negative effect on the number of SAIPs adopted. 

Farmers are more likely to implement more SAIPs in the second period compared to the first 

period indicating the positive spill-over effect of time on the extent of technology adoption 

(see also section 5.1).  

 

                                                           
3 The likelihood ratio test suggests that we reject the pooled ordered probit model in favour of the random 

effects ordered probit model at 1% significance level. However, the two models are numerically similar. 
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<Insert table 4 around here> 

Because the coefficients of ordered probit model are not readily interpretable (Wollni 

et al., 2010), we report marginal effects that reveal the impact of changes in the covariates on 

the response probabilities as shown in Table 5. We observe that given the rainfed nature of 

maize production, the variability of rainfall in the previous year is critical for the extent of 

adoption of SAIPs. For every additional increase in the coefficient of rainfall variation in the 

past year, the probability of applying more than two SAIPs decreases by 40% but the 

variability of historical rainfall has the reverse effect (see also section 5.2). Farmers appear to 

make short-term and long-term decisions corresponding to current weather and long-term 

climate patterns as also observed by Sesmero et al. (2018).  

 

<Insert table 5 around here> 

With regards to the non-climate factors, the likelihood of adopting more than two 

SAIPs decreases by 13.2% with a percentage increase in the share of off-farm income. Age of 

the household head and altitude also have a negative but negligible impact on the adoption of 

more than two SAIPs. On the other hand, a few variables are found to drive the extent of 

adoption of multiple SAIPs. The probability of adopting more than two SAIPs increases by 

16.3% in the second period compared to the first period. This result underscores the positive 

spill-over effect of time in the adoption of technology as discussed in section 5. Each 

additional hectare of farm increases the probability of adoption of more than two SAIPs by 

8%. Farmers that save cash are 6% more likely to adopt more than two SAIPs. Similarly, 

farmers that have access to credit are 3.2% more likely to implement three or more SAIPs. 

The likelihood of adoption of more than two SAIPs also increases in less fertile soils and in 

steeper fields suggesting that combinations of these practices are also implemented to reverse 

the problem of soil degradation. Many other covariates appear to have a positive but 

negligible impact on the likelihood of adoption of more than two SAIPs.  

 

6. Conclusions and policy implications 

We use nationally representative panel data from Ethiopia to analyse the drivers and 

synergies in the adoption of sustainable agricultural intensification practices (SAIPs). The 

SAIPs we consider include two main types, namely input-intensive and natural resource 
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management (NRM) practices. The input-intensive practices include improved maize seeds 

and inorganic fertilizer, and the NRM practices include soil and water conservation (SWC) 

measures, organic manure, crop residue retention, reduced tillage, legume rotation and 

legume intercropping. We used a dynamic MVP model that allows not only interactivity 

correlation but also an intertemporal correlation of the technologies adopted. We also 

complement our analysis using an ordered probit model to reveal the extent of adoption of the 

practices while recognizing interdependencies among them. 

  We reveal four important findings of relevance to policy. First, we find the 

probability of adoption of each practice significantly increases if the household had adopted 

each practice in the previous period. The result underscores the positive spill-over effect of 

time in conditioning the adoption of multiple SAIPs by smallholder farm households. This 

result is new in the strands of SAIPs literature. These findings point to the need for continuity 

of programs aimed at promoting SAIPs in smallholder agricultural systems. 

Second, we find clear evidence of complementarities and trade-offs among SAIPs. In 

particular, we reveal many positive synergies between modern inputs and NRM practices for 

Ethiopian maize farmers over time. Thus, we build on the emerging evidence (e.g. Wainaina 

et al., 2016, Koppmair et al., 2017, Kassie et al., 2015) by incorporating our dynamic 

perspective to challenge the widely-held misperception that these two types of practices are 

incompatible. Indeed, smallholder farmers adopt modern inputs and NRM practices as 

complements or as substitutes depending upon their needs and prior experience. These results 

underline the relevance of implementing both input-intensive and NRM practices to bring a 

steady, sustainable agricultural intensification in predominantly capital-deficient and 

environmentally-degraded production systems of sub-Saharan Africa. 

