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1. Introduction

Restrictions on conditional moments are widely used in applied economics to test

theories and to find parameter values for use in general equilibrium models. Usually, the

conditional moments arise as first-order conditions (Euler equations) in dynamic mod-

els. Testing and estimation typically are done using the generalized method of moments

(GMM).

Nevertheless, several problems with GMM have been established in simulation stud-

ies such as those by Tauchen (1986), Kocherlakota (1990), Hansen, Heaton, and Yaron

(1996), Altonji and Segal (1996), and Stock and Wright (2000). The well-known J-test

of overidentifying restrictions over-rejects in small samples. In small samples, the identity

matrix often makes a better weighting matrix than the asymptotically optimal one. Thus

modifications to GMM which preserve its weak informational requirements but improve

its statistical properties would be useful research tools.

Information-theoretic alternatives to GMM have recently been studied by Kitamura

and Stutzer (1997) and Imbens, Spady and Johnson (1998). These estimators involve

the same data and restrictions from economic theory as GMM, and can be asymptotically

equivalent to GMM. To see the difference heuristically, recall that GMM estimation involves

choosing parameter values so that sample moments are as close to their theoretical values

as possible. The sample moments are constructed using the empirical density, so each

observation receives a weight of 1/T . Call this probability measure υ. Now imagine that

in calculating moments you could vary the weight on each observation, with the goal of

choosing weights so that the theoretical restrictions were satisfied. This reweighting leads

to an alternative probability measure ω. In choosing ω you would like the theoretical

moment restrictions to hold and you would also like ω to be as close to υ as possible.

The estimator we study minimizes the Kullback-Leibler (1951) distance between the two

probability measures, subject to the restriction that the moment conditions are satisfied

under the synthetic probability measure ω. This constrained optimization problem gives an

alternative estimator of the parameters. As a by-product, it also provides a set of weights

on the observations that may allow the investigator to diagnose where the theoretical
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restrictions fail.

Imbens, Spady, and Johnson studied some simulation evidence, but in independently

distributed data. Kitamura and Stutzer provided asymptotic theory for dependent data,

but no applications or simulation evidence. In this paper we provide Monte Carlo evidence

on the properties of KLIC estimators and test statistics, compared to those of iterated

GMM. The comparison is made for both independent and dependent environments. In

these simulations, KLIC estimation does not solve the problem of over-sized tests familiar

from previous studies of GMM. However, it yields superior size-adjusted power. We also

apply KLIC estimation to two macroeconomic problems: one in which the moments are

virtually independent over time and a more typical one in which they are dependent.

The paper is organized as follows. Section 2 describes the GMM and KLIC estima-

tors. Section 3 contains Monte Carlo evidence, in an environment which adds persistence

to a data generation process used by previous researchers. Section 4 provides applications

first to the estimation of the coefficient of absolute risk aversion using U.S. aggregate con-

sumption data and second to the estimation of the coefficient of relative risk aversion using

Canadian consumption growth, inflation, and nominal bond yields. Section 5 summarizes

the findings.

2. GMM and KLIC Estimators

This section first briefly describes GMM estimation as developed by Hansen (1982)

and Hansen and Singleton (1982). Next, we outline the KLIC estimator developed by

Kitamura and Stutzer (1997) and Imbens, Spady, and Johnson (1998).

Consider the random vector xt of T observations and the n-vector of unknown pa-

rameters β. Let f(x, β) be a vector of m observable functions of the data and parameters.

Suppose that economic theory leads to population moment conditions:

Eυ[fi(x, β0)] =
∫

fi(x, β0)dυ(x) = 0, i = 1 . . . m, (1)

where β0 is the parameter vector to be estimated, and Eυ is the expectation with respect

to the probability measure υ. The empirical counterparts to these population moments
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are:

f iT (β) ≡
T∑

t=1

1
T

fi(xt, β), i = 1 . . . m, (2)

where the observations are weighted equally.

The GMM estimator is:

β̂GMM = arg min
β

fT (β)′WfT (β), (3)

where W is a symmetric, positive definite, m × m weighting matrix used to measure

the closeness of the sample moment conditions to zero. When there are more moment

conditions than parameters (m > n), the limit of the inverse of the weighting matrix must

equal Eυ[f(x, β0)f(x, β0)′] for asymptotic efficiency. In practice, estimation often takes

place in two steps, beginning with a consistent but asymptotically inefficient estimator

obtained with an identity weighting matrix. Estimates of the moments from this first

step are used to estimate the optimal weighting matrix, which then is used in a second

minimization of the quadratic form (3). Iterated GMM estimation involves repeatedly

updating the weighting matrix and re-estimating β̂ until convergence is achieved.

Hansen, Heaton, and Yaron (1996) provide Monte Carlo evidence on the performance

of two-step and iterated GMM estimators. We adopt the iterated estimator in our Monte

Carlo work and applications, since those authors found it to have the best properties among

the GMM estimators they considered. The optimal weighting matrix is an estimate of

the inverse covariance matrix of the moment conditions. Allowing for dependence requires

estimating the long-run covariance matrix of the moment conditions (2). In this paper this

heteroskedastic-autocorrelation consistent (HAC) covariance matrix is obtained using the

Newey-West (1987) estimator. We consider both a fixed bandwidth and a data-dependent

one following the method outlined by Newey and West (1994).

