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Abstract

In an important generalization of zero frequency autoregressive unit root

tests, Hylleberg, Engle, Granger & Yoo (1990) developed regression-based

tests for unit roots at the seasonal frequencies in quarterly time series. We de-

velop likelihood ratio tests for seasonal unit roots and show that these tests are

“nearly efficient” in the sense of Elliott, Rothenberg & Stock (1996), i.e. that

their asymptotic local power functions are indistinguishable from the Gaussian

power envelope. Nearly efficient testing procedures for seasonal unit roots

have been developed, including point optimal tests based on the Neyman-

Pearson Lemma as well as regression-based tests, e.g. Rodrigues & Taylor

(2007). However, both require the choice of a GLS detrending parameter,

which our likelihood ratio tests do not.
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1 Introduction

Determining the number and locations of unit roots in non-annual economic time

series is a problem that has attracted considerable attention over the last couple

of decades. In a important generalization of the work of Dickey and Fuller (1979,

1981) and Dickey, Hasza & Fuller (1984), Hylleberg et al. (1990, henceforth HEGY)

developed regression-based tests of the subhypotheses comprising the seasonal unit

root hypothesis in a quarterly context. Subsequent work has further generalized the

HEGY tests in various ways, including to models with seasonal intercepts and/or

trends and to non-quarterly seasonal models (e.g., Beaulieu & Miron (1993), Ro-

drigues & Taylor (2004), and Smith, Taylor & Castro (2009)).

From the point of view of statistical efficiency, the properties of the HEGY tests

are analogous to those of their zero frequency counterparts, the Dickey-Fuller tests.

In particular, in models without deterministic components the HEGY t-tests are

“nearly efficient” in the sense of Elliott et al. (1996, henceforth ERS), i.e. their

asymptotic local power functions are indistinguishable from the Gaussian power

envelope. However, the HEGY t-tests are asymptotically inefficient in models with

intercepts and/or trends. To improve power of seasonal unit root tests, Gregoir

(2006) and Rodrigues & Taylor (2007, henceforth RT) have extended the asymp-

totic power envelopes of ERS to seasonal models and have developed feasible tests

that are nearly efficient in seasonal contexts. As do their zero frequency coun-

terparts due to ERS, the nearly efficient tests of Gregoir (2006) and RT involve

so-called GLS detrending, implementation of which requires the choice of a vec-

tor of “non-centrality” parameters. The purpose of this paper is to propose nearly

efficient seasonal unit root tests that enjoy the (aesthethically as well as scientifi-

cally) appealing feature that they do not require the choice of such non-centrality

parameters.

To do so, we generalize the analysis of Jansson & Nielsen (2009, henceforth

JN), who propose nearly efficient likelihood ratio tests of the zero frequency unit

root hypothesis, to models appropriate for testing for seasonal unit roots. Specif-

ically, the paper proceeds as follows. Section 2 is concerned with testing for sea-

sonal unit roots in quarterly time series in the simplest possible setting, namely a

Gaussian AR(4) model with standard normal innovations and with presample ob-

servations assumed to be equal to their expected values. We develop likelihood ratio

unit root tests in this model and show that these tests are nearly efficient. Section 3

discusses extensions to models with serially correlated and/or non-Gaussian errors

and to tests for seasonal unit roots in non-quarterly time series. Proofs of our results

are provided in Section 4.
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2 Likelihood Ratio Tests for Seasonal Unit Roots

2.1 No Deterministic Component

Suppose {yt : 1≤ t ≤ T} is an observed univariate quarterly time series generated

by the zero-mean Gaussian AR(4) model

ρ (L)yt = εt , (1)

where ρ (L) is a lag polynomial of order four, εt ∼ i.i.d. N (0,1) , and the initial

conditions are y−3 = . . .= y0 = 0.1 Following RT we assume that ρ (L) admits the

factorization

ρ (L) = (1−ρZL)(1+ρNL)
(
1+ρAL2

)
, (2)

where ρZ, ρN , and ρA are (unknown) parameters.2

Under the quarterly unit root hypothesis

H0 : ρZ = 1,ρN = 1,ρA = 1,

the polynomial ρ (L) simplifies to ∆4 = 1− L4, implying that {yt} is a quarterly

random walk process. Defining Hk
0 : ρk = 1 for k ∈ {Z,N,A} , the quarterly unit

root hypothesis H0 can be expressed as

H0 = HZ
0 ∩HN

0 ∩HA
0 .