Third, we find clear evidence that factors that drive adoption differ between practices. 

For instance, the variability of historical rainfall and temperature increase the likelihood of 

adoption of certain NRM practices (e.g. crop residues and SWC), whereas the variability of 

lagged (past year) rainfall variation conditions the use of input-intensive practices such as 

improved seed and chemical fertilizer. Strikingly, we find farm size to increase the likelihood 

of adoption of all SAIPs while off-farm income has the reverse effect. This farm and off-farm 

disconnect in the adoption process calls for policy attention when designing programs to 

promote SAIPs. We also observe that the factors that drive SAIPs appear to reflect the 

complementarity and synergistic patterns implicit in those practices. 
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Fourth, the likelihood of implementing more than two SAIPs (degree of adoption) 

increases with the variability of historical rainfall, farm size, labour availability, access to 

credit, saving, social capital and family education. In particular, the likelihood of adoption of 

two or more SAIPs is likely to increase in less fertile soils and steeper fields, indicating 

farmers use combinations of these practices to mitigate soil degradation. By contrast, the 

likelihood of adoption of two or more of SAIPs decreases with the variability of lagged 

(previous year) rainfall, the variability of historical temperature, livestock size, the age of the 

household head, off-farm income, altitude and distance of farm from the homestead. 

Overall, our findings contribute to the debate within the development economics 

community on designing effective programs. This is so because efforts to promote adoption 

of one practice may appear to discourage adoption of another practice due to lack of 

understanding of the underlying interdependencies among the practices. The results can also 

offer insights for public and private sectors that support the widespread adoption of these 

practices by smallholder farmers. The findings can also be imperative for policymakers in 

African given its economic growth is intertwined with smallholder farm productivity amidst 

increasing soil degradation and climate variability. As also argued by Wainaina et al. (2016), 

the underutilization of external inputs in the African smallholder sector calls for a balanced 

use of a portfolio of SAIPs with both input-intensive and NRM practices to induce a 

sustainable productivity growth. A piecemeal linear approach of promoting these 

technologies may not bring intended outcomes: increasing productivity while ensuring 

environmental sustainability. More research on the tangible impacts of these practices 

including the combinations that lead to a maximal benefit to smallholder farmers including 

offsetting production risks would be useful in guiding niche-tailored program design. There 

could also be a possibility of direct incentive payments (World Bank, 2008, FAO, 2007) to 

smallholder farmers in developing countries such as Ethiopia for the ecosystem services they 

could potentially provide for the society. Further research should investigate these issues in 

depth. 
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Table 1: Variable lists and descriptive statistics   

 

Variable name Variable definition 2009/2010 2012/2013 

  Mean SD Mean SD 

Sustainable agricultural intensification practices (SAIPs)     

Chemical fertilizer  =1 if farmer used soil and water conservation (SWC) practices, 0 otherwise 0.66 0.47 0.73 0.45 

Crop residues retention =1 if farmer left any crop residues on farm in previous season, 0 otherwise 0.29 0.46 0.18 0.39 

Manure =1 if farmer used animal manure, 0 otherwise 0.51 0.50 0.48 0.50 

Improved seeds =1 if maize seeds used are improved varieties, 0 otherwise 0.34 0.47 0.66 0.47 

Minimum tillage =1 if farmer’s average ploughing frequency was at least two, 0 if above two 0.16 0.36 0.13 0.33 

Legume rotation =1 if farmer rotated maize with legumes, 0 otherwise 0.12 0.32 0.07 0.26 

SWC =1 if farmer applied chemical fertilizers, 0 otherwise 0.23 0.42 0.32 0.47 

Legume intercropping =1 if farmer intercropped maize with legumes, 0 otherwise 0.16 0.36 0.28 0.45 

Climate factors      

Rainfall abundance Long-term average annual amount of rainfall in 100mm (1990-2011) 13.00 3.69 12.98 3.63 

Historical rainfall variability Coefficient of variation of long-term annual rainfall (1990-2011) 0.12 0.02 0.13 0.02 