When there are more moments than parameters (m > n) then the minimized value

of the quadratic form (3) multiplied by the sample size T is asymptotically distributed

as χ2(m − n). This J−statistic may be used to test the hypothesis that the moment

conditions are satisfied. Simulation studies have shown that the actual size often exceeds
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the nominal size for this test, so that the test rejects too often. In simulations, bootstrap

corrections have been successful in removing some of this tendency to over-reject (see Hall

and Horowitz, 1996).

Hall (2000) proposed a modification to the J-test which adds to its power. He con-

structed the HAC covariance matrix so that it is consistent whether the population moment

restriction (1) is correct or not. In this modified statistic, the moments f(x, β) are de-

meaned before construction of the covariance matrix. In simulations, Hall showed that this

statistic has more power than the J-test statistic, but also a large size distortion (greater

over-rejection) because it does not exploit the population restriction when it holds. We ex-

amine the properties of this modified statistic, denoted JC for centred J , in our simulations

and compare it to the J-test and to KLIC-based tests.

As discussed in the introduction, the KLIC estimator varies the weights on the ob-

servations. Formally, the estimator is found by minimizing the distance between two

probability measures:

min
ω∈Ω

∫
log

(dω

dυ

)
dω, (4)

subject to

Eω[fi(x, β)] =
∫

fi(x, β)dω(x) = 0, i = 1 . . . m. (5)

This estimator is an example of an empirical likelihood problem, but with a different

objective function, as described by Owen (1990, 1997). Qin and Lawless (1994) develop

empirical likelihood methods for over-identified settings. The set of admissible measures

Ω is restricted to include only those which are continuous in υ. The integral (4) measures

the Kullback-Liebler distance between the two measures and is zero if and only if ω = υ.

If there is no β satisfying the moment conditions (1) then the model fails to hold and

ω �= υ. KLIC estimation searches over β to make ω as close to υ as possible in terms of

the distance measure (4). The sample version of the optimization problem is:

min
ω,β

T∑
t=1

ln(Tωt)ωt, (6)

subject to
T∑

t=1

fi(xt, β)ωt = 0 and
T∑

t=1

ωt = 1, i = 1 . . . m.
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This problem is not appealing computationally, for it involves choosing T weights ωt

and n parameters β. However, Kitamura and Stutzer (citing Csiszár (1975)) observed that

the synthetic probability measure can be represented as:

ωt =
exp[γ′f(xt, β)]∑T

t=1 exp[γ′f(xt, β)]
(7)

where γ is an m-vector which can be interpreted as the Lagrange multipliers in the mini-

mization problem (6). Thus, γi measures how the objective function is affected by relaxing

the weighted moment condition involving fi. For γ = 0 we have ωt = 1/T .

The optimization (6) is also recognizable as a maximum entropy problem. Golan,

Judge, and Miller (1996, chapter 2) provide a clear introduction and history of maximum

entropy methods. They also derive the duality between maximum entropy and empirical

likelihood methods, or between choosing probabilities and choosing Lagrange multipliers,

a duality with a long history in physics. Other information-theoretic, optimization criteria

also could be considered. An example is the Bayesian method of moments, as developed

by Zellner (1997), which maximizes the continuous entropy subject to sample moment

conditions. However, we focus on the KLIC problem in this paper.

Recall that an asymptotically efficient GMM estimator requires estimation of the long-

run covariance matrix of the moment conditions. Kitamura and Stutzer showed that the

equivalent adjustment for the KLIC estimator involves smoothing the moment conditions

for dependent data. Specifically, replace f by

f̃(xt, β) =
K∑

k=−K

1
2K + 1

f(xt−k, β) (8)

where K is a bandwidth parameter that satisfies K2/T → 0 and K → ∞ as T → ∞.

Failure to smooth dependent moments results in an estimator which is consistent, but

asymptotically inefficient (see Kitamura and Stutzer, corollary 1). The flat window (8)

with bandwidth parameter K induces a Bartlett kernel for the autocovariances, as Smith

(2000) shows. Therefore we use a Bartlett kernel with the same K in constructing the

optimal weight matrix in GMM, so that GMM and KLIC estimation may be compared

fairly.
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The optimization problem may be rewritten as:

β̂KLIC = arg max
β

min
γ

1
T

T∑
t=1

exp[γ′f̃(xt, β)]. (9)

The first-order conditions from this saddle point problem are the estimating equations.

This problem has dimension m+n. Our implementation of the KLIC estimator solves this

minmax problem using Newton’s method, as opposed to the penalty function approach

studied by Imbens, Spady, and Johnson. For a given β, we minimize in (9) with respect

to γ using a Newton-Raphson algorithm. Next, an outer loop searches for the β that

maximizes this objective function. Then we iterate on these two steps until convergence is

achieved.