The hypotheses HZ
0 and HN

0 correspond to a unit root at the zero and Nyquist

frequencies ω = 0 and ω = π, respectively, while HA
0 yields a pair of complex

conjugate unit roots at the frequencies ω = π/2 (i.e., the annual frequency) and

ω = 3π/2.
The alternative corresponding to the single frequency unit root null hypothesis

Hk
0 is given by Hk

1 : ρk < 1 for k∈ {Z,N,A}. However, we consider also the interme-

diate alternative hypotheses HZ
1,0 : ρZ < 1,ρN = ρA = 1, HN

1,0 : ρN < 1,ρZ = ρA = 1,

1The initial values assumption can be relaxed to max(|y−3| , . . . , |y0|) = oP

(√
T
)

without invali-

dating the asymptotic results reported in Theorem 1 below.
2In the notation of RT, we study a model with periodicity S = 4 and parameters ρZ , ρN , and ρA

given by ρZ = α0, ρN = α2, and ρA = α2
1 , respectively. The local-to-unity parameters in Theorems

1 and 2 of this paper are related to those in (2.5)− (2.6) of RT as follows: cZ = c0, cN = c2, and

cA = c1+O
(
T−1

)
.
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and HA
1,0 : ρA< 1,ρZ = ρN = 1, where unit roots are assumed present at the frequen-

cies not being tested.

Specifically, the likelihood ratio test statistic associated with the problem of

testing H0 vs. HZ
1,0 : ρZ < 1,ρN = ρA = 1 is given by

LRZ
T =maxρ̄Z≤1 LT (ρ̄Z,1,1)−LT (1,1,1) ,

where LT (ρZ,ρN ,ρA) = −∑
T
t=1

[
(1−ρZL)(1+ρNL)

(
1+ρAL2

)
yt

]2
/2 is the log

likelihood function. Developing a likelihood ratio test of HZ
0 under the “as if”

assumption that ρN = ρA = 1 is analytically convenient because LT (·,1,1) is a

quadratic function. Moreover, because Remark 3.2 of RT shows that the large sam-

ple properties of the point optimal test statistics LT

(
1+T−1c̄Z,1,1

)
−LT (1,1,1)

are invariant with respect to local departures of ρN and/or ρA from unity (for any

c̄Z), it seems plausible that a similar invariance property will be enjoyed by LRZ
T .

Theorem 1 below confirms this conjecture and further shows that the test which

rejects for large values of LRZ
T is a nearly efficient test of HZ

0 vs. HZ
1 : ρZ < 1.

By analogy with LRZ
T , define

LRN
T =maxρ̄N≤1 LT (1, ρ̄N ,1)−LT (1,1,1)

and

LRA
T =maxρ̄A≤1 LT (1,1, ρ̄A)−LT (1,1,1) .

As defined, LRN
T is the likelihood ratio test statistic associated with the problem

of testing H0 vs. HN
1,0 : ρN < 1,ρZ = ρA = 1, but it will be shown below that the

test based on LRN
T is nearly efficient when testing HN

0 vs. HN
1 : ρN < 1. Again,

asymptotic invariance of LRN
T with respect to local departures of ρZ and/or ρA from

unity is expected in light of the invariance result for point optimal test statistics

reported in Remark 3.2 of RT. Similarly, it turns out that a nearly efficient test of

HA
0 vs. HA

1 : ρA< 1 can be based on LRA
T , the likelihood ratio test statistic associated

with the problem of testing H0 vs. HA
1,0 : ρA < 1,ρZ = ρN = 1.

Note that the alternative hypotheses for our likelihood ratio tests are composite,

e.g. ρZ < 1 for the zero frequency test. On the other hand, the alternatives for the

nearly efficient tests in RT are point alternatives, e.g. ρZ = ρ̄Z < 1.

To characterize the local-to-unity asymptotic behavior of the likelihood ratio

statistics LRZ
T , LRN

T , and LRA
T ,we proceed as in JN. For k ∈ {Z,N,A} , the likelihood

ratio statistic LRk
T admits a representation of the form
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LRk
T =maxc̄≤0

[
c̄Sk

T −
1

2
c̄2Hk

T

]
, (3)

where Sk
T and Hk

T are the score and Hessian, respectively, of the log-likelihood

function LT (ρZ,ρN ,ρA) with respect to ρk, k ∈ {Z,N,A}, evaluated under the null

hypothesis, see (13)-(15) in the proof of Theorem 1. The large-sample behavior

of the pair
(
Sk

T ,H
k
T

)
is well understood from the work of RT (and others). As a

consequence, we obtain the following result, in which

W k
ck
(r) =

∫ r

0
exp [ck (r− s)]dW k (s) , k = Z,N,A,

where W Z (·) ,W N (·) , and W A (·) are independent Wiener processes of dimensions

1, 1, and 2, respectively.

Theorem 1 Suppose {yt} is generated by (1) . If cZ = T (ρZ−1) , cN = T (ρN−1) ,
and cA = T (ρA−1)/2 are held fixed as T → ∞, then the following hold jointly:

LRk
T →d maxc̄≤0 Λ

k
ck
(c̄) for k = Z,N,A,

where

Λ
k
ck
(c̄) = c̄ · tr

[∫ 1

0
W k

ck
(r)dW k

ck
(r)′
]
− 1

2
c̄2tr

[∫ 1

0
W k

ck
(r)W k

ck
(r)′ dr

]
.

