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Abstract

In this paper we compare through Monte Carlo simulations the finite sample properties
of estimators of the fractional differencing parameter, d. This involves frequency domain,
time domain, and wavelet based approaches and we consider both parametric and semipara-
metric estimation methods. The estimators are briefly introduced and compared, and the
criteria adopted for measuring finite sample performance are bias and root mean squared
error. Most importantly, the simulations reveal that 1) the frequency domain maximum
likelihood procedure is superior to the time domain parametric methods, 2) all the esti-
mators are fairly robust to conditionally heteroscedastic errors, 3) the local polynomial
Whittle and bias reduced log-periodogram regression estimators are shown to be more ro-
bust to short-run dynamics than other semiparametric (frequency domain and wavelet)
estimators and in some cases even outperform the time domain parametric methods, and
4) without sufficient trimming of scales the wavelet based estimators are heavily biased.
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1 Introduction

The past two decades have witnessed an increasing interest in fractionally integrated processes
as a convenient way of describing the long memory properties of many time series. There
is now a broad range of applications in e.g. finance and macroeconomics, see Baillie (1996),
Henry & Zaffaroni (2003), or the references below for some examples. Fractionally integrated
processes are characterized by a hyperbolically decaying autocorrelation function (contrary
to the faster exponential decay which characterizes traditional autoregressive moving average
(ARMA) models), thus suggesting distant observations to be highly correlated.

There have been many studies to provide a theoretical motivation for fractional integration
and long memory, for instance models based on aggregation have been suggested by Robin-
son (1978) and Granger (1980), error duration models by Parke (1999), and regime switching
models by Diebold & Inoue (2001). In empirical studies, fractional integration and long mem-
ory have been found relevant in many areas in macroeconomics and finance. Some examples
of applications are Diebold & Rudebusch (1989, 1991) and Sowell (1992b) for various GDP
measures, Gil-Alana & Robinson (1997) for the extended Nelson-Plosser data set, Hassler &
Wolters (1995) and Baillie, Chung & Tieslau (1996) for inflation data, Diebold, Husted & Rush
(1991) and Baillie (1996) for real exchange rate data, and Andersen, Bollerslev, Diebold &
Ebens (2001) and Andersen, Bollerslev, Diebold & Labys (2001) for financial volatility series.
See Baillie (1996) or Henry & Zaffaroni (2003) for a survey.

In this paper we consider several estimation methods for fractionally integrated ARMA
models, including parametric, semiparametric, frequency domain, time domain, and wavelet
methods. The methods are compared in an extensive Monte Carlo study using several data
generating processes with different forms of short-run dynamics including the possibility of
errors that exhibit autoregressive conditional heteroskedasticity (ARCH). The criteria we adopt
for measuring the finite sample performance of the estimators are bias and root mean squared
error (RMSE).

Our results show that among the parametric methods the frequency domain maximum
likelihood procedure is superior with respect to both bias and RMSE. However, our results
also show that the (sometimes quite severe) bias of the parametric time domain procedures is

alleviated when larger sample sizes (e.g. 512) are considered.



Furthermore, according to our results all the methods under consideration are rather robust
to the presence of ARCH effects, which are not parameterized, in the sense that the finite sample
biases and RMSEs do not increase much compared to the case with white noise errors.

Among the semiparametric (frequency domain and wavelet) methods our results clearly
demonstrate the usefulness of the bias reduced log-periodogram regression and local poly-
nomial Whittle estimators of Andrews & Guggenberger (2003) and Andrews & Sun (2004),
respectively. In several cases these two methods even outperform the correctly specified time
domain parametric methods. Furthermore, when other methods are very heavily biased due
to contamination from short-run dynamics, these estimators show a much lower bias at the
expense of an increase in their RMSE. The bias reduction is due to their modelling of the
logarithm of the spectral density of the short-run component by a polynomial instead of a
constant. Finally, without sufficient trimming of scales the wavelet based methods are heavily
biased when short-run dynamics is introduced.

Recent surveys on fractional integration and long memory are Robinson (1994, 2003), Baillie
(1996), and the book by Beran (1994). However, since none of these really cover all the methods
considered in the present study (some of which are very recent), we first briefly describe the
fractionally integrated ARMA model and provide an introduction to the estimation methods
considered in our Monte Carlo study with emphasis on the more recent methods. We shall not
present all the mathematical assumptions underlying each estimation procedure, but rather
describe the methods and their applicability in general, and also briefly discuss and compare
the asymptotic distributions of the various estimators.

Previously, Monte Carlo studies of fractional integration estimators have also been con-
ducted by Hauser (1997) who considers the early semiparametric methods like the rescaled
range statistic, by Cheung & Diebold (1994) and Hauser (1999) who consider parametric max-
imum likelihood estimators, and by Tse, Ahn & Tieng (2002) who consider wavelet based
estimators. However, in our Monte Carlo study we consider all three types of estimators
including recently developed methods, and in particular we attempt to cover all estimators
typically applied in empirical work and compare them with respect to finite sample bias and
RMSE within the same model setup.

The remainder of the paper is organized as follows. In the next section we present the au-

toregressive fractionally integrated moving average (ARFIMA) model and estimation methods



which are divided into groups of parametric, semiparametric, and wavelet based estimators.
Section 3 presents the results of the Monte Carlo study in terms of the finite sample biases and
RMSE:s of the estimators in section 2, and section 4 offers some concluding remarks. Additional
tables of simulation results are given in a separate appendix to this paper, which is available

from the authors’ websites.

2 Estimation of Fractional Integration

In this section we describe the class of autoregressive fractionally integrated moving average
(ARFIMA) processes, introduced by Granger & Joyeux (1980) and Hosking (1981), and review
the estimators that we consider in the Monte Carlo study and their properties.

A process is labelled an ARFIMA(p, d, q) process if its d’th difference is a stationary and
invertible ARMA(p, ¢) process. Here, d may be any real number such that —1/2 < d < 1/2 (to
ensure stationarity and invertibility). For a precise statement, y; is an ARFIMA(p, d, q) if

¢ (L) (1= L) (ye — 1) = 0 (L) &1, (1)

where ¢ (2) =1— ¢z — ... — ¢,2P and 0 (2) = 1 + 612 + ... + 0427 are lag polynomials of order
p and g, respectively, in the lag operator L (Lz; = x;—1) with roots strictly outside the unit

circle, & is #d(0,02), and (1 — L)% is defined by its binomial expansion

) I'(i—d ‘
o= xn o .
using the gamma function, I' (+).

The parameter d determines the (long) memory of the process. If d > —1/2 the process
is invertible and possesses a linear (Wold) representation, and if d < 1/2 it is covariance
stationary. If d = 0 the spectral density is bounded at the origin and the process has only
weak dependence (short memory). Furthermore, if d > 0 the process is said to have long
memory since the autocorrelations die out at a hyperbolic rate (and indeed are no longer
absolutely summable) in contrast to the much faster exponential rate in the weak dependence
case, whereas if d < 0 the process is said to be anti-persistent (Mandelbrot (1982)), and has

mostly negative autocorrelations. The case 0 < d < 1/2 has proved particularly relevant for



many applications in finance and economics, c.f. the references given in the introduction above,
as well as hydrology, geology, and many other fields.

The autocorrelation function of the process in (1) satisfies
2d—1
pr ~ cpk , 0<cp, <00, ask— oo, (3)

which decays at a hyperbolic rate, c.f. Granger & Joyeux (1980) and Hosking (1981). The

symbol "~"

means that the ratio of the left and right hand sides tends to one in the limit.
Equivalently, the behavior of the autocorrelations at large lags can be stated in the frequency
domain at small frequencies.

Thus, defining the spectral density function of v, fy ()), as
Te= [ fy(N) e, (4)

where v, is the k’th autocovariance of y;, it can be shown that the spectral density of the

ARFIMA(p, d, q) process (1) is given by

_ o a2
Sl BT
o? . _ 9(€i)‘)|2

= — (2sin)\/2 2d|—. 5

ar I ®)

Now, the approximation (3) can be restated in the frequency domain as (see Granger & Joyeux

(1980), Hosking (1981), or Beran (1994, p. 53))
fyN) ~ g\, 0<g<oo, asA—0. (6)

Very general conditions under which (3) and (6) are equivalent are given by Yong (1974)
and Zygmund (2002, Chapter V.2). For a thorough exposition of long memory processes and
ARFIMA models the reader is referred to e.g. the book by Beran (1994).

In the following subsections we describe several estimation methods for the ARFIMA model
(1) that have appeared in the literature. First, we present the parametric methods which are
(approximate or exact) likelihood methods in the time domain or frequency domain. Second,
we describe the semiparametric log-periodogram regression and local Whittle methods and

some of their extensions. Finally, wavelet based estimation methods are considered.



2.1 Parametric Estimators

Four different parametric maximum likelihood estimators (MLEs) are described in the following:
The exact time domain MLE, modified profile likelihood estimator, conditional time domain
MLE, and frequency domain MLE. The time domain estimators are based on the likelihood
function of the ARFIMA(p, d, q) model with or without conditioning on initial observations,
and the frequency domain estimator is based on Whittle’s approximation to the likelihood

function in the frequency domain.

2.1.1 Maximum Likelihood in the Time Domain

The exact Gaussian maximum likelihood objective function for the model (1) is (when —1/2 <
d<1/2)
T 1 _
L (d,6.0,0% 1) = —2 ]| = 5 (V = ) Q7 (V — ), ™

where [ = (1,...,1), Y = (y1,...,yr)’, ¢ and 6 are the parameters of ¢ (L) and 6 (L), u is the
mean of Y, and € is the variance matrix of Y, which is a complicated function of d and the
remaining parameters of the model. Sowell (1992a) derived an efficient procedure for solving
this function in terms of hypergeometric functions. However, an important limitation is that
the roots of the autoregressive polynomial cannot be multiple.

Gathering the parameters in the vector v = (d, ¢, 0,02, u)/, the exact maximum likelihood
(EML) estimator is obtained by maximizing the likelihood function (7) with respect to y. Sowell
(1992a) showed that the EML estimator of d is v/T-consistent and asymptotically normal, i.e.

VT (dpas = d) —a N (0, (72/6-C) "), (8)

where C' = 0 when p = ¢ = 0 and C > 0 otherwise. The variance of the EML estimator may

be derived as the (1,1)’th element of the inverse of the matrix

1 2T 91n f, (A) Oln fy (N)
4 Jo oy o'

Although the time and frequency domain (see below) maximum likelihood estimators are

dA.

asymptotically equivalent, their finite sample properties differ, and a small Monte Carlo study
carried out by Sowell (1992b) shows that the time domain estimator has better finite sample
properties than the frequency domain estimator when the mean of the process is known. How-

ever, Cheung & Diebold (1994) show that the finite sample efficiency of the discrete Whittle



frequency domain MLE (see (11) below) relative to time domain EML rises dramatically when
the mean is unknown and has to be estimated.

The modified profile likelihood (MPL) estimator is based on a correction of the parameters
of interest (here d, ¢, 0) for second-order effects due to nuisance parameters (here o2, 11). Thus,
the idea is to reduce the bias by applying a transformation that makes (d, ¢,6) orthogonal to
(0%, 1), see Cox & Reid (1987) and An & Bloomfield (1993). The modified profile log-likelihood

function is given as (without constants)

Ly (d, ¢,0; 1) = — <l - 1) In|R|— % In ('R71) - (?) In [T (Y — ) R7Y (Y — )],

2 T
9)
where R = Q/0? and fi = (Z’Rfll)f1 I'R~'Y. The asymptotic distribution of the MPL esti-
mator is unchanged compared to the EML estimator on which it is based, and hence it also
satisfies (8).

Imposing the initialization y; = 0,¢ < 0, the model (1) is valid for any value of d and is a
type II fractional process in the terminology of Marinucci & Robinson (1999). The objective
function corresponding to this DGP considered by Chung & Baillie (1993), Beran (1995),
Tanaka (1999), and Nielsen (2004) is

T 2

Lo (d,6.0.) = 2o [2_: (G700 -n) ] , (10)
and we call the estimator that maximizes (10) the conditional maximum likelihood (CML)
estimator. Maximizing L¢ is equivalent to minimizing the usual (conditional) sum of squares
and hence this estimator is also referred to as the CSS estimator by some authors, e.g. Chung
& Baillie (1993) and Beran (1995). The CML estimator has the same asymptotic distribution

(8) as the EML estimator for any value of d and is computationally much less demanding.
Note also that the parametric estimators are asymptotically efficient in the classical sense

when the model is Gaussian and correctly specified.

2.1.2 Maximum Likelihood in the Frequency Domain

An alternative approximate MLE of the ARFIMA(p,d, q) model follows the idea of Whittle
(1951), who noted that for stationary models the covariance matrix €2 can be diagonalized by

transforming the model into the frequency domain. Fox & Taqqu (1986) showed that (when



d € (—1/2,1/2)) the log-likelihood can then be approximated by

|7/2] ,
Ly (d, ¢,9,U2) =— Z {lnfy (A\j) + I()\J? } ) (11)

j=1

itA

2
‘ is the periodogram

where \; = 2mj/T are the Fourier frequencies, I (\) = 52= ’Zle yre
of y¢, fy (A) is the spectral density of y; given in (5), and [z denotes the largest integer that
is not greater than z. Note that the FML estimator is invariant to the presence of a non-zero
mean, i.e. u # 0, since j = 0 (the zero-frequency) is left out of the summation in (11).