Lagged rainfall variability Coefficient of variation of monthly rainfall of lagged years (2008 and 2011)  0.88 0.14 0.94 0.17 

Temperature variability Coefficient of variation of monthly maximum temperature (1990-2011) 0.03 0.02 0.03 0.02 

Maximum temperature Average long-term maximum temperature (°C)  (1990-2011) 27.11 2.06 27.14 2.04 

Prices       

Fertilizer price Relative fertilizer price, normalized by the grain price of maize output  3.18 1.19 2.93 0.67 

Improved seed price Relative improved seed price, normalized by the grain price of maize output  6.31 2.90 4.43 1.89 

Labour price Relative labour price, normalized by the grain price of maize output  9.33 4.37 4.63 2.33 

Household socioeconomic characteristics     

Family labour  Household labour availability converted into adult equivalent  4.92 1.96 5.08 1.91 

Family education  Average education level at the household (years of schooling) for age >=7 2.99 2.01 3.06 1.95 

Education level of head Education level of the household head (years of schooling) 3.00 3.31 2.98 3.32 

Farm size Farm size allocated for maize in hectares  0.91 0.82 0.74 0.67 

Ox0 =1 if farmer has no oxen, 0 otherwise 0.19 0.39 0.26 0.44 

Ox1 =1 if farmer has one ox, 0 otherwise 0.25 0.43 0.26 0.44 

TLU Total livestock holding in tropical livestock units  6.28 5.80 6.00 5.51 

Ln asset value Logarithm of farmer’s asset value in Birr 8.86 1.31 9.76 1.31 

Off-farm income Share of off-farm cash in total cash revenue 0.22 0.28 0.25 0.29 
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Saving =1 if farmer had savings, 0 otherwise 0.50 0.50 0.46 0.50 

Credit =1 if farmer has access to credit, 0 otherwise 0.16 0.36 0.31 0.46 

Gender  =1 if household head is male, 0  if female 0.93 0.26 0.93 0.25 

Age  Age of the household head 42.05 12.71 44.63 12.79 

Farm characteristics      

Soil fertility  Soil fertility status as perceived by the farmer (1=good, 2=medium, 3=poor) 1.60 0.55 1.53 0.57 

Slope of field Type of slope as perceived by farmer (1=flat, =medium, 3=steep) 1.36 0.49 1.35 0.52 

Altitude  Altitude on which the household is located in metres above sea level 17.73 2.67 17.73 2.67 

Ln plot distance Logarithm of average plot walking distance from the residence in minutes   1.67 1.14 1.56 1.21 

Institutional/Social capital      

Institutions Number of institutions farmer is member of in the village 2.64 1.52 2.67 2.03 

Ln distance to inputs Logarithm of distance to input markets  1.45 0.98 1.30 0.90 

Traders  Number of grain traders farmer knows and trusts  2.03 4.28 2.08 4.00 

Relatives  Number of relatives farmer has in and outside the village 11.61 14.07 17.93 22.94 

Information  =1 if farmer has mobile phone, 0 otherwise 0.19 0.39 0.49 0.50 

Tenure Share of owned land area allocated in total maize area 0.82 0.33 0.89 0.26 

 

Notes: SD= Standard deviation. 
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Table 2: Correlation matrix for the dynamic multivariate probit model 

 

Notes: CF=Chemical fertilizer, CR=Crop residues, M=Manure, IS=Improved seed, MT=Minimum tillage, LR=Legume rotation, SWC=Soil and water conservation, LI=Legume 

intercropping. Subscript 1t = 2009/2010 and 2t =2012/2013. *, ** and *** are significant at 10%, 5% and 1% level. Standard errors are not reported to conserve space.
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CF  0.52*** -0.05 0.01 0.13*** -0.14*** 0.08 0.08* 0.19*** 1 

       

2t
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2t
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2t
LR  0.16** -0.03 -0.02 0.13** 0.05 0.21*** 0.06 -0.03 0.06 -0.06 -0.03 -0.01 -0.04 1 

  