Theorem 1 implies in particular that the local asymptotic properties of each LRk
T

depends on the local-to-unity parameters (cZ,cN ,cA) only through ck. This result,

which is unsurprising in light of Remark 3.2 of RT, provides a (partial) statisti-

cal justification for developing tests of each Hk
0 under the “as if” assumption that

the parameters not under test are equal to unity, as it implies that LRk
T is asymp-

totically pivotal under Hk
0 . In particular, the test which rejects when LRk

T exceeds

κ has asymptotic null rejection probability given by Pr
[
maxc̄≤0 Λk

0 (c̄)> κ
]

under

the assumptions of Theorem 1. Therefore, if α ≤ Pr
[
maxc̄≤0 Λk

0 (c̄)> 0
]

then the

(asymptotic) size α test based on LRk
T has a critical value κk

LR (α) defined by the

requirement Pr
[
maxc̄≤0 Λk

0 (c̄)> κk
LR (α)

]
= α .3

In addition to being asymptotically pivotal under Hk
0 , the statistic LRk

T enjoys

the property that it can be used to perform nearly efficient tests of Hk
0 vs. Hk

1 . In the

3The condition α ≤ Pr
[
maxc̄≤0 Λk

0 (c̄)> 0
]

is satisfied at conventional significance levels since

Pr
[
maxc̄≤0 ΛZ

0 (c̄)> 0
]
= Pr

[
maxc̄≤0 ΛN

0 (c̄)> 0
]
≈ 0.6827 and Pr

[
maxc̄≤0 ΛA

0 (c̄)> 0
]
≈ 0.6322.
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case of k ∈ {Z,N} , this optimality result follows from Theorem 3.1 of RT and the

discussion following Theorem 1 of JN. Moreover, a variant of the same argument

establishes optimality when k = A. For completeness, we briefly discuss the k = A

case here. In all cases, we can exploit the fact (also used in the proof of Theorem 1)

that maxc̄≤0 Λk
ck
(c̄) admits the representation

maxc̄≤0 Λ
k
ck
(c̄) =

min
(

tr

[∫ 1
0 W k

ck
(r)dW k

ck
(r)′
]
,0
)2

2tr

[∫ 1
0 W k

ck
(r)W k

ck
(r)′ dr

] . (4)

The representation (4) shows that (for conventional significance levels) the test

based on LRA
T is asymptotically equivalent to the HEGY t-test, which in turn im-

plies that the likelihood ratio test is nearly efficient because it follows from Gregoir

(2006, Figure 1) and Theorem 3.1 of RT that the HEGY t-test is nearly efficient in

the absence of deterministic terms.

Theorem 1 is mostly of theoretical interest, as the model (1) makes a num-

ber of unrealistic simplifying assumptions, including (a) the assumption that de-

terministics are absent, (b) the assumption that the errors εt are i.i.d. N (0,1),
and (c) the assumption y−3 = . . . = y0 = 0 made about the most recent presam-

ple values. The assumption that deterministics are absent will be relaxed in the

next subsection, while Section 3.1 will describe how certain types of serial corre-

lation and/or an unknown error distribution can be accommodated. In assuming

y−3 = . . .= y0 = 0, we are following Gregoir (2006) and RT as well as most of the

literature on zero frequency unit roots and cointegration, e.g. ERS and Johansen

(1995, Chapter 14). As is well understood (e.g., RT), the initial values assumption

can be relaxed to max(|y−3| , . . . , |y0|) = oP

(√
T
)

without invalidating the asymp-

totic results reported in Theorem 1. Similarly, Theorem 2 below remains valid if the

initial values assumption made in (5) is relaxed to max(|u−3| , . . . , |u0|) = oP

(√
T
)
.

On the other hand, different distributional results and hence different local power

properties will generally be obtained if max(|y−3| , . . . , |y0|) 6= oP(
√

T ) in (1) or

max(|u−3| , . . . , |u0|) 6= oP(
√

T ) in (5) . This has been shown in the context of zero

frequency unit root testing by Elliott (1999), Müller & Elliott (2003), and Harvey,

Leybourne & Taylor (2009), among others. We leave for future work the develop-

ment of seasonal analogues of the results obtained in those papers.

Remark. For specificity we have only considered tests for a unit root at a sin-

gle frequency. Tests of joint hypotheses, such as H0, can be based on the sum of

the relevant single frequency statistics. It is an open question whether such tests are

nearly efficient, but because Remark 3.3 of RT shows that a point optimal test sta-

tistic for a hypothesis involving multiple frequencies is asymptotically equivalent
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to the sum of the relevant single frequency (point optimal) test statistics, it is not

inconceivable that this might be the case.

