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Abstract

We calculate, by simulations, numerical asymptotic distribution functions of likelihood
ratio tests for fractional unit roots and cointegration rank. Because these distributions
depend on a real-valued parameter b which must be estimated, simple tabulation is not
feasible. Partly due to the presence of this parameter, the choice of model specification
for the response surface regressions used to obtain the numerical distribution functions
is more involved than is usually the case. We deal with model uncertainty by model
averaging rather than by model selection. We make available a computer program
which, given the dimension of the problem, ¢, and a value of b, provides either a set of
critical values or the asymptotic P value for any value of the likelihood ratio statistic.
JEL Codes: C12, C16, C22, C32

Keywords: cofractional process, cointegration rank, fractional unit root, fractional
cointegration, likelihood ratio test, model averaging, numerical CDF, response surface
regression

1 Introduction

This paper calculates, by simulation, numerical asymptotic distribution functions — and
hence critical values and P values — of tests for fractional unit roots and cointegration rank
based on the fractional vector autoregressive (FVAR) model proposed in Johansen (2008)
and analyzed by Johansen and Nielsen (2010, 2012), henceforth JN. For a time series X; of
dimension p, the FVAR model is given in error correction form as

k
AX = A Laf X+ Y TN L X+, t=1,...,T, (1)

1=1
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where ¢, is p-dimensional 4.i.d.(0,€), d > b > 0, A? is the fractional difference operator,
and L, = 1 — A is the fractional lag operator. For the model with d = b it is also possible
to include a constant term to obtain

k
A'Xy=a(BLaXi+p)+ Y DAL X +e, t=1,....T, (2)

1=1

noting that Lyp’ = p’ because A%l = 0.

The analysis in JN (2012) is based on the conditional probability measure and condi-
tional likelihood. Thus, the observations Xj, ..., X7 are generated by the models (1) and
(2) as functions of parameters, innovations &1, ..., er, and initial values X_,,n > 0, and
the latter are assumed fixed and bounded. For the calculations of the conditional likelihood
function and the maximum likelihood estimator, the fractional difference A*X; is needed
for different values of a, and this depends on the infinitely many initial values X_,,,n > 0,
which are not all observed. It is assumed that observations on X; fort = —Ny+1,...,T are
available. Although the infinitely many X _,,n > 0, enter in the data generating process,
the calculations of the conditional likelihood and associated estimators and test statistics
are based on X_,, = X_,,,n=0,...,Ng— 1, and X_, = 0,n > Ny. Thus Ny observations
are set aside for initial values, as is usually done in the analysis of an AR(Ny) model.

The models (1) and (2) include the Johansen (1988, 1991) cointegrated VAR model as
the special case d = b = 1, and the interpretation of the model parameters is similar. Thus,
we can write IT = a3, where the p X r matrices a and 3, with r < p, are assumed to have
full column rank r. Then the columns of 3 are the r cointegrating (cofractional) relations
that determine the long-run equilibria, and a contains the adjustment coefficients. The
parameter p is the so-called restricted constant term (since the constant term in the model
is restricted to be of the form p = ap’), such that 3’ X, + p’ has mean zero. The rank r is
termed the cointegrating, or cofractional, rank. The expansion of L, = 1 — A® has no term
in L%, and thus only lagged disequilibrium errors appear in (1) and (2).

JN (2012) shows how to estimate the parameters of the models (1) and (2), including the
fractional orders d and b, and how to test hypotheses on the cointegration rank r. The tests
include, as special cases, Johansen’s (1988, 1991) tests for cointegration rank in VARs (when
d = b= 1is known), standard Dickey-Fuller tests (when d = b = 1 is known and p = 1), and
fractional Dickey-Fuller tests (JN, 2010) (when p = 1). A Matlab package is available for
calculating estimators and test statistics in models (1) and (2); see Nielsen and Morin (2012).

Programs for computing accurate asymptotic critical values and asymptotic P values,
based on numerical distribution functions (NDF's), are available for standard Dickey-Fuller
tests (MacKinnon, 1996) and Johansen tests (MacKinnon, Haug, and Michelis, 1999). Our
objective is to obtain comparable NDFs for cointegration rank tests in models (1) and (2).