The approximate frequency domain maximum likelihood (FML) estimator is defined as the
maximizer of (11) and was proposed by Fox & Taqqu (1986), who also proposed a continuously
integrated version of (11). Dahlhaus (1989) also assumed Gaussianity and considered the exact
likelihood function in the frequency domain. The FML estimator has the same asymptotic
properties as the EML estimator, i.e. /T-consistency and asymptotic normality, and when
the process is Gaussian, asymptotic efficiency. Finally, Giraitis & Surgailis (1990) relax the
Gaussianity assumption and analyze the Whittle estimate for linear processes, showing that
it is v/T-consistent and asymptotically normal but no longer efficient, while Hosoya (1997)

extends the previous analysis to a multivariate framework.

2.2 Semiparametric Estimators

The semiparametric frequency domain estimators are based on the approximation (6) to the
spectral density. Two classes of semiparametric estimators have become very popular in empir-
ical work, the log-periodogram regression method suggested by Geweke & Porter-Hudak (1983)
and the local Whittle approach suggested by Kiinsch (1987). In the following we describe these
two estimators and some of the many extensions and improvements that have appeared in the
literature. Some earlier work on the (adjusted) rescaled range, or "R/S statistic", by Hurst
(1951) and Mandelbrot & Wallis (1969) or its modified version to allow for weak dependence
by Lo (1991) is not considered here. Instead, the reader is referred to Hauser (1997).

The semiparametric estimators enjoy robustness to short-run dynamics since they use only
information from the periodogram ordinates in the vicinity of the origin. Indeed, the short-run
dynamics in the model, i.e. the autoregressive and moving average polynomials ¢ (-) and 6 (-) in

our model (1), does not even have to be specified. The drawback is that only \/m-consistency



is achieved, where m = m (T is a user-chosen bandwidth parameter, in comparison to VT-
consistency (and efficiency) in the parametric case. Thus, the semiparametric approach is much

less efficient than the parametric one since it requires at least m/T — 0.

2.2.1 Log-Periodogram Regression

Probably the most commonly applied semiparametric estimator is the log-periodogram regres-
sion (LPR) estimator introduced by Geweke & Porter-Hudak (1983) and analyzed in detail by
Robinson (1995b). Taking logs in (6) and inserting sample quantities we get the approximate

regression relationship
In (1 (Aj)) = constant — 2d1In (\;) + error. (12)

The LPR estimator is defined as the OLS estimator in the regression (12) using j = 1, ..., m,
where m = m (T") is a bandwidth number which tends to infinity as 7' — oo but at a slower
rate than T'. Note that the estimator is invariant to a non-zero mean since j = 0 is left out of
the regression.

Under suitable regularity conditions, including y; being Gaussian (later relaxed by Velasco
(2000)) and a restriction on the bandwidth, Robinson (1995b6) derived the asymptotically nor-
mal limit distribution for the LPR estimator when d is in the stationary and invertible range
(—1/2,1/2) . The proof by Robinson (1995b) also employed trimming of the very lowest fre-
quencies as suggested by Kiinsch (1986), but following recent research, e.g. Hurvich, Deo &
Brodsky (1998), and the original suggestion of Geweke & Porter-Hudak (1983) the trimming
is not necessary and has been largely ignored in empirical work. We shall follow this practice
in our implementation of the estimator. Recently, Kim & Phillips (1999) and Velasco (1999b)
demonstrated that the range of consistency is d € (—1/2, 1] and the range of asymptotic nor-
mality is d € (—1/2,3/4).

To reduce the asymptotic order of the bias, which can be severe in finite samples, see
Agiakloglou, Newbold & Wohar (1993), Andrews & Guggenberger (2003) have suggested to
replace the constant in (12) by the polynomial Zf:o §TA?T. Thus, the bias is reduced by
modelling the logarithm of the spectral density of the short-run dynamics in the vicinity of the
origin by a polynomial instead of a constant. We set R = 1 in our implementation of the bias

reduced log-periodogram regression (BRLPR) estimator.



The limiting distribution of the LPR and BRLPR estimators for d € (—1/2,1/2) is given

by Robinson (1995b) and Andrews & Guggenberger (2003) as

Jm (dR _ d> —4 N (0, 2—ch> , (13)
where ¢y = 1 (R = 0) corresponds to the LPR estimator and ¢; = 2.25 (R = 1) corresponds to
the BRLPR estimator. For other values of R see Andrews & Guggenberger (2003). Thus, the
variance of the BRLPR estimator is increased only by a multiplicative constant, but it achieves
a reduction in the asymptotic order of magnitude of the bias.

Another variant of LPR designed to model the short-run component in (12) in a more
flexible way is the pooled log-periodogram regression (PLPR) estimator by Shimotsu & Phillips
(2002b). This procedure allows the short-run component to vary across frequency bands and
at the same time utilizes information in the larger frequencies. The pooled estimator utilizes

(12) for the bands By,...,Br, (LPR uses only By) and is given by

ZiL:O Z{j:AjEBi} (in - Y~i) (in - X‘i)
Zi[/:() Z{j:)\jGBi} (X]Z - 71)2

dpLpr = , (14)

where
v, = 2 > Y= ! > WA
i = E ji = E n ]) ,
{7:A;€B:} {7:A;€B;}
— 1 1
X, = = X, = —— s02 0y
i — ji — In (4sin? (X;/2))
{7:Aj€B;} {i:Aj€B;}
and

{)\j}lﬂ—ﬁ<)\j<lﬂ+ﬁ}, Ki=Ft=1,...M —1,
{Nlo<x<EH}, rko=0,i=0,

are the frequency bands which have width «/M. Thus, M is a parameter that determines the
total number of distinct bands, M = T'/(2m), and the procedure uses L bands with L — oo
and L/M — 0. Note that the estimator still uses frequencies only in the vicinity of the origin
because mL/T — 0. The easiest way to compute (14) and simultaneously derive inference, is

to run the simple least squares model

Yjii—Y.i=d(X;i — X.i) + e (15)

10



i.e. the approach is analogous to the treatment of fixed effects in panel data regression.
When d € (—1/2,1/2) the PLPR estimator is asymptotically distributed according to
A 7T2
Jm (dprR _ d) Sy N <0, m) : (16)
where = > 0 is a constant, see Shimotsu & Phillips (2002b). Thus, the asymptotic variance in
(16) is smaller than that of the LPR estimator in (13) at the expense of a potential increase in

the asymptotic bias (from using larger frequencies).

2.2.2 Local Whittle Approach

The other class of semiparametric frequency domain estimators we consider follows the local
Whittle approach suggested by Kiinsch (1987). The local Whittle (LW) estimator was analyzed
by Robinson (1995a) (who called it a Gaussian semiparametric estimator) and is attractive
because of its likelihood interpretation, nice asymptotic properties, and very mild assumptions.

The LW estimator is defined as the maximizer of the (local Whittle likelihood) function

1 & _ I(\)
Q(g,d) = T Z [ln <g)\j 2d> + )\——éd] . (17)
j=1 9A;
One drawback compared to log-periodogram estimation is that numerical optimization is

needed. However, the assumptions underlying this estimator are weaker than those of the LPR

estimator, and Robinson (1995a) showed that when d € (—1/2,1/2),
Vm(dpw — d) —4 N(0,1/4). (18)

Thus, the asymptotic distribution is extremely simple, facilitating easy asymptotic inference,
and in particular the estimator is more efficient than the LPR estimator. The ranges of con-
sistency and asymptotic normality for the LW estimator have been shown by Velasco (1999aq)
and Phillips & Shimotsu (2004) to be the same as those of the LPR estimator.

An exact local Whittle (ELW) estimator has been proposed by Shimotsu & Phillips (2002a)
which avoids some of the approximations in the derivation of the LW estimator and is valid for
any value of d. The ELW estimator replaces the objective function (17) by the function

Qr (g,d) = —% i [ln <g,\;2d> + IAdy—()‘J)] , (19)

J=1 g

11



where Iaa, (\) = ﬁ ‘Zthl (Adyt) ew‘r is the periodogram of Ad%j,. The ELW estimator
satisfies (18) for any value of d and is thus not confined to any particular range of d values, but
it is however confined to zero-mean processes. In our implementation we use the feasible ELW
(FELW) estimator by Shimotsu (2002) which allows for a non-zero mean.

Andrews & Sun (2004) propose a generalization of the local Whittle estimator in the spirit
of the BRLPR estimator. Instead of approximating the spectral density of the short-run com-
ponent in a shrinking neighborhood of frequency zero by a constant, they approximate its

logarithm by a polynomial. This leads to the following likelihood function,

LS~ | (o2 5 1)
Q 7d7/3 - - 1 < >\<2d <_ r>\2r>> + J

(20)
The maximization of (20) yields the local polynomial Whittle (LPW) estimator of d for d €
(—1/2,1/2). Asshown in Andrews & Sun (2004) this method increases the asymptotic variance
of d in (18) by the multiplicative constant cr (as in the BRLPR estimator (13) above), but
simultaneously reduces the order of magnitude of the asymptotic bias. As with the BRLPR
estimator we use R = 1 in our implementation of the LPW estimator.

For both the log-periodogram regression method and the local Whittle approach we are left
with a choice of bandwidth parameter, m. Results on optimal (mean squared error minimizing)
choice of bandwidth for the log-periodogram regression have been derived by Hurvich et al.
(1998) and results for the local Whittle approach have been derived by Henry & Robinson
(1996). In both cases the optimal bandwidth is found to be a multiple of 7°% where the
multiplicative constant depends on the smoothness of the spectral density near the origin, i.e.
on the short-run dynamics of the process. In particular, Hurvich et al. (1998) argued that
performance gains can be obtained by considering larger bandwidths than the /T originally
suggested by Geweke & Porter-Hudak (1983). However, generally the optimal bandwidths have
not been applied much in practice so we use two different (arbitrarily chosen) bandwidths,
m= LTO'E’J and m = LT0'65J, where |x] denotes the integer part of z, in our implementation

below.

12



2.3 Wavelet Estimators

An orthogonal wavelet is defined as any function 1 (t), whose collection of dilations (scales), 7,

and translations, k,
bip () =272y (279t — k), jkeZ=1{0,+1,£2,...}, (21)

form an orthonormal basis of .2, the space of all square integrable functions on the extended
real line. Any continuous function which decreases rapidly to zero as t — £o0o and oscillates
([ ¥(t)dt = 0) qualifies as a wavelet.

A function y; € L2 with ¢t = 0,1,...,2P — 1, where p € Z can be expanded into a wavelet

series,

Yt = Z Z W kY k (t) dt, (22)

j=—00 k=—00

with coefficients
wie =272 [ 400400 (23)
By design the wavelets strength rests in its ability to simultaneously localize a process in
time and scale. At high scales, the wavelet has a small centralized time support enabling it
to focus in on short lived time phenomena like a singularity point. At low scales, the wavelet
has a large time support allowing it to identify long periodic behavior. By moving from low
to high scales, the wavelet zooms in on the behavior of a process at a particular point in time,
identifying singularities, jumps, and cusps. Alternatively, the wavelet can zoom out to reveal
the long, smooth features of a series. In our implementation we use the Haar and Daubechies
(1988) wavelets which are most commonly applied in the literature, e.g. the references cited

below.

2.3.1 Wavelet OLS Estimator

Using the logarithmic decay of the autocovariance function of a long memory process, Jensen
(1999) showed that a log-linear relationship (suggested by McCoy & Walden (1996) and John-
stone & Silverman (1997)) exists between the variance of the wavelet coefficient from the long
memory process and its scale, which can be used to estimate d by least squares regression. Leav-
ing out high level wavelet coefficients results in robustness to the short-run dynamics similar

to the LPR estimator above, see McCoy & Walden (1996) and Tse et al. (2002).
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In particular, Jensen (1999) shows that for d € (—1/2,1/2),
wik —d N (0,022_2jd> as j — 0, (24)

when g is a fractionally integrated noise process, i.e. when p = ¢ = 0. If we define the variance

of wjj as R(j) the intuitive log-linear relationship
InR(j) =Ino? — dIn2% (25)

arises. To estimate d through (25), an estimate of the variance is required. Jensen (1999)

proposes
27 -1

ﬁ(]) :27j Zwik’ ]:O,,p_l, (26>
k=0

and the relationship (25) thus gives rise to the regression

A~

In R(j) = constant — dIn2% +error, j=J,...,p—1—K, (27)

which can be estimated by ordinary least squares yielding the wavelet OLS (WOLS) estimator.
The WOLS estimator is consistent and asymptotically normal when d € (—1/2,1/2), see Jensen
(1999). The trimming of the lowest J scales was suggested by Jensen (1999) to avoid boundary
effects, and the trimming of the highest K scales was suggested by McCoy & Walden (1996)
and Tse et al. (2002) (for the wavelet MLE, see below) since (24) is valid for small j only.