2.2 Deterministics

To explore the extent to which the “near efficiency” results of the previous subsec-

tion extend to models with deterministics, we consider a model in which {yt : 1≤ t ≤ T}
is generated by the Gaussian AR(4) model

yt = β
′dt+ut , ρ (L)ut = εt , (5)

where dt = 1 or dt = (1, t)
′ , β is an unknown parameter, ρ (L) is parameterized as

in (2) , εt ∼ i.i.d.N (0,1) , and u−3 = . . .= u0 = 0.4

In this case, the log likelihood function Ld
T (·) is conveniently expressed as

Ld
T (ρZ,ρN ,ρA,β ) =−

1

2

(
Yρ −Dρβ

)′ (
Yρ −Dρβ

)
,

where, setting y−3 = . . . = y0 = 0 and d−3 = . . . = d0 = 0, Yρ and Dρ are matrices

with row t = 1, . . . ,T given by ρ (L)yt and ρ (L)d′t , respectively.

The likelihood ratio test associated with the problem of testing H0 vs. HZ
1,0

rejects for large values of

LR
Z,d
T =maxρ̄Z≤1,β Ld

T (ρ̄Z,1,1,β )−Ld
T (1,1,1,β )

=maxρ̄Z≤1 L d
T (ρ̄Z,1,1)−L d

T (1,1,1) ,

where

L d
T (ρZ,ρN ,ρA) =maxβ Ld

T (ρZ,ρN ,ρA,β )

=−1

2
Y ′ρYρ +

1

2

(
Y ′ρDρ

)(
D′ρDρ

)−1(
D′ρYρ

)
4To conserve space we do not consider seasonal frequency intercepts and/or trends. Accommo-

dating such dt should be conceptually straightforward, but is left for future research.
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is the profile log likelihood function obtained by maximizing Ld
T (ρZ,ρN ,ρA,β )with

respect to the nuisance parameter β . Analogously, the likelihood ratio statistics as-

sociated with tests of H0 against HN
1,0 and HA

1,0 are given by

LR
N,d
T =maxρ̄N≤1 L d

T (1, ρ̄N ,1)−L d
T (1,1,1)

and

LR
A,d
T =maxρ̄A≤1 L d

T (1,1, ρ̄A)−L d
T (1,1,1) ,

respectively.

As in the case of LRk
T , the large sample behavior of LR

k,d
T can be analyzed by

proceeding as in JN.

Theorem 2 Suppose {yt} is generated by (5) and suppose cZ = T (ρZ−1) , cN =
T (ρN−1) , and cA = T (ρA−1)/2 are held fixed as T → ∞.

(a) If dt = 1, then the following hold jointly:

LR
k,d
T →d maxc̄≤0 Λ

k
ck
(c̄) for k = Z,N,A.

(b) If dt = (1, t)
′ , then the following hold jointly:

LR
k,d
T →d maxc̄≤0 Λ

k
ck
(c̄) for k = N,A

and

LR
Z,d
T →d maxc̄≤0 Λ

Z,τ
cZ
(c̄) ,

where

Λ
Z,τ
cZ
(c̄) = Λ

Z
cZ
(c̄)+

1

2

[
(1− c̄)W Z

cZ
(1)+ c̄2

∫ 1
0 rW Z

cZ
(r)dr

]2

1− c̄+ c̄2/3
− 1

2
W Z

cZ
(1)2 .
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Table 1: Simulated critical values of the LR
k,d
T statistic

T 80% 85% 90% 95% 97.5% 99% 99.5% 99.9%

Panel A: k ∈ {Z,N} without trend or k = N with trend

100 1.14 1.47 1.93 2.69 3.42 4.34 5.02 6.54

200 0.93 1.24 1.68 2.44 3.19 4.15 4.87 6.50

400 0.83 1.10 1.49 2.21 2.94 3.91 4.64 6.32

1000 0.79 1.02 1.37 2.01 2.69 3.61 4.32 5.99

∞ 0.76 0.98 1.31 1.88 2.48 3.29 3.92 5.40

Panel B: k = A with or without trend

100 0.68 0.90 1.22 1.78 2.35 3.12 3.70 5.03

200 0.69 0.91 1.24 1.81 2.40 3.19 3.79 5.21

400 0.69 0.92 1.25 1.83 2.43 3.23 3.85 5.29

1000 0.70 0.93 1.26 1.84 2.44 3.25 3.86 5.32

∞ 0.70 0.93 1.26 1.84 2.45 3.27 3.90 5.38

Panel C: k = Z with trend

100 2.90 3.29 3.81 4.65 5.44 6.44 7.16 8.74

200 2.73 3.11 3.64 4.51 5.34 6.40 7.18 8.91

400 2.59 2.97 3.48 4.34 5.17 6.25 7.05 8.85

1000 2.51 2.86 3.35 4.17 4.98 6.04 6.83 8.65

∞ 2.45 2.79 3.26 4.05 4.82 5.82 6.57 8.30

Note: Entries for finite T are simulated quantiles of LR
k,d
T with εt ∼ i.i.d.N (0,1) .

