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1. Introduction

Restrictions on conditional moments are widely used in applied economics to test
theories and to find parameter values for use in general equilibrium models. Usually, the
conditional moments arise as first-order conditions (Euler equations) in dynamic mod-

els. Testing and estimation typically are done using the generalized method of moments

(GMM).

Nevertheless, several problems with GMM have been established in simulation stud-
ies such as those by Tauchen (1986), Kocherlakota (1990), Hansen, Heaton, and Yaron
(1996), Altonji and Segal (1996), and Stock and Wright (2000). The well-known J-test
of overidentifying restrictions over-rejects in small samples. In small samples, the identity
matrix often makes a better weighting matrix than the asymptotically optimal one. Thus
modifications to GMM which preserve its weak informational requirements but improve

its statistical properties would be useful research tools.

Information-theoretic alternatives to GMM have recently been studied by Kitamura
and Stutzer (1997) and Imbens, Spady and Johnson (1998). These estimators involve
the same data and restrictions from economic theory as GMM, and can be asymptotically
equivalent to GMM. To see the difference heuristically, recall that GMM estimation involves
choosing parameter values so that sample moments are as close to their theoretical values
as possible. The sample moments are constructed using the empirical density, so each
observation receives a weight of 1/7". Call this probability measure v. Now imagine that
in calculating moments you could vary the weight on each observation, with the goal of
choosing weights so that the theoretical restrictions were satisfied. This reweighting leads
to an alternative probability measure w. In choosing w you would like the theoretical
moment restrictions to hold and you would also like w to be as close to v as possible.
The estimator we study minimizes the Kullback-Leibler (1951) distance between the two
probability measures, subject to the restriction that the moment conditions are satisfied
under the synthetic probability measure w. This constrained optimization problem gives an
alternative estimator of the parameters. As a by-product, it also provides a set of weights

on the observations that may allow the investigator to diagnose where the theoretical
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restrictions fail.

Imbens, Spady, and Johnson studied some simulation evidence, but in independently
distributed data. Kitamura and Stutzer provided asymptotic theory for dependent data,
but no applications or simulation evidence. In this paper we provide Monte Carlo evidence
on the properties of KLIC estimators and test statistics, compared to those of iterated
GMM. The comparison is made for both independent and dependent environments. In
these simulations, KLIC estimation does not solve the problem of over-sized tests familiar
from previous studies of GMM. However, it yields superior size-adjusted power. We also
apply KLIC estimation to two macroeconomic problems: one in which the moments are

virtually independent over time and a more typical one in which they are dependent.

The paper is organized as follows. Section 2 describes the GMM and KLIC estima-
tors. Section 3 contains Monte Carlo evidence, in an environment which adds persistence
to a data generation process used by previous researchers. Section 4 provides applications
first to the estimation of the coefficient of absolute risk aversion using U.S. aggregate con-
sumption data and second to the estimation of the coefficient of relative risk aversion using
Canadian consumption growth, inflation, and nominal bond yields. Section 5 summarizes

the findings.

2. GMM and KLIC Estimators

This section first briefly describes GMM estimation as developed by Hansen (1982)
and Hansen and Singleton (1982). Next, we outline the KLIC estimator developed by
Kitamura and Stutzer (1997) and Imbens, Spady, and Johnson (1998).

Consider the random vector x; of T observations and the n-vector of unknown pa-
rameters 3. Let f(x,3) be a vector of m observable functions of the data and parameters.

Suppose that economic theory leads to population moment conditions:

E,[fi(x, Bo)] = /fi(x,ﬁo)dv(x) =0, i1=1...m, (1)

where [y is the parameter vector to be estimated, and F,, is the expectation with respect

to the probability measure v. The empirical counterparts to these population moments
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are:

T
T8 =Y e ), i=1..m, &)
t=1

where the observations are weighted equally.

The GMM estimator is:

Baym = arg mﬁin Fr(B) W fr(B), (3)

where W is a symmetric, positive definite, m x m weighting matrix used to measure
the closeness of the sample moment conditions to zero. When there are more moment
conditions than parameters (m > n), the limit of the inverse of the weighting matrix must
equal E,[f(x,Bo)f(x,B0)'] for asymptotic efficiency. In practice, estimation often takes
place in two steps, beginning with a consistent but asymptotically inefficient estimator
obtained with an identity weighting matrix. Estimates of the moments from this first
step are used to estimate the optimal weighting matrix, which then is used in a second
minimization of the quadratic form (3). Iterated GMM estimation involves repeatedly

updating the weighting matrix and re-estimating B until convergence is achieved.

Hansen, Heaton, and Yaron (1996) provide Monte Carlo evidence on the performance
of two-step and iterated GMM estimators. We adopt the iterated estimator in our Monte
Carlo work and applications, since those authors found it to have the best properties among
the GMM estimators they considered. The optimal weighting matrix is an estimate of
the inverse covariance matrix of the moment conditions. Allowing for dependence requires
estimating the long-run covariance matrix of the moment conditions (2). In this paper this
heteroskedastic-autocorrelation consistent (HAC) covariance matrix is obtained using the
Newey-West (1987) estimator. We consider both a fixed bandwidth and a data-dependent
one following the method outlined by Newey and West (1994).