2.3.2 Maximum Likelihood in Scale and Space (Wavelet MLE)

An alternative to the (approximate) ML estimators described above is to use an approximate
Wavelet ML (WML) estimator. Following the arguments of McCoy & Walden (1996) and
Johnstone & Silverman (1997), see also Jensen (1998, 2000), we assume that (24) is satisfied,
where 02 depends on other parameters of the model but does not vary with j.

It follows that, ignoring wavelet coefficients j > p—1— K, the approximate wavelet likelihood

function is given by

p—1—-K 271 2

. 2 72 .d w‘,k
(2 =) (o%27) + 30 (28)
j= k=0

LW<d7 02) = -

N -

and the WML estimator is obtained by maximizing Lyy. Since (24) is only valid for small j, we
follow McCoy & Walden (1996) and Tse et al. (2002) and leave out the K largest scales in the
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likelihood function (28) to achieve robustness to the possible presence of short-run dynamics

in the same sense as the semiparametric frequency domain estimators.

3 Finite Sample Comparison

In this section we investigate the finite sample bias and root mean squared error (RMSE) of
the estimation methods outlined in section 2 above. The objective of this exercise is to shed
light on which estimator is most accurate in practical application with realistic sample sizes.

In the next subsections we first present the Monte Carlo setup and subsequently the results.

3.1 Monte Carlo Setup

For each Monte Carlo DGP we generated 1,000 artificial time series with 128, 256, and 512
observations by premultiplying a vector of i.i.d. standard normal variates by the Choleski
decomposition of the autocovariance matrix of the desired process, i.e. the stationary type I
fractionally integrated process in the terminology of Marinucci & Robinson (1999), see also
Beran (1994, pp. 215-217). The simulations were made using Gauss v3.6 and Ox v3.3 with the
Arfima package, see Doornik (2001) and Doornik & Ooms (2001). The sample sizes were chosen
as powers of two in order to avoid contaminating the results with biases introduced by the effects
of padding used in Fourier and wavelet transforms when the sample size is not a power of two.
Furthermore, they were chosen to reflect realistic empirical samples from macroeconomic or
financial data, see the examples of empirical references given in the introduction. Although
financial samples based on high frequency data sets may some times be many times larger than
the sample sizes considered here, most often empirical analyses are based on some aggregated
measures such as monthly realized volatility /variance in which case the sample sizes considered
here are very relevant.

We consider four different data generating processes (DGPs) in our Monte Carlo study.

The first one is the simple ARFIMA(0,d,0) model,
(1—=L) (g —p) =1, & ~iid.N(0,02), (29)

where the parameter values g = 0 and 02 = 1 are chosen for the simulations (note that

these values are not enforced in the estimation, i.e. even though p = 0, the parameter is still
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estimated in the parametric time domain models). For the parameter of interest, d, we consider
the values {—0.25,0,0.25,0.4}. Here, the case d = 0 corresponds to estimating d when in fact
data is not (fractionally) integrated.

The next two models we consider are the ARFIMA(1,d,0) and ARFIMA(0,d,1) models given
by

(1—¢L) (1 =LY (y—p) = e e ~iid.N(0,02), (30)
(1-L)(y—p) = (1+0L)e, & ~iidN(0,02), (31)

where again p = 0 and 02 = 1. For ¢ and 6 we use the values {—0.4,0,0.4,0.8}, where ¢ = 0
and 6 = 0 correspond to the cases where an autoregressive or moving average term is estimated
even though it is not present in the data. For the fractional integration parameter d, we choose
the same values as in the simpler model (29).

Thus, the two DGPs (30) and (31) are more complicated than (29), introducing short-run
dynamics into the model. It is important to note that for the parametric estimation procedures,
(29) is very different from (30) with ¢ = 0 and from (31) with # = 0. The DGPs are of course
the same, but in the former case it is assumed known that ¢ = § = 0 whereas in the latter two
cases ¢ or 0 is estimated. Obviously, estimating ¢ or # when it is not present (i.e. overfitting
the model) may introduce a finite sample bias into the estimate of the parameter of interest,
d. Thus, for the parametric models the cases with ¢ = 0 or § = 0 correspond to a weak
form of misspecification where the model is overspecified and irrelevant short-run dynamics is
estimated.

On the other hand, for the semiparametric and wavelet estimation procedures the short-
run dynamics is not specified. That is, there is no need to specify whether or not ¢ and 6 are
estimated and thus the DGP (29) and the DGPs (30) and (31) with ¢ = 6 = 0 will yield the
same results. Hence, for the semiparametric and wavelet methods we do not report the results
for (30) with ¢ = 0 and (31) with = 0.

Finally, we consider the ARFIMA(0,d,0)-ARCH(1) model of, e.g., Baillie et al. (1996) and
Ling & Li (1997),

Q=D —p)=w, w=hr"% h=a+pul, e ~iidN(,1), (32)

where 1 = 0 as before. For the conditional variance parameters we consider the values {0.4,0.8}

for 3, and the values for o are chosen such that the unconditional variance is unity (i.e.
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a = 1 — () to match model (29). For the fractional integration parameter d, we choose the
same values as in the simpler model (29).

Unlike the models (30) and (31), the model in (32) is not completely parameterized by our
parametric methods. It thus corresponds to a weak form of model misspecification where the
ARCH part of the model is left unspecified and white noise errors are assumed for the estima-
tion. However, consistency of the parametric methods in section 2.1 relies only on the errors
being martingale differences and thus even though the ARCH part of the model is misspeci-
fied they are still consistent, although probably inefficient compared to a fully parameterized
method that takes the conditional heteroskedasticity into account. In effect, the DGP (32)
extends the simpler DGP (29) by introducing errors that have conditional heteroskedasticity
and hence fat tails, thereby relaxing one of the more restrictive assumptions of the previous
DGPs.

In Tables 1-21 the results of our Monte Carlo study are presented. Tables 1-7 display the
results for the simple DGP (29), and Tables 8-14 and 15-21 display the results for the more
complicated DGPs (30) and (31), respectively. Finally, the results for the DGP (32) in which
the errors exhibit ARCH are in fact very similar to those in Tables 1-7 for the ARFIMA(0,d,0)
model. Hence, to conserve space, the tables with the results for the ARFIMA(0,d,0)-ARCH(1)
DGP (32) are presented in a separate appendix, which is available from the authors’ websites.

For each DGP, the first table (i.e. Tables 1, 8, and 15) presents the results for the parametric
methods of section 2.1. The next three tables (i.e. Tables 2-4, 9-11, and 16-18) present the
results for the semiparametric approaches of section 2.2, and the last three tables for each DGP
(i.e. Tables 5-7, 12-14, and 19-21) present the results for the wavelet methods of section 2.3.
To present the results of the tables in the most comprehensible way, we have marked in bold
font the cases with the lowest biases and the cases with the lowest RMSESs across each class of

estimator (parametric, semiparametric, and wavelet) and for each DGP and parameter value.

3.2 Monte Carlo Results for Parametric Estimators

Consider first the Monte Carlo results for the parametric methods. Recall that these estimation
methods use all available information, both in terms of utilizing all observations but also in
terms of parameterizing the true DGP of the series at hand (except for the cases with ¢ = 0,

6 = 0, or with ARCH). Thus, it is interesting to see how well these methods perform compared
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to the semiparametric and wavelet methods when handling the contamination caused by the
presence of an AR or MA parameter as the latter estimation methods do not parameterize the
short-run dynamics nor do they use all available observations.

Furthermore, we expect the parametric time domain estimators to be systematically neg-
atively biased compared to the parametric frequency domain estimator, FML. This is caused
by the fact that the methods differ in the treatment of the mean, i.e. of the frequency zero
in the periodogram. While this frequency is excluded from the FML estimator, it is implicitly
included in the time domain estimators through the autocovariance function. As we consider
zero-mean processes in the Monte Carlo study, the periodogram is zero at frequency zero, how-
ever, for d > 0 the spectral density approaches infinity as the frequency approaches zero. Thus,
the time domain estimators will try to model the upward slope of the true spectral density (and
thus of the periodogram) for low frequencies, but at the same time have to take into account
estimating the mean which is at frequency zero. Consequently, we expect these estimators to
suffer from a negative bias, see also Cheung & Diebold (1994) and Hauser (1999).

Turning to the results in Table 1 we find, as expected, that the time domain estimators
generally exhibit a negative bias, which becomes more pronounced when adding short-run noise
in Tables 8 and 15. This downward bias is especially high when the AR coefficient is 0 or .4, but
the estimation methods seem fairly robust towards positive MA noise and curiously also towards
strong, positive AR noise (i.e. ¢ = .8). The phenomenon that autoregressive coefficients of
moderate size are most troublesome for the parametric estimation methods has previously been
noted from a theoretical viewpoint by Nielsen (2004, p. 131). Thus, the time domain estimators
are very sensitive to the inclusion of short-run dynamics. Among the time domain estimators
we generally find the CML estimator to possess the lowest bias. Furthermore, for relatively
small sample sizes, i.e. for T' < 256, Table 8 shows that the time domain estimators suffer from
a rather severe negative bias (of the order -.05 to -.20) when mistaking the true DGP of the
series at hand to be an ARFIMA(1,d,0) when it is actually an ARFIMA(0, d,0). Fortunately,
the bias is not as severe for ARFIMA(0, d, 1) processes, see Table 15.

The results in the separate appendix, which illustrate the perhaps more empirically realistic
ARFIMA(0, d,0)-ARCH(1) scenario (32) where the errors are conditionally heteroskedastic,
show that the biases for the parametric estimators are only slightly more negative compared

to the case of white noise errors. However, as the ARCH effect increases (f increases) the
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estimators generally become a little more biased with slightly higher RMSEs. Hence, the
parametric estimators seem robust towards ARCH innovations which is in accordance with
the theory where the innovations need only be martingale differences for the estimators to be
consistent.

Compared to the time domain estimators, the frequency domain estimator, FML, is vastly
superior with respect to bias. It does not suffer from any of the above mentioned problems,
i.e. it is robust towards both AR and MA noise, ARCH innovations, and it does not possess
noticeable bias when one wrongfully overfits the true DGP. In addition to the lower bias, the
FML estimator also obtains an improvement in the RMSE, especially in the ARFIMA(0, d,0)
and ARFIMA(1,d,0) cases (except with ¢ = 0.8).

Thus, the FML estimator is superior with respect to both bias and RMSE compared to

parametric time domain estimators.

3.3 Monte Carlo Results for Semiparametric Estimators

We next turn to the results for the semiparametric methods described above in section 2.2.

Contrary to the parametric methods the semiparametric methods utilize only frequencies in
a shrinking neighborhood of frequency zero. The number of frequencies used is governed by the
bandwidth m, and in this Monte Carlo study we focus on m = LT O'5J and m = LT 0'65J, where
|z] denotes the integer part of xz. When no short-run dynamics is present in the data it should
be preferable to use the larger bandwidth, but except for the bias correction (local polynomial)
methods the opposite would typically be the case when short-run dynamics is present.

In the ARFIMA(0, d,0) and ARFIMA(0, d,0)-ARCH(1) cases the biases are generally very
low as evident from Tables 2-4 and the corresponding tables in the separate appendix. l.e.,
the estimators seem almost unbiased in the case of ARCH innovations indicating that the
theoretical robustness towards such innovations carries over to practice. This is also supported
by the fact that the biases are independent of the size of 5 (the ARCH parameter).

Comparing the LW estimator with the modifications by Shimotsu & Phillips (2002a) and
Shimotsu (2002) (FELW) and Andrews & Sun (2004) (LPW), we find the accuracy of the FELW
estimator not to be noticeably different neither in bias nor in RMSE, see Table 3. However,
this does not apply for the LPW estimator in Table 4 as this estimator exhibits higher bias and
RMSE. Of course the increase in RMSE was expected in light of the asymptotic variance of
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the estimator, see section 2.2.2. Similarly, the modifications of the LPR estimator by Shimotsu
& Phillips (2002b) (PLPR) has approximately the same accuracy as the LPR estimator (i.e.,
although the PLPR estimator has smaller asymptotic variance than the LPR estimator this
does not seem to carry over to practice), see Table 2, but as expected from (13) the BRLPR
estimator by Andrews & Guggenberger (2003) in Table 4 has a higher RMSE.

When introducing short-run dynamics we generally find the estimators to be biased because
the low frequencies are contaminated by the higher frequencies of the spectral density, especially
in the case of positive AR noise. In the ARFIMA(1,d, 0) case in Tables 9-11 the biases increase
dramatically when the short-run noise becomes more persistent. The methods handle negative
AR noise quite well, but except for the local polynomial methods LPW and BRLPR, it is
still crucial to use a smaller bandwidth as the biases (for all ¢) and even RMSEs (for ¢ = .8)
decrease noticeably when m is reduced from LTO'GE’J to LT 0'5J . On the contrary, with the proper
choice of bandwidth (m = LT0'5J ) the estimation methods seem more robust towards MA noise,
see Tables 16-18 where the biases are fairly small regardless of the size of the MA parameter,
although the lowest biases are obtained for positive values. However, this is expected since MA
noise affects the short-run part of the spectral density, i.e. the higher frequencies, and thus
contaminates the long-run part less than the AR noise does.

