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Abstract

A regime dependent VAR model is suggested that allows long memory (fractional integration) in
each of the observed regime states as well as the possibility of fractional cointegration. The model
is motivated by the dynamics of electricity prices where the transmission of power is subject to
occasional congestion periods. For a system of bilateral prices non-congestion means that electricity
prices are identical whereas congestion makes prices depart. Hence, the joint price dynamics implies
switching between a univariate price process under non-congestion and a bivariate price process
under congestion. At the same time, it is an empirical regularity that electricity prices tend to
show a high degree of long memory, and thus that prices may be fractionally cointegrated.

Analysis of Nord Pool data shows that even though the prices are identical under non-congestion,
the prices are not, in general, fractionally cointegrated in the congestion state. Hence, in most cases
price convergence is a property following from regime switching rather than a conventional error
correction mechanism. Finally, the suggested model is shown to deliver forecasts that are more
precise compared to competing models.
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1 Introduction

Over the past decade or so electricity markets have been strongly liberalized throughout the world.
In particular, the Nordic power market consisting of Norway, Sweden, Finland, and Denmark has
developed remarkably towards liberalization and the establishment of competitive market conditions,
and today this market serves as a model for the restructuring of other power markets. The Nordic
power market is characterized by a grid of physical exchanges of power across geographical regions
where the actual exchange is constrained by the flow capacity. Naturally, this has implications for
the way prices are formed. When there are no bilateral capacity restrictions, there is a free flow of
power and prices will be identical. On the other hand, when there is congestion prices tend to depart
to meet the supply and demand conditions subject to restricted access to power from other regions.
In order to model electricity prices it is thus natural to consider regime dependent price processes
reflecting the presence or absence of flow congestion. This particular feature of the market has been
addressed in recent work by Haldrup & Nielsen (20064, b). Another important property of electricity
prices modeled in these works is the presence of long memory. Statistical tests strongly reject the
price series being I(0) and I(1), whereas I(d) processes with d being fractional (see Granger & Joyeux
(1980) and Hosking (1981)) better characterize the data.

The combination of fractional integration and regime switching gives rise to some challenges.
Granger & Ding (1996), Diebold & Inoue (2001), and Granger & Hyung (2004), among others, argue
that under certain conditions time series variables can spuriously have long memory when measured
in terms of their fractional order of integration, when in fact the series exhibit non-linear features such
as regime switching. In the model framework of Haldrup & Nielsen (2006a, b) separate long memory
price dynamics is allowed in adjacent power regions depending upon whether the power exchange is
subject to congestion or non-congestion. The model has some similarities to the Markov switching
model defined by Hamilton (1989). However, because the defining property of e.g. a non-congestion
state is that prices are identical, the state variable is observable as opposed to being a latent variable.
Thus our model is not of the traditional Hamilton (1989) Markov switching type, but we still refer to
it as a regime switching model since it does include switching between two separate regimes.

An important feature of the model is that the price processes in the different regimes can have
different degrees of long memory, which gives rise to a number of interesting possibilities. For instance,
consider the state with non-congestion and assume that the associated bivariate prices are fractionally
integrated of a given order. It follows that prices are fractionally cointegrated in this case, i.e. ex-
tending the notion of Granger (1981, 1986) and Engle & Granger (1987), in the sense that individual
prices are fractionally integrated but price differences are identically zero. Thus, an extreme form
of cointegration occurs in this situation because the prices are identical and hence are governed by
exactly the same price shocks. The price behavior in the congestion state can (and typically will) be
very different. That is, the bivariate prices can be fractionally cointegrated in a more conventional way
or the prices can appear not to cointegrate. Hence, the model can potentially exhibit state dependent
fractional cointegration. By not appropriately conditioning on the congestion state, i.e. when having
a model with no regime switching, the full sample estimates are likely to be a convex combination of
the behavior in the individual states and hence misleading inference is likely to result.

The modeling approach used in Haldrup & Nielsen (2006b) is limited in the sense that the individual



price series and the relative price series are analyzed separately as univariate models. When the focus
of analysis is the potential (fractional) cointegration amongst multiple series a system approach is
more natural, but clearly also more complex in the present context given the particular features the
model should allow. In principle, the full set of price series should be modeled jointly, and, depending
upon the market conditions, should shrink to a limited number of price series reflecting periods with
non-congestion at some grid points.

We distinguish between price areas and geographical regions. Each geographical region corresponds
to a physical exchange (e.g., West Denmark, South Norway, etc.) and is therefore constant over time.
On the other hand, a price area is defined simply as an area with the same price and may therefore
change over time. Thus, West Denmark and South Norway always constitute two geographical regions,
but in the case of non-congestion the same price prevails in both geographical regions and they hence
constitute just one price area in that case.

In this paper we model multiple price series jointly in a vector autoregression (VAR), which allows
for fractionally integrated time series that potentially cointegrate in the congestion state. In the non-
congestion state, prices are identical by definition and hence a univariate model for the price process is
applied in this particular regime. Thus, our VAR model for fractionally cointegrated processes allows
for the possibility of regime switching, and in particular differs from other specifications offered in the
literature in the sense that our VAR model collapses to a pseudo-univariate model when a specific
state arises. Our model is therefore directly motivated by the structure and functioning of the Nordic
power market.

There are different reasons why the identification of separate price dynamics is important. The
operation of electricity markets is similar to the operation of financial markets with electricity power
derivatives being priced and traded in highly competitive markets and hence appropriate modeling
of both means and variances is crucial. Furthermore, the price dynamics is of interest with respect
to competition analysis of electricity markets where market delineation is a central issue, see e.g.
Sherman (1989) and Motta (2004). Even though most power markets are highly liberalized there
is still scope for regulating authorities to closely follow the market behavior, see also Fabra & Toro
(2005). Under non-congestion there is obviously a single price existing in the market and the relevant
market is defined as the geographical regions with identical prices. However, when there is congestion
it is of interest to follow the price dynamics closely because suppliers can have a dominating position.
The market delineation thus becomes less straightforward in this case. If the price dynamics appears
to be very different there is scope for further examination of the market conditions by regulatory
authorities.