When there are more moments than parameters (m > n) then the minimized value
of the quadratic form (3) multiplied by the sample size T is asymptotically distributed
as x2(m — n). This J—statistic may be used to test the hypothesis that the moment

conditions are satisfied. Simulation studies have shown that the actual size often exceeds



the nominal size for this test, so that the test rejects too often. In simulations, bootstrap
corrections have been successful in removing some of this tendency to over-reject (see Hall

and Horowitz, 1996).

Hall (2000) proposed a modification to the J-test which adds to its power. He con-
structed the HAC covariance matrix so that it is consistent whether the population moment
restriction (1) is correct or not. In this modified statistic, the moments f(z, () are de-
meaned before construction of the covariance matrix. In simulations, Hall showed that this
statistic has more power than the J-test statistic, but also a large size distortion (greater
over-rejection) because it does not exploit the population restriction when it holds. We ex-
amine the properties of this modified statistic, denoted JC for centred .J, in our simulations

and compare it to the J-test and to KLIC-based tests.

As discussed in the introduction, the KLIC estimator varies the weights on the ob-
servations. Formally, the estimator is found by minimizing the distance between two

probability measures:

urfleig/log(j—c:)dw, (4)
subject to
B lfi(z, 8)] = /fi(a:,ﬁ)dw(x) —0, i=1...m. (5)

This estimator is an example of an empirical likelihood problem, but with a different
objective function, as described by Owen (1990, 1997). Qin and Lawless (1994) develop
empirical likelihood methods for over-identified settings. The set of admissible measures
() is restricted to include only those which are continuous in v. The integral (4) measures
the Kullback-Liebler distance between the two measures and is zero if and only if w = v.
If there is no [ satisfying the moment conditions (1) then the model fails to hold and
w # v. KLIC estimation searches over § to make w as close to v as possible in terms of

the distance measure (4). The sample version of the optimization problem is:
T
min » In(Twy)wy, (6)
w,B 1=

subject to

T T
Zfi(xt,ﬁ)wt:() and Zwtzl, i1=1...m.
t=1 t=1
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This problem is not appealing computationally, for it involves choosing T" weights w;
and n parameters §. However, Kitamura and Stutzer (citing Csiszar (1975)) observed that
the synthetic probability measure can be represented as:

Wy = eXp[q/’f(xt, ﬁ)]
- T
> i1 exp[y f(ze, B)]

where ~ is an m-vector which can be interpreted as the Lagrange multipliers in the mini-

(7)

mization problem (6). Thus, ; measures how the objective function is affected by relaxing

the weighted moment condition involving f;. For v = 0 we have w; = 1/T.

The optimization (6) is also recognizable as a maximum entropy problem. Golan,
Judge, and Miller (1996, chapter 2) provide a clear introduction and history of maximum
entropy methods. They also derive the duality between maximum entropy and empirical
likelihood methods, or between choosing probabilities and choosing Lagrange multipliers,
a duality with a long history in physics. Other information-theoretic, optimization criteria
also could be considered. An example is the Bayesian method of moments, as developed
by Zellner (1997), which maximizes the continuous entropy subject to sample moment

conditions. However, we focus on the KLIC problem in this paper.

Recall that an asymptotically efficient GMM estimator requires estimation of the long-
run covariance matrix of the moment conditions. Kitamura and Stutzer showed that the
equivalent adjustment for the KLIC estimator involves smoothing the moment conditions
for dependent data. Specifically, replace f by

K
fand)= Y s flws.0) (®)

W 2K +1

where K is a bandwidth parameter that satisfies K?/T — 0 and K — oo as T — oc.
Failure to smooth dependent moments results in an estimator which is consistent, but
asymptotically inefficient (see Kitamura and Stutzer, corollary 1). The flat window (8)
with bandwidth parameter K induces a Bartlett kernel for the autocovariances, as Smith
(2000) shows. Therefore we use a Bartlett kernel with the same K in constructing the
optimal weight matrix in GMM, so that GMM and KLIC estimation may be compared
fairly.



The optimization problem may be rewritten as:

T

BKLIC =arg mﬁax mﬁyin % ; exp[fy’f(xt, B)]. 9)

The first-order conditions from this saddle point problem are the estimating equations.
This problem has dimension m +n. Our implementation of the KLIC estimator solves this
minmax problem using Newton’s method, as opposed to the penalty function approach
studied by Imbens, Spady, and Johnson. For a given 3, we minimize in (9) with respect
to v using a Newton-Raphson algorithm. Next, an outer loop searches for the [ that
maximizes this objective function. Then we iterate on these two steps until convergence is

achieved.