The minimized value of the objective function in KLIC estimation, scaled by the

sample size, again is asymptotically χ2(m − n), which allows a J-type statistic to be used

for testing the overidentifying restrictions:

−2T

2K + 1

T∑
t=1

exp[γ̂′f̃(xt, β̂)]
d→ χ2(m − n). (10)

For ease of reading, we denote this statistic JK. A failure to smooth (K = 0) in dependent

data results in a test statistic which is not asymptotically χ2.

For cases with independently distributed data, Imbens, Spady and Johnson provided

some dramatic, finite-sample evidence that tests of γ = 0 (Lagrange multiplier tests)

sometimes outperform standard GMM tests, in that nominal and actual sizes closely co-

incide. Section 3 examines whether this superior size performance continues to hold with

time-dependent data. The LM test, with K = 0 in the moments (8), is given by:

T γ̃′V γ̃
d→ χ2(m − n). (11)

where V is the estimator of the variance of the moments and is given by:

[
T∑

t=1

f̃(xt, β̂)′f̃(xt, β̂)ωt

]′ [
T

T∑
t=1

f̃(xt, β̂)′f̃(xt, β̂)ωtωt

]−1 [
T∑

t=1

f̃(xt, β̂)′f̃(xt, β̂)ωt

]
. (12)
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In addition, the estimated weights ω̂t can be recovered from equation (7) and graphed

as a further diagnostic. They may provide information to guide reformulating the model

when the test (10) rejects the restrictions. Imbens, Spady, and Johnson showed that the

ω̂t can be used directly to test the overidentifying restrictions, again for the case with

independent data.

3. Simulation Evidence

3.1 Environment

To compare GMM and KLIC estimators in a laboratory setting we use an environment

with constant relative risk aversion, with a distributional assumption on consumption

growth. Section 4 studies a similar problem in historical data. We assume that period

utility is of the power or CRRA form, with parameter α:

u(ct) =
c1−α
t

1 − α
, (13)

or log utility if α = 1. The consumption problem is:

max
{ct}

E0

∞∑
t=0

u(ct)
(1 + θ)t

, (14)

subject to

at = (1 + r)at−1 + yt − ct, (15)

and a transversality condition, with initial asset holdings a0 given and stream of labour

income {yt}. Thus θ is a discount rate and r a constant interest rate. Denote by xt the

gross growth rate of consumption. The Euler equation then is:

Et(xt+1)−α =
1 + θ

1 + r
. (16)

Suppose that lnxt is Gaussian with unconditional mean 0 and variance σ2. Then by

the properties of the log-normal density,

E exp(−α lnxt+1 − α2 σ2

2
) = 1. (17)
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This moment condition (17) satisfies the theoretical restriction (16) provided that:

exp(α2 σ2

2
) =

1 + θ

1 + r
.

This holds in the simulations, so that α may be interpreted as a preference parameter.

To generate orthogonality conditions, we consider another Gaussian series z, also with

mean 0 but independent of x. Two moment conditions are used to estimate α:

E exp
[ − α lnxt+1 − 9

σ2

2
+ (3 − α)zt

]
= 1

E zt exp
[ − α lnxt+1 − 9

σ2

2
+ (3 − α)zt − 1

]
= 0,

(18)

so that there is one overidentifying restriction. We set α = 3, so that the moment conditions

satisfy the log-normal restriction (17). We estimate only the exponent in utility, α, and

not σ2.

To produce time-dependent data, we generate {lnxt, zt} as:

lnxt = ρ lnxt−1 +
√

(1 − ρ2)εxt

zt = ρzt−1 +
√

(1 − ρ2)εzt

(19)

where εxt and εzt are independent, pseudo-normal with mean zero and variance 0.16. The

unconditional variances of x and z are also 0.16, whatever the value of ρ. We consider two

different values of ρ, 0 and 0.6. The first case, with i.i.d. data, corresponds to the DGP

used by Hall and Howowitz (1996) and Imbens, Spady, and Johnson (1998), and results in

population moments that are not serially correlated. In the second case, the persistence

in the underlying series is inherited by the moment conditions, which thus have a serial

dependence more typical of macroeconomic data. Here the first-order autocorrelations of

the two moments are 0.5 and 0.25 respectively. The number of replications is 10,000. Four

sample sizes are considered: 100, 250, 500, and 1000.

3.2 Bias, MSE, and Size

Table 1 provides the results of estimation in the i.i.d. version of the data generating

process. Results are shown for several degrees of smoothing in KLIC estimation: K =

8



0, 2, 4, 6. Results with automatic bandwidth selection were similar, and so are not shown.

Each set is followed by the iterated GMM estimator using the matching lag length. As

mentioned earlier, the Newey-West bandwith is equal to the the degree of smoothing in

KLIC estimation, so that the estimators can be compared fairly. The first column shows

the average bias α̂ − α, which is positive for all experiments, and falls as T rises. GMM

yields smaller bias than do the KLIC estimators, at each sample size. The second column

gives the mean-squared error in estimating α. Again this is smaller for GMM, at each

sample size and degree of smoothing.

The third column gives the mean of the test statistic based on the overidentifying

restriction. For GMM this is the usual J-test statistic while for KLIC it is the JK-

statistic (10) proposed by Kitamura and Stutzer. With one restriction, the mean of the

χ2(1) tests should be 1 for both test statistics in large samples. All the sample means

here exceed one, reflecting the well-known tendency for the J-test to over-reject in small

samples. The remaining columns provide further information on this tendency, by giving

the empirical sizes of the tests at nominal sizes of 1, 5, and 10 percent.

