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Abstract
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1 Introduction

According to the Bayesian paradigm, as new discoveries are made and new information

becomes available, the universe shrinks: With the arrival of new information, events replace

the prior universal state space to become the posterior state space, or universe of discourse.

This process of “destruction” reflects the impossibility, in the Bayesian framework, of

expanding the state space and of updating the probabilities of null events, coupled with

the fact that conditioning on new information renders null events that, a-priori, were

nonnull. Yet, experience and intuition alike contradict this view of the world. Becoming

accustomed to possibilities that were once inconceivable is part of history and our own life

experience. There is a sense, therefore, in which our universe expands as we become aware

of new opportunities.

In this paper we take a step toward modeling the process of growing awareness and

expansion of the universe, or state space, in its wake.1 To model the evolution of beliefs in

response to growing awareness, we invoke the theory of choice under uncertainty; borrowing

its language and structure while modifying it to fit our purpose. In particular, we allow for

new consequences and feasible acts to be discovered and for new evidence to establish, in the

mind of decision makers, new links between acts and consequences. The interpretation of

the updating is somewhat different for the discovery of new feasible acts and consequences

on the one hand and the discovery of new links between feasible acts and consequences

on the other. The discovery of new feasible acts and consequences represents growing

awareness and leads to genuine expansion of the decision maker’s universe. By contrast,

new evidence suggesting the existence of links between feasible acts and consequences that

were previously considered conceivable but unfeasible, results in rendering nonnull events

that prior to the discovery of the new links were null. This updating of zero probability

events is part of the reverse Bayesianism nature of our model.

In this paper, a decision maker’s initial perception of the state-space is determined

by primitive sets of what he considers to be feasible acts and feasible consequences. The

conceivable state space consists of all the mappings from the set of feasible acts to that

of the consequences.2 Taking only those mappings from the set of feasible acts to the set
1Dekel, Lipman, and Rustichini (1998) argue that standard state spaces preclude unawareness. A choice

theoretic approach therefore needs a more general point of departure than Savage (1954) and Anscombe

and Aumann (1963).
2Here we follow the approach to defining a state space described in Schmeidler and Wakker (1987) and
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of consequences that the decision maker actually considers possible, defines a (subjective)

feasible state space. The discovery of new consequences and/or new feasible acts expands

both the conceivable and feasible state spaces, capturing the decision maker’s growing

awareness. The discovery of new feasible states (that is, new links between feasible acts

and consequences) that the decision maker previously believed to be impossible expands

the feasible state space but not the conceivable state space. Within this framework, we

model the evolution of beliefs in a way that can be described as “reverse Bayesianism.”

We assume throughout that, within a given conceivable state space, decision makers’

choice behavior is governed by the axioms of subjective expected utility theory. Our axioms

linking preferences under different levels of awareness imply that as the state space expands,

probability mass is shifted proportionally away from the nonnull events in the prior state

space to events created as a result of the expansion of the state space. When new links

between feasible acts and consequences are discovered, null events become nonnull, requir-

ing the shifting of probability mass, proportionally, away from the prior nonnull events to

the prior null events that have now become nonnull. We note that the same process ap-

plies in the inverse direction. The discovery that certain hypotheses about the connections

between feasible acts and consequences are invalid render some events null. This requires

redistributing the probability mass assigned to prior nonnull events, proportionally, among

the remaining nonnull events. This process amounts to Bayesian updating.

Preference relations corresponding to different levels of awareness are defined over dif-

ferent domains. To link the preference relations across their corresponding domains, we

introduce a new axiom, dubbed invariant risk preferences, asserting that the ranking of

lotteries is independent of the set of acts under consideration.

The main novelties of this paper are the analytical framework within which growing

awareness may be formalized and its consequences analyzed, and an axiomatic depiction of

the evolution of preferences as the decision maker’s awareness grows. The reverse Bayesian-

ism aspect of our approach is driven by axioms that have the flavor of Savage’s (1954) sure

thing principle.

The systematic evolution of beliefs depicted by our approach, makes it possible to

predict, at least partially, the decision maker’s behavior when something unforeseen occurs.

With the discovery of a contingency that he was unaware of, the decision maker’s prior

Karni and Schmeidler (1991).
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conception – or “model” – of the universe is falsified. When this happens, the decision

maker’s prior model need not be discarded; it can still provide some guidance for behavior in

the “new” expanded universe. In other words, decision makers can use their experiences and

understanding of the prior state space to guide their choices when their growing awareness

enables them to construct an expanded state space.

The exploration of the issue of unawareness in the literature has invoked at least three

different approaches. (a) the epistemic approach (see Fagin and Halpern [1988], Modica and

Rustichini [1999], Halpern [2001], Li [2009], Hill [2010], and Heifetz, Meier, and Schipper

[2006]); (b) the game-theoretic, or interactive decision making, approach (see Halpern and

Rego [2008], Heifetz, Meier, and Schipper [2011], Grant and Quiggin [2011]); and (c) the

choice-theoretic approach (see Kochov [2010], Schipper [2011], Li [2008], Lehrer and Teper

[2011], Ahn and Ergin [2010]).

Our approach falls within the third category. However, unlike other studies that take

the choice-theoretic approach, we do not take the state space as given.3 Instead, we

construct the relevant state space from the sets of feasible acts and consequences and the

perceived links between them. In so doing, we abstract from concrete interpretations of

the states and treat them as abstract resolutions of uncertainty. Consequently, decision

makers’ unawareness concerns feasible acts, feasible consequences, and/or their links.

Kochov (2010) considers a decision maker who knows that his perception of the universe

may be incomplete. He characterizes the collection of foreseen events and shows that the

result of the decision maker being aware of his incomplete perception of the environment

is that his beliefs are represented by a non-singleton set of priors, which he updates as his

perception of the environment becomes more precise.

Schipper (2011) focuses on detecting unawareness. Taking as primitive a lattice of

disjoint state spaces in the Anscombe and Aumann (1963) model,4 he defines acts as
3In the epistemic approach it is possible to construct, canonically, the state space from syntax (e.g.,

Halpern and Rego [2008], Heifetz, Meier, and Schipper [2008]). This allows a more direct comparison

between the epistemic approach and the decision-theoretic approach pursued in this paper. In particular, the

two approaches attribute unawareness to the limitation of language rather than to the power of reasoning.