In Panel A it is the k = Z test that is simulated. Entries for T = ∞ are simulated

quantiles of the corresponding asymptotic distributions, where Wiener processes

are approximated by 10,000 discrete steps with standard Gaussian white noise in-

novations. All entries are based on ten million Monte Carlo replications.

It follows from Theorem 2 that each LR
k,d
T enjoys properties that are qualita-

tively similar to those enjoyed by LRk
T in the model without deterministics. Specifi-

cally, Theorem 2 implies that each LR
k,d
T is asymptotically pivotal under Hk

0 .More-

over, Theorem 3.2 of RT and the discussion following Theorem 2 of JN implies that

LR
k,d
T can be used to perform nearly efficient tests of Hk

0 vs. Hk
1 .

Simulated critical values κ
k,d
LR (α) associated with LR

k,d
T are reported in Table 1.

The profile log likelihood function L d
T (ρZ,ρN ,ρA) is invariant under transfor-

mations of the form yt → yt + b′dt , so that LR
k,d
T and any other test statistic that

can expressed as a functional of L d
T (ρZ,ρN ,ρA) shares this invariance property.

It therefore makes sense to compare the asymptotic local power properties of the

9



Figure 1: Power envelope and asymptotic local power of seasonal unit root LR tests
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Note: Simulated power envelopes and asymptotic local power functions based on

one million Monte Carlo replications, where Wiener processes were approximated

by T = 10,000 discrete steps with standard Gaussian white noise innovations.

likelihood ratio tests LR
k,d
T with the Gaussian power envelopes for invariant tests

derived in ERS, Gregoir (2006), and RT.

The asymptotic local power function (with argument c≤ 0) of the size α likeli-

hood ratio test is given by Pr[maxc̄≤0 Λk
ck
(c̄)> κ

k,d
LR (α)] in case of dt = 1 (any k) or

dt =(1, t)
′ ,k=N,A and by Pr[maxc̄≤0 Λ

Z,τ
cZ
(c̄)> k

Z,τ
LR (α)] in case of dt =(1, t)

′ ,k=

Z, where κ
k,d
LR (α) satisfies Pr[maxc̄≤0 Λ

k,d
0 (c̄) > κ

k,d
LR (α)] = α and κ

Z,τ
LR (α) satis-

fies Pr[maxc̄≤0 Λ
Z,τ
0 (c̄) > κ

Z,τ
LR (α)] = α . Figure 1 plots these functions for α =

0.05 in the three cases: k ∈ {Z,N} without trend or k = N with trend (Panel A),

k = A with or without trend (Panel B), and k = Z with trend (Panel C). Also plot-

ted in each panel of Figure 1 are the corresponding Gaussian power envelopes,

which (for size α tests) are given by Pr[Λk
ck
(c̄)> κ

k,d
c̄ (α)]

∣∣∣
c̄=ck

in case of dt = 1

(any k) or dt = (1, t)
′ ,k = N,A and by Pr[ΛZ,τ

cZ
(c̄)> κ

Z,τ
c̄ (α)]

∣∣∣
c̄=cZ

in case of dt =

10



(1, t)′ ,k = Z, where κ
k,d
c̄ (α) satisfies Pr[Λk,d

0 (c̄)> κ
k,d
c̄ (α)] = α and κ

Z,τ
c̄ (α) sat-

isfies Pr[ΛZ,τ
0 (c̄)> κ

Z,τ
c̄ (α)] = α.

In each panel of Figure 1, the asymptotic local power functions of the likelihood

ratio tests are indistinguishable from the Gaussian power envelopes, so that near

optimality claims can be made on the part of the likelihood ratio tests for each

case. To avoid cluttering the figure we have not plotted the asymptotic local power

functions of the modified point optimal invariant tests and GLS-HEGY tests of RT.

However, if plotted, these would also appear indistinguishable from the Gaussian

power envelope, see RT (Remark 5.2). In addition, the asymptotic local power

functions of the OLS-HEGY tests can be found in Rodrigues & Taylor (2004).

3 Extensions

The results of the previous section can be generalized in a variety of ways. This

section briefly discusses two such extensions.