For the ARFIMA(1,d,0) series the FELW and PLPR estimators are again very similar to
their original LW and LPR counterparts with respect to both bias and RMSE (Tables 9 and
10). On the other hand, in the presence of strong autoregressive noise the usefulness of the
LPW and BRLPR estimators is clearly revealed in Table 11. Approximating the logarithm of
the short-run component of the spectral density by a polynomial instead of a constant seems
very much justified when the short-run noise is persistent since the bias of the LPW estimator
is dramatically less than the LW and FELW estimators. As shown by Andrews & Sun (2004)
this reduction does not come without a sacrifice as the variance increases by a multiplicative
constant (in our case with R = 1, the constant is ¢; = 2.25), which is also observed from the
RMSEs in Table 11. For the BRLPR estimator, the increase in the RMSE compared to the
LPR estimator is not as pronounced as the increase in RMSE of the LPW estimator compared
to the LW estimator, but the bias improvement is also smaller.

Contrary to the case with AR noise, when focusing on short-run MA contamination our

results in Table 18 give no special justification of the LPW estimator. However, the BRLPR
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estimator still performs favorably compared to the LPR and PLPR estimators in Table 16.

As mentioned above it is generally preferable to use a smaller bandwidth when short-run
dynamics is present in the data. This is actually not the case for the LPW and BRLPR
estimators in the ARFIMA(0,d, 1) case where the opposite is true, see Table 18. That is, the
LPW and BRLPR estimators are very robust to MA noise because of the way they approximate
the spectral density of the short-run noise by a polynomial, and it is thus possible to choose a
higher bandwidth (in the presence of MA noise) without incurring a large increase in bias.

In sum, the results for the semiparametric estimators reveal the need for the LPW and
BRLPR estimators when persistent AR noise is present in the data. With the exception of the
FML estimator, we find that the semiparametric methods perform better than the parametric
methods in several cases. Thus, the semiparametric procedures may be preferred because
of their simplicity, i.e. we do not need to know the true DGP of the investigated series to

consistently estimate the long memory parameter.

3.4 Monte Carlo Results for Wavelet Estimators

Finally, we turn to the results for the wavelet methods described in section 2.3.

As a counterpart to the semiparametric LPR estimator we have the WOLS procedure.
From Tables 5 and 6 and the corresponding tables in teh separate appendix we note that for
the ARFIMA(0, d,0) and ARFIMA(0, d,0)-ARCH(1) cases the biases are similar and fairly low
but still higher than for most of the other estimators. Thus, the WOLS estimator is relatively
robust towards ARCH effects in the innovations and the biases remain fairly independent of
the size of 8. We typically find that the WOLS estimator is negatively biased using both
the Haar wavelet (Table 5) and the Daubechies4 wavelet (Table 6). Other variants of the
Daubechies wavelet have also been applied and the results are virtually indistinguishable from
the Daubechies4 results presented. For the wavelet MLE in the ARFIMA(O0, d,0) case (Table
7) the bias generally changes sign from negative to positive d. This suggests that the WML
estimator cannot fully capture the extent of the true memory parameter, i.e. the bias is positive
when d is negative and vice versa. Interestingly, this is not the case when the innovations are
conditionally heteroskedastic, see the separate appendix. The most successful of the wavelet
estimators seems to be the WML estimator with trimming of the highest K = 2 scales which

obtains biases in line with the parametric time domain methods in some cases (white noise
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errors, ARCH errors, or weak serial correlation), and thus in particular careful trimming can
render the WML estimator robust to ARCH errors. For the WOLS estimator it seems that
there is something gained from trimming the lowest J = 2 scales to remove boundary effects,
see Jensen (1999), when there is no short-run dynamics present in the data.

When the noise from the AR parameter is large (¢ = .8 in Tables 12 and 13) it is preferable
to follow Tse et al. (2002) and trim the highest scales for the WOLS estimator (similar to
choosing a smaller bandwidth in the semiparametric approach), but with moderate AR noise
(¢ = .4) it is preferable not to trim at all. If trimming is not used when ¢ = .8 the estimates
become severely positively biased. Furthermore, the WOLS estimator seems almost useless in
the presence of a negative AR parameter where the biases are very negative even if trimming
is used. Thus, the procedure cannot distinguish short- and long-run dynamics in this case.

When introducing MA dynamics into the series (Tables 19 and 20) one observes a failure of
the WOLS estimator to render reliable estimates of the long memory parameter. If > 0, the
method is fairly usable (if no trimming is employed) with biases in line with the parametric
time domain procedures, but if § < 0 or if any kind of trimming is applied (of low or high
scales) the WOLS estimator becomes heavily biased.

In the presence of short-run dynamics the trimming of the highest scales becomes very
important for the WML estimator, see Tables 14 and 21. With sufficient trimming (K = 4), the
biases in the ARFIMA(1,d,0) case and the ARFIMA(0,d,1) case with a positive MA parameter
are comparable to those of the parametric time domain methods. However, the RMSEs are
noticeable higher because the trimming of the highest scales entails a large decrease in the
sample size effectively used in estimating d.

Generally, in terms of biases, the more smooth Daubechies wavelet filters are preferred to

the Haar filter.

4 Conclusions

In this paper we have compared through Monte Carlo simulations the finite sample properties
of estimators of the fractional differencing parameter, d, in ARFIMA models. We have consid-
ered methods in the frequency domain, time domain, and wavelet based approaches and both

parametric and semiparametric estimation methods, and the methods were compared in terms
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of finite sample bias and RMSE.

Our results show that among the parametric methods the frequency domain maximum
likelihood procedure is superior with respect to both bias and RMSE. However, our results
also show that the (sometimes quite severe) bias of the parametric time domain procedures
is alleviated when larger sample sizes (e.g. 512) are considered. For all the estimators under
consideration we find the bias to improve and the RMSE to decrease as the sample size increases
from 128 to 256 and 512.

Furthermore, according to our results all the methods under consideration are rather robust
to the presence of ARCH effects, which are not parameterized, in the sense that the finite sample
biases and RMSEs do not increase much compared to the case with white noise errors.

Among the semiparametric (frequency domain and wavelet) methods our results clearly
demonstrate the usefulness of the bias reduced log-periodogram regression and local polynomial
Whittle estimators of Andrews & Guggenberger (2003) and Andrews & Sun (2004), respectively.
In several cases these methods even outperform the correctly specified time domain parametric
methods. Furthermore, when other methods are very heavily biased due to contamination from
short-run dynamics, these estimators show a much lower bias at the expense of an increase in
their RMSE. The bias reduction is due to their modelling of the logarithm of the spectral density
of the short-run component by a polynomial instead of a constant. Finally, without sufficient
trimming of scales the wavelet based methods are heavily biased when short-run dynamics is
introduced.

A natural next step towards a deeper understanding of the simulation findings presented
here would be to study the higher-order asymptotic properties of the involved estimators.
Some recent work has already been done in this direction. For example, Lieberman, Rousseau
& Zucker (2003) and Andrews & Lieberman (2005) derive valid Edgeworth expansions for
parametric MLEs of ARFIMA models, Lieberman & Phillips (2004) present an explicit second-
order asymptotic expansion for the MLE in the ARFIMA(0,d,0) case, and Giraitis & Robinson
(2003) derive Edgeworth expansions for the semiparametric local Whittle estimator. For more

details on this course of study, we refer the reader to these articles.
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Table 1: Parametric Estimators - ARFIMA(0,d,0)

EML MPL CML FML
d T Bias  RMSE Bias RMSE Bias RMSE Bias RMSE
-.25 128 -.0290 .0852 -.0290  .0852 -.0284 .0834 -.0053 .0833
256 -.0162  .0553 -.0162  .0553 -.0157  .0550 -.0027 .0537
512 -.0093  .0375 -.0093  .0375 -.0089  .0373 -.0012 .0370
0 128 -.0279  .0818 -.0279  .0818 -.0280  .0830 -.0013 .0791
256 -.0147  .0535 -.0147  .0535 -.0148  .0540 -.0006 .0520
512 -.0084  .0365 -.0084  .0365 -.0084  .0366 -.0008 .0357
.25 128 -.0342 .0821 -.0342 .0821 -.0264  .0834 .0013 .0801
256 -.0198  .0555 -.0198  .0555 -.0156  .0557 -.0007 .0540
512 -.0097  .0365 -.0097  .0365 -.0074  .0365 .0008 .0360
45 128 -.0656  .0889 -.0656  .0889 -.0327  .0857 -.0022 .0814
256 -.0367  .0559 -.0367  .0559 -.0149  .0556 .0014 .0548
512 -.0200 .0361 -.0200 .0361 -.0066  .0370 .0032 .0377
Table 2: Semiparametric I - ARFIMA (0,d,0)
LPR (m = [T°P]) LPR (m = [T°%]) PLPR (m = [T°°]) PLPR (m = [T%%])
d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.25 128 .0130 .2864 .0056 1745 .0126 2767 .0022 1735
256 .0089 .2158 .0033 1258 .0054 .2044 .0012 1248
512 .0115 .1692 .0071 .0973 0111 1628 .0069 .0957
0 128 .0047 .2742 .0048 .1641 .0078 .2624 .0051 .1651
256 .0012 .2086 .0013 1243 .0003 .2004 .0004 1235
512 -.0019 .1689 -.0015 .0968 -.0034 1623 -.0015 .0954
25 128 .0207 .2766 .0090 1712 .0191 .2605 .0118 .1708
256 .0189 .2087 .0041 .1266 .0206 2034 .0053 1247
512 .0124 1769 .0056 .0958 .0095 1702 .0074 .0956
45 128 .0247 .2822 .0084 .1604 .0215 2733 .0156 1617
256 .0211 .2136 .0085 1275 .0223 .2023 .0129 1262
512 .0203 1752 .0123 .0994 .0208 1653 .0154 .0994
Table 3: Semiparametric IT - ARFIMA (0,d,0)
W (m=[T°°])  _IW (m=[1°"]) _FELW (m=[1°°]) _FEIW (m=[1""])
d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.25 128 -.0249 .2461 -.0105 .1454 -.0356 .2574 -.0029 .1467
256 -.0104 .1810 -.0050 .1050 -.0155 1811 -.0023 .1044
512 -.0061 1421 -.0004 .0810 -.0125 .1473 .0002 .0816
0 128 -.0196 .2362 -.0083 .1362 -.0146 .2382 .0088 1381
256 -.0217 1740 -.0084 .1024 -.0216 1771 -.0002 .1035
512 -.0203 .1419 -.0079 .0785 -.0193 1384 -.0032 .0781
.25 128 -.0130 .2424 -.0048 .1442 -.0040 .2454 .0188 .1489
256 .0022 1745 -.0032 1021 .0068 .1805 .0074 .1039
512 -.0078 .1428 -.0015 .0793 -.0064 .1443 .0039 .0788
45 128 -.0160 .2370 -.0091 1317 -.0039 .2318 .0250 1399
256 .0000 .1785 .0003 .0999 .0080 1727 .0217 .1092
512 .0036 .1425 .0027 .0801 .0120 .1436 .0175 .0919
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Table 4: Semiparametric III - ARFIMA (0,d,0)

LPW (m = [1T°°])

LPW (m = [T7%])

BRLPR (m = [1T°7])

BRLPR (m = [1°%])

d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-.25 128 -.1536 .8243 -.0540 2770 0177 .5925 .0090 .3097
256 -.0662 .3807 -.0208 1863 .0134 4094 .0121 .2229
512 -.0486 .2990 -.0101 1265 .0199 3199 .0125 1517
0 128 -.1408 .5803 -.0526 .2847 -.0186 0867 .0023 .3036
256 -.0710 .3587 -.0294 .1802 .0053 4169 .0041 2138
512 -.0439 .2892 -.0227 .1306 .0001 .3289 -.0011 .1546
25 128 -.1395 .8602 -.0360 2765 .0450 .5859 .0222 .3168
256 -.0647 .6790 -.0176 1798 -.0045 4139 .0124 2142
512 -.0555 .2962 -.0136 1322 .0120 3303 .0076 .1610
45 128 -.1272 .8882 -.0351 .2644 .0338 5788 .0312 .3080
256 -.0594 4673 -.0096 1807 .0354 4106 .0205 2154
512 -.0383 .3803 -.0037 .1350 .0223 3034 .0184 .1649
Table 5: Haar Wavelet OLS - ARFIMA (0,d,0)
J=K=0 J=2K=0 J=0K =2
d T Bias RMSE Bias RMSE Bias RMSE
-.25 128 -.0902 .2141 .0204 .1245 -.1894 .3981
256 -.0573  .1503 .0175 .0962 -.1228  .2623
512 -.0504 1248 .0185 .0735 -.1048  .2067
0 128 -.1254  .2180 -.0422 .1307 -.1985 .3830
256 -.1026 1762 -.0322 .0922 -.1562 2879
512 -.0829  .1401 -.0260 .0705 -.1212 .2150
25 128 -1477 2372 -.0792 1555 -.2069  .3960
256 -.1212 1917 -.0583 .1090 -.1628  .2942
512 -.1096 1714 -.0553 .0929 -.1424 2521
45 128 - 1616 .2475 -.0999  .1619 -.2069  .3990
256 -1253 1943 -.0824 1259 -.1519  .2888
512 -.1082 1611 -.0610 .0952 -.1302 .2282
Table 6: Daubechies4 Wavelet OLS - ARFIMA (0,d,0)
J=K=0 J=2,K=0 J=0,K =2
d T Bias RMSE Bias RMSE Bias RMSE
-.25 128 -.0991 2118 -.0117 1277 -1793  .3835
256 -.0765 .1639 -.0088  .0979 -.1354 2790
512 -.0670 .1396 -.0058  .0698 -.1159  .2255
0 128 -.1212 2183 -.0436 1433 - 1880  .3793
256 -.1023 1832 -.0372  .0997 -.1532 2987
512 -.0983 1574 -.0287  .0733 -.1452 .2427
.25 128 -.1042 .2098 -.0650  .1460 -.1365  .3593
256 -.0913 1736 -.0479 1077 -.1204 2733
512 -.0803 1441 -.0404 .0812 -.1029 2141
45 128 .0037 .1844 -.0758  .1457 .0788 .3462
256 .0017 .1426 -.0573 1095 .0482 2431
512 -.0059 1275 -.0433  .0838 .0236 .2009
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Table 7: Wavelet MLE - ARFIMA(0,d,0)