The minimized value of the objective function in KLIC estimation, scaled by the
sample size, again is asymptotically x?(m — n), which allows a J-type statistic to be used
for testing the overidentifying restrictions:

37 17 2o Pl T (e D) 5 X (m —n). (10)

For ease of reading, we denote this statistic JK. A failure to smooth (K = 0) in dependent

data results in a test statistic which is not asymptotically 2.

For cases with independently distributed data, Imbens, Spady and Johnson provided
some dramatic, finite-sample evidence that tests of v = 0 (Lagrange multiplier tests)
sometimes outperform standard GMM tests, in that nominal and actual sizes closely co-
incide. Section 3 examines whether this superior size performance continues to hold with

time-dependent data. The LM test, with K = 0 in the moments (8), is given by:
T5'VA % x2(m —n). (11)

where V' is the estimator of the variance of the moments and is given by:

/

T “1rr
Tzfm,@yﬂxt,m] lzﬂxt,m'fut,mwt a2
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In addition, the estimated weights w; can be recovered from equation (7) and graphed
as a further diagnostic. They may provide information to guide reformulating the model
when the test (10) rejects the restrictions. Imbens, Spady, and Johnson showed that the
w; can be used directly to test the overidentifying restrictions, again for the case with

independent data.
3. Simulation Evidence

3.1 Environment

To compare GMM and KLIC estimators in a laboratory setting we use an environment
with constant relative risk aversion, with a distributional assumption on consumption
growth. Section 4 studies a similar problem in historical data. We assume that period

utility is of the power or CRRA form, with parameter a:

i
= 13
u(er) = £, (13)
or log utility if a = 1. The consumption problem is:
max Fjy i Lt)t, (14)
e} = (140)
subject to
ar = (1+r)ag1 +y: — c, (15)

and a transversality condition, with initial asset holdings a¢ given and stream of labour
income {y;}. Thus 6 is a discount rate and r a constant interest rate. Denote by x; the
gross growth rate of consumption. The Euler equation then is:

1+6
1+7r

Ey(r441)"" = (16)

Suppose that Inz; is Gaussian with unconditional mean 0 and variance o2. Then by

the properties of the log-normal density,

0,2

Eexp(—alnziq — a27) =1 (17)



This moment condition (17) satisfies the theoretical restriction (16) provided that:

202 1+46

exp(a 7) =11

This holds in the simulations, so that a may be interpreted as a preference parameter.

To generate orthogonality conditions, we consider another Gaussian series z, also with
mean 0 but independent of z. Two moment conditions are used to estimate a:

2
E exp[— alnrii —9% +(3-— a)zt] =1

0.2

Ez exp| — alnzyq —97 +(B—a)z —1] =0,

(18)

so that there is one overidentifying restriction. We set a = 3, so that the moment conditions
satisfy the log-normal restriction (17). We estimate only the exponent in utility, a, and

not o2.

To produce time-dependent data, we generate {Inx, z; } as:

Inz, =plnxi_1 + /(1 — p?)ent
2 = pze—1 + /(1 — p?)ex

where €,; and €,; are independent, pseudo-normal with mean zero and variance 0.16. The

(19)

unconditional variances of x and z are also 0.16, whatever the value of p. We consider two
different values of p, 0 and 0.6. The first case, with i.i.d. data, corresponds to the DGP
used by Hall and Howowitz (1996) and Imbens, Spady, and Johnson (1998), and results in
population moments that are not serially correlated. In the second case, the persistence
in the underlying series is inherited by the moment conditions, which thus have a serial
dependence more typical of macroeconomic data. Here the first-order autocorrelations of
the two moments are 0.5 and 0.25 respectively. The number of replications is 10,000. Four

sample sizes are considered: 100, 250, 500, and 1000.

3.2 Bias, MSE, and Size

Table 1 provides the results of estimation in the i.i.d. version of the data generating

process. Results are shown for several degrees of smoothing in KLIC estimation: K =
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0,2,4,6. Results with automatic bandwidth selection were similar, and so are not shown.
Each set is followed by the iterated GMM estimator using the matching lag length. As
mentioned earlier, the Newey-West bandwith is equal to the the degree of smoothing in
KLIC estimation, so that the estimators can be compared fairly. The first column shows
the average bias & — «, which is positive for all experiments, and falls as T rises. GMM
yields smaller bias than do the KLIC estimators, at each sample size. The second column
gives the mean-squared error in estimating «. Again this is smaller for GMM, at each

sample size and degree of smoothing.

The third column gives the mean of the test statistic based on the overidentifying
restriction. For GMM this is the usual J-test statistic while for KLIC it is the JK-
statistic (10) proposed by Kitamura and Stutzer. With one restriction, the mean of the
x2(1) tests should be 1 for both test statistics in large samples. All the sample means
here exceed one, reflecting the well-known tendency for the J-test to over-reject in small
samples. The remaining columns provide further information on this tendency, by giving

the empirical sizes of the tests at nominal sizes of 1, 5, and 10 percent.