The choice theoretic approach is a special case of the epistemic approach in that its depiction of the state

space does not contain anything related to the epistemic status of the decision maker.
4A lattice in Schipper’s framework could be constructed from primitives of the present model as follows:

Fix finite sets of acts and consequences and consider the power sets corresponding to these sets. For each

subset of acts and consequences, define a conceivable state space, as we do below. The set of all conceivable
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mappings from the union of these state spaces to the set of consequences. Thus an act

in Schipper’s model corresponds to an equivalence class of acts in our model. Another

difference between Schipper’s model and the approach taken here is that he defines the

preference relation on the set of all acts while we define the preference relation on the set

of conceivable acts given a state space. Consequently, unlike in this work, in Schipper

(2011) the decision maker may not understand how an act assigns consequences to states

(because he may be unaware of some event). These differences reflect diverse motivations.

While our main interest is modeling growing awareness, Schipper’s main interest is the

behavioral implications of unawareness of some events.

Li (2008) takes as primitives a fixed set of consequences and two, exogenously given,

state spaces that correspond to a decision maker being less than fully aware and fully

aware. Decision makers are characterized by preference relations, conditional on the level

of awareness, over Anscombe-Aumann acts on the corresponding state spaces. Li considers

two types of unawareness: “pure unawareness,” depicting situations in which the decision

maker’s perception of the environment is coarse, and “partial unawareness,” depicting

situations in which the decision maker’s perception of the universe is a subset of the full

state space. Partial unawareness has a flavor of unawareness of consequences or links

between acts and consequences. However, since Li uses a traditional approach in taking

her two state spaces as exogenously given, unawareness is directly about states, and thus

her model is silent on how the discovery of new consequences or new scientific links would

translate into the evolution of the state space and into behavior. Also, her model is unable

to accommodate the discovery of new acts.

Ahn and Ergin (2010) introduce a theory of decision making under uncertainty de-

signed to capture the idea that the evaluation of acts may depend on the manner in which

the underlying events, or contingencies, are described. Formally speaking, these descrip-

tions, or frames, are finite partitions of the state space, and the subjective likelihoods of

events are quantified by a partition-dependent probability measure which is the normal-

ized nonadditive set function over events. Acts are functions measurable with respect to

the algebras generated by the partitions. Decision makers in this model are characterized

by a family of partition-dependent preference relations representable by expected utility

functionals. This analytical framework accommodates what Ahn and Ergin refer to as over-

state spaces thus defined, constitute a complete lattice of spaces with partial order defined by set inclusion

on acts and consequences.
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looked events. Growing alertness in their model takes the form of refining the partitions

so that overlooked events become cells of the new partitions.

As will become clear below, the approach of Ahn and Ergin is different from the ap-

proach in this paper in several important respects. First, their model is not designed to, and

therefore, cannot accommodate, the discovery of new consequences and associated expan-

sion of the state space following such discoveries. Second, their model is neither designed

to nor can it accommodate the discovery of new links between acts and consequences and

the updating of the probabilities of null events. Where the two approaches display similar

features is in the case in which awareness grows in the wake of discovery of new acts. In our

model this implies that what was considered a state at a lower level of awareness becomes

an event at the higher level of awareness. Consequently, the higher level of awareness

requires the partition of such events. In the work of Ahn and Ergin the refined partition

of the state space expands the set of acts. In their model, however, the nonaditivity of

the support function implies that the sum of the probabilities of the subevents may exceed

(fall short of) that of the original event. By contrast, in the model presented here, the

probabilities of the subevents of the finer partition sum up to the probability of the original

event. Since the relative probabilities of the cells of the original partition change, and as

a result the preferences among acts that are measurable with respects to these partitions

change, this difference implies distinct behavioral implications of the two models.

Lehrer and Teper (2011) model growing awareness due to the decision maker’s improved

ability, in the wake of information acquisition, to distinguish among events. As in Ahn

and Ergin (2010), the state space in the model of Lehrer and Teper takes the form of

finer partitions of the existing state space. Thus, most of the discussion in the previous

paragraph applies to Lehrer and Teper as well, with the modification that their decision

maker has Knightian preferences on the expanded set of acts.

2 The Meanings of Growing Awareness

The examples below illustrate the sense in which a decision maker’s universe expands in

the wake of his growing awareness.
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2.1 Discovery of new consequences

The discovery of the New World. Columbus set out to discover a new sea route to

India, presumably taking into account consequences such as ending the trip at the bottom

of the ocean, having to turn back, losing some ships and crew members, reaching India,

etc. He could not have included, among the set of consequences, the discovery of a new

continent. This discovery expanded the universe for mankind.

The discovery of syphilis. The discovery of the New World ushered in its wake

a new consequence of sexual intercourse. Presumably, sexual intercourse and the risk of

contracting venereal diseases were well known in the Old World. Syphilis, however, was a

new consequence whose discovery expanded the universe of the Europeans.

Discovery of a “new” consequence expands the state space and may affect the decision

maker’s ordinal preferences over acts. In other words, two acts that agree on the “old”

state space may become distinct when associated with new consequences; as a result, one

of the newly defined acts may be strictly preferred over the other.

2.2 Discovery of new feasible acts

Artificial self-sustaining nuclear chain reaction. After the discovery of nuclear fission,

Szilárd and Fermi discovered neutron multiplication in uranium, proving that a nuclear

chain reaction by this mechanism was possible. On December 2, 1942, Fermi created the

first artificial self-sustaining nuclear chain reaction, thus making it feasible to use nuclear

energy, for peaceful and military purposes. The consequences, such as the use of energy to

produce electricity or explosions, were known long before the scientists became aware of

the new possibilities of producing these consequences by means of nuclear fission.

The invention of sound recordings. By making it possible to preserve sounds, the

invention of sound recording devices expanded the state space to include future replays of

currently produced sounds.

The invention of new financial instruments. The invention of option trading

opened up new possibilities of creating portfolios and diversifying risks. Again, the con-

sequences, monetary gains and losses, were there before the invention. The new financial

instruments represent new processes of attaining the same consequences.

7



2.3 Discovery of new links and changing beliefs

Yellow fever. To prevent ants from crawling into hospitals’ beds, French doctors working

in Panama during the French attempt to build the Panama Canal, placed the legs of the

beds in bowls of water. These pools of water provided breeding grounds for the mosquitoes

carrying yellow fever. Not being aware of the way the yellow fever was transmitted, the

French did not conceive that their actions contributed to the propagation of the disease.

Later, when the connection between stagnant water, mosquitoes, and yellow fever was un-

derstood, the Americans were able to eradicate yellow fever, eliminating a major stumbling

point to the construction of the Panama Canal.