3.1 Serial Correlation and Unknown Error Distribution

One natural extension is to relax the AR(4) specification and the normality assump-

tion on the part of the innovations {εt} . To that end, suppose {yt : 1≤ t ≤ T} is

generated by the model

yt = β
′dt+ut , ρ (L)γ (L)ut = εt , (6)

where dt = 1 or dt = (1, t)
′ , β is an unknown parameter, ρ (L) is parameterized as

in (2) , γ (L) = 1− γ1L− . . .− γpLp is a lag polynomial of (known, finite) order p

satisfying min|z|≤1 |γ (z)| > 0, the initial conditions are u−p−3 = . . . = u0 = 0, and

the εt are i.i.d. errors from a distribution with mean zero and unknown variance σ2.
In this case, the Gaussian quasi-log likelihood function can be expressed as

Ld
T

(
ρZ,ρN ,ρA,β ;σ

2,γ
)
=−T

2
logσ

2− 1

2σ2

(
Yρ,γ −Dρ,γβ

)′ (
Yρ,γ −Dρ,γβ

)
,

where, setting y−p−3 = . . . = y0 = 0 and d−p−3 = . . . = d0 = 0, Yρ,γ and Dρ,γ are

matrices with row t = 1, . . . ,T given by ρ (L)γ (L)yt and ρ (L)γ (L)d′t , respectively.

The profile quasi-log likelihood function obtained by profiling out β is given by

L d
T

(
ρZ,ρN ,ρA;σ

2,γ
)
=maxβ Ld

T

(
ρZ,ρN ,ρA,β ;σ

2,γ
)

11



=−T

2
logσ

2− 1

2σ2
Y ′ρ,γYρ,γ +

1

2σ2

(
Y ′ρ,γDρ,γ

)(
D′ρ,γDρ,γ

)−1(
D′ρ,γYρ,γ

)
.

By analogy with JN, it seems natural to consider likelihood ratio-type test statistics

of the form

L̂R
Z,d
T =maxρ̄Z≤1 L d

T

(
ρ̄Z,1,1; σ̂

2
T , γ̂T

)
−L d

T

(
1,1,1; σ̂

2
T , γ̂T

)
,

L̂R
N,d
T =maxρ̄N≤1 L d

T

(
1, ρ̄Z,1; σ̂

2
T , γ̂T

)
−L d

T

(
1,1,1; σ̂

2
T , γ̂T

)
,

L̂R
A,d
T =maxρ̄A≤1 L d

T

(
1,1, ρ̄A; σ̂

2
T , γ̂T

)
−L d

T

(
1,1,1; σ̂

2
T , γ̂T

)
,

where σ̂2
T and γ̂T are plug-in estimators of σ2 and γ = (γ1, . . . ,γp)

′ , respectively.

The statistic L̂R
k,d
T is straightforward to compute, requiring only maximization

with respect to the scalar parameter ρ̄k. Proceeding as in the proof of Theorem 3 of

JN, it should be possible to show that if {yt} is generated by (6) , cZ = T (ρZ−1) ,
cN = T (ρN−1) , and cA = T (ρA−1)/2 are held fixed as T → ∞ and if(

σ̂
2
T , γ̂T

)
→P

(
σ

2,γ
)
, (7)

then

L̂R
k,d
T →d maxc̄≤0 Λ

k
ck
(c̄) for k = Z,N,A (8)

if dt = 1, while

L̂R
k,d
T →d maxc̄≤0 Λ

k
ck
(c̄) for k = N,A (9)

and

L̂R
Z,d
T →d maxc̄≤0 Λ

Z,τ
cZ
(c̄) (10)

when dt = (1, t)
′ .

12



Remarks. (i) The consistency condition (7) is mild. For instance, it is satisfied

by

σ̂
2
T =

1

T − p−4

T

∑
t=p+5

(
∆4yt− η̂

′
T Zt

)2
, γ̂T = (0, Ip) η̂T ,

where

η̂T =

(
T

∑
t=p+5

ZtZ
′
t

)−1(
T

∑
t=p+5

Zt∆yt

)
, Zt = (1,∆4yt−1, . . . ,∆4yt−p)

′ .

(ii) The assumption u−p−3 = . . . = u0 = 0 made when deriving the quasi-log

likelihood function can be relaxed to max
(∣∣u−p−3

∣∣ , . . . , |u0|
)
= oP

(√
T
)

without

invalidating (8)− (10) .
(iii) While the distributional results (8)− (10) remain valid under departures

from normality, relaxing the assumption of normality of the error distribution does

affect the shapes of the power envelopes. This has been shown in the context of

zero frequency unit root testing by Rothenberg & Stock (1997) and Jansson (2008),

among others.

To assess the size control of the likelihood ratio tests in finite samples we con-

duct a small Monte Carlo experiment. For specificity and because the presence of a

negative moving average component is known to be problematic in unit root testing,

we consider as in RT the DGP

∆4yt = (1+θL2)εt , (11)

where y0 = y−1 = y−2 = y−3 = 0 and εt ∼ i.i.d. N (0,1). For the parameter θ

we consider values θ ∈ {−0.75,−0.50, . . . ,0.75}. When θ is large and positive

there is near-cancellation of the unit root at the annual frequency, whereas when

θ is large and negative there is near-cancellation of the unit roots at the zero and

Nyquist frequencies. We simulate the model with sample sizes T ∈ {100,200,400}
and conduct two separate experiments where we allow for a constant mean in one

experiment and for a linear trend in the other.