In our empirical analysis we find that generally the behavior of electricity prices in geographical
price regions are different across states. The analysis shows that it is important to condition on
congestion/non-congestion as non-switching models can generate misleading conclusions with regard
to the price dynamics. Three leading types of misclassification of the model dynamics may arise. First,
non-switching models may indicate that the price series are fractionally cointegrated, whereas when
conditioning on states this is only the case in the non-congestion state (in which prices are identical by
definition). Secondly, the non-switching model could indicate that there is no fractional cointegration
when in fact there is cointegration in the non-congestion state. Finally, there is the possibility of

fractional cointegration in both regimes, but not in the non-switching model. Conditioning on the



states is also important when looking at the adjustment coefficients as the non-switching models can
lead to wrong conclusions about the convergence of regional prices towards equilibrium. One important
finding of this paper is that fractional cointegration does not in general occur in the congestion state,
and when it does the mechanism is relatively weak. Hence price convergence of geograhical prices is
a result of regime switching rather than error correction in a more conventional sense.

The remainder of the paper is structured as follows: We next offer a brief description of the
structure of the Nordic electricity market. Section 3 introduces the data and argues for the importance
of allowing for long memory, regime switching, and seasonality when building a model to describe the
regional price processes. In section 4 the VAR modeling framework with long memory and regime
switching is presented. In section 5 the empirical results are presented, including some forecasting

results which generally favor the suggested model. Section 6 concludes.

2 The operation of the Nordic power market

Within the Nordic countries (Denmark, Finland, Norway, and Sweden), major electricity reforms
were implemented during the 1990s. The deregulation process started in Norway in 1991, continued
in Sweden 1996, in Finland 1998, and was finally completed in Denmark in 2000. As part of the
liberalization, the national electricity markets were opened up for cross-border trade by establishment
of a common power exchange, Nord Pool. Today all member countries of the Nordic power market
have adapted to the new competitive environment and the Nordic exchange serves as a model for the
restructuring of other power markets throughout the world.!

The per capita consumption of electricity is very high in Norway and Sweden, slightly lower in
Finland and at EU average in Denmark. The relatively high consumption level in the Nordic countries
is caused by a relatively electricity intensive industrial production, a cold climate, and extensive use of
electric heating in homes and offices, especially in Norway and Sweden. The sources of electricity power
production are rather mixed in the Nordic area as a whole. The major energy source is hydropower
supplying approximately 65% of total electricity in years with normal precipitation. On the national
level the power generation systems differ significantly and are generally dominated by one or two
technologies. In Norway the share of hydropower is close to 100%, in Sweden it is close to 50%,
in Finland around 15% and in Denmark 0%. With respect to nuclear power the share is 50% in
Sweden, 30% in Finland, and 0% in Denmark and Norway. Power generation from fossil fuels is of
major significance in Denmark and Finland, minor in Sweden, and close to non-existent in Norway.
In Denmark 15-20% of the power supply originates from wind power turbines.?

Because hydropower production is mainly found in the northern parts of the Nordic power web
and thermal power plants are located in the south, the relatively cheap hydropower generation is
transmitted to the heavily populated southern regions, which of course requires a well established
power grid transmission capacity to facilitate the flow. When the reservoir levels are adequate, the
less costly hydropower production causes low spot prices. In these cases national and cross-border

transmission systems will be used to their capacity in order to level out price discrepancies across

'For a detailed description of the Nordic power market, see Nord Pool (2003a) or Amundsen & Bergman (2007).

*Increasing the relative production of electricity by renewable energy sources has considerable political focus in
Denmark. According to official energy plans 50% of the Danish electricity production will come from wind power in
2030.



regions. On the other hand, when reservoir levels are low there will be a net flow from south to north,
and the market will see relatively high prices for thermally generated electricity.

From an institutional point of view there is a common Nordic market for electricity; however, even
though key market institutions are common this does not mean that the Nordic electricity market is an
integrated market in the sense that “the law of one price” applies. The reason is that the transmission
of power is subject to possible capacity constraints. The Nordic electricity market constitutes a number
of distinct geographical regions different from the countries themselves and several price areas may
coexist. Whenever the relevant interconnector capacity is insufficient, the Nord Pool area is divided
into two or more price areas. The separate power regions consist of Sweden (SWE), Finland (FIN),
West Denmark (WDK), East Denmark (EDK), North Norway (NNO), Mid Norway (MNO), and
South Norway (SNO). Thus Denmark and Norway are each divided into multiple geographical regions
in Nord Pool.> This division reflects the grid of physical exchanges of power and the bidding areas
with respect to the pricing of electricity as we shall explain shortly. Not all physical exchanges are
connected to each other and only bilateral connections exist. Figure 1 displays the actual electricity

exchange points and interconnections.
Figure 1 about here

The power spot market? operated by Nord Pool Spot A/S is an exchange where market participants
trade power contracts for physical delivery the next day. This is referred to as a day-ahead market.
The spot market is based on an auction with bids for purchase and sale of power contracts of one
hour duration covering the 24 hours of the following day. At the deadline for the collection of all buy
and sell orders the information is gathered into aggregate supply and demand curves for each power
delivery hour. From these supply and demand curves the equilibrium spot price - referred to as the
system price - is calculated.” Therefore, the system price is determined under the assumption that
no transmission constraint is binding, and thus in a situation where no grid congestions exist across
neighboring interconnectors there will be a single identical price across the areas with no congestions.

The actual trade is not necessarily carried out at the system price. When there is insufficient
transmission capacity in a sector of the grid, a grid congestion will arise and the market system will
establish different price areas across the geographical division of the Nord Pool area. The Nordic
market is then partitioned into separate bidding areas which therefore become separate price areas
when the contractual flow between bidding areas exceeds the capacity allocated by the transmission
system operators for spot contracts. Within each price area the buyers pay, and the generators are paid,
the corresponding area price. The difference between the area prices in two adjacent and connected
price areas determines the congestion charge. Because separate prices may coexist depending upon
regional supply and demand conditions, the relevant market definition will vary with time. In practice,
several price area combinations will occur. Some hours there will only be a single price area (given by

the system price), other hours there will be two or more price areas.