The comparison of GMM and KLIC test means or sizes shows that KLIC estimation

does not solve the over-rejection problem. The KLIC test statistic has a mean very close

to that of the J-test statistic, for each sample size and degree of smoothing, except when

the estimator adopts a high degree of smoothing with a short sample. As this laboratory

environment has no dependence, Table 1 also shows the effects of smoothing when it is not

necessary. Here the conclusion is that, provided the ratio T/K is large enough, smoothing

does not hurt the finite-sample properties of KLIC estimators or tests, even when there is

no persistence in the underlying moments.

Figure 1 provides graphical information on test size, using the P value discrepancy

plots described by Davidson and MacKinnon (1998). These are based on the empirical

density function (EDF) of the P values, pr, from R replications. This EDF is is defined

as:

F̂ (si) =
1
R

R∑
r=1

I(pr ≤ si) (20)
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for si ∈ (0, 1) and where I is the indicator function taking the value 1 if its argument holds

and zero otherwise. The figure shows the discrepancy between empirical size and nominal

size, F̂ (si) − si, graphed against nominal size si. The horizontal line is the 5 percent

critical value for the Kolmogorov-Smirnov test. Size discrepancies greater than this value

are unlikely to have arisen from experimental randomness.

Figure 1 shows the discrepancies for the version of the DGP with i.i.d. data, at T =

250. The tests studied are J and JK (each with smoothing of 0 or 6 lags) and the LM

test. The degree of smoothing is shown in brackets in the figure. The P value discrepancies

for the two J-tests are shown in bold as a benchmark. Clearly the LM test is the superior

choice at sizes of practical interest, as Imbens, Spady, and Johnson (1998) found. Among

the other four tests, the J-tests generally have the smallest distortions at T = 250. We

also found that the JK-tests had the smallest distortions once T = 500. By that sample

size, though, many of the size discrepancies are not significant.

Table 2 studies the version of the simulation model with dependent data. Again

the conclusion is that iterated GMM yields less bias and smaller mean-squared errors than

than KLIC estimation. Not until the sample size is 1000 do the smoothed KLIC estimators

resemble the GMM estimators, to which they are asymptotically equivalent. As for the

properties of tests, Table 2 shows that smoothing is necessary to avoid severe over-rejection

using either the J or JK test. In conjunction with Table 1, this finding suggests that

smoothing should be used in any macroeconomic application where the moments may

have persistence, provided that T/K is relatively large.

Figure 2 gives P value discrepancy plots for the DGP with dependent data. Here

the P value discrepancies are much larger, as all tests over-reject more strongly. The

vertical scale is quite different from that of Figure 1. Figure 2 illustrates the importance

of smoothing. While the smoothed J and JK tests have size distortions, they are clearly

much better than the tests which do not allow for dependence.

Table 3 summarizes evidence on the LM test (12) proposed by Imbens, Spady, and

Johnson. For the i.i.d. DGP (Table 1) this test is better sized than the J-test, as those

authors found in the same experiment. For the dependent-data DGP (Table 2) though,
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the LM test greatly over-rejects (because it has the appropriate distribution only with

independent data), while the smoothed J-test and JK-test do not. The smoothed J-

test or the JK-test thus seem the best choices for the macroeconomic practitioner who is

concerned about test size but agnostic about persistence.

3.3 Power

The same simulation environment may be used to compare the power of the J tests

with that of the KLIC-based tests. In the moment conditions (18) we change the 3 to 4

while keeping α = 3, so that the cross-moment restrictions of log normality no longer hold.

Tests of the over-identifying restrictions should be able to detect this violation of the null

hypothesis. We examined the power of the tests in the case with dependent data, which is

the most relevant to macroeconomics. We also considered other departures from the null

hypothesis and found results similar to those reported here.

Figure 3 graphs size-power tradeoff curves for the J-test and the JK-test (with K = 0

or 6), at the two sample sizes T = 250 and 500. Again properties of the J-tests are shown

as dark lines, while the JK-tests are lighter lines. The degree of smoothing had little

effect, and so graphs are not labelled with the value of K. The curves are generated by

varying the critical value for the test. At each critical value, we measure the proportion of

rejections under the null hypothesis (size) and under the alternative hypothesis (power).

The horizontal axis shows size, computed for the DGP satisfying the null, while the vertical

axis shows size-adjusted power. Thus the power comparison is adjusted for the greater size-

distortion of the unsmoothed tests. A graph value below the 45◦ line indicates a biased

test, with size less than power.

The lower lines in Figure 3 show the size-power curves at a sample size of 250. At

this sample size the J-test is biased for sizes less than 0.1. The KLIC-based tests clearly

have much higher size-adjusted power. They also have similar properties for each degree

of smoothing. The upper lines in Figure 3 show the same properties at a larger sample size

of 500, where power increases for all tests. Now the J-test is no longer biased but again it

has much less power against this alternative than do the KLIC tests.
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We also calculated P value discrepancies and size-power curves for Hall’s (2000) JC-

test, though the results are omitted from Figures 1-3 for ease of viewing. In the simulations,

the JC-tests had slightly greater size distortions than the comparable J-tests. In turn,

their size-adjusted power was greater than that of the J-tests, but less than that of the

JK-tests.