The velocity of light. According to Newton’s mechanics the speed of light emitted

by a flashlight moving in the forward direction should exceed the known speed of light

by the speed of the flashlight. The discovery that, despite the expected boost from being

emitted by a very fast source, the light is going forward at the usual speed of 186,300

miles per second, ushered in a revision of our understanding of the physical world. If we

interpret the emission of light by a flashlight moving in the forward direction as an act,

then the consequence, reaching a target in the direction of the movement at the speed of

186,300 miles per second, was not considered possible according to the Newtonian view of

the universe. Establishing that this is not only possible but a necessary outcome, led to a

revision of our beliefs about the feasible state space.

3 The Analytical Framework

We introduce a unifying framework within which the different sources of growing awareness

and changing beliefs may be described and analyzed. We also illustrate how the different

notions of growing awareness can be formalized in this framework.

3.1 Conceivable state spaces

States of nature, or states for short, are abstract representations of resolutions of uncer-

tainty. To define the state space, we invoke the approach of Schmeidler and Wakker (1987)

and Karni and Schmeidler (1991).5 According to this approach, there is a finite, nonempty
5See also Gilboa (2009, Chapter 11) for a detailed discussion and an ingenious use of this approach to

formulating the state space as means of resolving Newcomb’s paradox.
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set, F, of feasible acts, and a finite, nonempty set, C, of feasible consequences. Together

these sets determine a conceivable state space, CF , whose elements depict the resolutions

of uncertainty. In other words, being a function on the set of feasible acts to the set of

consequences, a state specifies the unique consequence that is associated with every act,

thereby resolving all uncertainty.

Once the set of conceivable states is fixed, the set of acts is expanded to include what

we refer to as conceivable acts. The notion of conceivable acts captures the idea of acts that

are imaginable given the conceivable state space. In particular, we assume that the decision

maker can imagine acts whose outcomes are lotteries with consequences in C as prizes. Let

∆ (C) be the set of all such lotteries. Formally, p ∈ ∆ (C) is a function p : C → [0, 1]

satisfying Σc∈Cp (c) = 1. Then the set of conceivable acts consists of the functions in the

set

F̂ := {f : CF → ∆ (C)}. (1)

Notice that with the definition of ∆(C) above, for any C ⊂ C ′, any p ∈ ∆(C) is also an

element of ∆(C ′) with p(c) = 0 for all c ∈ C ′ − C. Likewise, q ∈ ∆(C ′) is an element

of ∆(C) if q(c) = 0 for all c ∈ C ′ − C. We identify c ∈ C with the degenerate lottery

δc ∈ ∆ (C) that assigns c the unit probability mass. Hence, F ⊂ F̂ . As is usually done, we

abuse notation and use p to also denote the constant act that returns the lottery p in each

state.

To illustrate these concepts we introduce the following simple example. Let C = {x, y},
F = {f1, f2}, then the conceivable state space consists of four states as described below:

F\CF s1 s2 s3 s4

f1 x x y y

f2 x y x y

Once the set of conceivable states is fixed, the set of acts may be expanded. For example,

by adding the constant acts, f3 and f4, whose respective payoffs are x and y in every state.

More generally, conceivable acts may be regarded as bets on the outcomes of the feasible

acts whose payoffs are lotteries on the set of feasible consequences. Karni and Schmeidler

(1991) observe that “In practice, the distinction between feasible and conceivable acts is

not always crucial, and in many applications the sets of states and consequences are taken

as primitives.” (p. 1766). In the present context, however, the distinction between feasible
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and conceivable acts is crucial. It is the set of feasible acts, together with the feasible

consequences that shape the decision maker’s image of the state space.

Discovery of new consequences expand the conceivable state space. For instance, let C

denote the initial set of consequences and suppose that a new consequence, c̄, is discovered.

The set of consequences of which the decision maker is aware then expands to C ′ = C∪{c̄}.
The discovery of c̄ requires a reformulation of the initial model, incorporating the new

consequence into the range of the feasible acts. We denote the set of feasible acts with

extended range by F ∗. Using these notations, the expanded conceivable state space is

(C ′)F ∗ . The event (C ′)F ∗−CF represents the expansion of the decision maker’s conceivable

state space. The corresponding expanded set of conceivable acts is given by,

F̂ ∗ := {f :
(
C ′
)F ∗ → ∆

(
C ′
)
}. (2)

As an illustration, let there be two feasible acts, F = {f1, f2}, and two consequences,

C = {c1, c2}. The resulting conceivable state space is given by CF and thus consists of

four states as depicted in the following matrix:

F\CF s1 s2 s3 s4

f1 c1 c2 c1 c2

f2 c1 c1 c2 c2

(3)

Suppose that a new consequence, c3, is discovered. The new conceivable state space consists

of the 9 states in the set (C ′)F ∗ :

F ∗\ (C ′)F ∗ s1 s2 s3 s4 s5 s6 s7 s8 s9

f1 c1 c2 c1 c2 c3 c3 c1 c2 c3

f2 c1 c1 c2 c2 c1 c2 c3 c3 c3

Discovery of new feasible acts also expands the conceivable state space, albeit in a

different way. To grasp the difference, assume again that F = {f1, f2} and C = {c1, c2}.
The resulting conceivable state space is depicted in the matrix labeled (3). Suppose that a

new feasible act, say f3, is discovered. The set of feasible acts is now F ′ = {f1, f2, f3}. The

discovery of the new feasible act changes the decision maker’s conceivable state space.6

The new conceivable state space, CF ′ , consists of the eight states depicted as follows
6Unlike in this paper, in which the state space expands and is partitioned more finely as a result of the

discovery of new acts, in Ahn and Ergin (2010) new acts are defined as a result of a finer partition of an
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F ′\CF ′ s1 s2 s3 s4 s5 s6 s7 s8

f1 c1 c2 c1 c2 c1 c2 c1 c2

f2 c1 c1 c2 c2 c1 c1 c2 c2

f3 c1 c1 c1 c1 c2 c2 c2 c2

The elements of the expanded state space CF ′ constitute a finer partition of the original

state space CF . In other words, each state in CF is a non-degenerate event in the expanded

state space CF ′ . For example, the state s1 := (c1, c1) ∈ CF is the event E = {s1, s5} in

the state space CF ′ . The new set of conceivable acts is

F̂ ′ := {f : CF ′ → ∆ (C)}.

Note that, unlike the discovery of new consequences, the discovery of new acts requires

that the length of the vector of consequences defining each state increases. As we show

later, this aspect of the evolving state space requires special treatment.