3For the purpose of analysis of the Norwegian regions, only the SNO region is considered in the present paper.

4Since only the spot market will be relevant for the present study, only this market will be described here, see also
Nord Pool (2003b). Nord Pool (2003¢) describes the futures and forward markets of the Nordic power exchange which
are used for price hedging and risk management.

®The system price is the reference price in the financial power contracts like futures, forwards, and options traded at
Nord Pool.



3 Data

The data used in this paper are (log transformed) hourly electricity spot prices for the Nord Pool area:
West Denmark (WDK), East Denmark (EDK), South Norway (SNO), Sweden (SWE), and Finland
(FIN).5 The data set is the same as that analyzed in Haldrup & Nielsen (2006a, b) and covers the
period 3 January 2000 to 25 October 2003, including weekends and holidays. For EDK the sample
period starts 1 October 2000. The data series are displayed in Figure 2. Some stylized facts about
the data are reported in Haldrup & Nielsen (20060).

Figure 2 about here

A pronounced characteristic of electricity markets is the abrupt and generally unanticipated ex-
treme changes in spot electricity prices, suggesting fat-tailed distributions, see Escribano, Pena &
Villaplana (2002), Haldrup & Nielsen (20064, b), and Koopman, Ooms & Carnero (2007). In Haldrup
& Nielsen (2006b) a range of tests document that prices are neither I(0) nor I(1). Estimating the
memory parameter for fractionally integrated, FI(d), processes shows that the series generally exhibit
long memory with d in the range 0.31-0.52 with the SNO area being most persistent and in fact being
nonstationary. The remaining areas have point estimates of d in the stationary region. It should be
noted, however, that these estimates do not allow for regime dependence.

Another important aspect of electricity prices is the very strong seasonal behavior characterizing
the series. Seasonality is mainly driven from the demand side and appears as seasonal variation within
the day, within the week, and over the year. However, the supply side also contributes to seasonal
variation as electricity production is highly dependent upon weather conditions. In particular, the
seasonal variation in precipitation affects water reservoir levels in the generation of hydropower, and
seasonal variation in wind conditions also plays an increasing role due to the growing number of wind

turbines, especially in West Denmark.
Figure 3 about here

In Figure 3 scatter plots of log prices for connected Nord Pool areas are shown. When there
are no capacity contraints across neigboring regions the prices will be identical, whereas congestion
makes prices differ. Observations on the 45° line therefore represent non-congestion hours, whereas
observations off the 45° line represent congestion hours. It is especially this marked difference in

observations that motivates the present analysis.

4 Modeling of regime dependent long memory in spot electricity

prices

In this section, we present our econometric model which is specifically motivated by the main properties
and features of the Nordic spot electricity market. In particular, based on the structure of Nord Pool
described in section 2, we include the switching between congestion and non-congestion regimes with
state dependent dynamics. The model should also reflect the rich dynamic features of the data in the

form of seasonality and long memory.

%Mid and North Norway are also member areas of Nord Pool, but are left out from the present analysis because these
areas coincide with South Norway for most of the year.



4.1 A univariate model

We here briefly discuss the univariate model setup used in Haldrup & Nielsen (20066). The main
features that the estimation model should allow include seasonality, long memory, and regime switching
of the type described above. Assume that individual electricity prices across connected regions are
fractionally integrated in the non-congestion state. This means that an extreme form of fractional
cointegration will exist in this state because the prices are identical in the two areas and thus price
differences will be identically zero. On the other hand, the behavior of the two individual price series
in the congestion state can be very different. If prices are compared without considering the different
regime possibilities it is unclear what to expect from the data. However, the mixing of the two
processes is likely to produce price series with a behavior that is a convex combination of the two state
processes.

Consider the following model specification, which we denote a regime switching multiplicative
RS-SARFIMA” model

Ag, (L) (1 — as, L?*) A%ty = 5,4, 5,0~ NID(0,0%). (1)

Here, A%t is the fractional difference operator defined by its binomial expansion in the lag operator
(see e.g. Hosking (1981)), A, (L) is a lag polynomial, and s; € {c¢,nc} denotes the regime (c:

congestion, nc: non-congestion), determined by a Markov chain with transition probabilities

P=

P11 1—pn @)
1 —pa  po2

Thus, for example, p11 denotes the probability that a congestion state will follow a congestion state,
i.e. Pr(s;=c|s;—1 =c¢). Note that because identical prices mean that we are in a non-congestion
state, all regimes are observable, which contrasts the standard Markov switching model of Hamilton
(1989) where the regimes follow a latent Markov process.

The (univariate) series y; may denote one of the two individual log price series or the associated
log relative price. The series y; has been corrected for deterministic seasonality prior to the estimation
whilst allowing interaction with the two observable regimes, that is, the coefficients on the dummy
variables are allowed to differ across states. When g denotes a log relative price, all parameters are
put to zero when s; = nc, including o2_. Estimation of the above model is by conditional maximum
likelihood and is discussed in detail in Haldrup & Nielsen (2006b).

4.2 A bivariate model

A disadvantage of the model described above is that parameters are estimated separately for the three
price series (two individual prices and one relative price), when in fact the three price series to a large

extent are governed by the same price shocks. We therefore consider the following fractional error

"RS-SARFIMA: Regime Switching Seasonal Autoregressive Fractionally Integrated Moving Average.



correction model specification for a bivariate regime switching vector stochastic process

k
a »
Adst ( bt ) = ( ! ) AVst(pry—1 — p2s—1) + ZFsmAdSH ( PLie=i ) + €5yt (3)

P2t a2 i—1 D2t—i

where s; € {c,nc}, ecx ~ NID3(0,9), ener ~ (1,1) NID1(0,02), v,. = 0, 7. is a free parameter, and
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such that the lagged fractional differences reflect whether a particular observation is associated with a
congestion or non-congestion state. Thus, d,. is the common fractional integration order in the non-
congestion state, whereas d. is the common integration order of the two price areas in the congestion
state. Note that correlation between the two shocks in the congestion state is accommodated through
the off-diagonal elements of ). However, e.; and e, are not correlated since both are never present
at the same time.