Our finding low power for the J-test is similar to a conclusion of Smith (1999), who

studied the finite-sample properties of tests of the Epstein-Zin asset pricing model. He

found that the J-test had low size-adjusted power against some economically interesting

alternative DGPs. One possible explanation for the low power of GMM-based test statistics

is collinearity in moments, which affects the covariance matrix and reduces the precision

of estimators. KLIC estimation avoids this problem because this covariance matrix is not

used directly in estimators or test statistics. While a lack of power is not typically a

problem in macroeconomic applications, the simulation results suggest that KLIC tests,

with a size adjustment, may be very useful diagnostics.

4. Macroeconomic Applications

We next study KLIC and GMM estimators in two macroeconomic applications. In

each case we estimate the preference parameters of the intertemporal Euler equation char-

acterizing the optimal saving decisions of an infinitely-lived, representative agent. The first

application studies constant absolute risk aversion (CARA) while the second application

studies constant relative risk aversion (CRRA) utility.

4.1 Consumption with CARA Utility

The first application involves estimating preference parameters from consumption data

alone. The consumption problem again is to maximize lifetime utility (14) subject to a

budget constraint (15). The period utility function is of the CARA form:

u(ct) =
− exp(−αct)

α
(21)

where ct is real consumption and α is the coefficient of absolute risk aversion. CARA

utility has several undesirable properties, including admitting negative consumption. But
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Caballero (1990) argued that it is consistent with a range of evidence concerning aggregate

consumption. Kimball and Mankiw (1989) applied CARA utility in a theoretical study of

tax timing. Few studies attempt to estimate α though. We chose this problem because it

has an analytical solution, given a linear, Gaussian model of labour income, and because

precautionary saving may be an important component of aggregate saving.

The Euler equation from the maximization problem (14) now is:

exp(−αct) = Et
1 + r

1 + θ
exp(−αct+1). (22)

The ratio (1 + r)/(1 + θ) generally is not identifiable, so we set r = θ. We define the

Euler-equation error for use in estimation as:

εt+1 =
exp[−α(ct+1 − ct)] − 1

α
, (23)

then estimate α with the sample versions of the moment conditions:

E[εt+1 · zt] = 0, (24)

with instruments zt. The division by α is consistent with theory, since this lies in the infor-

mation set. This division rules out the trivial solution α = 0. Ferson and Constantinides

(1991) used a similar transformation in estimating parameters of habit persistence.

Real consumption is measured as monthly U.S. consumption expenditure on non-

durables and services, in chain-weighted billions of 1992 dollars, seasonally adjusted. The

source is CITIBASE gmcnq + gmcsq. As an instrument we use U.S. real personal dispos-

able income in chain-weighted billions of 1992 dollars, gmydpq. Both series are seasonally

adjusted and expressed in per capita terms by dividing by population, p16. The sample

runs from January 1959 to June 1998, giving 474 observations.

The left side of Table 4 contains iterated GMM estimates of the coefficient of ab-

solute risk aversion, α. While various fixed bandwidths were applied, we present only

the results based on Newey and West’s (1994) automatic procedure, without prewhiten-

ing. We consider three different sets of instruments: zt = {ι}, zt = {ι, ct − ct−1}, and
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zt = {ι, ct − ct−1, yt −yt−1}, where ι is a vector of ones. These sets correspond to the cases

with exact identification, one overidentifying restriction, and two overidentifying restric-

tions respectively. In the first case the Newey-West procedure sets K = T
1
3 = 8 while in

the other two cases it gave K = 2. The preference parameter is estimated quite precisely,

though the over-identifying restrictions are rejected at conventional significance levels. The

implied average coefficients of relative risk aversion are found by multiplying by mean con-

sumption, and range from 167 to 209, depending on the instrument set. As in numerous

other studies, the elasticity of intertemporal substitution is thus very low. Notice that α

is identified even when zt contains only a constant, showing that the preference parameter

can be estimated even when consumption changes are unpredictable.

The right side of Table 4 contains the corresponding KLIC estimates. The bandwidth

K for smoothing moments is set equal to the Newey-West lag length, as in the Monte Carlo

experiments. In this application there is very little persistence in the moments. The first-

order autocorrelation of the moment condition, evaluated at the iterated GMM estimates,

ranges from -0.10 to 0.04, depending on the instrument zt. Thus the choice of K does not

have a large effect, as was the case in the i.i.d. simulation environment studied in section

3. The JK test statistic (10) used to assess the overidentifying restrictions rejects them

more decisively than does the J test.

The main economic finding is that the KLIC estimators find risk aversion measures

similar to those found by GMM. Moreover, the overidentifying restrictions are rejected

with both estimators. In fact, the information-theoretic test rejects more resoundingly

than the GMM J-test, just as occurred in the Monte Carlo experiments. The table shows

asymptotic P values in brackets. We also approximated P values (for the case with one

over-identifying restriction) using the i.i.d. version of the simulation model in section 3,

with T = 500, and again found very low values.