3.2 The feasible state space

The decision maker’s perception of the state space is bounded by his awareness of the sets of

feasible acts and consequences. However, he also entertains beliefs about the possible links

between feasible acts and their potential consequences. These beliefs manifest themselves

in, and may be inferred from, the decision makers’ choice behavior.

To formalize this idea we consider a decision maker whose choice behavior is charac-

terized by a preference relation <F̂ on F̂ .7 We denote by �F̂ and ∼F̂ the asymmetric

and symmetric parts of <F̂ , with the interpretations of strict preference and indifference,

respectively. For any f ∈ F̂ , p ∈ ∆ (C) , and s ∈ CF , let f−sp be the act in F̂ obtained from

f by replacing its s−th coordinate with p. A state s ∈ CF is said to be null if f−sp ∼F̂ f−sq

for all p, q ∈ ∆ (C) . A state is said to be nonnull if it is not null. Denote by EN the set of

null states and let S (F,C) = CF −EN be the set of all nonnull states. Henceforth we refer

to S (F,C) as the feasible state space. Consistently with the revealed-preference approach,

existing state space. These acts represent growing alertness to possibilities that were always present and

were overlooked. The uniqueness result (Theorem 2) of Ahn and Ergin depends on the notion of gradual

filtration. This rules out the discovery of new acts which, as we shall show below, implies a simultaneous

partition of all events.
7More formally, the preference relation is a binary relation on F̂ .
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we make no distinction between feasible states and nonnull states. “Unawareness” of links

between feasible acts and consequences, according to our interpretation, means awareness

that such links are conceivable but believed to be impossible.

New information (e.g., scientific evidence, an observation) may change the decision

maker’s beliefs concerning the links between feasible acts and consequences and his per-

ception of the feasible state space. Unlike the discovery of new feasible consequences and/or

new feasible acts, which expands both the set of conceivable and the set of feasible states,

changes of the decision maker’s beliefs concerning the links between them changes the set

of feasible states but leaves the set of conceivable states intact. Consequently, the discovery

of new feasible consequences and/or new feasible acts represent a genuine expansion of the

decision maker’s universe (that is, his perception of the state space), while new information

concerning the links between feasible acts and consequences entails expansion or contrac-

tion of the feasible state space. This may require the updating of zero probability events

in the existing conceivable state space that, under the new information, might occur, or

nullifying positive probability events that are considered no longer possible. When new

links become possible, the decision maker includes the consequences f (s) , for all f ∈ F
and some s ∈ CF − S (F,C), in the ranges he considers possible of the feasible acts. Vice

versa when old links are eliminated. We denote the newly defined feasible state space

incorporating the new links by S′ (F,C), the corresponding set of conceivable acts by F̂S′ ,

and the decision maker’s posterior preference relation by <F̂S′
.8

To see how changes in the perceived links change the feasible state space, consider the

case in which there are two feasible acts, F = {f1, f2} and two consequences, C = {c1, c2}.
The conceivable state space CF consists of four states as in matrix (3). If the decision maker

does not believe that the act f2 may result in the consequence c2, (that is, whether f1 results

in c1 or c2, the consequence c2 is considered impossible if f2 is chosen) then the states (c2, c2)

and (c1, c2) are null. In other words, the feasible state space is S (F,C) = {(c1, c1) , (c2, c1)}.
Suppose that new evidence establishes that f2 may result in c2, (independently of the

consequence that is associated with the choice of f1) and, as a result, the decision maker

realizes that his belief that certain states cannot possibly obtain is untenable. Then,

following the discovery of the new (and final) link, the feasible and conceivable state spaces

coincide (that is, S′ (F,C) = CF ). By the same logic, the discovery that a link that the
8In fact, the set of conceivable acts is unchanged, but the notation is used to index the preference

relation.
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decision maker believed possible is, in fact, impossible, results in rendering null an event

that was considered to be nonnull before the discovery.

What is a reasonable updating rule for probabilities of events that were considered

impossible (null) and, as a result of scientific progress and growing understanding of the

structure of the universe, become possible (nonnull)? Clearly, the Bayesian approach is

useless for this purpose. Here we explore an alternative approach.

To discuss the various types of unawareness with which we are concerned, we use the

following notational convention throughout. We denote by F and C, respectively, the

initial sets of feasible acts and consequences, and we let S (F,C) denote the corresponding

feasible state space. When new elements are introduced into each of these sets we denote the

corresponding new sets by F ′ and C ′. When new acts are discovered, the new feasible state

space is denoted by S (F ′, C) . When new consequences are discovered, the new feasible

state space is denoted by S (F ∗, C ′) , where the asterisk indicates that the ranges of the

feasible acts now include the new consequence.

4 Growing Awareness and Choice Behavior

The discovery of new feasible consequences and acts expands the decision maker’s percep-

tion of the state space and its structure. The discovery of new links between acts and

consequences expands what he considers to be the feasible state space. How does the de-

cision maker’s growing awareness manifest itself in his choice behavior? In this section we

address this question.

4.1 Basic preference structure

Decision makers in our model are supposed to be able to express preferences among con-

ceivable acts. Formally, let F be a family of sets of conceivable acts corresponding to

increasing levels of awareness from all sources (that is, from the discovery of new feasi-

ble acts, consequences, and links between them). Because the set of conceivable acts is

a variable in our model, we denote the preference relation on F̂ by <F̂ . When the state

space expands, so does the set of conceivable acts, which means that the preference re-

lations must be redefined on the extended domain. For instance, if F̂ ∗ is the expanded

set of conceivable acts in the wake of discoveries of new feasible consequences, then the
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corresponding preference relation is denoted by <F̂ ∗ . If the state space is expanded in the

wake of the discovery of new feasible acts, then the new set of conceivable acts is denoted

by F̂ ′ and the expanded preference relation by <F̂ ′ .

For each F̂ ∈ F , f, g ∈ F̂ , and α ∈ [0, 1] define the convex combination αf+(1− α) g ∈
F̂ by: (αf + (1− α) g) (s) = αf (s) + (1− α) g (s) , for all s ∈ CF . Then, F̂ is a convex

subset in a linear space.9

We assume that, for each F̂ ∈ F , <F̂ abides by the axioms of expected utility theory.

Formally,

(A.1) (Weak order) For all F̂ ∈ F , the preference relation<F̂ is transitive and complete.