Notice that the non-congestion state bilateral prices are identical, p1; = p2y = p¢, and hence the

bivariate setup collapses to a pseudo-univariate model, i.e.

k
) P1t—i
Adrepy =N (T8, T75 ;) Aoes < ' ) + Eneyt- (4)

i=1 b2,t—i

Essentially, the price process switches between being generated from the univariate and bivariate
models, where switching takes place in accordance with the transition probabilities in (2).

We limit our study to the bivariate setup and disregard potential spill-overs from the other areas.
From a theoretical point of view, it appears conceptually possible to extend the present bivariate model
to the multivariate case, and thereby model spill-overs using more advanced dynamics. However, from a
computational point of view this appears infeasible in practice as the number of regimes, and thereby
the number of parameters, grows very fast. Indeed, in a multivariate setup with M geographical
regions, there are 2M~1 different regimes.

A number of remarks are in order. Consider first the non-congestion state. In this regime the two
price series are forced to be governed by the same process (4) and hence any conditional forecast for
this regime will remain identical for both price series. This feature is not captured in the univariate
model of Haldrup & Nielsen (20060) and indeed requires our multivariate setup. Thus, in particular,
forecasts of each price series in the non-congestion state may appear different when based on (1),
whereas forecasts based on (3) or (4) will be identical for the two price series in the non-congestion
state. Note that in the non-congestion state the prices are fractionally integrated of order d,. and
fractionally cointegrated in the sense that the two series are identical. This notion of (fractional)
cointegration is somewhat different than originally suggested by Granger (1981) and Engle & Granger
(1987).

Next, consider the congestion regime. We will discriminate between two situations, i.e. when py¢
and py; cointegrate or do not cointegrate. (i) Assume first the situation with fractional cointegration.

In this case the individual price series are FI(d.), but the log relative price is FI(7,), where v, < d..



(i) When prices do not cointegrate in the congestion regime, i.e. v, > d., (a1, a2) has no obvious
interpretation in terms of adjustment parameters.

Under congestion the adjustment coefficients, (a1, as2)’, may give an indication of whether the
specific price areas adjust towards equilibrium. Specifically, if a; > 0 then pi¢ is moving away from
equilibrium (non-congestion), whereas if ag > 0 then po; is moving towards equilibrium. Note that the
full stability of the model requires that the entire system dynamics is included in the calculation, but
in any case the values of a; and ap give a rough idea of the system dynamics under a ceteris paribus
assumption. An alternative interpretation of the adjustment coefficients follows from the market setup
and varying costs of electricity production in different geographical regions. For example, if there is
no congestion between SNO and WDK, prices are identical and electricity flows from the cheaper area
(usually SNO because of the hydropower) to the more expensive area (WDK). However, if there is
congestion, prices in WDK will be higher reflecting the higher costs of electricity production. This
increase in price in WDK corresponds to a3 > 0 in the WDK-SNO bivariate model, i.e. a move away
from equilibrium. Importantly, this is not due to system instability but rather reflects that electricity
is more expensive to produce in WDK compared to SNO. Hence the estimated error correction model
need not be given a standard interpretation.

The model analyzed in this paper is unique in the literature on regime switching and/or (fraction-
ally) cointegrated models since it collapses to a pseudo-univariate model in one of the regimes. The
error correction model specification (3) reflects the particular structure and features of the market
design. For discussions of representation theory in the context of (non-switching) fractional cointe-
gration, see Granger (1986), Davidson (2002), Robinson & Yajima (2002), Davidson, Peel & Byers
(2006), and Johansen (2008).

4.3 Estimation

In our case, congestion and non-congestion are observed states such that regimes are known, and the

maximum likelihood estimates of the transition probabilities in (2) are

N Ne,c N Nnemne 5
pri=——"") P = ———, (5)
Ne,e T Nene Nne,e T Nnene

where n;; is the number of times we observe regime i followed by regime j for 4,5 € {c,nc}.
Estimation of the remaining parameters of the two states is done by quasi conditional maximum

likelihood. The regime-specific log-likelihood functions, omitting the constant, are
Y l{si=c} 1 _
le (de,0c) = —tf log |2 — 9 ;trace (Q 155t,t1 {st =c} Elsht) ,
1{s; =nc 1 _
lnc (dna enc) = _z:t{;} lOg 02 - 5 Zt: (0 2€5t7t1 {St = nc} {;‘;t’t) ’

where 1{A} is the indicator function of the event A. The full-sample log-likelihood function is given
by
T
l (dm dne, 6) = _5 log (27‘-) + e (d(n 00) + lne (dnC7 gnc) ’ (6)



Table 1: Estimated transition probabilities (mean durations of states in hours)

Link P11 (c—c) P12 (c = nc)  pa1 (nc—c¢)  pag (nec — nc)
EDK-SWE  0.7848 (4.65) 0.2152 0.0131 0.9869 (76.57)
WDK-SWE  0.8216 (5.60) 0.1784 0.1259 0.8740 (7.94)
WDK-SNO  0.9247 (13.28) 0.0753 0.1221 0.8779 (8.19)
SNO-SWE 0.9478 (19.16) 0.0523 0.0462 0.9538 (21.64)
SWE-FIN 0.8505 (6.51) 0.1495 0.0210 0.9790 (48.78)

Notes: The table presents estimated transition probabilities for each bivariate model based on (5). Numbers in paren-
theses are estimated mean durations of states (in hours).

which is maximized numerically.®

Finally, we remark that our model framework assumes that states are observable and that the
cointegrating vector in the congestion state, 8 = (1, —1), is given. Therefore, asymptotic distribution
theory for the remaining parameters will be standard under suitable regularity conditions on the
eITors €, ¢, such as serial independence and moment conditions, see e.g. Tanaka (1999). In particular,
Gaussianity of the errors is not a necessary condition for the asymptotic distribution theory, but is
used only to derive the likelihood function. This property of the estimation methodology is especially

important in dealing with the fat tails present in the data.