2t
SWC  0.15*** 0.02 0.09** -0.04 -0.02 0.01 0.19*** 0.09* 0.28*** 0.08* 0.06 0.14*** -0.001 -0.06 1  

2t
LI  -0.02 0.003 0.16*** -0.18*** 0.11** 0.02 0.17*** 0.27*** 0.16*** 0.16*** 0.17*** 0.03 0.08 -0.04 0.02 1 
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Table 3: Coefficient estimates of the dynamic multivariate probit model  

 

Drivers of SAIPs adoption 2009/2010    2012/2013    

Chemical 

fertilizer 

Crop 

residues 

Manure Improved  

 seeds 

Chemical 

fertilizer 

Crop residues Manure Improved seeds 

Climate factors         

Rainfall abundance 0.039*** 0.045*** 0.037*** -0.049*** 0.057*** 0.043*** -0.007 -0.012 

Historical rainfall variability 0.381 6.297*** -3.507* 2.597 6.847*** -2.921 -1.936 1.776 

Lagged rainfall variability -1.609*** -1.274*** 0.792*** 0.826*** -1.352*** -1.094*** 0.138 -0.843*** 

Temperature variability -6.373*** 3.270* -1.303 -3.05 -3.245 0.543 0.119 -5.445*** 

Maximum temperature 0.023 0.058*** 0.005 0.064*** -0.014 0.006 0.040** 0.015 

Prices          

Fertilizer price -0.074** 0.099*** -0.001 -0.154*** 0.350*** -0.134** 0.125** 0.315*** 

Improved seed price 0.091*** -0.001 -0.008 0.077*** 0.117*** -0.023 -0.002 0.060*** 

Labour price -0.036*** 0.035*** 0.009 -0.026*** -0.083*** 0.025 0.000 -0.016 

Household socioeconomic characteristics 

Family labour  0.020 -0.008 -0.002 0.054*** -0.029 0.005 0.046*** 0.056*** 

Family education  0.048** -0.046** -0.022 0.109*** 0.044** 0.01 -0.005 0.023 

Education level of head -0.024* 0.013 0.003 -0.019 -0.050*** 0.008 -0.012 -0.030** 

Farm size 0.162*** 0.090** 0.104** 0.138*** 0.320*** 0.044 0.144*** 0.254*** 

Ox0 -0.244** -0.051 -0.268*** -0.108 -0.234** 0.009 -0.239*** -0.310*** 

Ox1 -0.136* -0.057 -0.104 -0.083 0.037 -0.201** -0.051 -0.086 

TLU -0.015** 0.000 0.000 -0.014** 0.000 0.015* -0.001 -0.017** 

Ln asset value 0.066** 0.045 0.011 -0.019 0.073** 0.065** -0.045* 0.068** 

Off-farm cash -0.352*** 0.009 -0.316*** -0.235** -0.19 -0.076 -0.123 -0.304*** 

Saving 0.106 0.329*** 0.053 -0.051 0.137** -0.140* -0.026 0.149** 

Credit 0.189** -0.065 -0.051 0.203** 0.146** 0.004 -0.045 0.001 

Gender  -0.005 -0.061 0.183 0.159 0.240* 0.114 -0.252** 0.078 

Age  -0.012*** 0.004 0.004 -0.012*** -0.016*** -0.010*** -0.001 -0.015*** 

Farm characteristics          

Soil fertility  0.211*** -0.149** -0.125** 0.278*** 0.058 0.122* -0.02 0.071 
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Slope of field -0.105 0.188*** -0.091 -0.053 0.000 0.180*** -0.118* -0.154** 