Haar (K =0) Haar (K = 2) Daub4 (K =0) Daub4 (K = 2)

d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

-.25 128 .0611 .0958 -.0001  .1907 .0372  .0833 -.0125 .1966
256 .0643 .0808 .0178 1175 .0395 .0636 -.0001 1185

512 .0633 .0723 .0233 .0820 .0398  .0524 .0032 .0767

0 128 -.0041 .0721 -.0270 .2821 -.0060  .0795 -.0283 .3019

256 -.0037 .0462 -.0173 .1590 -.0038 .0470 -.0142 1760

512 -.0020 .0330 -.0121 .1429 -.0030 .0329 -.0136 1746

25 128 -.0473 .0893 -.0358 1973 -.0266 .0796 .0026 .2347
256 -.0436 .0672 -.0233 1172 -.0269 .0579 .0039 1136

512 -.0428 .0553 -.0157 .0753 -.0287  .0452 .0018 .0745

45 128 -.0740 .1051 -.0400 .1890 .0059  .0897 1227 .2437
256 -.0668 .0846 -.0202 1189 -.0103 .0609 .0813 1515

512 -.0635 .0729 -.0154 .0808 -.0224 .0488 .0520 .1020
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Table 8: Parametric Estimators - ARFIMA(1,d,0)

EML MPL CML FML

¢ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-40  -25 128 -.0474 1210 -.0474 1210 -.0486  .1174 -.0145 1177
256 -.0205 0721 -.0205 0721 -.0216 .0720 -.0004 .0712

512 -.0108  .0466 -.0108  .0466 -.0112  .0466 .0008 .0466

0 128 -.0672 1375 -.0672 1375 -.0666 1363 -.0252 .1187

256 -.0356 .0817 -.0356 .0817 -.0354 .0812 -.0146 .0750

512 -.0195 .0519 -.0195 .0519 -.0188 .0508 -.0083 .0488

25 128 -.0674 1297 -.0674 1297 -.0614 .1384 -.0114 .1098
256 -.0330 .0783 -.0330 0783 -.0287 .0793 -.0049 .0734

512 -.0157 .0495 -.0157 .0495 -.0131 .0497 -.0002 .0479

45 128 -.1011 1359 -.1011 .1359 -.0613 1293 -.0134 .1122
256 -.0573 .0799 -.0573 .0799 -.0303 .0768 -.0050 .0714

512 -.0322 .0502 -.0322 .0502 -.0149 .0496 -.0004 .0480

0 -.25 128 -.0949 2185 -.0949 2185 -.0912 .2193 -.0352 .1979
256 -.0439 1190 -.0439 1190 -.0429 .1196 -.0148 .1161

512 -.0221 .0723 -.0221 .0723 -.0216 .0729 -.0044 .0652

0 128 -.1299 .2680 -.1299 .2680 -.1390 .2866 -.0410 .2006

256 -.0603 .1453 -.0603 .1453 -.0619 .1498 -.0202 .1143

512 -.0277 0712 -.0277 .0712 -.0278 .0717 -.0093 .0653

25 128 -.1838 .3367 -.1838 .3367 -.1597 .3254 -.0482 .2168
256 -.0718 1683 -.0718 .1683 -.0614 .1683 -.0201 .1394

512 -.0291 .0770 -.0291 .0770 -.0232 .0760 -.0035 .0661

45 128 -.2231 .3469 -.2231 .3469 -.1460 3158 -.0462 .2214
256 -.0998 1693 -.0998 .1693 -.0546 1576 -.0112 .1138

512 -.0493 .0800 -.0493 .0800 -.0210 .0730 -.0017 .0699

40 -25 128 -.1763 .2909 -.1761 .2906 -.1561 2743 -.0526 .2462
256 -.1177 2233 -1177 2233 -.1078 2157 -.0451 .1881

512 -.0679 .1609 -.0679 .1609 -.0625 .1547 -.0282  .1427

0 128 -.2201 3113 -.2201 3113 -.1683 .2807 -.0581 .2369

256 -.1533 .2505 -.1533 .2505 -.1207 .2261 -.0513 .1871

512 -.0843 .1686 -.0843 .1686 -.0660 .1501 -.0364 .1382

.25 128 -.2602 3374 -.2602 3374 -.1763 .3000 -.0558 .2365
256 -.1792 .2667 -.1797 2672 -.1304 .2393 -.0546 .1933

512 -.1092 .1907 -.1092 1907 -.0829 1744 -.0399 .1444

45 128 -.3490 .3994 -.3490 .3994 -.1438 .2956 -.0521 .2524
256 -.2349 .3001 -.2349 .3001 -.1015 .2267 -.0474 .1986

512 -.1355 1993 -.1355 1993 -.0579 .1608 -.0221 .1362

80 -.25 128 -.0243 .1455 -.0243 .1455 .0249 .1889 .0326 .1988
256 -.0161  .1304 -.0161 .1304 .0093 .1501 .0244 .1679

512 -.0044 .1056 -.0044 .1056 .0081 .1140 .0202 1273

0 128 -.0303 1377 -.0303 1377 -.0102 .1104 .0489 .2067

256 -.0251 1194 -.0251 1194 -.0086 .0954 .0318 .1661

512 -.0151 .0970 -.0151 .0970 -.0042 .0787 .0223 1277

25 128 -.0727  .1350 -.0727  .1350 .1386 .2887 .0114 .1987
256 -.0517  .1101 -.0517  .1101 .0911 .2239 .0182 .1689

512 -.0317  .0894 -.0317  .0894 .0499 1597 .0139 1292

45 128 -.1227  .1444 -.1227 1444 .1940 3145 -.0355  .2160
256 -.0931  .1145 -.0931  .1145 .1633 2744 -.0287 1747

512 -.0653  .0855 -.0653  .0855 .1268 2215 -.0127 1376
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Table 9: Semiparametric I - ARFIMA (1,d,0)

LPR (m = [1°7°])

LPR (m = [1°°])

PLPR (m = [1°7])

PLPR (m = [1°°])

¢ d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-40  -25 128 .0044 .2893 -.0320 1793 -.0220 2798 -.0611 1857
256 .0068 2115 -.0163 .1256 -.0150 2012 -.0437 .1308

512 0113 1679 -.0048 .0969 -.0016 .1616 -.0262 .0986

0 128 -.0160 2716 -.0412 1697 -.0445 .2665 -.0682 1785

256 -.0137 2104 -.0248 1258 -.0343 2032 -.0508 1312

512 -.0004 1768 -.0153 .0948 -.0143 1697 -.0359 .0985

25 128 .0010 .2862 -.0436 1770 -.0247 2794 -.0655 1835
256 .0049 .2170 -.0198 1307 -.0140 2079 -.0424 1345

512 .0027 .1604 -.0092 .0951 -.0112 .1538 -.0293 .0970

45 128 .0129 .2685 -.0326 1715 -.0144 .2607 -.0508 1748
256 .0098 .1993 -.0179 1294 -.0113 .1907 -.0376 1314

512 .0116 1703 -.0043 .0954 -.0022 .1616 -.0225 .0971

40 -.25 128 .0648 2797 1453 .2222 .1001 2790 1611 2323
256 .0339 2119 .0948 1599 .0621 2093 1144 .1700

512 .0136 1676 .0588 1101 .0359 1649 .0833 1238

0 128 .0699 .2689 1461 2177 1027 2722 .1654 2317

256 .0348 2174 .0979 1572 .0609 2141 1207 1715

512 0214 .1666 .0646 1142 .0441 1644 .0884 1287

25 128 0673 .2831 1387 .2185 .1005 2785 1621 2333
256 .0348 .2188 .0919 1578 .0651 2101 1182 1729

512 .0279 .1630 .0689 1162 .0488 1629 .0957 1328

45 128 .0619 .2781 1434 2232 .0995 2815 1701 2412
256 .0335 2123 .1008 .1608 .0658 2147 .1266 1771

512 .0252 .1695 .0654 1163 .0468 1691 .0913 1316

.80 -.25 128 4108 .4920 .5807 .6040 4536 5243 .5949 .6178
256 2729 .3401 4716 .4880 .3236 .3768 .4932 .5086

512 .1666 .2348 .3862 .3976 2227 2732 4145 4248

0 128 .3922 4750 5758 .5994 4391 .5099 .5965 .6193

256 2751 .3453 4736 .4896 .3286 .3860 .4981 5134

512 .1606 .2320 .3807 .3915 .2196 2711 .4100 4195

25 128 .3922 .4802 .5652 .5885 4384 5121 .5889 6112
256 .2691 3433 .4665 4842 3214 3799 4938 .5104

512 1538 .2278 3773 .3893 .2105 .2652 4071 4178

45 128 3872 4752 5387 .5654 4252 5014 .5634 .5889
256 .2604 .3398 4539 4709 .3126 3757 4808 4967

512 .1585 .2381 3739 .3860 .2149 2748 .4041 4146
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Table 10: Semiparametric IT - ARFIMA (1,d,0)

LW (m=[1°7]) LW (m=[1°%]) _FELW (m=[1°°]) _FELW (m=[1""])

T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

-40  -25 128 -.0335 .2493 -.0494 .1548 -.0499 .2609 -.0465 .1548
256 -.0132 1812 -.0261 .1087 -.0206 1811 -.0257 .1073
512 -.0067 .1416 -.0127 .0819 -.0147 .1461 -.0133 .0826

0 128 -.0501 .2426 -.0582 .1494 -.0541 .2505 -.0446 .1483
256 -.0337 .1849 -.0357 .1087 -.0355 1838 -.0286 .1061
512 -.0182 1472 -.0220 0776 -.0188 .1440 -.0181 .0767

.25 128 -.0284 .2491 -.0588 .1497 -.0245 .2483 -.0402 .1445
256 -.0152 1749 -.0288 .1099 -.0143 .1766 -.0207 .1082
512 -.0114 1351 -.0185 0759 -.0105 1351 -.0135 .0741

45 128 -.0227 .2366 -.0514 1478 -.0148 2297 -.0244 .1451
256 -.0146 1716 -.0326 .1089 -.0072 1702 -.0165 1121
512 -.0105 1439 -.0148 .0785 -.0080 .1427 -.0060 .0833

40 -.25 128 .0313 .2387 1324 .1938 .0258 2421 1463 .2059
256 .0150 1753 .0883 .1368 .0101 1817 .0939 .1418
512 -.0016 .1410 .0556 .0958 -.0070 1437 .0576 .0971

0 128 .0344 2341 1347 .1929 .0432 2431 .1567 .2104
256 .0132 1842 .0906 .1366 .0146 1859 1013 1442
512 .0053 1373 .0571 .0962 .0057 1392 .0628 .1000

25 128 .0394 .2402 1307 .1936 .0548 .2427 .1645 .2237
256 .0096 1825 .0846 .1343 .0184 1852 .1005 1487
512 .0065 1388 .0600 .0970 .0115 .1415 .0665 1012

45 128 .0334 .2345 1315 1934 .0552 2328 .1685 .2166
256 .0185 .1760 .0913 .1380 .0291 1727 1142 1517
512 .0142 1392 .0604 .0991 .0241 .1428 0772 1132

.80 -.25 128 .3950 4625 .5928 .6104 .4076 4796 .6301 .6498
256 .2620 3151 4981 5108 .2639 3183 5133 .5265
512 1542 .2095 .4090 4176 1538 .2094 4161 4247

0 128 3812 .4445 .5953 6137 .4049 4663 .6423 .6605
256 .2589 3128 4975 5092 2678 .3225 .5282 .5408
512 .1460 .2071 4044 4126 .1496 .2107 4178 4272

25 128 3763 4506 .5810 .5996 .4026 .4692 .6303 .6491
256 .2554 3141 .4929 .5056 .2750 3319 5214 5338
512 1474 .2019 4029 4116 1578 .2140 4199 4281