5 Empirical results

Prior to estimation, each log price series had deterministic seasonality removed by regression on a
constant, a time trend, dummy variables for hour-of-day, day-of-week, month-of-year, and a holiday
dummy. For the switching models the parameter estimates of the deterministics are allowed to differ
across states. We include lags 1, ...,8, and 12 to capture within-the-day effects, and we also include a

24th lag to capture the daily stochastic seasonality.’

5.1 Estimation of transition dynamics

Since the states are observable, estimates of the transition probabilities for each state are easily
calculated according to (5) and are reported in Table 1. It is clear that some grid points are more
subject to congestion than others. This fact may be explained by demand and supply fluctuations,
but there is also the possibility that congestion may be caused by exploitation of market power and
hence calling for further economic analysis of the sources of congestion.

The estimated transition probabilities indicate a high degree of persistence of the states. The
probability of staying in the congestion regime, pi11, is highest for the grid point SNO-SWE, i.e.
0.9478, whereas it is lowest for EDK-SWE link, 0.7848. This corresponds to a mean duration of 19.16

and 4.65 hours, respectively. In general, the probability of staying in the non-congestion regime, pso,

8We have used the fractional integration estimates from (1) as our starting values. For the remaining parameters,
i.e. autoregressive and variance-covariance terms etc., we find the starting values by letting the fractional integration
parameters be fixed and maximizing the log-likelihood with respect to the remaining parameters. We did not notice
significant dependence on the choice of starting values in any of our models.

"Note that for the univariate model (1) we have here chosen a richer dynamics compared to Haldrup & Nielsen
(20060), and hence the estimation results are not exactly identical.
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Table 2: Estimates of the fractional integration and cointegration parameters

Switching
No switching Non-congestion Congestion
Model dy do o dye dge A" d§ ds y°
Panel A: EDK-SWE
Univariate 0.42 0.47 0.21 0.47 0.48 0 0.01 —0.02 0.57
(0.014)  (0.015)  (0.017) (0.015)  (0.014) (0.016)  (0.015)  (0.046)
VAR 0.57 0.23 0.46 0 0.11 0.00
(0.009) (0.047) (0.003) (0.004) (0.006)
Panel B: WDK-SWE
Univariate 0.28 0.43 0.30 0.29 0.34 0 0.28 0.51 0.33
(0.018)  (0.014)  (0.017) (0.021)  (0.017) (0.021)  (0.022)  (0.019)
VAR 0.61 0.55 0.25 0 0.32 0.10
(0.019) (0.009) (0.018) (0.023) (0.026)
Panel C: WDK-SNO
Univariate 0.28 0.54 0.30 0.25 0.33 0 0.29 0.56 0.33
(0.018)  (0.014)  (0.016) (0.035)  (0.014) (0.020)  (0.020)  (0.017)
VAR 0.65 0.30 0.30 0 0.46 0.30
(0.011) (0.005) (0.004) (0.004) (0.006)
Panel D: SNO-SWE
Univariate 0.54 0.43 0.31 0.52 0.49 0 0.36 0.22 0.33
(0.014)  (0.014)  (0.015) (0.017)  (0.016) (0.025)  (0.022)  (0.018)
VAR 0.67 0.59 0.65 0 0.26 0.24
(0.007) (0.010) (0.003) (0.004) (0.015)
Panel E: SWE-FIN
Univariate 0.43 0.39 0.30 0.41 0.43 0 0.40 0.39 0.36
(0.014)  (0.013)  (0.017) (0.014)  (0.013) (0.012)  (0.013)  (0.022)
VAR 0.61 0.28 0.35 0 0.03 0.02
(0.008) (0.014) (0.005) (0.003) (0.007)

Notes: The table presents quasi maximum likelihood estimates for the models (1) and (3). Subscripts denote the
geographical region and superscripts denote the state. Note that di = d2 = d is assumed in the VAR model (3). Robust
standard errors based on the sandwich formula are given in parentheses.

is higher, estimated at 0.8740 — 0.9869, corresponding to mean durations of 7.94 — 76.57 hours.

5.2 Estimation of fractional integration and cointegration parameters

Table 2 presents estimates of the fractional integration order d for a number of different cases. The
models estimated under the heading “No switching” use pooled data, i.e. the data is not separated
by congestion and non-congestion periods. The results presented under the heading “Switching” refer
to the corresponding estimates when data is partitioned into congestion and non-congestion periods,
where we use superscripts c or nc to denote estimates under the congestion and non-congestion regimes,
respectively. “Univariate” and “VAR” refer to the models (1) and (3), respectively. The estimates of
di and ds are the fractional orders for the first and second regions, respectively, whereas the estimate
~ is the fractional integration order of the log relative price.
e =
series are fractionally cointegrated in an extreme form. Furthermore, observe that in the VAR model

Note that, for the swiching model,

0 in the non-congestion state because the individual price series are identical and hence the

it is imposed that dy = dy = d.

Figures 4 and 5 about here
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Kernel spectral density estimates of the residuals from the non-switching and switching models
together with the observed (deseasonalized) price series are presented in Figures 4 and 5, respectively.
Generally, when comparing the residuals for both the non-switching and switching models with the
observed counterparts, the long memory feature of the specific area prices appears to be appropriately
captured by the models. For the WDK-SNO connection, however, there seems to be some long
memory left in the residuals of the SNO area price for the switching model. Possibly this stems
from forcing the fractional integration orders to be identical in the congestion regime, and thereby
estimating an integration order that is lower than the individual fractional integration order of SNO.
Another justification for the regime switching model is that there are fewer outliers in the residuals
when compared to the residuals from the non-switching models, but tails are still more heavy than
normally distributed residuals. However, as discussed in section 4.3 this is not critical to the estimation
procedure.