In fractionally integrated models, a new complication is the dependence of the asymptotic
distributions on the real-valued parameter b. This implies that critical values have to be
simulated conditional on an estimate of this parameter. An additional complication that
arises partially because of the presence of the parameter b is that the choice of model
specification for the response surface regressions is more involved than is the case for ordinary
unit root and cointegration tests. One methodological innovation of this paper is that we
use model averaging rather than model selection to deal with model uncertainty in the



specification of response surface regressions.

The remainder of the paper is organized as follows. Section 2 briefly introduces the
tests and associated asymptotic distributions. Section 3 discusses how we obtain numerical
approximations to the distribution functions of the tests. Section 4 explains how our results
can be used to obtain approximate asymptotic critical values and P values via computer
programs that we make available, and Section 5 concludes.

2 Likelihood ratio tests for fractional cointegration

JN (2012) shows that asymptotic theory is standard when b < 0.5, and therefore we focus
in this paper on the case d > b > 0.5, where asymptotic theory is non-standard and in-
volves fractional Brownian motion. Specifically, when b > 0.5, JN (2012) shows that, under
i.1.d. errors with suitable moment conditions, the maximum likelihood (assumlng normality,
and conditional on initial values) parameter estimates d, b &, Ty, ... Ty are asymptotically
Gaussian, while the estimates ﬁ, p are locally asymptotically mlxed normal. These results
allow asymptotically standard (chi-squared) inference on all parameters of the model, includ-
ing the cointegrating relations and orders of fractionality, using quasi-likelihood ratio tests.

In this paper, we are concerned with the asymptotic distribution of the likelihood ratio
(LR) test statistic for the hypothesis H, : rank(Il) = r against H,: rank(Il) = p in model
(1) and H, : rank(II, ) = r against #,: rank(II, u) = p in model (2). Let L(d,b,r) be the
conditional profile likelihood function under #H, (with the restriction d = b imposed in the
case of model (2)), where ¢, 3,1, ..., T, © (and p in model (2)) have been concentrated
out by regression and reduced rank regression; see JN (2012, Section 3.1) for details.

To calculate the LR statistic, we maximize the conditional profile likelihood function
under the hypotheses H, and #,. Then LRz(q) = 210g(L(cip,Bp,p)/L(dr,lA)r,r)), where
q=p—r,

L(dy, by, p) = max L(d, b,p), and L(d,, by, r) = max L(d, b,r),
with the obvious modification for model (2) with d = b. The asymptotic distribution of this
test statistic is derived in JN (2012), in which it is shown that, when 0.5 < b < d,

LRT(q)gT{/OdW( VF'(s </F VF'(s )/F )AW' (s }:LR(q), (3)

where the vector process dW is the increment of ordinary g-dimensional vector Brownian
motion, with ¢ = p — r. The vector process F' depends on the deterministic terms in a
similar way as it does in the cointegrated VAR model in Johansen (1991). In model (1)
where there is no deterministic term in the model, F'(u) = W;_1(u). We refer to this as
the “no constant” or NC case. In model (2) where the restricted constant term is included,
F(u) = (W/_,(u),1). We refer to this as the “restricted constant” or RC case. In both
cases, Wy,_1(u) is vector fractional Brownian motion of type II defined as

W,_1(u) =T(b)™" /Ou(u — 5)7laW (s). (4)

JN (2012, Section 2.3) shows that, in a version of Granger’s representation theorem, X,
can be represented as

Xt = CA_d(Etl{t21}) + A_(d_b) (Y1;+1{t21}) + s t= 17 s 7T7 (5)



where 174y is the indicator function for the event A, u; depends on initial values of X,
and Y;* = 3% 7.6, , is (asymptotically) a stationary process. JN (2012) shows that
the asymptotic distributions do not depend on initial values under the assumption that
these are either zero for n > T% v < 0.5, or satisfy » >~ n2X_, < oco. Given the
representation (5), the functional central limit theorem for fractional processes shows that
asymptotic distributions depend on type IT stochastic integrals [}'(u—s)""'dW(s) as in (3).
These reflect the fact that there are no innovations prior to t = 1 because initial values are
assumed fixed and inference is conditional on them, and thus only innovations for ¢ > 1 are
relevant for the limit distributions of test statistics and estimators. However, for the same
reason, parameter estimates, test outcomes, etc. are, of course, conditional on initial values
and may be different for different initial values. Obviously, such arguments are well known
from conditional inference in AR models.