45 128 .3653 4345 .5526 5718 .3956 4578 .6200 .6381
256 2541 3110 .4804 .4920 .2600 3107 5153 .5268
512 .1526 .2105 .3997 4078 1574 2078 4148 4232
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Table 11: Semiparametric 11T - ARFIMA (1,d,0)

LPW (m = LTU'E’J) LPW (m = LTU'OE’J) BRLPR (m = LT°‘5J) BRLPR (m = LTO‘“J)

T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

-40  -25 128 -.1267 .5805 -.0498 2794 .0191 5972 .0125 3127
256 -.0620 3795 -.0178 .1860 .0192 .4049 .0152 2187
512 -.0362 .3083 -.0080 1263 .0228 3183 .0148 1513

0 128 -.1336 .5561 -.0684 .2888 -.0083 .5649 -.0035 .2928
256 -.0901 .3610 -.0413 1893 -.0137 .4002 -.0048 .2166
512 -.0321 .3055 -.0192 1317 .0075 3217 .0040 .1600

.25 128 -.1177 .6445 -.0398 .2683 .0156 .6065 0117 3121
256 -.0767 .3694 -.0192 1782 .0119 4241 .0126 2215
512 -.0612 .3003 -.0114 1247 -.0056 3116 .0074 .1504

45 128 -.1089 6174 -.0352 .2530 0477 5697 .0308 .2959
256 -.0725 3413 -.0196 1790 .0098 .3830 .0143 2142
512 -.0636 .2996 -.0125 1333 .0127 3161 .0136 1595

40 -.25 128 -.1210 .6135 -.0242 .2661 -.0030 .5867 .0295 .3063
256 -.0816 4016 -.0126 1839 -.0012 4120 .0167 2170
512 -.0598 .3166 -.0134 1624 .0078 .3189 .0098 1587

0 128 -.0991 5391 -.0287 .3196 .0336 5612 .0425 .2916
256 -.0674 .3561 -.0132 1830 .0091 4092 .0221 2184
512 -.0535 .3043 -.0082 1294 -.0026 .2982 .0150 1551

.25 128 -.1421 9145 -.0124 .2610 .0468 5798 .0463 .3042
256 -.0571 .8135 -.0143 .1868 .0301 .4280 .0233 2222
512 -.0409 2761 -.0076 .1420 .0225 .3063 .0248 1567

45 128 -.1607 1.0604 -.0149 2597 .0247 .5548 .0396 .2998
256 -.0742 5706 -.0091 1822 .0376 .4058 .0190 2177
512 -.0421 2711 -.0064 .1480 .0082 .3028 .0146 1574

80 -.25 128 -.0025 1.0194 .3339 .4258 1944 .6033 3744 4785
256 -.0044 .5101 2373 .2953 .0946 .4054 2587 3317
512 -.0162 4533 .1160 2310 .0370 3013 .1766 2325

0 128 .0103 .6355 3192 .4037 .1603 .6029 .3520 .4596
256 -.0208 .3943 2324 .2907 .0748 4276 .2566 3313
512 -.0225 2715 1211 1724 .0329 .3097 1654 2241

25 128 -.0758 1.0032 .3169 4126 .1492 .5819 .3547 4697
256 -.0252 4122 .2246 .2933 .0690 4159 .2490 .3300
512 -.0329 .2916 .0809 .2096 .0279 3071 1661 2312

45 128 -.0501 .9960 .3188 4122 1575 .5869 .3597 .4694
256 -.0080 .3982 .2342 .2941 0775 4151 .2506 .3345
512 -.0136 .2667 .0905 .1979 0371 3112 1673 .2355
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Table 12: Haar Wavelet OLS - ARFIMA (1,d,0)

J=K=0 J=2,K=0 J=0,K =2
¢ d T Bias RMSE Bias RMSE Bias RMSE
-40  -25 128 -.2002 2783 -.1416  .1884 -.2439 4242
256 -.1522 .2065 -.1146 1497 -.1728 2907
512 -.1336 1802 -.0919  .1162 -.1509 2421
0 128 -.2400 .3032 -.2186  .2517 -.2423 4110
256 -.2034 .2526 -.1780  .2001 -.2019  .3218
512 -.1708 2112 -.1453 1610 -.1644 2550
25 128 -.2641 3237 -.2705  .3014 -.2409 4158
256 -.2131 .2553 -.2033  .2232 -.1878  .2992
512 -.1789 .2150 -.1610  .1748 -.1546 2431
45 128 -.2560 .3168 -.2787  .3099 -.2139 4007
256 -.2209 .2626 -.2114 2306 -.1917  .3049
512 -.1836 2214 -.1674 1814 -.1547 2480
40 -.25 128 .0686 1948 .2426 2715 -.1042 3473
256 .0654 .1593 .2003 2212 -.0694  .2520
512 .0526 1275 .1706 .1845 -.0626  .1921
0 128 .0229  .1896 .1866 .2229 -1352 3692
256 0271 1471 1537 1775 -.0972 2597
512 .0195 1174 1262 .1439 -.0836  .1999
25 128 -.0038 .1816 1417 .1888 -.1458  .3569
256 -.0056  .1498 1157 .1482 -.1209 2785
512 .0052 1130 .0911 1146 -.0812  .1937
45 128 -.0360 .1959 1090 .1644 -1751  .3912
256 -.0216  .1520 .0875 .1269 -.1254 2802
512 -.0182  .1164 .0703 .1007 -.1020  .2057
.80 -.25 128 .3769 4191 .6109 .6237 1631 3723
256 3273 .3568 .5452 5521 1309 .2729
512 .2898 3142 4765 4816 1157 2233
0 128 3261 .3836 5617 BT67 1073 .3878
256 .2890 .3220 4973 .5052 0979 .2587
512 .2547 .2780 4261 4320 .0881  .1959
25 128 .2861 .3400 .5095 5254 .0820 .3434
256 2414 .2844 .4449 .4540 .0535  .2587
512 .2080 .2436 .3834 .3898 0422 2045
45 128 2315 .3058 .4561 4738 .0230 .3594
256 2025 .2550 .3982 4081 .0217 2593
512 .1806 .2149 3417 .3489 .0269 .1832
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Table 13: Daubechies4 Wavelet OLS - ARFIMA (1,d,0)

J=K=0 J=2,K=0 J=0,K=2
0] d T Bias RMSE Bias RMSE Bias RMSE
-40  -25 128 -.2092  .2864 -.2072  .2440 -.1954  .4046
256 -.1671 2221 -.1594 1871 -.1507 2881
512 -.1447  .1906 -.1258  .1439 -.1326 2355
0 128 -.2424 3074 -.2396  .2690 -.2249 4107
256 -.2036  .2540 -.1847 2043 -.1863  .3162
512 -.1688  .2079 -.1457 1609 -.1497 2434
25 128 -.2176 2834 -.2644 2957 -.1526  .3605
256 -1739 2207 -.1951  .2160 -.1194 2560
512 -.1488  .1896 -.1572 1731 -.1058  .2118
45 128 -.1023  .2084 -.2646  .2952 .0648 3344
256 -.0917 1797 -.2034 2238 .0264  .2598
512 -.0725 1405 -.1554 1720 .0206  .1906
40 -25 128 .0646  .1877 2413 2726 -.1165  .3438
256 .0508 1552 1991 .2193 -.0998  .2639
512 .0405 1328 1598 1737 -.0844 2154
0 128 .0324 .1898 .2044 .2396 -.1378 3643
256 0221 .1486 .1668 1918 -1213 2740
512 .0209 1226 1327 .1489 -.0943 2119
25 128 .0540 .1963 1746 2199 -.0709  .3495
256 .0337 1522 1433 1703 -.0779 2598
512 .0321 1193 1151 1331 -.0579  .1894
45 128 1427 .2413 .1545 .2024 1116 3744
256 1161 .1846 1281 .1595 .0762 .2529
512 .0919 1527 .0993 1238 .0497 1974
.80 -.25 128 3767 4191 .6461 .6586 1293 .3625
256 .3343 .3674 .5698 5771 1176 2795
512 .2964 3171 .4926 4975 .1062 .2067
0 128 .3555 .4051 6171 .6301 1135 .3734
256 3139 .3480 .5447 .5516 .1019 2731
512 .2700 .2956 .4648 4698 .0822 .2076
25 128 .3620 .4069 5730 .5888 1643 3774
256 3148 3451 5071 5154 .1300 .2697
512 2718 .2954 4364 4418 1033 .2105
45 128 .4420 4831 .5336 .5491 .3494 .4961
256 3773 .4048 AT 4865 .2624 3587
512 3194 .3437 .4130 4188 .1982 .2804
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Table 14: Wavelet MLE - ARFIMA(1,d,0)

Haar (K = 2) Haar (K =4) Daub4 (K =2) Daub4 (K =4)

0] d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-40  -25 128 -.0626 .2004 -.1432 .6810 -.0511 .2049 -.0466 .6570
256 -.0440 .1261 -.0621 .3354 -.0409 1270 -.0277 3584

512 -.0349 .0860 -.0423 1928 -.0366 .0857 -.0123 1881

0 128 -.0921 .2292 -.1532 .6914 -.0713 .2008 -.1094 .6667

256 -.0732 1382 -.0739 3279 -.0496 .1250 -.0642 3342

512 -.0651 1239 -.0443 1897 -.0403 .0829 -.0300 1894

25 128 -.0808  .2036 -.0867 6377 -.0280  .1881 .0120 .6362

256 -.0648  .1316 -.0535 .3302 -.0248  .1152 -.0073 3243

512 -.0548 .0903 -.0344 .1854 -.0247 0757 -.0045 1854

45 128 -.0729 .1946 -.0900 .6346 .0941 .2248 .3651 7383

256 -.0626 .1332 -.0721 .3169 .0565 .1462 2076 .4040

512 -.0509 .0908 -.0413 1981 .0335 .0949 1312 .2483

40 -25 128 .1037 2136 -.0592 6577 .0838 .2003 -.0553  .6702
256 .1100 1595 .0119 3238 .0869 .1439 -.0322 3377

512 .1082 1308 .0231 1818 .0854 .1133 -.0057 1852

0 128 .0781 2039 -.0856 .6567 .0751 .2070 -.0822 .6640

256 .0810 .1402 -.0196 3311 .0751 .1354 -.0407 3314

512 .0780 1079 -.0043 1877 .0750 .1042 -.0177 1856

25 128 .0459 2319 -.0564 .6330 .0867 2251 .0293 .6687

256 .0532 1337 -.0295 3255 .0748 1394 .0132 .3384

512 .0571 .0925 -.0105 1772 .0717 1017 .0143 1913

45 128 .0284  .1800 -.1201 .6696 .1823 2762 3734 7656

256 .0357 1170 -.0495 .3305 .1346 .1852 2234 4226

512 .0396 .0862 -.0197 1844 .1059 1355 1296 .2539

.80 -.25 128 4492 4851 1155 .6486 .4550 4951 .0390 .6423
256 4261 4414 1352 .3553 4342 4509 .0841 .3407

512 .4100 4172 1319 2271 4195 4268 .0958 .2052

0 128 .3998 4348 0779 .6909 4215 4612 .0462 .6536

256 .3810 .3957 .1038 .3464 4091 4252 0776 .3349

512 .3632 3705 .1015 .2139 3911 .3992 .0814 .2000

25 128 .3458 .3902 .0299 .6219 4135 4567 .1536 .6565

256 .3262 .3456 .0528 3257 3874 .4064 1191 .3490

512 3154 3245 .0654 .1956 3711 .3796 .0947 2114

45 128 .2938 3397 -.0092 .6435 AT72 .5146 4878 .8281

256 2814 .3016 .0262 3145 4090 4269 .2968 4559

512 2743 2843 .0484 .1886 .3690 3779 .1986 .2897
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Table 15: Parametric Estimators - ARFIMA(0,d,1)

EML MPL CML FML

0 d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-40  -25 128 -.0903 .2059 -.0903 .2059 -.0846 .2066 .0056 2331
256 -.0479  .1519 -.0477 1522 -.0454 1542 .0199 1823

512 -.0265 .1065 -.0265 .1065 -.0248 .1074 .0167 1314

0 128 -.1354 .2224 -.1354  .2224 -.1372 .2254 -.0094 2394

256 -.0798 .1566 -.0798 .1566 -.0830 1587 -.0036  .1777

512 -.0408 .1029 -.0408 .1029 -.0420 .1054 .0001 1196

.25 128 -.1624  .2258 -.1624  .2258 -.1443 2378 -.0032  .2403
256 -.0949 .1475 -.0949 .1475 -.0808 .1583 .0062 1756

512 -.0476  .0967 -.0476  .0967 -.0378 .1066 .0108 1256

45 128 -.1945  .2303 -.1945 .2303 -.1301 2323 .0004 2322
256 -.1201  .1508 -.1201  .1508 -.0616 .1618 .0149 1773

512 -.0732  .0976 -.0732  .0976 -.0296 .1083 .0193 .1302

0 -.25 128 -.0587 .1381 -.0587 .1381 -.0578 .1409 -.0009 .1606
256 -.0344 .0905 -.0344 .0905 -.0346 .0907 -.0051  .0908