Consider now the East Denmark-Sweden connection exhibited in Panel A of Table 2, and consider
initially the pooled data set without regime switching. For the univariate model the point estimates
of d for the two regions are very similar, 0.42 and 0.47, and the estimate of « associated with the
relative price is somewhat lower, i.e. 0.21. When we use the VAR model the point estimate of d for
the individual price series is 0.57 and the estimate of v is 0.23. The results indicate that when data
is not classified according to regimes, there is evidence of fractional cointegration between the series.
Now, the question is whether this result is caused by the non-congestion state dominating the sample
or whether both regimes contribute to the cointegration finding. In the regime switching case, the
non-congestion estimates clearly indicate cointegration (as expected) with point estimates of d"¢ at
0.46 for the VAR model and similar point estimates for the univariate model. In the congestion case,
the regime switching results for the univariate model do not make sense because ¢ > max{cff, Ag}
This finding may be caused by adopting a univariate modeling approach when joint modeling is more
appropriate. In fact, for the VAR case the point estimate of d° is 0.11 and there is indication of (weak)
fractional cointegration since the relative price is FI(0).

The West Denmark-Sweden link in Panel B is an interesting case where there seems to be no frac-
tional cointegration in the non-switching models. However, looking at the models where we condition
on congestion /non-congestion, we see that there is fractional cointegration in the non-congestion state.
In the VAR model, there is in fact cointegration in both states. That is, the results from the non-
switching models (which are clearly misspecified) are thus some combination of their regime switching
counterparts. It is clear that by not taking regime switching into account we falsely conclude that
there is no sign of fractional cointegration, when in fact regime dependent fractional cointegration
exists.

The West Denmark-South Norway link with estimates in Panel C are similar to the West Denmark-
Sweden link in Panel B, so (weak) fractional cointegration occurs in the congestion state in the VAR
model. Note that there is also evidence of fractional cointegration for the VAR model when not
conditioning on regime switching.

As seen from Panel D, presenting estimates for the link between South Norway and Sweden,
no (or extremely weak) evidence of fractional cointegration is found for the models without regime
switching. However, when conditioning on states, it is seen that it is only in the non-congestion

state that cointegration occurs. Interestingly, based on the VAR model, prices in this state seem
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Table 3: Estimated adjustment coefficients

No switching Switching
Series G o Gy Qg
EDK-SWE 4.5295* 0.0289 1.4269* —0.1990*
(0.2789) (0.1965) (0.2267) (0.1007)
WDK-SWE  —0.3163* 0.0049 0.0135 —0.0277*
(0.0184) (0.0043) (0.0378) (0.0088)
WDK-SNO  —0.4309* 0.0042 0.1338* —0.1053*
(0.0213) (0.0035) (0.0149) (0.0032)
SNO-SWE —0.2373 3.2256* 0.6729* 0.0754
(0.1375) (0.1952) (0.0820) (0.1128)
SWE-FIN 0.3699 —5.7785" 1.6996* —0.0365
(0.4661) (0.5639) (0.0971) (0.1545)

Notes: Subscripts denote the geographical region. Numbers in bold face refer to situations with indication of fractional
cointegration based on the VAR estimates of d and « reported in Table 2. Robust standard errors are given in parentheses.
An asterisk denotes significance at the 5% level.

non-stationary whilst relative prices are stationary.

Finally, for the Sweden-Finland link in Panel E there is some evidence of fractional cointegration
in the non-switching models. For both the univariate and VAR models there is cointegration in the
non-congestion state, whereas there is no cointegration (univariate model) or all series seem to be I(0)
(VAR model) in the congestion state. Hence, the non-congestion state seems to dominate the pooled

data set.

5.3 Estimation of adjustment coefficients

An advantage of the regime switching VAR model (3)-(4) compared to univariate models is that es-
timates of the adjustment coefficients in the congestion state, i.e. the parameters (o, as)’, can be
obtained. The adjustment coefficients indicate (ceteris paribus) the price move directions in response
to a particular gap between the area prices under congestion. An alternative interpretation of the ad-
justment coefficients can be given in our model compared to standard error correction models where
price changes respond to disequilibrium. This follows from the market setup and varying costs of elec-
tricity production in different geographical regions. For example, if an inexpensive electricity supply
from another geographical region is suddenly stopped due to congestion, prices are expected to be
higher until non-congestion is restored, which may result in adjustment parameters indicating a move
away from equilibrium defined as the case where area prices are identical. Parameter interpretation
is of course an issue here, because we force the cointegrating vector to be (1,—1) and the parame-
ters aq, ag, and v do not have the usual interpretation in the congestion state if in fact there is no
cointegration present in that state.

In Table 3 the estimated adjustment coefficients (@1,@2)' associated with the VAR models are
reported for the switching and non-switching cases. Numbers in boldface font indicate situations
where, based upon the d and v estimates, some degree of fractional cointegration is suggested by the
results in Table 2. In the regime switching models, boldface indicates situations where there appears
to be cointegration in the congestion state.

Consider first the East Denmark-Sweden connection. When we do not condition on regime switch-
ing, prices in East Denmark move away from the steady state solution with identical area prices,

whereas Swedish price adjustment appears to be insignificant. When we condition on regime switch-
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ing, prices in both East Denmark and Sweden appear to depart from steady state. This contradicts
the standard interpretation of error correction adjustment. Recall that if there is no congestion be-
tween EDK and SWE, prices are identical and electricity flows from the cheaper area (usually SWE
because of the hydropower and nuclear electricity production) to the more expensive area (usually
EDK because of the majority of electricity production stemming from thermal plants). Therefore,
when congestion occurs, prices in East Denmark will usually be higher and thus reflect the higher
marginal cost of electricity production in East Denmark compared to Sweden. This increase in price
in East Denmark corresponds to «; > 0 in the EDK-SWE bivariate model, i.e. a move away from
equilibrium. Importantly, this is not due to system instability but rather due to electricity being more
expensive to produce in East Denmark compared to Sweden.

Next, we look at the West Denmark-Sweden link. In this case, no cointegration was found for
the non-switching model and for the switching case there was cointegration in both states for the
VAR model. Conditioning on regime switching both prices tend to depart and thus further extending
the price gap. However, the adjustment seems weak in this case and only the Swedish adjustment
parameter is significant.