The comparison of GMM and KLIC test means or sizes shows that KLIC estimation
does not solve the over-rejection problem. The KLIC test statistic has a mean very close
to that of the J-test statistic, for each sample size and degree of smoothing, except when
the estimator adopts a high degree of smoothing with a short sample. As this laboratory
environment has no dependence, Table 1 also shows the effects of smoothing when it is not
necessary. Here the conclusion is that, provided the ratio 7'/ K is large enough, smoothing
does not hurt the finite-sample properties of KLIC estimators or tests, even when there is

no persistence in the underlying moments.

Figure 1 provides graphical information on test size, using the P value discrepancy
plots described by Davidson and MacKinnon (1998). These are based on the empirical
density function (EDF) of the P values, p,, from R replications. This EDF is is defined

as:
R

Fls) =5 3 10 < ) (20)

r=1
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for s; € (0,1) and where I is the indicator function taking the value 1 if its argument holds
and zero otherwise. The figure shows the discrepancy between empirical size and nominal
size, F (si) — s;, graphed against nominal size s;. The horizontal line is the 5 percent
critical value for the Kolmogorov-Smirnov test. Size discrepancies greater than this value

are unlikely to have arisen from experimental randomness.

Figure 1 shows the discrepancies for the version of the DGP with i.i.d. data, at T =
250. The tests studied are J and JK (each with smoothing of 0 or 6 lags) and the LM
test. The degree of smoothing is shown in brackets in the figure. The P value discrepancies
for the two J-tests are shown in bold as a benchmark. Clearly the LM test is the superior
choice at sizes of practical interest, as Imbens, Spady, and Johnson (1998) found. Among
the other four tests, the J-tests generally have the smallest distortions at T = 250. We
also found that the JK-tests had the smallest distortions once T = 500. By that sample

size, though, many of the size discrepancies are not significant.

Table 2 studies the version of the simulation model with dependent data. Again
the conclusion is that iterated GMM yields less bias and smaller mean-squared errors than
than KLIC estimation. Not until the sample size is 1000 do the smoothed KLIC estimators
resemble the GMM estimators, to which they are asymptotically equivalent. As for the
properties of tests, Table 2 shows that smoothing is necessary to avoid severe over-rejection
using either the J or JK test. In conjunction with Table 1, this finding suggests that
smoothing should be used in any macroeconomic application where the moments may

have persistence, provided that T/ K is relatively large.

Figure 2 gives P value discrepancy plots for the DGP with dependent data. Here
the P value discrepancies are much larger, as all tests over-reject more strongly. The
vertical scale is quite different from that of Figure 1. Figure 2 illustrates the importance
of smoothing. While the smoothed J and JK tests have size distortions, they are clearly

much better than the tests which do not allow for dependence.

Table 3 summarizes evidence on the LM test (12) proposed by Imbens, Spady, and
Johnson. For the i.i.d. DGP (Table 1) this test is better sized than the J-test, as those

authors found in the same experiment. For the dependent-data DGP (Table 2) though,
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the LM test greatly over-rejects (because it has the appropriate distribution only with
independent data), while the smoothed J-test and JK-test do not. The smoothed J-
test or the JK-test thus seem the best choices for the macroeconomic practitioner who is

concerned about test size but agnostic about persistence.

3.3 Power

The same simulation environment may be used to compare the power of the .J tests
with that of the KLIC-based tests. In the moment conditions (18) we change the 3 to 4
while keeping v = 3, so that the cross-moment restrictions of log normality no longer hold.
Tests of the over-identifying restrictions should be able to detect this violation of the null
hypothesis. We examined the power of the tests in the case with dependent data, which is
the most relevant to macroeconomics. We also considered other departures from the null

hypothesis and found results similar to those reported here.

Figure 3 graphs size-power tradeoff curves for the J-test and the JK-test (with K =0
or 6), at the two sample sizes T' = 250 and 500. Again properties of the J-tests are shown
as dark lines, while the JK-tests are lighter lines. The degree of smoothing had little
effect, and so graphs are not labelled with the value of K. The curves are generated by
varying the critical value for the test. At each critical value, we measure the proportion of
rejections under the null hypothesis (size) and under the alternative hypothesis (power).
The horizontal axis shows size, computed for the DGP satisfying the null, while the vertical
axis shows size-adjusted power. Thus the power comparison is adjusted for the greater size-
distortion of the unsmoothed tests. A graph value below the 45° line indicates a biased

test, with size less than power.

The lower lines in Figure 3 show the size-power curves at a sample size of 250. At
this sample size the J-test is biased for sizes less than 0.1. The KLIC-based tests clearly
have much higher size-adjusted power. They also have similar properties for each degree
of smoothing. The upper lines in Figure 3 show the same properties at a larger sample size
of 500, where power increases for all tests. Now the J-test is no longer biased but again it

has much less power against this alternative than do the KLIC tests.
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We also calculated P value discrepancies and size-power curves for Hall’s (2000) JC-
test, though the results are omitted from Figures 1-3 for ease of viewing. In the simulations,
the JC-tests had slightly greater size distortions than the comparable .J-tests. In turn,
their size-adjusted power was greater than that of the J-tests, but less than that of the
J K -tests.