512 -.0177  .0629 -.0177  .0629 -.0172 .0624 -.0010 .0634

0 128 -.0723  .1489 -.0723  .1489 -.0718 1532 -.0036  .1666

256 -.0415 .1008 -.0415 .1008 -.0410 .1041 -.0086  .1032

512 -.0204  .0648 -.0204  .0648 -.0204 .0652 -.0032 .0647

25 128 -.0838 .1428 -.0838 .1428 -.0639 1507 .0053 1667
256 -.0491  .0946 -.0491 .0946 -.0390 .0966 -.0060  .0958

512 -.0231 .0601 -.0231 .0601 -.0175 .0609 .0002 .0603

45 128 -.1139 .1441 -.1139 .1441 -.0527 .1445 .0117 1613
256 -.0698 .0937 -.0698 .0937 -.0270 .0981 .0055 .0983

512 -.0399 .0597 -.0399 .0597 -.0123 .0620 .0065 .0633

40 -25 128 -.0364  .1099 -.0364  .1099 -.0337  .1076 -.0027 1112
256 -.0205  .0702 -.0205  .0702 -.0191  .0692 -.0019  .0695

512 -.0107  .0470 -.0107  .0470 -.0097  .0465 -.0002  .0468

0 128 -.0485 1114 -.0485 1114 -.0453 1121 -.0089 .1073

256 -.0245  .0743 -.0245  .0743 -.0230 .0744 -.0039 .0728

512 -.0130  .0484 -.0130 .0484 -.0122 .0484 -.0017 .0478

.25 128 -.0593  .1110 -.0593  .1110 -.0435 1118 -.0082 .1072
256 -.0324  .0725 -.0324  .0725 -.0240 .0726 -.0051 .0702

512 -.0170  .0479 -.0170  .0479 -.0126 .0478 -.0021 .0469

45 128 -.0825  .1096 -.0825  .1096 -.0309 .1061 .0035 1075
256 -.0504  .0721 -.0504  .0721 -.0175 .0719 .0019 .0712

512 -.0277  .0457 -.0277  .0457 -.0071 .0471 .0047 .0476

80 -.25 128 -.0283  .0925 -.0283  .0925 -.0195 .0896 -.0034  .0922
256 -.0157  .0605 -.0157  .0605 -.0113  .0591 -.0012  .0595

512 -.0091  .0400 -.0091  .0400 -.0067  .0394 -.0007  .0397

0 128 -.0365  .0916 -.0365  .0916 -.0244  .0838 -.0082  .0877

256 -.0196  .0599 -.0196  .0599 -.0150  .0546 -.0044  .0582

512 -.0095  .0387 -.0095  .0387 -.0078  .0358 -.0012  .0379

25 128 -.0466  .0913 -.0466  .0913 -.0259 .0892 -.0105 .0869
256 -.0234  .0601 -.0234  .0601 -.0127 .0594 -.0024 .0582

512 -.0119  .0392 -.0119  .0392 -.0063 .0388 -.0003 .0383

45 128 -.0690  .0940 -.0690  .0940 -.0183  .0886 .0002 .0987
256 -.0401  .0600 -.0401  .0600 -.0088 .0595 .0015 .0591

512 -.0219 .0393 -.0219 .0393 -.0028  .0410 .0034 .0417
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Table 16: Semiparametric I - ARFIMA (0,d,1)

LPR (m = [1°7°])

LPR (m = [17°])

PLPR (m = [1°7])

PLPR (m = [1°°])

0 d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-40  -25 128 -.0157 2719 -.1166 .2005 -.0604 .2654 -.1402 .2150
256 -.0193 .2262 -.0827 .1539 -.0476 2234 -.1079 1671

512 .0003 1764 -.0506 .1088 -.0202 1697 -.0774 1223

0 128 -.0596 .2859 -.1472 .2258 -.0962 2867 -.1695 .2418

256 -.0327 2121 -.0978 1632 -.0627 .2085 -.1202 1761

512 -.0232 1781 -.0638 1173 -.0440 1752 -.0884 1314

.25 128 -.0551 2927 -.1420 2170 -.0873 2887 -.1586 2278
256 -.0236 .2029 -.0919 1531 -.0547 .2007 -.1134 .1665

512 -.0110 1712 -.0590 1115 -.03551 .1661 -.0816 1239

45 128 -.0469 2872 -.1369 .2201 -.0768 .2834 -.1486 .2276
256 -.0184 2151 -.0855 1551 -.0492 2138 -.1054 .1663

512 .0029 .1631 -.0547 .1103 -.0187 .1563 -.0763 1211

40 -.25 128 .0189 2712 .0494 1718 .0456 2673 .0694 .1786
256 .0027 2197 .0268 1301 .0218 .2102 .0492 1358

512 .0081 1716 .0188 .0982 .0213 .1664 .0390 .1024

0 128 .0060 .2559 .0398 .1676 .0332 .2507 .0645 1741

256 .0001 .2096 .0206 1274 .0203 .2060 .0461 1327

512 -.0055 1674 .0093 .0963 .0070 .1636 .0305 .0983

25 128 .0207 .2690 .0425 .1689 .0543 .2649 .0740 1795
256 .0143 .2044 .0194 1227 .0337 .1984 .0469 1279

512 .0046 1641 .0091 .0924 .0175 1577 .0318 .0961

45 128 .0287 2729 .0463 .1708 .0537 2677 .0784 1831
256 .0162 .2195 .0301 1293 .0387 2123 .0592 1367

512 .0130 1756 .0200 .0983 .0239 1670 .0427 1037

.80 -.25 128 .0197 .2845 .0560 .1760 .0588 2796 .0951 1928
256 .0220 .2069 .0347 1270 .0484 .2033 .0744 1417

512 .0052 1719 .0203 .0984 .0256 .1655 .0542 .1082

0 128 .0128 2774 .0575 1766 .0564 2745 .0960 1933

256 -.0116 2179 .0228 1292 .0219 .2093 .0629 .1404

512 -.0097 1728 .0100 .0979 .0112 .1650 .0455 .1064

25 128 .0163 2752 .0478 1759 .0579 .2658 .0914 1921
256 .0083 .2044 .0268 1257 .0383 .1992 .0708 1392

512 .0034 1703 .0208 .1001 .0252 1643 .0584 1121

45 128 .0251 .2666 .0624 1774 .0673 .2651 .1098 .1992
256 .0184 .2109 .0399 1342 .0479 .2086 .0850 1525

512 .0259 1641 .0285 1011 .0447 .1638 .0655 1159
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Table 17: Semiparametric IT - ARFIMA (0,d,1)

LW (m=[1°7]) LW (m=[1°%]) _FELW (m=[1°°]) _FELW (m=[1""])

T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

-40  -25 128 -.0497 .2398 -.1322 .1889 -.0620 .2426 -.1327 .1903
256 -.0365 1921 -.0910 1398 -.0463 .1901 -.0914 .1384
512 -.0186 1507 -.0589 .0997 -.0296 .1484 -.0621 .1006

0 128 -.0826 .2469 -.1624 2157 -.0891 .2543 -.1531 .2096
256 -.0542 1821 -.1052 .1489 -.0568 .1840 -.0989 .1451
512 -.0330 1481 -.0673 1027 -.0358 .1485 -.0637 .1006

.25 128 -.0809 .2581 -.1593 .2099 -.0773 .2495 -.1410 .1949
256 -.0465 1823 -.1039 .1452 -.0492 1811 -.0966 .1398
512 -.0273 .1456 -.0651 .0998 -.0301 .1453 -.0606 .0967

45 128 -.0757 .2527 -.1553 .2097 -.0702 .2457 -.1321 .1965
256 -.0404 1892 -.0984 .1448 -.0388 1843 -.0868 .1406
512 -.0117 1344 -.0606 .0974 -.0075 .1366 -.0549 .0981

40 -.25 128 -.0102 .2352 .0370 1391 -.0184 .2422 .0468 1457
256 -.0221 1835 .0193 .1035 -.0281 .1890 .0245 .1052
512 -.0087 .1430 .0119 .0812 -.0152 .1407 .0125 .0806

0 128 -.0219 .2284 .0238 1374 -.0175 2322 .0429 1435
256 -.0210 1740 .0109 .1012 -.0199 1756 .0204 1027
512 -.0178 .1407 .0038 .0762 -.0177 1392 .0088 0771

25 128 -.0023 .2304 .0276 1374 .0165 .2362 .0551 .1507
256 -.0067 1679 .0107 .0974 -.0017 1695 .0224 .1009
512 -.0147 1395 .0027 .0758 -.0129 1382 .0088 .0755

45 128 -.0006 .2387 .0307 .1404 .0133 2316 .0685 .1533
256 -.0035 .1852 .0223 .1042 .0087 .1828 .0493 1197
512 -.0009 .1470 .0168 .0794 .0070 .1492 .0320 .0927

80 -.25 128 -.0126 .2454 .0470 .1463 -.0225 2525 .0563 1527
256 -.0007 1721 .0251 .1024 -.0060 1774 .0292 .1056
512 -.0081 1434 .0137 .0797 -.0133 .1452 .0149 .0799

0 128 -.0196 .2471 .0423 .1486 -.0184 2567 .0609 1574
256 -.0278 1884 .0147 .1043 -.0265 1887 .0248 1072
512 -.0271 1475 .0042 .0798 -.0263 1471 .0094 .0801

.25 128 -.0174 2374 .0341 .1454 -.0038 .2410 .0628 .1619
256 -.0148 1781 .0166 .1044 -.0078 1763 .0298 .1085
512 -.0114 .1436 .0148 .0804 -.0081 .1415 .0207 .0811

45 128 -.0015 .2324 .0441 .1482 .0134 .2261 .0786 .1628
256 -.0031 1720 .0266 1074 .0068 1702 .0472 1174
512 .0086 .1366 .0207 .0817 .0178 1394 .0336 .0907
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Table 18: Semiparametric IIT - ARFIMA (0,d,1)

LPW (m = LTU'E’J) LPW (m = LTU'OE’J) BRLPR (m = LT°‘5J) BRLPR (m = LTO‘“J)

T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

-40  -25 128 -.0899 5671 -.1382 .8197 .0551 .5969 .0244 .3060
256 -.0303 .3446 -.0292 1991 .0037 4116 .0025 2252
512 .0175 .3007 -.0283 1250 .0055 .3096 .0086 1595

0 128 -.1504 .5823 -.1100 .5206 -.0207 .5899 -.0354 .3020
256 -.0817 .3599 -.0495 .1880 -.0082 4124 -.0157 2188
512 -.0604 .3066 -.0270 1329 -.0180 .3250 -.0132 .1626

.25 128 -.1527 5617 -.0795 3133 -.0250 .5847 -.0335 3175
256 -.0860 .3562 -.0429 1861 .0062 .3943 -.0082 .2092
512 -.0569 .3098 -.0230 1347 .0155 .3103 -.0030 1622

45 128 -.1726 .5547 -.0764 2715 -.0392 5877 -.0250 .3104
256 -.0689 .3669 -.0319 1870 .0215 4084 .0046 .2146
512 -.0776 .3362 -.0248 .1536 .0246 3151 .0043 .1548

40 -.25 128 -.1156 7453 -.1045 .6435 .0000 .5800 .0015 .2960
256 -.0517 .3726 -.0384 1897 -.0002 4319 -.0006 2257
512 -.0076 2747 -.0202 .1461 .0045 .3103 .0025 1592

0 128 -.1232 .5294 -.0771 .4340 .0196 5749 -.0072 .2862
256 -.0626 .3604 -.0396 1772 .0072 4207 -.0021 2145
512 -.0572 .3082 -.0262 .1286 -.0146 3113 -.0063 1544

25 128 -.1339 .6152 -.0539 .2538 -.0002 .5855 .0000 .2926
256 -.0800 3744 -.0316 1774 .0169 4075 .0030 .2085
512 -.0647 2914 -.0197 1571 .0038 .3183 .0039 .1548

45 128 -.1677 1477 -.0382 .2654 .0119 5735 .0196 .2993
256 -.0659 5834 -.0211 1877 .0088 4223 .0086 2253
512 -.0614 .3915 -.0121 1139 0172 3167 0112 .1684

.80 -.25 128 -.1101 5728 -.0861 .6038 .0025 .6042 .0065 3114
256 -.0132 .3504 -.0195 1783 .0432 4031 .0164 2127
512 .0063 2797 -.0209 .1570 .0157 .3059 .0044 1583

0 128 -.1184 .5825 -.0871 4965 .0093 5788 -.0030 .2970
256 -.1029 3736 -.0511 .1955 -.0307 .4054 -.0203 2217
512 -.0781 3071 -.0332 .1386 -.0235 3167 -.0108 1629

25 128 -.1361 .6247 -.0646 .3387 .0057 5738 .0003 .3085
256 -.0731 3743 -.0297 .1896 .0208 4105 .0036 .2164
512 -.0490 .3081 -.0187 1314 -.0033 3172 -.0013 .1555

45 128 -.1655 .8452 -.0400 .2862 .0208 .5598 .0176 .3041
256 -.0608 .3653 -.0158 1838 .0363 4153 .0176 2193
512 -.0377 .2819 -.0125 .1416 .0323 .3190 .0202 .1601
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Table 19: Haar Wavelet OLS - ARFIMA (0,d,1)