The light line in Figure 4 shows the Euler equation residuals, exp[−α̂(ct+1 − ct)] − 1

evaluated at the KLIC estimate with three instruments shown in Table 4. Two other

residuals, corresponding to the instruments Δct and Δyt, are not shown here, but of

course also play roles in determining the weights on each observation. The KLIC weights,
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{ω̂t}, are shown as the dark line. They are multiplied by T so as to fit on the same

scale as the residuals. The weights clearly are are highly variable over time, dipping down

near zero at several observations with large Euler equation residuals. This variation is

consistent with the rejection of the overidentifying restrictions. Several observations are

essentially omitted in calculating the moments, while several others are over-weighted by

more than 100 percent relative to their weights in GMM, which are 1 at this scale. The

weights provide a useful, graphical diagnostic when there are multiple instruments and

moment conditions.

The data set in this application, with 474 monthly observations, is quite large by

the standards of macroeconomics. Even so, there are some differences between the GMM

and KLIC estimates and tests in Table 4. We next explore the differences in a second

application, with quarterly data.

4.2 CRRA Asset-Pricing

Our second application assumes that period utility is of the power or CRRA form,

with parameter α:

u(ct) =
c1−α
t

1 − α
, (25)

or log utility if α = 1. Asset-pricing with this utility function was the setting for Monte

Carlo studies of GMM by Tauchen (1986), Kocherlakota (1990), Hansen, Heaton, and

Yaron (1996) and Hansen and Singleton (1996). Again let x be the gross growth rate of

consumption and π be the gross growth rate of the corresponding deflator. Ri denotes

the gross, nominal yield on a discount bond of maturity i. For one-period and two-period

bonds these yields are given by:

1
R1t

=
1

1 + θ
Et

[x−α
t+1

πt+1

]
1

R2
2t

=
( 1
1 + θ

)2
Et

[x−α
t+1x

−α
t+2

πt+1πt+2

] (26)

which exploits the fact that the nominal yields are known at time t.

In this application t counts quarters. R1 and R2 are the yields on Canadian three-

month and six-month treasury bills. The yield data are from CANSIM, series b14060 and
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b14061 and are averages of monthly series. The consumption series is per capita, quarterly,

consumption expenditure excluding durables, seasonally adjusted in 1992 dollars: (d15372

- d15373)/d1. The corresponding deflator, used to measure the inflation rate, is the CPI,

series p100000. The sample includes 104 observations, from 1974 to 1999. We also studied

the U.S. data set examined by Hansen, Heaton, and Yaron (1996) but we found a global

optimum at unreasonably high risk aversion, as they did.

Table 5 contains GMM and KLIC estimates of the preferences parameters α and θ,

with K = 8 determined automatically. The instrument set is zt = {ι, xt, πt}. On the left

side of the table, GMM finds a significant, positive discount rate of roughly 5% at annual

rates. Meanwhile, estimates of α, the coefficient of relative risk aversion, are negative and

insignificant, whether estimation uses one yield or two. The J-test does not reject the

over-identifying restrictions, at conventional significance levels. Results were very similar

with alternate sets of instruments.

KLIC estimation, on the right side of Table 5, yields larger estimates of α but smaller

estimates of θ than GMM does. Both are insignificant. The JK test yields a rejection

when two returns are used.

At the iterated GMM estimates (using two asset yields), the first-order autocorrelation

coefficient for each moment condition is 0.6. These autocorrelations are not sensitive to the

instrument set zt. Thus this problem resembles the simulation environment with dependent

data studied in section 3. As one would expect then, the LM test statistics (not shown)

are much larger than the corresponding J-test statistics. Again the table shows asymptotic

P values in brackets. In the first row of the table, with one over-identifying restriction, we

also approximated P values by Monte Carlo methods using the dependent-data version of

the simulation model of section 3, with T = 100. In each case, these were larger than the

asymptotic values shown, as one would expect.

We also inspected Euler equation residuals and weights from KLIC estimation with

two asset returns. As in the previous application, there is a great deal of variation over

time. Residuals from the Euler equations are largest when the nominal yields spike in the

early 1980s and again in the early 1990s. The weights have a striking pattern: data from
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the 1980s are much more consistent with the power-utility CCAPM than are data from the

1990s. Again the weights are a complement to presenting multiple Euler equation residuals

and their cross-products with instruments.

5. Summary

KLIC estimation has been proposed by Kitamura and Stutzer (1997) and Imbens,

Spady, and Johnson (1998) as an alternative to GMM estimation. This paper has com-

pared the two estimation strategies in the task of estimating preference parameters from

macroeconomic data. We compared iterated GMM estimators to KLIC estimators with

comparable degrees of smoothing. The comparison took place in applications and in sim-

ulations.

KLIC estimation provides helpful diagnostics in the form of estimated weights on each

observation, but it is computationally somewhat more demanding than GMM. In simula-

tions the KLIC estimators had greater bias and mean-squared error than the comparable

iterated GMM estimator. Tests arising in KLIC estimation do not appear to provide a so-

lution to the problem of over-rejection familiar in GMM estimation and testing. However,

KLIC-based tests had size-adjusted power superior to that of the J-test in simulations.