In the simulations the likelihood ratio test L̂R
d

T is compared with the modified

point optimal test (denoted PGLS
k

) and GLS-HEGY (denoted tGLS
k

and FGLS
A ) tests of

RT, and OLS-HEGY (denoted tOLS
k

and FOLS
A ) tests of Hylleberg et al. (1990) using

13



one million replications of the model (11). As in RT the lag length for the HEGY

tests is chosen by a general-to-specific approach starting with an initial four, six,

and eight lags for T = 100, T = 200, and T = 400, respectively, and progressively

deleting those which are insignificant at the 5% level. To calculate the long-run

variance in the modified point optimal tests we use an autoregressive spectral den-

sity estimator as in RT with the lag length chosen by the GLS-HEGY regression,

and to calculate the plug-in values for the likelihood ratio test we use the lag length

chosen by the OLS-HEGY regression (the lag lengths chosen by the GLS-HEGY

and OLS-HEGY regressions are the same in the vast majority of the replications).

The results of the simulations are presented in Table 2 for the constant mean case

and Table 3 for the linear trend case.

In both the constant mean and linear trend cases the null rejection frequencies

are seen to be quite sensitive to θ , especially so when T = 100. Overall, L̂R
d

T com-

pares very favorably to the point optimal and GLS-HEGY tests of RT in terms of

size control, especially for the zero frequency test. However, L̂R
Z,d
T and L̂R

N,d
T are

quite conservative for positive values of θ .We interpret this evidence as suggesting

that the new tests developed in this paper should be viewed as serious contenders to

currently employed seasonal unit root tests.

3.2 Non-Quarterly Models

Another natural extension is to consider a model with periodicity S 6= 4. Following

RT, a natural generalization of (5) is given by the Gaussian AR(S) model

yt = β
′dt+ut , ρ (L)ut = εt , (12)

where dt = 1 or dt = (1, t)
′ , β is an unknown parameter, u1−S = . . . = u0 = 0,

εt ∼ i.i.d.N (0,1) , and ρ (L) is parameterized as

ρ (L) = (1−ρZL)(1+ρNL)
b(S−1)/2c

∏
k=1

(
1−2ρk cosωkL+ρ

2
k L2
)

(S even) ,

ρ (L) = (1−ρZL)
b(S−1)/2c

∏
k=1

(
1−2ρk cosωkL+ρ

2
k L2
)

(S odd) ,

where ωk = 2πk/S for k = 1, . . . ,b(S−1)/2c .

14
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In perfect analogy with the quarterly case, the profile log likelihood function

implied by the model (12) can be expressed as

−1

2
Y ′ρYρ +

1

2

(
Y ′ρDρ

)(
D′ρDρ

)−1(
D′ρYρ

)
,

where, setting y1−S = . . .= y0 = 0 and d1−S = . . .= d0 = 0, Yρ and Dρ are matrices

with row t = 1, . . . ,T given by ρ (L)yt and ρ (L)d′t , respectively. Tests of individual

unit root hypotheses can be based on the natural counterparts of the LR
k,d
T statistics

considered in the quarterly case and Theorem 2 should generalize in a natural way

to the model (12).5 Specifically, the results for test statistics associated with ρZ and

ρN should coincide with those for LR
Z,d
T and LR

N,d
T in the quarterly case, while the

test statistics associated with ρk, k = 1, . . . ,b(S−1)/2c , should exhibit the same

large sample behavior as LR
A,d
T does in the quarterly case.

4 Proofs

4.1 Proof of Theorem 1

Let

SZ
T =

1

T

T

∑
t=1

yZ
t−1∆4yt , HZ

T =
1

T 2

T

∑
t=1

(
yZ

t−1

)2
, (13)

SN
T =

1

T

T

∑
t=1

yN
t−1∆4yt , HN

T =
1

T 2

T

∑
t=1

(
yN

t−1

)2
, (14)

and

SA
T =

1

T/2

T

∑
t=1

yA
t−2∆4yt , HA

T =
1

(T/2)2

T

∑
t=1

(
yA

t−2

)2

, (15)

with the definitions yZ
t = (1+L)

(
1+L2

)
yt , yN

t = −(1−L)
(
1+L2

)
yt , and yA

t =
−(1−L)(1+L)yt .