Our finding low power for the J-test is similar to a conclusion of Smith (1999), who
studied the finite-sample properties of tests of the Epstein-Zin asset pricing model. He
found that the J-test had low size-adjusted power against some economically interesting
alternative DGPs. One possible explanation for the low power of GMM-based test statistics
is collinearity in moments, which affects the covariance matrix and reduces the precision
of estimators. KLIC estimation avoids this problem because this covariance matrix is not
used directly in estimators or test statistics. While a lack of power is not typically a
problem in macroeconomic applications, the simulation results suggest that KLIC tests,

with a size adjustment, may be very useful diagnostics.

4. Macroeconomic Applications

We next study KLIC and GMM estimators in two macroeconomic applications. In
each case we estimate the preference parameters of the intertemporal Euler equation char-
acterizing the optimal saving decisions of an infinitely-lived, representative agent. The first
application studies constant absolute risk aversion (CARA) while the second application

studies constant relative risk aversion (CRRA) utility.
4.1 Consumption with CARA Utility

The first application involves estimating preference parameters from consumption data
alone. The consumption problem again is to maximize lifetime utility (14) subject to a

budget constraint (15). The period utility function is of the CARA form:

—exp(—acy)

u(er) = (21)

«

where ¢; is real consumption and « is the coefficient of absolute risk aversion. CARA

utility has several undesirable properties, including admitting negative consumption. But
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Caballero (1990) argued that it is consistent with a range of evidence concerning aggregate
consumption. Kimball and Mankiw (1989) applied CARA utility in a theoretical study of
tax timing. Few studies attempt to estimate o though. We chose this problem because it
has an analytical solution, given a linear, Gaussian model of labour income, and because

precautionary saving may be an important component of aggregate saving.
The Euler equation from the maximization problem (14) now is:

147
1+6

exp(—ac) = Ey exp(—acii1). (22)

The ratio (1 + 7)/(1 + 0) generally is not identifiable, so we set r = 6. We define the

Euler-equation error for use in estimation as:

- )]~ 1
o = P Z el 2 L (23

then estimate o with the sample versions of the moment conditions:
Elery1- 2] =0, (24)

with instruments z;. The division by « is consistent with theory, since this lies in the infor-
mation set. This division rules out the trivial solution o = 0. Ferson and Constantinides

(1991) used a similar transformation in estimating parameters of habit persistence.

Real consumption is measured as monthly U.S. consumption expenditure on non-
durables and services, in chain-weighted billions of 1992 dollars, seasonally adjusted. The
source is CITIBASE gmcngq + gmecsq. As an instrument we use U.S. real personal dispos-
able income in chain-weighted billions of 1992 dollars, gmydpq. Both series are seasonally
adjusted and expressed in per capita terms by dividing by population, p16. The sample

runs from January 1959 to June 1998, giving 474 observations.

The left side of Table 4 contains iterated GMM estimates of the coefficient of ab-
solute risk aversion, a. While various fixed bandwidths were applied, we present only
the results based on Newey and West’s (1994) automatic procedure, without prewhiten-

ing. We consider three different sets of instruments: z; = {¢}, zz = {¢,¢t — ¢t—1}, and
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2zt = {t,¢e — i1,y —yi—1}, where ¢ is a vector of ones. These sets correspond to the cases
with exact identification, one overidentifying restriction, and two overidentifying restric-
tions respectively. In the first case the Newey-West procedure sets K =T 5 = 8 while in
the other two cases it gave K = 2. The preference parameter is estimated quite precisely,
though the over-identifying restrictions are rejected at conventional significance levels. The
implied average coefficients of relative risk aversion are found by multiplying by mean con-
sumption, and range from 167 to 209, depending on the instrument set. As in numerous
other studies, the elasticity of intertemporal substitution is thus very low. Notice that «
is identified even when z; contains only a constant, showing that the preference parameter

can be estimated even when consumption changes are unpredictable.

The right side of Table 4 contains the corresponding KLIC estimates. The bandwidth
K for smoothing moments is set equal to the Newey-West lag length, as in the Monte Carlo
experiments. In this application there is very little persistence in the moments. The first-
order autocorrelation of the moment condition, evaluated at the iterated GMM estimates,
ranges from -0.10 to 0.04, depending on the instrument z;. Thus the choice of K does not
have a large effect, as was the case in the i.i.d. simulation environment studied in section
3. The JK test statistic (10) used to assess the overidentifying restrictions rejects them

more decisively than does the J test.