Bootstrap corrections along the lines suggested for GMM by Hall and Horowitz (1996)

might also be helpful in reducing the size distortions in KLIC estimation.
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Table 1: Monte Carlo Evidence (i.i.d. data)

T∑
t=0

exp[−α lnxt+1 − 9
σ2

2
+ (3 − α)zt] = 1

T∑
t=0

zt exp[−α lnxt+1 − 9
σ2

2
+ (3 − α)zt − 1] = 0

α = 3.0 lnxt ∼ IIN(0, .16) zt ∼ IIN(0, .16)

T ∈ {100, 250, 500, 1000}

Estimator Bias in α̂ MSE in α̂ Mean of Test Empirical Size
T .01 .05 .10

KLIC (K = 0)
100 .0848 0.0072 1.6576 .0527 .1168 .1779
250 .0347 0.0012 1.4172 .0367 .0962 .1531
500 .0183 0.0003 1.2060 .0239 .0721 .1249
1000 .0098 0.0001 1.1651 .0192 .0717 .1233

GMM (K = 0)
100 .0473 0.0022 1.7330 .0600 .1223 .1754
250 .0209 0.0004 1.4479 .0421 .0970 .1467
500 .0123 0.0002 1.2717 .0290 .0755 .1287
1000 .0069 0.0001 1.1570 .0226 .0661 .1164

KLIC (K = 2)
100 .0853 0.0073 1.6557 .0599 .1262 .1881
250 .0334 0.0011 1.4327 .0376 .0970 .1527
500 .0183 0.0003 1.2589 .0256 .0771 .1324
1000 .0097 0.0001 1.1554 .0204 .0672 .1223

GMM (K = 2)
100 .0451 0.0020 1.5665 .0501 .1141 .1725
250 .0207 0.0004 1.4011 .0393 .0957 .1454
500 .0125 0.0002 1.2529 .0271 .0747 .1278
1000 .0069 0.0001 1.1516 .0221 .0658 .1161
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KLIC (K = 4)
100 .0874 0.0077 2.1170 .0658 .1327 .1957
250 .0342 0.0012 1.4808 .0408 .1011 .1559
500 .0184 0.0003 1.2803 .0263 .0786 .1331
1000 .0096 0.0001 1.1641 .0209 .0675 .1226

GMM (K = 4)
100 .0458 0.0021 1.4606 .0400 .1088 .1679
250 .0207 0.0004 1.3649 .0377 .0938 .1448
500 .0125 0.0002 1.2396 .0256 .0740 .1267
1000 .0069 0.0001 1.1476 .0218 .0649 .1161

KLIC (K = 6)
100 .0825 0.0068 3.3672 .0755 .1456 .2050
250 .0349 0.0012 1.6039 .0442 .1059 .1615
500 .0185 0.0003 1.3044 .0282 .0800 .1362
1000 .0096 0.0001 1.1736 .0216 .0681 .1240

GMM (K = 6)
100 .0468 0.0022 1.3827 .0305 .1007 .1644
250 .0209 0.0004 1.3332 .0352 .0908 .1429
500 .0125 0.0002 1.2267 .0247 .0729 .1251
1000 .0069 0.0001 1.1432 .0213 .0649 .1161

Notes: α is the coefficient of relative risk aversion in the simulation model, K is the bandwidth in KLIC
estimation and the Newey-West lag length in GMM estimation. The test statistic follows an asymp-
totic χ2(1) distribution and so should have a mean of 1. Entries labelled .01, .05, and .10 are the
actual sizes of the test with these nominal sizes. Empirical test sizes can be compared using binomial
standard errors. With 10,000 replications the standard error at size ŝ is .01[ŝ(1−ŝ)]

1
2 .
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Table 2: Monte Carlo Evidence (dependent data)

T∑
t=0

exp[−α lnxt+1 − 9
σ2

2
+ (3 − α)zt] = 1

T∑
t=0

zt exp[−α lnxt+1 − 9
σ2

2
+ (3 − α)zt − 1] = 0

α = 3.0 εxt ∼ IIN(0, .16) εzt ∼ IIN(0, .16)

lnxt = 0.6 lnxt−1 + .8εxt

zt = 0.6zt−1 + .8εzt

T ∈ {100, 250, 500, 1000}

Estimator Bias in α̂ MSE in α̂ Mean of Test Empirical Size
T .01 .05 .10

KLIC (K = 0)
100 .2055 0.0423 3.9648 .1767 .2855 .3636
250 .0743 0.0055 3.2524 .1427 .2527 .3324
500 .0390 0.0015 2.9213 .1233 .2360 .3201
1000 .0204 0.0004 2.7370 .1158 .2287 .3061

GMM (K = 0)
100 .0622 0.0039 4.2872 .1717 .2740 .3495
250 .0421 0.0018 3.4392 .1401 .2404 .3203
500 .0233 0.0005 2.9393 .1236 .2229 .3113
1000 .0123 0.0001 2.7164 .1097 .2149 .2956