The asymptotic distribution LR(q) of the test statistic LR7(q) defined in (3) depends
on both ¢ = p — r and b. The dependence on the unknown real-valued parameter b com-
plicates empirical analysis compared to the cointegrated VAR model. One approach would
be to simulate the asymptotic distribution on a case-by-case basis, but this would be both
impractical and imprecise, not to mention time-consuming. Another possibility would be to
bootstrap the tests along the lines of a fractional version of Cavaliere, Rahbek, and Taylor
(2012), although this would be extremely time-consuming due to the fractional differencing
and numerical optimization required in each bootstrap replication. As a more practical
alternative, we derive NDF's that can be used in practice to obtain accurate asymptotic
critical values and P values for any dimension ¢ and any given estimate of b.

3 Numerical distribution functions

In order to simulate LR(q), we need to generate discrete-time analogs of W,_; and dW.

The latter is easy; we just use standard normal random g—vectors €;. The former is a little
harder. We discretize (4) and use z,_, = TY>7PT(b)"' S22 (+ — 5)~le,.! Note that z;_,

s=1
depends on €, for s < t but not on €,. We further define the discretized version of F' as
S¢—1 = z;_1 in model (1) where there is no deterministic term and s, ; = (2,_;,1)" in model

(2) where the restricted constant is included. Then the simulated version of LR(q) in (3) is

T T —1 T
) =TT es) (T‘1 > st_ls;_1> T2 s e o, (6)
t=2 t=2 t=2

which depends on ¢, T', and b.

Since we are interested in the asymptotic distribution LR(q), T;(T) should ideally be
simulated for T" = oco. Of course, this is impossible. Even using very large values of T is
infeasible, because, for large T', the cost of simulation is roughly proportional to the square
of T. The solution, as in MacKinnon (1996), is to simulate 77(T") for a large number of values
of T', which range from quite small to moderately large, and use the results to estimate the

asymptotic distribution by means of response surface regressions on estimated quantiles.

! Alternative simulation strategies are discussed in Davidson and Hashimzade (2009), although it focuses
on type I processes.



Most of the computational cost is incurred in generating the z;. To reduce this cost,
we generate them for ¢ = 1,2, ..., 12 simultaneously. For each value of T, we perform 200
experiments, and for each experiment we generate 1,199,999 realizations of (6) for ¢ = 1,
599,999 realizations for ¢ = 2, 399,999 realizations for ¢ = 3, 299,999 realizations for ¢ = 4,
199,999 realizations for ¢ = 5 and ¢ = 6, and 99,999 realizations for 7 < ¢ < 12. Thus the
same random numbers enter into the calculations for all values of q. Of course, this scheme
implies that our results will be most accurate for ¢ = 1 and least accurate for ¢ > 7.

The numbers of realizations always end in 99,999 so as to make the calculation of quan-
tiles easy. For an experiment based on B realizations, the estimate of the 7" quantile is
just number 7(B 4 1) in the list of the 72(T") sorted from smallest to largest, provided that
m(B + 1) is an integer. For each of the 200 experiments for each value of T', we store 221
estimated quantiles (0.0001, 0.0002, 0.0005, 0.001, ..., 0.010, 0.015, ..., 0.990, 0.991, ...,
0.999, 0.9995, 0.9998, 0.9999).

In principle, we are interested in all values of b in the half-open interval 0.5 < b < 2.
In practice, however, we must limit our simulations to a finite number of values and use an
interpolation scheme. After some experimentation, we chose to perform the simulations for
31 values of b: 0.51,0.55,0.60,...,1.95,2.00.

For each value of ¢, b, and T', we obtain 200 estimates of each of the 221 quantiles. We
then average these across the 200 experiments to obtain estimated quantiles F qb(T, ), where
7 takes on 221 values, along with standard errors SZ(T, 7). These estimated quantiles are
the raw material from which we estimate NDF's by means of 221 response surface regressions
for each value of b and ¢. These regressions use functions of T' to explain the F (T, ).