(A.2) (Archimedean) For all F̂ ∈ F and f, g, h ∈ F̂ , if f �F̂ g and g �F̂ h then

αf + (1− α)h �F̂ g and g �F̂ βf + (1− β)h, for some α, β ∈ (0, 1).

(A.3) (Independence) For all F̂ ∈ F , f, g, h ∈ F̂ , and α ∈ (0, 1], f <F̂ g if and only if

αf + (1− α)h <F̂ αg + (1− α)h.

In addition we suppose that, for each F̂ ∈ F , <F̂ abides by the following axioms. The

first axiom, monotonicity, is analogous to Savage’s (1954) postulate P3.10

(A.4) (Monotonicity) For all F̂ ∈ F , f ∈ F̂ , p, q ∈ ∆ (C) and nonnull event E ⊆ CF ,

f−Ep <F̂ f−Eq if and only if p %F̂ q.

(A.5) (Nontriviality) For all F̂ ∈ F , �F̂ 6= ∅.

4.2 Invariant Risk Preferences

To link the preference relations across expanding sets of conceivable acts, we introduce

a new axiom, which we refer to as invariant risk preferences. The essence of this axiom

is that the ranking of constant acts, which capture the decision maker’s risk preferences,

is independent of the set of acts on which the preference relation is defined. The axiom

delivers the commonality of risk attitudes regardless of whether the conceivable and/or
9Throughout this paper we use Fishburn’s (1970) formulation of Anscombe and Aumann (1963). Ac-

cording to this formulation, mixed acts, (that is, αf + (1− α) g) are, by definition, conceivable acts.
10It is well known that, under the axioms (A.1) -(A.3) and (A.5), monotonicity is equivalent to Anscombe

and Aumann’s (1963) state-independence axiom.
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feasible state space expands as a result of growing awareness of consequences, acts, or links

between them.

(A.6) (Invariant risk preferences) For every given F̂ , F̂ ′ ∈ F , if C and C ′ are the sets

of consequences associated with F̂ and F̂ ′, respectively, then p <F̂ q if and only if

p <F̂ ′ q for all p, q ∈ ∆ (C ∩ C ′) .

When new consequences are discovered, C ⊂ C ′, then C ∩ C ′ = C. When new feasible

acts are discovered, the invariant risk preferences axiom may be stated as follows: For all

F, F ′ and p, q ∈ ∆(C), p <F̂ q if and only if p <F̂ ′ q. When new links are discovered (or old

links eliminated) between the original sets of acts, F, and consequences, C, the invariant

risk preferences axiom asserts that, for all p, q ∈ ∆(C), p <F̂ q if and only if p <F̂S′
q.

5 The Main Results

The analysis of the effects of growing awareness on choice behavior and the evolution of

decision makers’ beliefs is divided into three parts. In the first part, we explore the implica-

tions of the discovery of new consequences. In the second part we explore the implications

of the discovery of new feasible acts. In the third part, we explore the implications of the

discovery of new acts-consequences links. The discovery of new consequences increases the

number of conceivable and, in general, also of feasible states, but the “dimension” of each

state is unchanged. By contrast, the discovery of new feasible acts increases the number of

both conceivable and feasible states and, at the same time, changes the characterization of

each state in such a way that what used to be a state before the discovery of the new act

is an event in the reconstructed state space following the discovery. The discovery of new

acts-consequences links increases the set of feasible states without affecting the conceivable

state space.

5.1 Discovery of new consequences and its representation

The following axiom requires that, as the decision maker’s awareness of consequences grows

and his state space expands, his preference relation conditional on the prior state space

remains unchanged. In other words, the discovery of new consequences does not alter the
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preference relation conditional on the original set of feasible states.11 To formalize this

idea, let C ′ ⊃ C, F ∗, and S(F ∗, C ′) denote, respectively, the new set of consequences, the

new set of feasible acts redefined to accommodate the new consequences, and the resulting

new feasible state space.12

(A.7) (Awareness consistency) For every given F , for all C,C ′ with C ⊂ C ′, S(F,C) ⊆
S(F ∗, C ′), f, g ∈ F̂ , and f ′, g′ ∈ F̂ ∗, such that f ′ = f and g′ = g on S (F,C) and

f ′ = g′ on S (F ∗, C ′)− S (F,C) it holds that f <F̂ g if and only if f ′ <F̂ ∗ g
′.

Our first result describes the evolution of a decision maker’s beliefs in the wake of

discoveries of new consequences. Specifically, a decision maker whose preferences have

the structure depicted by the axioms above is a subjective expected utility maximizer.

Moreover, as he becomes aware of new consequences, the decision maker updates his beliefs

in such a way that likelihood ratios of events in the original state space remain intact. That

is to say, probability mass is shifted away from states in the prior state space to the posterior

state space, proportionally. We refer to this property as “reverse Bayesianism.”

Theorem 1 For each F̂ ∈ F , let <F̂ be a binary relation on F̂ then, for all F̂ , F̂ ∗ ∈ F ,

the following two conditions are equivalent:

(i) Each <F̂ satisfies (A.1) - (A.5) and, jointly, <F̂ and <F̂ ∗ satisfy (A.6) and (A.7).

(ii) There exist real-valued, non-constant, affine functions, U on ∆(C) and U∗ on ∆(C ′),

and for any two F̂ , F̂ ∗ ∈ F , there are probability measures, πF̂ on CF and πF̂ ∗ on (C ′)F ∗ ,

such that for all f, g ∈ F̂ ,

f <F̂ g ⇔
∑

s∈CF

U (f (s))πF̂ (s) ≥
∑

s∈CF

U (g (s))πF̂ (s) . (4)

and, for all f ′, g′ ∈ F̂ ∗,

f ′ <F̂ ∗ g
′ ⇔

∑
s∈(C′)F∗

U∗
(
f ′ (s)

)
πF̂ ∗ (s) ≥

∑
s∈(C′)F∗

U∗
(
g′ (s)

)
πF̂ ∗ (s) . (5)

11This axiom is reminiscent of Savage’s (1954) sure thing principle in that it requires that preference

between acts be independent of the aspects on which they agree.
12Below, f ′ = f on an event E means that f ′(s) = f(s) for all s ∈ E (i.e. it is defined pointwise for the

states in E). Also, recall that for any C ⊂ C′, any p ∈ ∆(C) is also an element of ∆(C′).
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Moreover, U and U∗ are unique up to positive linear transformations, U (p) = U∗ (p)

for all p ∈ ∆ (C) , πF̂ and πF̂ ∗ are unique, πF̂ (S (F,C)) = πF̂ ∗ (S (F ∗, C ′)) = 1, and

πF̂ (s)
πF̂ (s′)

=
πF̂ ∗ (s)
πF̂ ∗ (s′)

, (6)

for all s, s′ ∈ S (F,C) .