The validity of (3) follows from the fact that the log likelihood function LT (·)
admits the expansions

5The statistics derived in the current environment are similar to the LR
k,d
T statistics in the sense

that they can be expressed as maximizers of rational polynomial functions, so they should be

amenable to asymptotic analysis using a slight modification of the proof of Theorem 2.
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LT (ρ̄Z,1,1) = LT (1,1,1)+T (ρ̄Z−1)SZ
T −

1

2
[T (ρ̄Z−1)]2 HZ

T ,

LT (1, ρ̄N ,1) = LT (1,1,1)+T (ρ̄N−1)SN
T −

1

2
[T (ρ̄N−1)]2 HN

T ,

LT (1,1, ρ̄A) = LT (1,1,1)+
T

2
(ρ̄A−1)SA

T −
1

2

[
T

2
(ρ̄A−1)

]2

HA
T .

Under the assumptions of Theorem 1, the following hold jointly (e.g., RT):(
Sk

T ,H
k
T

)
→d

(
S k

ck
,H k

ck

)
, k = Z,N,A, (16)

where

S k
ck
= tr

[∫ 1

0
W k

ck
(r)dW k

ck
(r)′
]
,

H k
ck
= tr

[∫ 1

0
W k

ck
(r)W k

ck
(r)′ dr

]
.

Theorem 1 follows from (3) , (16) , and the continuous mapping theorem (CMT)

because

LRk
T =maxc̄≤0

[
c̄Sk

T −
1

2
c̄2Hk

T

]

=
min

(
Sk

T ,0
)2

2Hk
T

→d

min
(
S k

ck
,0
)2

2H k
ck

=maxc̄≤0 Λ
k
ck
(c̄) ,

where the second and third equalities use simple facts about quadratic functions.

4.2 Proof of Theorem 2

Because L d
T (·) is invariant under transformations of the form yt → yt + b′dt , we

can assume without loss of generality that β = 0. The proofs of parts (a) and (b) are

18



very similar, the latter being slightly more involved, so to conserve space we omit

the details for part (a). Likewise, the proofs for k = N and k = A are very similar,

so to conserve space we omit the details for k = A.
Accordingly, suppose k ∈ {Z,N} and dt = (1, t)

′
. Let yk

t be as in the proof of

Theorem 1 and define d̃Z
Tt = (1+L)

(
1+L2

)
d̃Tt and d̃N

Tt = −(1−L)
(
1+L2

)
d̃Tt ,

where d̃Tt =
1
4
diag(1,1/

√
T )dt . The linear trend likelihood ratio statistic can be

written as LR
k,d
T =maxc̄≤0 F

(
c̄,Xk

T

)
, where

Xk
T =

(
Sk

T ,H
k
T ,A

k
T ,B

k
T

)
,

Ak
T =

[
Ak

T (0) ,A
k
T (1) ,A

k
T (2)

]
,

Bk
T =

[
Bk

T (0) ,B
k
T (1) ,B

k
T (2)

]
,

for

Ak
T (0) =

T

∑
t=1

∆4d̃Tt∆4yt ,

Ak
T (1) =

1

T

T

∑
t=1

(∆4d̃Tty
k
t−1+ d̃k

T,t−1∆4yt),

Ak
T (2) =

1

T 2

T

∑
t=1

d̃k
T,t−1yk

t−1,

Bk
T (0) =

T

∑
t=1

∆4d̃Tt∆4d̃′Tt ,

Bk
T (1) =

1

T

T

∑
t=1

(∆4d̃Tt d̃
k′
T,t−1+ d̃k

T,t−1∆4d̃′T,t),
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Bk
T (2) =

1

T 2

T

∑
t=1

d̃k
T,t−1d̃k′

T,t−1,

and

F (c̄,x) = c̄s− 1

2
c̄2h+

1

2
N (c̄,a)′D(c̄,b)−1

N (c̄,a)− 1

2
N (0,a)′D(0,b)−1

N (0,a)

with

N (c̄,a) = N [c̄,a(0) ,a(1) ,a(2)] = a(0)− c̄a(1)+ c̄2a(2) ,

D(c̄,b) = D [c̄,b(0) ,b(1) ,b(2)] = b(0)− c̄b(1)+ c̄2b(2) .

It follows from standard results (e.g., RT) that

Xk
T →d X k

ck
=
(
S k

ck
,H k

ck
,A k

ck
,Bk

)
, k = Z,N,

under the assumptions of Theorem 2, where

A Z
cZ
=

[(
Y

W Z
cZ
(1)

)
,

(
0

W Z
cZ
(1)

)
,

(
0∫ 1

0 rW Z
cZ
(r)dr

)]
,

BZ =

[(
1/4 0

0 1

)
,

(
0 0

0 1

)
,

(
0 0

0 1/3

)]
,

A N
cN
=

[(
Y

W N
cN
(1)

)
,

(
0

0

)
,

(
0

0

)]
,

BN =

[(
1/4 0

0 1

)
,

(
0 0

0 0

)
,

(
0 0

0 0

)]
,

with Y being a random variable independent of
[
W Z (·) ,W N (·)

]
and distributed as

(ε1+ ε2+ ε3+ ε4)/4.

The result now follows as in the proof of Theorem 2 of JN.
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