For the West Denmark-South Norway connection we found signs of cointegration for both the
non-switching and switching models. When not conditioning on regime switching the adjustments
parameters have the conventional signs, albeit the adjustment coefficient for the South Norway area
is small and insignificant. However, this finding may be spurious because, when we condition on
regimes, both area prices depart from equilibrium and hence the price gap is widened following the
argument previously given: When congestion occurs, prices in West Denmark will be higher reflecting
the higher costs of electricity production. If demand continues to increase in West Denmark during
the congestion more expensive generators will be taken into use and thus increasing marginal cost
of production even further. This increase in price in West Denmark corresponds to a; > 0 in the
WDK-SNO bivariate model, i.e. a further increase in the price gap. Again, this is not due to system
instability but rather due to electricity being more expensive to produce in West Denmark compared
to South Norway.

The South Norway-Sweden and Sweden-Finland cases are similar in the sense that no cointegration
was found in the congestion state, and therefore the interpretation of the adjustment coefficients is
less interesting.

To sum up, appropriate modeling of the regime switching feature is seen to have a major impact on
the electricity price dynamics. In addition to giving estimates of the adjustment parameters specific to
particular states, conditioning on congestion or non-congestion allows interpretation of the adjustment
coefficients, which is different from standard error correction models. In particular, we have found
evidence that, when fractional cointegration takes place, the price gap is widened under congestion.
All in all, what ensures price convergence is in fact the switching mechanism towards non-congestion
where prices are identical rather than error correction in a more conventional sense during congestion

periods.
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5.4 Forecasting spot electricity prices

In this section, we consider forecasting of spot electricity prices for up to 24 hours. Because the

calculation of analytical forecast bands for the k-step ahead forecast requires 2¢+1

steps, it is not
computationally possible to do the forecasting exercise analytically (although the formulae are avail-
able, e.g. Davidson (2004)). Therefore, we consider Monte Carlo stochastic simulation forecasting,
see Davidson (2004). The method implemented here differs from the one used by Davidson (2004)
because our states are observable. Our forecast simulation differs from the setup used in Haldrup
& Nielsen (2006b), where the individual price series are estimated separately, and therefore leads to
different forecasts when in fact the individual prices under non-congestion are governed by exactly the
same price shocks.

The forecasting exercise is implemented by simulating the model 24 periods ahead assuming inde-
pendent draws from the estimated residuals. The states are also simulated 24 periods ahead using the
estimated transition probabilities in Table 1. The median and the 95% forecast error bands for each

period are extracted from 10,000 simulated forecasts.
Figures 6-10 about here

Figures 6-10 display the forecasting results for both the univariate model and the VAR model.
Each figure contains 2 panels displaying the results for the non-switching model and 2 panels for the
switching model. In each panel, the diamonds depict the (deseasonalized) observed values covering
the last 24 in-sample observations as well as 24 out-of-sample observations. Each panel also has three
solid and three dotted lines. The three solid lines are median forecasts and 95% error bands for the
VAR model, whereas the three dotted lines are the equivalent forecasts and bands for the univariate
model. Notice that we have displayed the non-switching and switching models in separate panels
because the (deseasonalized) observed values are different for these two cases. In Table 4 the mean
absolute forecast errors (MAFE) for the different models are reported where the forecasted values are
the simulated median price forecasts. Mean squared forecast errors were also calculated and yielded
qualitatively very similar results which are not presented.

Figure 6 displays the forecasts for the East Denmark-Sweden physical link. First, considering the
non-switching models, we observe that the forecasts from the univariate model slightly outperform the
VAR model, which is also confirmed in terms of MAFE when looking at Panel A of Table 4. However,
the confidence bands for the VAR model are tighter than for the univariate model. Focusing on the
regime switching models, the median forecasts for both models are very close to the actually observed
(deseasonalized) values. The 95% error bands for the EDK log price series are tighter for the VAR
model, and for the SWE log price series they are better initially and similar for later hours. The
MAFE for the switching VAR model is smaller than that of the misspecified non-switching model.

In Figure 7 the forecasts for the West Denmark-Sweden physical link are displayed. Overall, we
notice again that the 95% error bands are tighter for the bivariate model than for the univariate model.
In the non-switching case neither model performs particularly well for the WDK price series, but for
the SWE price series they both perform considerably better. This is also confirmed when looking
at Panel B of Table 4. In the regime switching case, the VAR model outperforms the univariate

model for the first 5 hours for the WDK price series and is pretty close to the actual observed series.
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Table 4: Mean absolute forecast error (MAFE)

No switching Switching
Univariate VAR Univariate VAR

Panel A: EDK-SWE
EDK 0.0639 0.0882 0.0555 0.0520
SWE 0.0502 0.0645 0.0559 0.0555

Panel B: WDK-SWE
WDK 0.2518 0.2256 0.1945 0.1929
SWE 0.0538 0.0502 0.2862 0.1165

Panel C: WDK-SNO
WDK 0.2518 0.4847 0.2546 0.2119
SNO 0.0359 0.0342 0.3405 0.1105

Panel D: SNO-SWE
SNO 0.0368 0.0352 0.0810 0.0809
SWE 0.0538 0.1523 0.1225 0.0909

Panel E: SWE-FIN
SWE 0.0549 0.0521 0.0408 0.0406
FIN 0.0833 0.0990 0.0845 0.0747

Subsequently, it degenerates to its unconditional mean. Regarding the Swedish price series none of
the two models perform adequately which is also confirmed in Panel B of Table 4.

Figure 8 considers the West Denmark-South Norway physical link. In the non-switching case the
VAR model produces very good forecasts of the South Norway price series and slightly outperforms
the univariate model. When considering the switching case the VAR model clearly outperforms the
univariate model, see also Panel C of Table 4.

Figure 9 displays the forecast results for the South Norway-Sweden physical link. Without regime
switching the VAR model underestimates the observed price series for Sweden, whereas for the uni-
variate model the median forecast is close to the actually observed price series. With regime switching
both models are very close to the actually observed price series. The VAR model outperforms the
univariate model in terms of tightness of the confidence band. Panel D of Table 4 shows that in the
regime switching case, the VAR model is again superior to the univariate model.

Finally, Figure 10 displays the forecasts for the Sweden-Finland connection. Here the VAR model
seems to do much better than the univariate model in terms of forecasting the observed price series.
This is also the conclusion drawn from Panel E of Table 4, where it is seen that the switching model
outperforms the non-switching model. Furthermore, we again observe that the forecast confidence
bands from the univariate models are wider than those from the VAR model in the non-switching case
and indeed a lot wider in the switching case.