Even though our experiments were carefully designed to minimize computational cost,
they required many CPU-years of computer time. They also used so many random numbers
that it was essential to employ a 64-bit random number generator. We actually combined
two such generators, which were taken from L’Ecuyer et al. (1993).

In order to obtain asymptotic quantiles, we utilize response surface models that involve
regressing the F qb(T, 7) on a constant and powers of 772, This is in line with theoretical
results in, e.g., Park (2003) who found that the next term in an asymptotic expansion of
the Dickey-Fuller test statistic is of order Op(T~1/2). Hence, we use the models

Models 1,2,3,4: 1, T2 [T, [T-3/3], [T~2].

Here square brackets indicate that a regressor does not appear in the lowest-numbered
model but does appear in at least one higher-numbered model, with regressors being added
sequentially from left to right as the model number increases. Thus Model 1 has just two
regressors, namely, a constant and 7~%?2 while Model 4 has five regressors.

Although one or more of Models 1 through 4 often performs very well, that is not always
the case. We therefore add five more models,

Models 5, 6 : 1, T7%2 177 7% [T,
Models 7,8,9: 1, T7°, T2 [T~%], [T~*].

We also experimented with a few models that had more than five regressors. However, these
often showed evidence of severe overfitting.

What we are interested in for all the response surfaces is the constant term, which can
be interpreted as an estimate of the 7" quantile of the asymptotic distribution. Ideally, all

>



models that fit well will lead to similar estimates of the constant term. As we explain below,
that is true for the larger values of b but not always for the smaller ones.

The estimation method we use is weighted least squares. Following MacKinnon (1996),
for every value of b, ¢, and 7, we initially regress the square of SZ(T, ) on a constant,
1/T, and 1/T? and use the inverse square roots of the fitted values from that regression as
weights. We could have skipped the initial regression and simply used 1/ SZ(T, 7), but the
smoothing that results from using fitted values makes the weights much less variable and
should produce slightly more efficient estimates.

If the weights are asymptotically correct and the response surface regression accounts
successfully for the systematic variation in the quantiles, the sum of squared residuals (SSR)
from the weighted regression is asymptotically (in n, the number of values of T') distributed
as x?(n—k), where k is the number of regressors. Thus it is very easy to tell when a response
surface regression fits well and when it fits badly. In the former case, the SSR will be less
than n— k for more than half the values of 7 and less than the 0.95 quantile of the x?(n— k)
distribution for about 95% of them. In the latter case, it will usually be a very big number.

In MacKinnon (1996) and other previous work on numerical distribution functions, model
selection procedures were used to choose the best model for each set of 221 estimated
quantiles. It is essential that these be the same for all © for a given set of experiments to
prevent the resulting NDF from being non-smooth or even non-monotonic. However, model
selection does not always work well, especially for smaller values of b. The chosen model,
and consequently the NDF, sometimes changes substantially between adjacent values of b,
even though the relative fits of alternative models change only modestly. Since we wish to
use interpolation for values of b not directly covered by our experiments, it is very important
that the NDFs vary smoothly as b changes. Instead of model selection, we therefore use
model averaging; see Buckland et al. (1997) and Hansen (2007). To our knowledge, this is
the first use of model averaging in this context.

Our criterion function for model j is

, 1
Q) = g3 2 (SSRy() + 28,
where SSR;(7) denotes the SSR of model j for quantile 7, k; denotes the number of coeffi-
cients estimated for model j, and the summation over m means that we are summing over
all 221 quantiles. The weight given to a particular model with j = J when there are m

models is then
exp(—Q(J))

>iLiexp (—Q(7)) "
The formula (7) is based on one suggested by Buckland et al. (1997). It gives high weights
to models that fit well and are parsimonious, and it ensures that the weights are nonnegative
and sum to one. When the weight for any model is initially less than 1074, it is set to zero,
and the remaining weights are rescaled so that they sum to one. This ensures that poorly
fitting models have no effect on the results. The final estimate of each of the 221 asymptotic
quantiles, for given b and ¢, is then

W(J) =

Fioo,m) = 3 W) (),

m
j=1

6



where 4,(j) denotes the estimated constant term in the response surface regression for
quantile 7 based on model j.