KLIC (K = 2)
100 .1648 0.0272 2.5091 .1047 .1894 .2578
250 .0626 0.0039 1.9935 .0712 .1461 .2155
500 .0309 0.0009 1.6862 .0491 .1266 .1928
1000 .0159 0.0003 1.5563 .0421 .1102 .1794

GMM (K = 2)
100 .0425 0.0018 2.5721 .1084 .1929 .2577
250 .0324 0.0011 2.2187 .0849 .1628 .2263
500 .0182 0.0003 1.9311 .0658 .1432 .2106
1000 .0093 0.0001 1.7949 .0492 .1166 .1845
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KLIC (K = 4)
100 .1540 0.0238 3.4948 .0978 .1814 .2449
250 .0614 0.0038 1.8727 .0651 .1346 .1979
500 .0293 0.0008 1.5551 .0423 .1111 .1757
1000 .0149 0.0002 1.4231 .0358 .0944 .1602

GMM (K = 4)
100 .0449 0.0020 2.0438 .0805 .1663 .2300
250 .0287 0.0008 1.8956 .0691 .1396 .1988
500 .0163 0.0003 1.6686 .0501 .1207 .1815
1000 .0081 0.0001 1.5669 .0451 .1086 .1715

KLIC (K = 6)
100 .1360 0.0185 5.7943 .1069 .1867 .2477
250 .0613 0.0038 1.8719 .0656 .1327 .1964
500 .0288 0.0008 1.5235 .0415 .1062 .1694
1000 .0146 0.0002 1.3817 .0336 .0896 .1529

GMM (K = 6)
100 .0508 0.0026 1.7835 .0605 .1488 .2144
250 .0272 0.0007 1.7255 .0598 .1289 .1861
500 .0154 0.0002 1.5475 .0429 .1104 .1695
1000 .0074 0.0001 1.4643 .0396 .0974 .1585

Notes: α is the coefficient of relative risk aversion in the simulation model, K is the bandwidth in KLIC
estimation and the Newey-West lag length in GMM estimation. The test statistic follows an asymp-
totic χ2(1) distribution and so should have a mean of 1. Entries labelled .01, .05, and .10 are the
actual sizes of the test with these nominal sizes. Empirical test sizes can be compared using binomial
standard errors. With 10,000 replications the standard error at size ŝ is .01[ŝ(1−ŝ)]

1
2 .

23





Table 3: Monte Carlo Evidence (LM Test)

independent data dependent data

Mean Empirical Size Mean Empirical Size
T .01 .05 .10 .01 .05 .10

100 1.3415 .0222 .0866 .1547 2.7754 .1201 .2498 .3425
250 1.2095 .0162 .0717 .1354 2.5167 .1005 .2206 .3132
500 1.0763 .0105 .0576 .1119 2.3979 .0921 .2124 .2990
1000 1.0813 .0122 .0562 .1144 2.3516 .0918 .2049 .2883

Notes: The LM test statistic follows an asymptotic χ2(1) distribution when the moments are serially
uncorrelated and so should have a mean of 1. Entries labelled .01, .05, and .10 are the actual sizes
of the test with these nominal sizes.
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Table 4: Estimation of Constant Absolute Risk Aversion (CARA)

E
(exp[−α(ct+1 − ct)] − 1

α
· zt

)
= 0.

United States: January 1959 – June 1998

GMM KLIC

zt K α̂ J (df) α̂ JK (df)
(se) (P ) (se) (P )

ι 8 104.67 103.70
(17.27) (15.37)

ι, ct − ct−1 2 131.67 7.28(1) 126.39 19.61(1)
(15.51) (0.01) (14.84) (0.00)

ι, ct − ct−1, yt − yt−1 2 131.64 7.29(2) 129.59 22.07(2)
(15.49) (0.03) (14.79) (0.00)

Notes: ι is a vector of ones; c is expenditure on nondurables and services; y is personal disposable income;
both time series are real, per capita, monthly, and seasonally adjusted.
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Table 5: Estimation of Constant Relative Risk Aversion (CRRA)

E
[(x−α

t+1

πt+1
− 1 + θ

R1t

)
· zt

]
= 0

E
[(x−α

t+1x
−α
t+2

πt+1πt+2
− (1 + θ)2

R2
2t

)
· zt

]
= 0

zt = {ι, xt, πt}
Canada: 1974:I – 1999:IV

GMM KLIC

Returns K θ̂ α̂ J(df) θ̂ α̂ JK(df)
(se) (se) (P ) (se) (se) (P )

R1t 8 0.0125 -0.568 3.47(1) -0.0333 11.990 1.43(1)
(0.0033) (0.822) (0.06) (0.0365) (11.041) (0.23)

R1t, R2t 8 0.0113 -0.1874 7.29(4) -0.0014 0.5445 19.86(4)
(0.0016) (0.3813) (0.12) (0.0034) (0.6193) (0.00)

Notes: ι is a vector of ones; x is the gross growth rate of expenditure on nondurables and services (real,
quarterly, seasonally adjusted, per capita); π is the gross cpi inflation rate; R1 is the gross yield on
three-month treasury bills, R2 is the gross yield on six-month treasury bills.
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