Altitude  0.064*** -0.019 0.046*** -0.011 0.080*** 0.005 0.020 0.033** 

Ln plot distance 0.071** 0.069** -0.191*** -0.001 0.108*** 0.023 -0.158*** 0.033 

Institutional/Social capital         

Institutions  0.085*** -0.114*** -0.019 0.061*** 0.073*** 0.007 0.025 0.037** 

Ln distance to inputs -0.080** 0.020 0.030 0.005 -0.105*** -0.067* 0.035 -0.033 

Traders  0.012 0.005 0.004 0.012* -0.002 -0.023** 0.009 -0.003 

Relatives  0.000 0.006*** -0.002 0.005** 0.003** 0.001 0.000 0.002 

Information  0.109 -0.178** -0.104 0.053 0.124* -0.016 -0.045 0.177** 

Tenure -0.099 0.306*** 0.027 0.034 0.076 -0.012 0.075 -0.216* 

Constant -0.827 -3.539*** -1.368 -2.761*** -2.484** -0.706 -0.825 -0.942 

 

Drivers of SAIPs adoption 

 

2009/2010 

  
 

2012/2013 

   

Minimum 

tillage 

Legume 

rotation 

SWC Legume 

intercropping 

Minimum 

tillage 

Legume 

rotation 

SWC Legume 

intercropping 

Climate factors         

Rainfall abundance 0.079*** -0.084*** 0.056*** -0.004 0.069*** -0.068*** -0.012 0.033** 

Historical rainfall variability 6.207** -6.037** 9.011*** 6.660** 0.664 -2.739 -3.083 2.588 

Lagged rainfall variability -0.359 -0.248 0.963*** -3.430*** 1.473*** -0.799** 0.477** -1.350*** 

Temperature variability 11.006*** 1.781 -1.775 -7.275*** 3.470 2.257 3.963** -15.447*** 

Maximum temperature -0.011 0.023 -0.041** 0.014 -0.053** -0.044 -0.018 -0.105*** 

Prices          

Fertilizer price 0.009 -0.075 -0.079** 0.059 -0.046 -0.072 -0.008 -0.028 

Improved seed price -0.046*** 0.002 -0.040*** -0.047*** -0.049* -0.046* 0.060*** 0.012 

Labour price 0.021** 0.039*** -0.005 -0.007 0.065*** 0.069*** 0.040*** -0.077*** 

Household socioeconomic characteristics  

Family labour  -0.055** 0.049** -0.017 -0.007 -0.026 0.025 0.012 0.028 

Family education  -0.038 0.037 0.026 0.004 -0.016 0.032 0.035* -0.022 

Education level of head 0.044*** 0.007 -0.017 0.008 0.043** 0.009 0.007 -0.004 

Farm size 0.083* 0.092* -0.032 0.082 -0.088 0.081 0.052 0.074 

Ox0 0.503*** 0.085 0.015 0.268** 0.478*** 0.001 0.057 0.141 

Ox1 0.205** -0.013 0.139 0.129 0.095 -0.027 0.060 0.013 
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TLU -0.011 0.002 -0.006 -0.011 0.001 0.000 0.020*** -0.01 

Ln asset value 0.032 -0.033 0.075** -0.037 -0.028 0.000 -0.015 0.026 

Off-farm cash 0.461*** -0.185 -0.309** -0.225 0.061 -0.047 -0.371*** 0.077 

Saving 0.049 -0.134 0.115* 0.154* 0.120 -0.199** 0.070 0.09 

Credit 0.041 -0.008 -0.054 0.004 0.245*** 0.058 0.014 0.071 

Gender  -0.151 -0.100 0.071 0.010 -0.071 0.155 0.273** 0.441*** 

Age  0.014*** -0.007* -0.008** 0.002 0.011*** -0.005 -0.008*** -0.002 

Farm characteristics         

Soil fertility  -0.095 0.052 0.040 0.015 0.046 -0.027 0.098* -0.038 

Slope of field 0.210*** -0.299*** 0.361*** -0.004 0.103 0.137 0.421*** 0.109 

Altitude  -0.176*** -0.034* 0.000 0.026 -0.205*** -0.085*** 0.003 -0.011 

Ln plot distance -0.028 0.077** -0.021 0.073** -0.047 0.095** 0.053* -0.068** 

Institutional/Social capital         

Institutions  -0.056** 0.052* 0.111*** 0.019 -0.057** 0.006 0.048*** -0.011 

Ln distance to inputs 0.034 0.009 0.023 0.026 0.037 -0.058 -0.022 0.019 

Traders  -0.005 0.007 -0.006 0.006 0.016* -0.001 0.038*** -0.013* 

Relatives  0.002 0.007*** 0.001 -0.006* 0.002 -0.003 0.001 0.008*** 

Information  0.157 0.215** -0.198** -0.254** 0.068 0.095 -0.221*** -0.098 

Tenure 0.091 0.265** 0.090 0.004 0.057 0.063 0.223* 0.153 

Constant -0.357 0.535 -2.958*** 0.633 0.738 2.676* -1.679* 2.821*** 

 