The proof is in the Appendix.

It follows from the result in Theorem 1 that U∗, the von Neumann-Morgenstern utility

function associated with the larger set of consequences C ′, is an extension of U , the von

Neumann-Morgenstern utility function associated with the smaller set of consequences C.

This is an implication of the invariant risk preferences Axiom (A.6).

5.2 Discovery of new feasible acts and its representation

Recall that the introduction of new feasible acts increases the number of conceivable states

as well as the number of coordinates defining a state. Hence, the newly defined states

constitute a finer partition of the original state space. To state the next axiom, which

is analogous to axiom (A.7), we introduce the following additional notations: If F ⊂ F ′

then CF ∩ CF ′ = ∅, and for each s ∈ CF there corresponds an event E (s) ⊂ CF ′ defined

by E (s) = {s′ ∈ CF ′ | P CF (s′) = s}, where P CF (·) is the projection of CF ′ on CF .13

For s ∈ CF , we refer to the set E (s) as the inverse image of s on CF ′ . For all f ∈ F̂ ′,

p ∈ ∆ (C) and s ∈ CF , define the act f−E(s)p by
(
f−E(s)p

)
(s′) = p for all s′ ∈ E (s) and(

f−E(s)p
)

(s′) = f (s′) for all s′ ∈ CF ′ − E (s).

Projection consistency requires that if two acts on the original state space disagree on

two states, then the preference ranking of these acts is the same as that of two acts that

disagree, in the same way, on the corresponding events in the expanded state space.

(A.8) (Projection consistency) For every given C, for all F, F ′ such that F ⊂ F ′,

p, q, p̄, q̄ ∈ ∆ (C) , h ∈ F̂ , h′ ∈ F̂ ′, and s, s′ ∈ S (F,C), it holds that
(
(h−sp)−s′ p̄

)
<F̂(

(h−sq)−s′ q̄
)

if and only if
((
h′−E(s)p

)
−E(s′)

p̄
)
<F̂ ′

((
h′−E(s)q

)
−E(s′)

q̄
)
.

The representation theorem below describes how a decision maker’s beliefs evolve as he

becomes aware of new feasible acts. As before, the decision maker is a subjective expected

13Suppose that | F |= r and | F
′
|= k > r. Let s = (c1, ..., ck) ∈ CF ′

, then P CF (s) = (c1, ..., cr) ∈ CF .

Analogous projections across spaces appear in Modica (2008) and Heifetz, Meier and Schipper (2012).
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utility maximizer. When he becomes aware of new feasible acts, the decision maker updates

his beliefs in a way that the likelihood ratios of events in the original state space remain

intact. Because of the difference in the evolution of the state space, probability mass is

shifted from states in the prior state space to the corresponding events the posterior state

space, in such a way as to preserve the likelihood ratios of the events in the posterior state

space and their corresponding projected states in the prior state space.14

Theorem 2 For each F̂ ∈ F , let <F̂ be a binary relation on F̂ . Then for all F̂ , F̂ ′ ∈ F ,

the following two conditions are equivalent:

(i) Each <F̂ satisfies (A.1) - (A.5) and, jointly, <F̂ and <F̂ ′ satisfy (A.6) and (A.8).

(ii) There exists a real-valued, non-constant, affine function, U on ∆(C) and, for any

two F̂ , F̂ ′ ∈ F , there are probability measures, πF̂ on CF and πF̂ ′ on CF ′ , such that for

all f, g ∈ F̂ ,
f <F̂ g ⇔

∑
s∈CF

U (f (s))πF̂ (s) ≥
∑

s∈CF

U (f (s))πF̂ (s) , (7)

and, for all f ′, g′ ∈ F̂ ′,

f ′ <F̂ ′ g
′ ⇔

∑
s∈CF ′

U
(
f ′ (s)

)
πF̂ ′ (s) ≥

∑
s∈CF ′

U
(
g′ (s)

)
πF̂ ′ (s) . (8)

Moreover, U is unique up to positive linear transformations, πF̂ and πF̂ ′ are unique,

πF̂ (S (F,C)) = πF̂ ′ (S(F ′, C)) = 1, and

πF̂ (s)
πF̂ (s′)

=
πF̂ ′ (E (s))
πF̂ ′ (E (s′))

, (9)

for all s, s′ ∈ S (F,C) and E (s) , E (s′) ⊂ S (F ′, C) , where E (s) and E (s′) , are the inverse

images of s and s′ on S (F ′, C) .

The proof is in the Appendix.

5.3 Discovery of new feasible states and their representation

The discovery of new acts-consequences links, or the discovery that some links that were

believed to exist are, in fact, nonexistent, does not affect the conceivable state space.
14This is “reverse Bayesianism” applied to the present context. Li (2008) conjectures an axiomatization of

the link between preferences under full awareness and those under pure unawareness and states a proposition

linking the evolution of beliefs. This is in the spirit of Theorem 2.
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Rather such discoveries expand or contract only the feasible state space. To model this, fix

C and F, and suppose that a new link is established. Then, S (F,C) ⊂ S′ (F,C) , and <F̂S′

denotes the posterior preference relation as discussed in section 3.2. Using these notations

we restate axiom (A.7) as follows:

(A.7a) (Updating consistency) For all F̂ , F̂S′ ∈ F , if S′ (F,C) ⊃ S (F,C) and f ′, g′ ∈
F̂S′ , f

′ = f and g′ = g on S (F,C) and f ′ = g′ on S′ (F,C)− S (F,C), f <F̂ g if and

only if f ′ <F̂S′
g′.

Similarly, if the feasible state space is contracted due to the nullification of a link that

was supposed to exist, (that is, S′ (F,C) ⊂ S (F,C)), then Axiom (A.7a) can be restated

as:

(A.7b) (Bayesian updating) For all F̂ , F̂S′ ∈ F , if S′ (F,C) ⊂ S (F,C) and f, g ∈ F̂ ,
f = f ′ and g = g′ on S′ (F,C) and f = g on S (F,C) − S′ (F,C), f ′ <F̂S′

g′ if and

only if f <F̂ g.

Nullification of a link that was believed to hold corresponds to the shrinking of the

feasible state space as new information arrives within the Bayesian paradigm.

We show next that the process of updating the zero probability events in the wake of

discovery of new links between acts and consequences is the exact counterpart of Bayesian

updating in the wake of discovery that some links that were presumed to exist are, in fact,

non-existent.