The main economic finding is that the KLIC estimators find risk aversion measures
similar to those found by GMM. Moreover, the overidentifying restrictions are rejected
with both estimators. In fact, the information-theoretic test rejects more resoundingly
than the GMM J-test, just as occurred in the Monte Carlo experiments. The table shows
asymptotic P values in brackets. We also approximated P values (for the case with one
over-identifying restriction) using the i.i.d. version of the simulation model in section 3,

with 7' = 500, and again found very low values.

The light line in Figure 4 shows the Euler equation residuals, exp[—d&(ci+1 — )] — 1
evaluated at the KLIC estimate with three instruments shown in Table 4. Two other
residuals, corresponding to the instruments Ac; and Ay, are not shown here, but of

course also play roles in determining the weights on each observation. The KLIC weights,
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{&:}, are shown as the dark line. They are multiplied by T so as to fit on the same
scale as the residuals. The weights clearly are are highly variable over time, dipping down
near zero at several observations with large Euler equation residuals. This variation is
consistent with the rejection of the overidentifying restrictions. Several observations are
essentially omitted in calculating the moments, while several others are over-weighted by
more than 100 percent relative to their weights in GMM, which are 1 at this scale. The
weights provide a useful, graphical diagnostic when there are multiple instruments and

moment conditions.

The data set in this application, with 474 monthly observations, is quite large by
the standards of macroeconomics. Even so, there are some differences between the GMM
and KLIC estimates and tests in Table 4. We next explore the differences in a second

application, with quarterly data.

4.2 CRRA Asset-Pricing

Our second application assumes that period utility is of the power or CRRA form,

with parameter a:
11—«
Ct

u(ey) = (25)

1—a’
or log utility if o = 1. Asset-pricing with this utility function was the setting for Monte
Carlo studies of GMM by Tauchen (1986), Kocherlakota (1990), Hansen, Heaton, and
Yaron (1996) and Hansen and Singleton (1996). Again let x be the gross growth rate of
consumption and 7 be the gross growth rate of the corresponding deflator. R; denotes
the gross, nominal yield on a discount bond of maturity ¢. For one-period and two-period

bonds these yields are given by:

11 Et[x;”al}

Ry 1+60  "mp (26)
I SR P T

R, (1 +9) 1 Tepe

which exploits the fact that the nominal yields are known at time t.

In this application ¢ counts quarters. R; and Rs are the yields on Canadian three-

month and six-month treasury bills. The yield data are from CANSIM, series b14060 and
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b14061 and are averages of monthly series. The consumption series is per capita, quarterly,
consumption expenditure excluding durables, seasonally adjusted in 1992 dollars: (415372
- d156373)/d1. The corresponding deflator, used to measure the inflation rate, is the CPI,
series p100000. The sample includes 104 observations, from 1974 to 1999. We also studied
the U.S. data set examined by Hansen, Heaton, and Yaron (1996) but we found a global

optimum at unreasonably high risk aversion, as they did.

Table 5 contains GMM and KLIC estimates of the preferences parameters o and 6,
with K = 8 determined automatically. The instrument set is z; = {¢, 4,7 }. On the left
side of the table, GMM finds a significant, positive discount rate of roughly 5% at annual
rates. Meanwhile, estimates of «, the coefficient of relative risk aversion, are negative and
insignificant, whether estimation uses one yield or two. The J-test does not reject the
over-identifying restrictions, at conventional significance levels. Results were very similar

with alternate sets of instruments.

KLIC estimation, on the right side of Table 5, yields larger estimates of o but smaller
estimates of # than GMM does. Both are insignificant. The JK test yields a rejection

when two returns are used.

At the iterated GMM estimates (using two asset yields), the first-order autocorrelation
coefficient for each moment condition is 0.6. These autocorrelations are not sensitive to the
instrument set z;. Thus this problem resembles the simulation environment with dependent
data studied in section 3. As one would expect then, the LM test statistics (not shown)
are much larger than the corresponding J-test statistics. Again the table shows asymptotic
P values in brackets. In the first row of the table, with one over-identifying restriction, we
also approximated P values by Monte Carlo methods using the dependent-data version of
the simulation model of section 3, with T'= 100. In each case, these were larger than the

asymptotic values shown, as one would expect.

We also inspected Euler equation residuals and weights from KLIC estimation with
two asset returns. As in the previous application, there is a great deal of variation over
time. Residuals from the Euler equations are largest when the nominal yields spike in the

early 1980s and again in the early 1990s. The weights have a striking pattern: data from

16



the 1980s are much more consistent with the power-utility CCAPM than are data from the
1990s. Again the weights are a complement to presenting multiple Euler equation residuals

and their cross-products with instruments.

5. Summary

KLIC estimation has been proposed by Kitamura and Stutzer (1997) and Imbens,
Spady, and Johnson (1998) as an alternative to GMM estimation. This paper has com-
pared the two estimation strategies in the task of estimating preference parameters from
macroeconomic data. We compared iterated GMM estimators to KLIC estimators with
comparable degrees of smoothing. The comparison took place in applications and in sim-

ulations.