Notes:*, ** and *** are significant at 10%, 5% and 1% probability level. N=2031; log likelihood = -14570.36; Wald 
2  (496) = 2976.58***; likelihood ratio test of rho 

2  (120) 

=1266.46***. To reduce simulation bias, the number of simulation draws (50) was set above the square root of the number observations (Cappellari and Jenkins, 2003). Standard 

errors are not reported to conserve space.  
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Table 4: Results of the ordered probit model for the number of sustainable agricultural intensification 

practices adopted 

 

Technology adoption covariates Random effects ordered probit Ordered probit  

 Coefficient

  

SE Coefficient  SE 

Climate factors     

Rainfall abundance 0.034*** 0.008 0.030*** 0.007 

Historical rainfall variability 1.446 1.260 1.703 1.072 

Lagged rainfall variability -1.119*** 0.149 -1.013*** 0.129 

Temperature variability -1.570 1.221 -1.444 1.026 

Maximum temperature 0.005 0.013 0.005 0.011 

Prices     

Fertilizer price -0.005 0.025 0.002 0.023 

Improved seed price 0.029*** 0.009 0.029*** 0.008 

Labour price -0.002 0.006 -0.002 0.005 

Household socioeconomic characteristics 

Family labour  0.026** 0.012 0.022** 0.010 

Family education  0.033** 0.013 0.033*** 0.011 

Education level of head -0.012 0.008 -0.012* 0.007 

Farm size 0.220*** 0.030 0.200*** 0.026 

Ox0 -0.062 0.058 -0.054 0.051 

Ox1 -0.022 0.050 -0.025 0.045 

TLU -0.009* 0.005 -0.009** 0.004 

Ln asset value 0.045** 0.017 0.040*** 0.015 

Off-farm cash -0.369*** 0.069 -0.350*** 0.062 

Saving 0.154*** 0.039 0.153*** 0.035 

Credit 0.088** 0.044 0.072* 0.040 

Gender  0.156** 0.080 0.161** 0.068 

Age  -0.009*** 0.002 -0.009*** 0.002 

Farm characteristics     

Soil fertility  0.068* 0.034 0.061** 0.031 

Slope of field 0.134*** 0.039 0.123*** 0.035 

Altitude  -0.018* 0.010 -0.015* 0.008 

Ln plot distance -0.022 0.017 -0.019 0.015 

Institutional/Social capital     

Institutions  0.044*** 0.011 0.040*** 0.010 

Ln distance to inputs -0.011 0.020 -0.007 0.018 

Traders  0.012*** 0.004 0.012*** 0.004 

Relatives  0.004*** 0.001 0.004*** 0.001 

Information  -0.022 0.046 -0.038 0.041 

Tenure 0.097 0.063 0.106* 0.057 

Time effect     

Year2013 0.461*** 0.052 0.426*** 0.048 

Cuttoff  1 -1.413** 0.569 -1.131 0.482 

Cuttoff  2 -0.358 0.568 -0.183 0.481 

Cuttoff  3 0.600 0.568 0.679 0.482 

Cuttoff  4 1.539*** 0.568 1.525 0.482 

Cuttoff  5 2.506*** 0.568 2.402 0.482 

Cuttoff  6 3.524*** 0.572 3.324 0.485 

Log likelihood  -6320.35  6350.88  

Sigma2_u 0.230 0.035 Na  

Pseudo R2 Na  0.052  

 