Theorem 3 For each F̂ ∈ F , let <F̂ be a binary relation on F̂ then, for all F̂ , F̂S′ ∈ F ,

the following two conditions are equivalent:

(i) Each <F̂ satisfies (A.1) - (A.5) and, jointly, <F̂ and <F̂S′
satisfy (A.6), (A.7a) and

(A.7b).

(ii) There exists a real-valued, non-constant, affine function, U, on ∆(C) and, for any

two F̂ , F̂S′ ∈ F , there are probability measures, πF̂ and πF̂S′
on CF , such that, for all

f, g ∈ F̂ ,
f <F̂ g ⇔

∑
s∈CF

U (f (s))πF̂ (s) ≥
∑

s∈CF

U (g (s))πF̂ (s) , (10)

and, for all f ′, g′ ∈ F̂S′ ,

f ′ <F̂S′
g′ ⇔

∑
s∈CF

U
(
f ′ (s)

)
πF̂S′

(s) ≥
∑

s∈CF

U
(
g′ (s)

)
πF̂S′

(s) . (11)
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Moreover, U is unique up to positive linear transformations, πF̂ and πF̂S′
are unique,

πF̂ (S (F,C)) = πF̂S′
(S′ (F,C)) = 1, and

πF̂ (s)
πF̂ (s′)

=
πF̂S′

(s)

πF̂S′
(s′)

, (12)

for all s, s′ ∈ S (F,C) ∩ S′ (F,C) .15

The proof is in the Appendix.

6 Concluding Remarks

The model presented in this paper predicts that, as awareness grows and the state space

expands, the relative likelihoods of events in the original state space remain unchanged.

The model is silent about the absolute levels of these probabilities. In other words, our

theory does not predict the probability of the new events in the expanded state space.

This may appear as a serious limitation of our approach. However, this appearance is

misleading. In fact, the relation between the prior and posterior probabilities in our model

is not essentially different from the Bayesian model.

To grasp this claim, consider the Bayesian model. In that model, new information

shrinks the state space by rendering null events that were assigned positive prior probabil-

ities. Furthermore, given the prior probability of an event that has been rendered null, the

Bayesian model predicts the absolute levels and, consequently, the likelihood ratios, of the

posterior probabilities of all the events in the original algebra. These predictions, however,

are predicated on the prior, about which the Bayesian model is silent. In Savage’s (1954)

model, the prior is derived from a primitive preference relation over acts.

Our approach is analogous. Rather than being silent on the prior, it is silent on the

posterior probabilities of the newly discovered events. If we proceed analogously to Savage

(1954), the posterior is derived from a primitive preference relation on the acts defined over

the expanded state space. Given the posterior, our model predicts the absolute probabilities

and, consequently, the likelihood ratios, of all the events in the original algebra, including

those between newly discovered and previously known events.

Finally, we observe that, in reality, one often becomes aware of multiple new conse-

quences and acts (and links among them) at the same time. Changes of this kind may be
15Notice that S (F,C) ∩ S′ (F,C) = S (F,C) or S (F,C) ∩ S′ (F,C) = S′ (F,C) .
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handled by defining new conceivable and feasible state spaces and applying Theorems 1

through 3, respectively. Our theory then predicts the likelihood ratios on the intersection of

the feasible state spaces.16 If subjective probabilities are elicited at any point during these

successive discoveries, the entire posterior will be known for the corresponding awareness

level, and likelihood ratios can be predicted on the intersection of the feasible state spaces

associated with that and the successive levels of awareness.

7 Proofs

7.1 Proof of theorem 1

(Sufficiency) Fix F and C, then, by (A.1) - (A.5), the theorem of Anscombe and Aumann

(1963) and the von Neumann-Morgenstern expected utility theorem, there exists a real-

valued, non-constant, function uF̂ on C such that for all p, q ∈ ∆ (C)

p <F̂ q ⇔
∑

c∈Supp(p)

uF̂ (c) p (c) ≥
∑

c∈Supp(q)

uF̂ (c) q (c) . (13)

Let C ′ ⊃ C, F̂ ∗ ∈ F , with corresponding feasible state space S (F ∗, C ′) ⊇ S (F,C) .

Then, by the same argument as above, there exists a real-valued function uF̂ ∗ on C ′ such

that for all p′, q′ ∈ ∆ (C ′)

p′ <F̂ ∗ q
′ ⇔

∑
c∈Supp(p′)

uF̂ ∗ (c) p′ (c) ≥
∑

c∈Supp(q′)

uF̂ ∗ (c) q′ (c) . (14)

But, by (A.6), for all p, q ∈ ∆ (C ∩ C ′) = ∆ (C) ,

p <F̂ q ⇔ p <F̂ ∗ q. (15)

The uniqueness of the von Neumann-Morgenstern utility function implies that for all

F̂ , F̂ ∗ ∈ F , uF̂ ∗ (c) = buF̂ (c) + a, b > 0, for all c ∈ C. Hence, uF̂ ∗ is an extension of

uF̂ .

Let u = uF̂ ∗ and define U (f (s)) :=
∑

c∈Supp(f(s)) u (c) f (s) (c) , for all f ∈ F̂ ∗ and

s ∈ S
(
F̂ ∗, C ′

)
. Then, by Anscombe and Aumann (1963), for all F̂ ∈ F , and f, g ∈ F̂ ,

f <F̂ g ⇔
∑

s∈CF

U (f (s))πF̂ (s) ≥
∑

s∈CF

U (g (s))πF̂ (s) , (16)

16When the growing awareness involves new acts, the likelihood ratios are predicted on the intersection

of the lower dimensional state spaces and the inverse image of the states in this intersection.
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and, for all f ′, g′ ∈ F̂ ∗,

f ′ <F̂ ∗ g
′ ⇔

∑
s∈(C′)F∗

U
(
f ′ (s)

)
πF̂ ∗ (s) ≥

∑
s∈(C′)F∗

U
(
g′ (s)

)
πF̂ ∗ (s) , (17)

where πF̂ (S (F,C)) = πF̂ ∗ (S (F ∗, C ′)) = 1.