How many values of T" we use, and which ones, varies somewhat across the experiments.
The following 33 values are always used:

100, 110, ..., 290, 300, 350, .. ., 550, 600, 700, . . ., 1200.

This choice produces satisfactory results for the largest values of b, but not for smaller values.
We therefore add some additional, larger values of T" for some cases. For 1.15 < b < 1.50,
we add 1300 and 1400. For 1.05 < b < 1.10, we also add 1500 and 1600. For b < 1.00, we
further add 1700, 1800, 1900, and 2000. Thus n = 33, 35, 37, or 41. For the largest values
of T, each set of 200 experiments took up to a week of computer time.

Larger values of T" are needed as b becomes smaller because the shape of the relationship
between Fqb and T changes with b. Experimental results for small values of T" also become
less informative about the asymptotic distribution as b becomes smaller. Both of these
results are evident in Figure 1, which graphs Fqb(T ,0.95), the estimated 0.05 critical value,
against 1" for several values of b for the NC case. In the top panel, ¢ = 1, and in the bottom
panel, ¢ = 12. Figure 2 contains results for the RC case that are comparable to the ones
in Figure 1. Both the levels and the slopes of the Fqb(T ,0.95) as functions of T" look very
different in this case.

The response surface regressions have a much easier time fitting the data for large values
of b than for small ones. In the former case, all response surfaces that fit well tend to yield
very similar estimates of F| qb(oo, 7). Thus, for large b, our NDFs suffer from very little model
uncertainty. In the latter case, however, several response surfaces that all fit well can yield
somewhat different estimates of F qb(oo, 7). In consequence, despite the very large number of
simulations that we performed, the NDFs for small values of b may suffer from some model
uncertainty.

To make the above remarks more concrete, consider the 0.95 quantile (the 0.05 critical
value) for ¢ = 1 in the NC case. When b = 1.50, six models get weights greater than 0.02.
Among these six, the smallest estimated asymptotic quantile is 4.5501, the largest is 4.5506,
and the weighted average is 4.5504. Thus all the response surface regressions yield what is
for all practical purposes the same estimate, and the weighted average is almost certainly
very accurate. In contrast, when b = 0.51, five models get weights greater than 0.02. Among
these five, the smallest estimated asymptotic quantile is 3.6161, the largest is 3.6866, and
the weighted average is 3.6482. These estimates vary somewhat. With the model averaging
approach, we avoid making an arbitrary choice among the models that all fit quite well.

It does not make sense to worry much about the possible inaccuracy of our NDFs for
small values of b. As can be seen from the above example (the case b = 0.51 is the most
extreme one) and from Figure 1, any such inaccuracy is small relative to the errors that
must inevitably arise from using asymptotic rather than finite-sample distributions and from
using estimates of b rather than true values.

The curves graphed in Figures 1 and 2 appear to be very smooth, even though these
are simply raw results that have not been smoothed in any way. The curves appear to
be smooth because they are based on a great many simulations, and there is consequently
very little experimental error. It is because of this that poorly specified response surfaces
produce very large values of SSR; (7).



Figure 1: Estimated 0.95 quantiles as functions of 7', NC case
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Figure 2: Estimated 0.95 quantiles as functions of 7', RC case
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Figure 3: Estimated 0.95 asymptotic quantiles as functions of b, NC case
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Figure 3 graphs asymptotic 0.05 critical values on a logarithmic scale as functions of b
for most values of ¢ in the NC case. It is evident that the asymptotic critical values are
not monotonic in b. For all values of ¢, the critical value initially rises slowly as b increases
(it actually drops slightly at first for ¢ = 1), then rises quite rapidly for a while, achieves a
maximum around b = 1.5, and declines quite substantially thereafter.

Figure 3 contains all the information that our experiments provide about asymptotic 0.05
critical values in the NC case, except for ¢ = 7,9, 11, which were omitted to avoid cluttering
the figure. In principle, although it is not very convenient, one could simply read a desired
critical value from the figure. It is clear from the figures that ignoring the presence of the
parameter b would lead to substantial errors in inference, since quantiles depend in a non-
trivial way on b. It would therefore be impractical to use tables of simulated critical values,
which would extend to many pages. Moreover, such tables would provide less information
than the critical values and P values provided by the computer programs which accompany
this paper; see the next section.