Notes:*, ** and *** are significant at 10%, 5% and 1% probability level. Na = not applicable. SE = Standard 

error. Wald 
2  (32) = 598.09; Prob>

2 =0.000.  LR 
2  (32) = 696.41; Prob > 

2 = 0.000. 
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Table 5: Marginal effects of the ordered probit model 

 

Technology Adoption covariates  Number of sustainable agricultural intensification practices adopted 

Probability 

( 0 | )it ity x  

Probability 

( 1| )it ity x  
Probability 

( 2 | )it ity x  

Probability 

( 3 | )it ity x  

Probability 

( 4 | )it ity x  

Probability 

( 5 | )it ity x  

Probability 

( 6 | )it ity x  

Climate factors        

Rainfall abundance -0.002 -0.006 -0.005 0.003 0.006 0.003 0.001 

Historical rainfall variability -0.081 -0.242 -0.194 0.119 0.254 0.122 0.022 

Lagged rainfall variability 0.063 0.187 0.150 -0.092 -0.197 -0.094 -0.017 

Temperature variability 0.088 0.262 0.211 -0.129 -0.276 -0.133 -0.023 

Maximum temperature 0.000 -0.001 -0.001 0.000 0.001 0.000 0.000 

Prices         

Fertilizer price 0.000 0.001 0.001 0.000 -0.001 0.000 0.000 

Improved seed price -0.002 -0.005 -0.004 0.002 0.005 0.002 0.0001 

Labour price 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Household socioeconomic characteristics 

Family labour  -0.001 -0.004 -0.003 0.002 0.004 0.002 0.0001 

Family education  -0.002 -0.005 -0.004 0.003 0.006 0.003 0.0001 

Education level of head 0.001 0.002 0.002 -0.001 -0.002 -0.001 -0.0002 

Farm size -0.012 -0.037 -0.030 0.018 0.039 0.019 0.003 

Ox0 0.004 0.010 0.008 -0.005 -0.011 -0.005 -0.001 

Ox1 0.001 0.004 0.003 -0.002 -0.004 -0.002 -0.0003 

TLU 0.0001 0.001 0.001 -0.001 -0.002 -0.001 -0.0001 

Ln asset value -0.003 -0.007 -0.006 0.004 0.008 0.004 0.001 

Off-farm cash 0.021 0.062 0.050 -0.030 -0.065 -0.031 -0.006 

Saving -0.009 -0.026 -0.021 0.013 0.027 0.013 0.002 

Credit -0.005 -0.015 -0.012 0.007 0.016 0.008 0.001 

Gender  -0.010 -0.027 -0.019 0.015 0.027 0.012 0.002 

Age  0.001 0.002 0.001 -0.001 -0.002 -0.001 -0.0002 
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Notes: Marginal effects ( /dy dx ) are calculated at the mean for continuous variables and a discrete change from the base for the factor variables. Standard errors are not reported 

to conserve space.  

Farm characteristics        

Soil fertility  -0.004 -0.011 -0.009 0.006 0.012 0.006 0.001 

Slope of field -0.007 -0.022 -0.018 0.011 0.023 0.011 0.002 

Altitude  0.001 0.003 0.002 -0.001 -0.003 -0.002 -0.0003 

Ln plot distance 0.001 0.004 0.003 -0.002 -0.004 -0.002 -0.0003 

Institutional/Social capital        

Institutions  -0.002 -0.007 -0.006 0.004 0.008 0.004 0.001 

Ln distance to inputs 0.001 0.002 0.002 -0.001 -0.002 -0.001 -0.0002 

Traders  -0.001 -0.002 -0.002 0.001 0.002 0.001 0.0002 

Relatives  0.0001 -0.001 -0.001 0.0001 0.001 0.0001 0.0001 

Information  0.001 0.004 0.003 -0.002 -0.004 -0.002 0.000 

Tenure -0.005 -0.016 -0.013 0.008 0.017 0.008 0.001 

Time effect        

Year2013 -0.026 -0.076 -0.061 0.037 0.080 0.039 0.007 
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Figure 1: Map of the study villages repressing the major maize growing areas of Ethiopia  
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