KLIC estimation provides helpful diagnostics in the form of estimated weights on each
observation, but it is computationally somewhat more demanding than GMM. In simula-
tions the KLIC estimators had greater bias and mean-squared error than the comparable
iterated GMM estimator. Tests arising in KLIC estimation do not appear to provide a so-
lution to the problem of over-rejection familiar in GMM estimation and testing. However,
KLIC-based tests had size-adjusted power superior to that of the J-test in simulations.
Bootstrap corrections along the lines suggested for GMM by Hall and Horowitz (1996)

might also be helpful in reducing the size distortions in KLIC estimation.
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Table 1: Monte Carlo Evidence (i.i.d. data)

Estimator
T

KLIC (K = 0)

100
250
500
1000

GMM (K = 0)

100
250
500
1000

KLIC (K = 2)

100
250
500
1000

GMM (K = 2)

100
250
500
1000

Z zrexp[—alnziy; — 9
t=0

a=3.0

Bias in &

.0848
.0347
.0183
.0098

.0473
.0209
.0123
.0069

.0853
.0334
.0183
.0097

.0451
.0207
.0125
.0069

T

j{:expL—alnag+1——9

t=0

Inz; ~ IIN(0,.16)
T e {100,250, 500,1000}

MSE in &

0.0072
0.0012
0.0003
0.0001

0.0022
0.0004
0.0002
0.0001

0.0073
0.0011
0.0003
0.0001

0.0020
0.0004
0.0002
0.0001

0.2

2

0.2

2

Mean of Test

1.6576
1.4172
1.2060
1.1651

1.7330
1.4479
1.2717
1.1570

1.6557
1.4327
1.2589
1.1554

1.5665
1.4011
1.2529
1.1516

20

+B—a)zx]=1

+B—-a)z—1=0

2z ~ IIN(0,.16)

Empirical Size

.01

0527
.0367
.0239
.0192

.0600
.0421
.0290
.0226

.0599
.0376
.0256
.0204

.0501
.0393
0271
0221

.05

1168
.0962
0721
0717

1223
.0970
0755
.0661

1262
.0970
0771
0672

1141
.0957
0747
0658

1779
1531
1249
1233

1754
1467
1287
1164

1881
1527
1324
1223

1725
1454
1278
1161



KLIC (K = 4)

100 0874 0.0077 2.1170 0658 1327 1957
250 0342 0.0012 1.4808 0408 1011  .1559
500 0184 0.0003 1.2803 0263 0786  .1331
1000 .0096 0.0001 1.1641 0209  .0675  .1226
GMM (K = 4)

100 0458 0.0021 1.4606 0400  .1088 1679
250 0207 0.0004 1.3649 0377 0938 1448
500 0125 0.0002 1.2396 0256 0740 1267
1000 .0069 0.0001 1.1476 0218  .0649  .1161
KLIC (K = 6)

100 0825 0.0068 3.3672 0755 1456  .2050
250 0349 0.0012 1.6039 0442 1059  .1615
500 0185 0.0003 1.3044 0282 0800  .1362
1000 .0096 0.0001 1.1736 0216  .0681  .1240
GMM (K = 6)

100 0468 0.0022 1.3827 0305  .1007  .1644
250 0209 0.0004 1.3332 0352 0908  .1429
500 0125 0.0002 1.2267 0247 0729 1251
1000 .0069 0.0001 1.1432 0213 .0649  .1161

Notes: « is the coefficient of relative risk aversion in the simulation model, K is the bandwidth in KLIC
estimation and the Newey-West lag length in GMM estimation. The test statistic follows an asymp-
totic x2(1) distribution and so should have a mean of 1. Entries labelled .01, .05, and .10 are the
actual sizes of the test with these nominal sizes. Empirical test sizes can be compared using binomial

standard errors. With 10,000 replications the standard error at size 3 is .Ol[é(l—é)]%.
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Table 2: Monte Carlo Evidence (dependent data)

Estimator
T

KLIC (K = 0)

100
250
500
1000

GMM (K = 0)

100
250
500
1000

KLIC (K = 2)

100
250
500
1000

GMM (K = 2)

100
250
500
1000

Bias in &

T 2

22

Zexp[—aln Tip1 — 9% +B-—a)zx]=1
t=0
T 2
Zzt exp[—alnziiq — 97 +B—a)zx—1]=0
t=0
a=3.0 €zt ~ IIN(0,.16) €.+~ 1IN(0,.16)
Inz; =0.6Inx:i_1 + 8¢z
Zt = O.6Zt_1 + -Sezt
T € {100, 250,500, 1000}
MSE in &  Mean of Test Empirical Size
.01 .05