4 Critical values and P values

The first step in estimating critical values and P values for a specified value b is to calculate
Fqb(oo, 7) using the Fqb(oo, 7) for a number of values of b close to b. As Figure 3 makes clear,
the asymptotic distributions are smooth functions of b, so it should be possible to do this
in a variety of ways.

10



We use the weighted local quadratic regression:
w(i) FY® (00, 7) = mw(i) + naw(i)b(i) + nsw ()b (i) + (i), (8)

where i runs from 1 to 31, b(1) = 0.51, b(2) = 0.55, and so on up to b(31) = 2.00, and
w(i) = max(0,1 — 5|b(i) — b]). With this weighting scheme, only values of b near b receive
positive weights. For example, if b = 0.72, there are eight such values:

0.55(0.15), 0.60(0.40), 0.65(0.65), 0.70(0.90), 0.75(0.85), 0.80(0.60), 0.85(0.35), 0.90(0.10).

Here the first number is b(z) and the second is the weight w(z). This case is typical, in that
eight values of b receive positive weights. However, there may be as few as five when b is
close to 0.51 or 2.00. Our estimate Fqb(oo, ) is simply Ay + fob + 7)3b?, where the 7); are the
estimates from regression (8).

In order to obtain a P value for any observed test statistic LRy (¢), a procedure for
interpolating between the 221 values of Fqb(oo,ﬁ) is needed. The procedure we use is a
modified version of one proposed in MacKinnon (1996). Consider the cubic regression

G(m) = Yo + 11 F () + 7 F%(7) + 1:F3(7) + ex, (9)

where F'(7) denotes F, 2(0o, ), and G(-) is an inverse CDF. The regressand is transformed in
order to make the relationship between it and F'(7) closer to linear. In MacKinnon (1996),
which dealt with Dickey-Fuller tests, G(-) was the inverse standard normal CDF. That
would be a bad choice here, because F'(-) in no way resembles the inverse standard normal
distribution. Instead, we note that if standard asymptotics applied, as when b < 0.5, then
LR7(q) 3 v%(¢?). We therefore define G(r) to be the inverse of the x2(¢2) CDF evaluated
at m. The precise choice of G(+) does not matter very much.

It may seem a bit odd that the regressors in (9) are stochastic and the regressand is not.
However, because the estimated quantiles are generally very accurate, the errors in variables
bias that this induces is very small. This regression is estimated using only a small number
of points, generally 9, in the neighborhood of the observed test statistic LRy (q). We first
find the value of F'(r) that is closest to LRz (¢) and use the data for that value of 7 and the
four values on either side of it. Slightly different procedures are used if the initial value of ™
is less than 0.002 or greater than 0.998. The estimated P value is simply

P=1-G"(% +%LRr(q) + %LR%(q) + 43LR3(q))

where the 9; are the parameter estimates.

The F;(OO,?T) already give us asymptotic critical values for tests at any conventional
significance level. However, we can obtain ones for tests at any level at all that should be
slightly more accurate by turning regression (9) around:

F(m) = 0o 4 6,G (1) + 02G*(7) + 0:G° (7)) + €. (10)

Of course, this is not actually the inverse of equation (9), but it involves the same sort of
approximation. As before, regression (10) is (usually) estimated for 9 observations around
the desired level of the test. The estimated critical value for a test at level « is then simply

50 + 51G(1 — Oé) + 52 (G(l - Oé))2 + 53 (G(l - Oé))3,

where the 4; are the parameter estimates.
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The Fqb(oo,w) and a Fortran program that uses regressions (8), (9), and (10) to obtain
estimated asymptotic P values and critical values are available from the authors’ websites.
The program is intended to be run interactively, but everything of any substance is done in
subroutines that can easily be extracted and incorporated into larger programs.

5 Conclusion

We obtain asymptotic numerical distribution functions of likelihood ratio tests for fractional
unit roots and cointegration rank. These can easily be used to obtain critical values and
P values via a program that we make available. Because these distributions depend on
a real-valued parameter, computational cost is very high. Moreover, the choice of model
specification for the response surface regressions used to obtain the NDF's is more involved
than is usual. We use model averaging rather than model selection to deal with uncertainty
about the correct form of the response surface regressions.
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