Let f, g ∈ F̂ and f ′, g′ ∈ F̂ ∗ be as in Axiom (A.7) (that is, f ′ = f and g′ = g on

S (F,C) and f ′ = g′ on S (F ∗, C ′)− S (F,C)) then

f ′ <F̂ ∗ g
′ ⇔

∑
s∈S(F,C)

U (f (s))πF̂ ∗ (s) ≥
∑

s∈S(F,C)

U (g (s))πF̂ ∗ (s) . (18)

Since πF̂ (S (F,C)) = 1, the representation (16) implies

f <F̂ g ⇔
∑

s∈S(F,C)

U (f (s))πF̂ (s) ≥
∑

s∈S(F,C)

U (g (s))πF̂ (s) . (19)

But Axiom (A.7) implies

f <F̂ g ⇔ f ′ <F̂ ∗ g
′. (20)

Thus the expressions in (18) and (19) are equivalent. Hence, by the uniqueness of the

probabilities in Anscombe and Aumann (1963),

πF̂ ∗ (s)∑
s∈S(F,C) πF̂ ∗ (s)

= πF̂ (s) , for all s ∈ S (F,C) . (21)

(Necessity) The necessity of (A.1)-(A.5) is an implication of the Anscombe and Aumann

(1963) theorem. The necessity of (A.6) and (A.7) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and probability

in Anscombe and Aumann (1963). �

7.2 Proof of theorem 2

(Sufficiency) By (A.1) - (A.6), and the argument in the proof of Theorem 1, uF̂ ′ (c) =

buF̂ (c) + a, b > 0, for all c ∈ C and F̂ , F̂ ′ ∈ F . Let uF̂ = u and define U (f (s)) :=∑
c∈Supp(f(s)) u (c) f (s) (c) , for all f ∈ F̂ and s ∈ S (F,C) . Then, since CF − S (F,C) is a

null event, by Anscombe and Aumann (1963), for all F̂ ∈ F , and f, g ∈ F̂ ,

f <F̂ g ⇔
∑

s∈S(F,C)

U (f (s))πF̂ (s) ≥
∑

s∈S(F,C)

U (g (s))πF̂ (s) . (22)
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Let F̂ , F̂ ′ ∈ F and, without loss of generality, suppose that S (F ′, C) is a refine-

ment of the states in S (F,C) .17 Take s, s′ ∈ S(F,C) and
((

h′−E(s)p
)
−E(s′)

p̄

)
and((

h′−E(s)q
)
−E(s′)

q̄

)
in F̂ ′ as defined in Axiom (A.8). For these acts, (22) is equivalent to

((
h′−E(s)p

)
−E(s′)

p̄

)
<F̂ ′

((
h′−E(s)q

)
−E(s′)

q̄

)
(23)

if and only if

U (p)πF̂ ′ (E (s)) + U (p̄)πF̂ ′

(
E
(
s′
))
≥ U (q)πF̂ ′ (E (s)) + U (q̄)πF̂ ′

(
E
(
s′
))
, (24)

since common terms cancel out. By Axiom (A.8),((
h′−E(s)p

)
−E(s′)

p̄

)
<F̂ ′

((
h′−E(s)q

)
−E(s′)

q̄

)
⇔
(
(h−sp)−s′ p̄

)
<F̂

(
(h−sq)−s′ q̄

)
. (25)

By (22), (
(h−sp)−s′ p̄

)
<F̂

(
(h−sq)−s′ q̄

)
if and only if∑

s∈S(F,C)

U
((

(h−sp)−s′ p̄
)

(s)
)
πF̂ (s) ≥

∑
s∈S(F,C)

U
((

(h−sq)−s′ q̄
)

(s)
)
πF̂ (s) ,

which, since common terms cancel out, is equivalent to

U (p)πF̂ (s) + U (p̄)πF̂

(
s′
)
≥ U (q)πF̂ (s) + U (q̄)πF̂

(
s′
)
. (26)

By (25), the expressions (24) and (26) are equivalent, which holds for all p, p̄, q, q̄ ∈
∆ (C) , if and only if

πF̂ (s)
πF̂ (s′)

=
πF̂ ′ (E (s))
πF̂ ′ (E (s′))

, (27)

for all s, s′ ∈ S (F,C) and E (s) , E (s′) ⊂ S (F ′, C) , where E (s) and E (s′) are the projec-

tions of s and s′ on S (F ′, C) .

(Necessity) The necessity of (A.1)-(A.5) is an implication of the Anscombe and Aumann

(1963) theorem. The necessity of (A.6) and (A.8) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and probability

in Anscombe and Aumann (1963). �

17Hence, F ⊂ F ′.
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7.3 Proof of theorem 3

(Sufficiency) By (A.1) - (A.6) and the argument in the proof of Theorem 1, uF̂S′
(c) =

buF̂ (c) + a, b > 0, for all c ∈ C.

Let uF̂ = u and define U (f (s)) :=
∑

c∈Supp(f(s)) u (c) f (s) (c) . Consider the case in

which S(F,C) ⊂ S′(F,C) (that is, a new link has been discovered). By Anscombe and

Aumann (1963), for all f, g ∈ F̂

f <F̂ g ⇔
∑

s∈S(F,C)

U (f (s))πF̂ (s) ≥
∑

s∈S(F,C)

U (g (s))πF̂ (s) , (28)

and, for all f ′, g′ ∈ F̂S′ ,

f ′ <F̂S′
g′ ⇔

∑
s∈S′(F,C)

U
(
f ′ (s)

)
πF̂S′

(s) ≥
∑

s∈S′(F,C)

U
(
g′ (s)

)
πF̂S′

(s) . (29)

Let f ′, g′ ∈ FS′ be as in axiom (A.7a), then (A.7a) implies that∑
s∈S(F,C)

U (f (s))πF̂ (s) ≥
∑

s∈S(F,C)

U (g (s))πF̂ (s) , (30)

if and only if ∑
s∈S(F,C)

U (f (s))πF̂S′
(s) ≥

∑
s∈S(F,C)

U (g (s))πF̂S′
(s) . (31)

Hence,

πF̂ (s) =
πF̂S′

(s)∑
s∈S(F,C) πF̂S′

(s′)
(32)

for all s ∈ S (F,C) . Thus, for all s, s′ ∈ S (F,C) ,

πF̂ (s)
πF̂ (s′)

=
πF̂S′

(s)

πF̂S′
(s′)

. (33)

The case in which new evidence entails the severance of existing links and contraction

of the feasible state space is treated analogously, with axiom (A.7b) in place of (A.7a).

(Necessity) The necessity of (A.1)-(A.6) is an implication of Theorem 1. The necessity

of (A.7a) and (A.7b) is immediate.

The uniqueness part is an implication of the uniqueness of the utility and probability

in Anscombe and Aumann (1963). �
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