.2055 0.0423 3.9648 1767 .2855
.0743 0.0055 3.2524 1427 2527
.0390 0.0015 2.9213 1233 .2360
.0204 0.0004 2.7370 1158 2287
.0622 0.0039 4.2872 717 2740
.0421 0.0018 3.4392 .1401 .2404
.0233 0.0005 2.9393 1236 2229
.0123 0.0001 2.7164 1097 .2149
.1648 0.0272 2.5091 1047 1894
.0626 0.0039 1.9935 0712 1461
.0309 0.0009 1.6862 .0491 .1266
.0159 0.0003 1.5563 .0421 1102
.0425 0.0018 2.5721 .1084 .1929
.0324 0.0011 2.2187 .0849 1628
.0182 0.0003 1.9311 .0658 1432
.0093 0.0001 1.7949 .0492 .1166

.3636
3324
3201
3061

.3495
3203
3113
.2956

2578
2155
1928
1794

2577
2263
2106
1845



KLIC (K = 4)

100 1540 0.0238 3.4948 0978 1814 2449
250 0614 0.0038 1.8727 0651  .1346  .1979
500 0293 0.0008 1.5551 0423 1111 1757
1000 0149 0.0002 1.4231 0358  .0944 1602
GMM (K = 4)

100 0449 0.0020 2.0438 0805  .1663  .2300
250 0287 0.0008 1.8956 0691 1396  .1988
500 0163 0.0003 1.6686 0501 1207 .1815
1000 0081 0.0001 1.5669 0451 1086  .1715
KLIC (K = 6)

100 1360 0.0185 5.7943 1069 1867 2477
250 0613 0.0038 1.8719 0656 1327 .1964
500 0288 0.0008 1.5235 0415 1062 .1694
1000 0146 0.0002 1.3817 0336 .0896  .1529
GMM (K = 6)

100 0508 0.0026 1.7835 0605  .1488 2144
250 0272 0.0007 1.7255 0598 1289  .1861
500 0154 0.0002 1.5475 0429 1104 1695
1000 0074 0.0001 1.4643 0396 0974 1585

Notes: « is the coefficient of relative risk aversion in the simulation model, K is the bandwidth in KLIC
estimation and the Newey-West lag length in GMM estimation. The test statistic follows an asymp-
totic x2(1) distribution and so should have a mean of 1. Entries labelled .01, .05, and .10 are the
actual sizes of the test with these nominal sizes. Empirical test sizes can be compared using binomial

standard errors. With 10,000 replications the standard error at size 3 is .Ol[é(l—é)]%.
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Table 3: Monte Carlo Evidence (LM Test)

independent data dependent data

Mean Empirical Size Mean Empirical Size
T .01 .05 .10 .01 .05 10
100 1.3415 0222 .0866 .1547 2.7754 1201 .2498 3425
250 1.2095 0162 .0717 .1354 2.5167 1005 .2206 .3132
500 1.0763 0105 .0576 .1119 2.3979 0921  .2124 .2990
1000  1.0813 0122 .0562 .1144 2.3516 0918 .2049 .2883

Notes: The LM test statistic follows an asymptotic x?(1) distribution when the moments are serially
uncorrelated and so should have a mean of 1. Entries labelled .01, .05, and .10 are the actual sizes

of the test with these nominal sizes.
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Table 4: Estimation of Constant Absolute Risk Aversion (CARA)

E((&Xp[—a(cﬂ; —c)] -1 'Zt> —0.

United States: January 1959 — June 1998

GMM KLIC

% K & J (df) & JK (df)
(se) (P) (se) (P)

. 8 104.67 103.70
(17.27) (15.37)

L Ct— Cooy 2 131.67  7.28(1) 126.39  19.61(1)
(15.51)  (0.01) (14.84)  (0.00)

L Ct— Com1y Yt — Y1 2 131.64  7.29(2) 120.59  22.07(2)
(15.49)  (0.03) (14.79)  (0.00)

Notes: ¢ is a vector of ones; c is expenditure on nondurables and services; y is personal disposable income;

both time series are real, per capita, monthly, and seasonally adjusted.
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Figure 4: CARA KLIC Estimation
Weights and Euler Equation Residuals
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Table 5: Estimation of Constant Relative Risk Aversion (CRRA)

B(TE 10 L]

T41 Ry

Pl U0y )
Tt41Tt4-2 Rgt

Zt = {L7 T, 7Tt}

Canada: 1974:1 — 1999:.1V

GMM KLIC

Returns K 0 b J(df) 0 é JK (df)
(se) (se) (P) (se) (se) (P)

R 8 0.0125  -0.568  3.47(1) -0.0333  11.990  1.43(1)
(0.0033)  (0.822)  (0.06) (0.0365)  (11.041)  (0.23)

Ry, Ry 8 0.0113  -0.1874  7.29(4) -0.0014  0.5445  19.86(4)
(0.0016)  (0.3813)  (0.12) (0.0034)  (0.6193)  (0.00)

Notes: . is a vector of ones; z is the gross growth rate of expenditure on nondurables and services (real,
quarterly, seasonally adjusted, per capita); = is the gross cpi inflation rate; R; is the gross yield on

three-month treasury bills, Ry is the gross yield on six-month treasury bills.
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