To conclude, the regime switching VAR model proposed in this paper seems to provide overall
better forecasts compared to its univariate and non-switching counterparts. In general, forecast con-
fidence bands are more narrow for the switching VAR. In 7 out of 10 cases the switching VAR model
delivers smaller MAFE compared to the non-switching VAR model, and in 10 out of 10 cases the
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switching VAR model outperforms the switching univariate model in terms of MAFE.

6 Conclusion

In this paper we have proposed a multivariate modeling framework for spot electricity prices within
the Nord Pool power grid which enables us to describe the complex price dynamics characterizing this
market. When the actual transmission of electricity is constrained by the flow capacity, congestion will
occur and hence the presence or absence of transmission bottlenecks may have implications for the price
dynamics. Moreover, it is an empirical regularity that electricity prices exhibit long memory in the form
of fractional integration which may be regime dependent. Our multivariate fractional cointegration
model is new and is motivated by these particular features, and thus allows us to explicitly take into
account the fact that, in non-congestion periods, prices are the same across geographical regions and
therefore also governed by exactly the same price shocks.

From our empirical analysis it is clear that conditioning on congestion or non-congestion states
has a major impact on the dynamics of the electricity prices, and this feature is well described by
the VAR model for both estimation and forecasting. In fact, when not conditioning on the specific
states very misleading conclusions may be drawn with respect to the potential fractional cointegration
properties of the data and the adjustment mechanism describing the price behavior. We find that what
ensures price convergence is in fact the switching mechanism towards non-congestion where prices are
identical, rather than error correction occurring in a more conventional sense. We believe this is the
first empirical example demonstrating that the standard interpretation of error correction models may
break down when in fact a dynamic non-linear feature characterizes the data.

There are three possible types of misclassification of the model dynamics in the empirical analysis.
First, non-switching models may indicate that the price series are fractionally cointegrated, whereas
when conditioning on states this is only the case in the non-congestion state (which is cointegrated by
definition). Second, the non-switching model could indicate that there is no fractional cointegration
when in fact there is cointegration in the non-congestion state, and finally there is the possibility of
fractional cointegration in both regimes, but not in the non-switching model.

We also emphasize the appropriateness of our VAR model in terms of forecasting, where more
narrow forecast confidence bands are delivered. In 7 out of 10 cases a smaller MAFE is obtained from
the switching VAR model compared to a non-switching VAR model, and in 10 out of 10 cases the
regime switching VAR model outperforms its univariate counterpart in terms of MAFE.

For future research we would like to point to the fact that some geographical regions are indirectly
connected, e.g. West Denmark and East Denmark are indirectly connected through Sweden, so there
are regimes where West Denmark and East Denmark constitute the same price area. The effects of
these indirect links between geographical regions and how they potentially affect the price dynamics is
therefore of major interest. A detailed analysis similar to the analysis presented in this paper including
indirect links is conceptually straightforward using a higher-dimensional model, but computationally

the analysis is difficult and left for future research.
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Figure 1: Map of the Nord Pool area

Nord Pool Power Grid
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Figure 2: Hourly log spot electricity prices for the Nord Pool area covering the period 3 January 2000
to 25 October 2003
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Figure 3: Scatter plots of hourly log prices across Nord Pool regions
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Figure 4: Kernel spectral density estimates of electricity price series and residuals without regime
switching

2' WDK-SWE

Note: In each panel the solid and dotted lines constitute the first and second area in the physical
link, respectively. The spectral density curves with the most mass at the zero frequency are for the
observed deseasonalized price series.
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Figure 5: Kernel spectral density estimates of electricity price series and residuals with regime switch-
ing

Note: In each panel the solid and dotted lines constitute the first and second area in the physical
link, respectively. The spectral density curves with the most mass at the zero frequency are for the
observed deseasonalized price series.
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Figure 6: Forecasts for the EDK-SWE physical link for the non-switching (NoRS) and switching (RS)
models
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Note: In each panel, the solid line with the diamonds are the actually observed (deseasonalized) price
series covering the last 24 in-sample observations as well as the 24 out-of-sample observations. Each
panel also has a three solid lines and three dotted lines. The three solid and dotted lines are median
forecasts and error bands for the VAR model and univariate model, respectively.
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Figure 7: Forecasts for the WDK-SWE physical link for the non-switching (NoRS) and switching (RS)

models
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Note: In each panel, the solid line with the diamonds are the actually observed (deseasonalized) price
series covering the last 24 in-sample observations as well as the 24 out-of-sample observations. Each
panel also has a three solid lines and three dotted lines. The three solid and dotted lines are median
forecasts and error bands for the VAR model and univariate model, respectively.

26



Figure 8: Forecasts for the WDK-SNO physical link for the non-switching (NoRS) and switching (RS)
models
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Note: In each panel, the solid line with the diamonds are the actually observed (deseasonalized) price
series covering the last 24 in-sample observations as well as the 24 out-of-sample observations. Each
panel also has a three solid lines and three dotted lines. The three solid and dotted lines are median
forecasts and error bands for the VAR model and univariate model, respectively.
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Figure 9: Forecasts for the SNO-SWE physical link for the non-switching (NoRS) and switching (RS)
models
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Note: In each panel, the solid line with the diamonds are the actually observed (deseasonalized) price
series covering the last 24 in-sample observations as well as the 24 out-of-sample observations. Each
panel also has a three solid lines and three dotted lines. The three solid and dotted lines are median
forecasts and error bands for the VAR model and univariate model, respectively.
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Figure 10: Forecasts for the SWE-FIN physical link for the non-switching (NoRS) and switching (RS)
models
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Note: In each panel, the solid line with the diamonds are the actually observed (deseasonalized) price
series covering the last 24 in-sample observations as well as the 24 out-of-sample observations. Each
panel also has a three solid lines and three dotted lines. The three solid and dotted lines are median
forecasts and error bands for the VAR model and univariate model, respectively.
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