J=K=0 J=2,K=0 J=0,K =2
0 d T Bias RMSE Bias RMSE Bias RMSE
-40  -25 128 -.2243 .2962 -.1648  .2068 -.2652 4361
256 -.1941 .2422 -.1508 1772 -.2198 3245
512 -.1690 .2067 -.1292 1468 -.1846  .2613
0 128 -.2936 .3448 -.2753  .3034 -.3008  .4437
256 -.2474 .2865 -.2257 2425 -.2447 3457
512 -.2095 2431 -.1936  .2060 -.1970 2764
.25 128 -.3278 3797 -.3297 3539 -.3067  .4667
256 -.2655 .3014 -.2649 2794 -.2337 3342
512 -.2175 .2470 -.2182  .2298 -.1804  .2573
45 128 -.3344 .3862 -.3448 3654 -.3005  .4637
256 -.2592 .2966 -.2752 2897 -.2071 3158
512 -.2191 .2514 -.2212 2314 -1734 2595
40 0 -25 128 .0134 .1828 1765 2144 -.1513  .3669
256 .0134 1552 1443 .1696 -.1145  .2807
512 .0093 .1160 1175 1360 -.0945  .2040
0 128 -.0403 .1896 1073 .1638 -.1856  .3857
256 -.0260 1471 .0816 1253 -1327 2741
512 -.0292 1150 .0701 .0954 -.1192 2118
25 128 -.0610 1918 .0628  .1374 -.1801  .3762
256 -.0594 1584 .0450  .1011 -.1566  .2931
512 -.0576 1398 .0316 .0764 -.1367 2436
45 128 -.0868 2142 -.2212 2314 -.2017  .4059
256 -.0700 1691 .0319 .1300 -.1566  .2991
512 -.0630 .1405 .0273 .0940 -1323 2368
80 -.25 128 .0490 1994 .2406 2733 -.1475 3841
256 .0512 1611 1852 2071 -.0947 2730
512 .0394 1271 1552 1714 -.0815  .2060
0 128 .0014 .1862 1722 2112 -1723  .3828
256 -.0075 .1501 1294 1567 -.1465  .2899
512 -.0092 1233 .0999 1227 -.12056  .2274
25 128 -.0387 1967 1120 .1734 -.1914  .3968
256 -.0313 .1486 .0838 1263 -.1482 2837
512 -.0288 1305 .0682 .0994 -1227 2339
45 128 -.0518 1917 .0812  .1508 -.1810  .3789
256 -.0486 .1508 .0582  .1068 -.1524 2832
512 -.0370 1244 .0466 .0857 -.1155  .2198
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Table 20: Daubechies4 Wavelet OLS - ARFIMA (0,d,1)

J=K=0 J=2,K=0 J=0,K=2
0 d T Bias RMSE Bias RMSE Bias RMSE
-40  -25 128 -.2465  .3061 -.25614  .2823 -.2290 .3994
256 -.2170  .2610 -.2179 2384 -.1976 .3120
512 -.1803  .2158 -.1790 1937 -.1554 2413
0 128 -.3047  .3556 -.3087  .3336 -.2840 4389
256 -.2423 2777 -.2467 2628 -.2096 .3081
512 -.2118  .2419 -.2012 2121 -.1825 .2592
25 128 -.2848  .3400 -.3312 3547 -.2193 .4049
256 -.2351  .2820 -.2616  .2759 -.1758 3131
512 -.1950  .2307 -.2108  .2210 -.1414 .2405
45 128 -.1616  .2414 -.3366  .3600 .0226 .3269
256 -.1359  .2043 -.2679  .2849 .0033 2534
512 -1112 1604 -.2120  .2236 -.0007 1797
40 -25 128 .0035  .1846 1693 2104 -.1669 3752
256 .0011 .1470 1244 1544 -.1314 2765
512 .0040 1210 1011 1234 -.0988 2135
0 128 -.0351  .1955 1245 1788 -.1933 .4046
256 -.0265  .1497 .0889 1255 -.1450 2851
512 -.0310  .1257 0714 .0982 -.1292 2313
25 128 -.0175  .1846 .0897 1534 -.1287 .3619
256 -.0171 1399 .0662 1124 -.1061 .2564
512 -.0249 1287 .0501 .0836 -.1009 .2235
45 128 .0923 .2026 .0764  .1496 .0936 3381
256 .0656 .1608 .0541  .1049 .0488 .2522
512 .0539 1325 .0442 .0850 .0345 1934
.80 -.25 128 .0538 1882 .2439 2750 -.1468 .3594
256 .0465 1510 1756 .1988 -.1066 .2635
512 .0274 .1250 1399 1578 -.1013 2177
0 128 .0116 .1882 .1982 2334 -.1815 .3858
256 -.0035  .1482 .1450 1726 -.1585 2917
512 .0039 1169 .1089 1282 -.1133 .2162
25 128 .0110 1923 1531 1999 -.1417 3753
256 .0102 1503 1147 .1490 -.1069 2722
512 .0063 1173 .0897 1150 -.0886 .2038
45 128 1315 2233 1338 1877 .1095 .3502
256 .0967 1839 .0950 1367 .0616 .2689
512 .0841 .1425 .0763 .1050 .0516 .1888
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Table 21: Wavelet MLE - ARFIMA(0,d,1)

Haar (K = 2) Haar (K = 4) Daub4 (K =2) Daub4 (K = 4)

0 d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
-40  -25 128 -.0975 .2160 -.1748 6737 -.1053 2175 -.0644 .6654
256 -.0882  .1459 -.1068  .3445 -.1044 1566 -.0458  .3204

512 -.0782 1072 -.0765 .2051 -.0937 .1240 -.0325 .1996

0 128 -.1648 .2998 -.1503 .6527 -.1438  .2425 -.1348 6758

256 -.1326 .1880 -.1084  .3459 -.1138 .1636 -.0631  .3270

512 -.1139 .1386 -.0702 1977 -.0994 .1245 -.0435 1865

25 128 -.1515 .2388 -.1454 .6694 -.1114 .2928 -.0460 .6559

256 -.1286 .1694 -.0868  .3333 -.0894 .1461 -.0271  .3896

512 -.1100 1324 -.0537 1911 -.0808 .1101 -.0171 1919

45 128 -.1526 .2502 -.1716 .6557 .0419 .2195 .3396 7912

256 -.1156 .1664 -.0697  .3358 .0086  .1423 .2076 4128

512 -.0979 1238 -.0367  .1830 -.0109 .0928 1307 .2399

40 -.25 128 .0290 .3640 -.0567 .6422 .0106 2215 -.0651 6411
256 .0490 .1610 -.0311 3790 .0101 .2045 -.0387 .3463

512 .0337 .1568 .0001 .2513 .0192 1778 -.0058 .2001

0 128 .0073 1887 -.1013  .6577 .0071 1773 -.1099 .6599

256 .0204 1139 -.0394 3224 .0099 1116 -.0560 3272

512 .0238 0777 -.0224 1828 .0156 .0759 -.0333 1847

.25 128 .0018 1721 -.0935 .6346 .0290 1782 .0102 .6624

256 .0013 .1106 -.0582 3341 .0176 1151 .0051 3171

512 .0056 .0735 -.0297 1898 .0164 .0743 -.0014 .1882

45 128 -.0196 .1904 -.1172 .6681 .1398 .2461 3591 .7409

256 -.0032 1134 -.0574  .3383 .0957 1578 .2060 4070

512 .0019 .0787 -.0357 1883 .0686 1119 1236 .2456

80 -.25 128 0577 1899 -.0538  .6956 .0252  .1845 -.0757 6719
256 0717 1325 .0052 3534 .0364 .1146 -.0041 .3253

512 .0701 .1039 .0059 2121 .0355 .0833 -.0035  .1897

0 128 .0152 .1906 -.0922  .6520 .0090 .1859 -.0893 .6312

256 .0250 1193 -.0617 3314 .0129 .1183 -.0745 .3523

512 .0281 .0823 -.0342  .1893 .0201  .0757 -.0328 .1888

.25 128 -.0041 1952 -.0972 .6595 .0207 1895 -.0022 .6443

256 .0075 .1195 -.0341  .3310 .0242 1199 .0069 .3159

512 .0143 .0809 -.0266  .1851 .0243  .0798 .0074 1829

45 128 -.0079 1915 -.1018 .6289 .1560 2612 3997 7596

256 -.0006  .1149 -.0470  .3161 .1060 1716 .2252 .4160

512 .0089  .0787 -.0171  .1854 .0765 1139 .1445 .2502
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Table 22: Parametric Estimators - ARFIMA(0,d,0)-ARCH(1)

EML MPL CML FML

B8 d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
40 -25 128 -.0281 1041 -.0281  .1041 -.0281 .1027 -.0039 .1043
256 -.0150  .0731 -.0150  .0731 -.0148 .0725 -.0011  .0729

512 -.0088  .0494 -.0088  .0494 -.0084 .0489 -.0012  .0494

0 128 -.0351  .1025 -.0351  .1025 -.0351  .1040 -.0076 .1001

256 -.0162  .0675 -.0162  .0675 -.0162  .0681 -.0016 .0671

512 -.0100  .0479 -.0100  .0479 -.0100  .0481 -.0025 .0473

25 128 -.0468  .1052 -.0468  .1052 -.0385  .1083 -.0104 .1043
256 -.0250  .0709 -.0250  .0709 -.0207  .0719 -.0058 .0705

512 -.0149  .0497 -.0149  .0497 -.0126  .0501 -.0045 .0492

45 128 -.0626  .0965 -.0626  .0965 -.0210  .1078 .0086 .1098
256 -.0367 .0639 -.0367 .0639 -.0105  .0719 .0067 .0736

512 -.0225 .0444 -.0225 .0444 -.0073  .0496 .0024 .0502

.80 -.25 128 -.0316  .1471 -.0316  .1471 -.0296 .1445 -.0057  .1499
256 -.0160  .1165 -.0160  .1165 -.0145 .1151 -.0017 1185

512 -.0112  .0904 -.0112  .0904 -.0103 .0896 -.0032  .0907

0 128 -.0388 .1501 -.0388 .1501 -.0365  .1550 -.0085 1557

256 -.0202 .1191 -.0202  .1191 -.0193 1215 -.0048 1220

512 -.0091 .0931 -.0091 .0931 -.0087  .0943 -.0001  .0949

25 128 -.0473  .1367 -.0473  .1367 -.0356  .1488 -.0071 1504
256 -.0281 .1073 -.0281 .1073 -.0218 1144 -.0070  .1143

512 -.0156 .0883 -.0156  .0883 -.0123  .0922 -.0041  .0926

45 128 -.0845 .1296 -.0845 .1296 -.0394 1494 -.0096  .1480
256 -.0493 .0887 -.0493 .0887 -.0150  .1097 .0021 1112

512 -.0323 .0685 -.0323 .0685 -.0087  .0874 .0007 .0884




Table 23: Semiparametric I - ARFIMA (0,d,0)-ARCH(1)

LPR (m = [T°°]) LPR (m = [1T°°°]) PLPR (m = [1°7]) PLPR (m = [1°%])
T Bias  RMSE Bias RMSE Bias RMSE Bias RMSE
128 10100 2694 0108 1683 10044 2549 10066 1676
256 10080 2100 10020 1336 0076 1999 .0009 1320
512 .0060 1708 .0088 1028 0040 1641 0074 1010
128 0021 2707 -.0014 1673 0071 2578 -.0003 1659
256 .0005  .2053 0026 1241 .0006 1964 0023 1219
512 0042 1675 0014 .0956 -.0045 1611 0013 0942
128 0110 2768 -.0125 1658 -.0098 2666 -.0097 1655
256 0101 2126 -.0116 1313 -.0078 2045 -.0077 1290
512 .0018 1668 -.0021 .0965 0048 1610 -.0020 10950
128 0117 2726 .0042 1659 0149 2641 0123 1645
256 0162 2072 .0096 1243 0135 2012 0135 1232
512 0085 1697 .0070 0947 0094 1643 0092 0933
128 0021 2782 0048 1953 0008 2656 -.0009 1930
256 0023 2017 -.0009  .1460 -.0022 1960 -.0030 1408
512 .0002 1700 .0020 1129 0002 1608 .0009 1092
128 -.0004 2735 -.0023 1943 -.0020 2609 -.0004 1891
256 0038 2085 -.0005 1486 0009 1995 -.0001 1450
512 .0040 1727 .0015 1119 0036 1690 .0015 1082
128 0014 2754 -.0099 1937 -.0008 2615 -.0040 1903
256 0069 2177 -.0044 1545 -.0096 2112 -.0027 1486
512 0027 .1658 -.0066 1173 -.0006  .1594 -.0047 1121
128 0037 2741 -.0113 1918 .0015 2616 -.0042 1877
256 -.0005 2156 0028 1505 0006 2041 .0083 1480
512 L0086 1710 .0025 1108 0097 1623 .0040 1074




Table 24: Semiparametric IT - ARFIMA (0,d,0)-ARCH(1)

W (m = [1°7]) W (m = [1°%]) FELW (m = [1°7]) FELW (m = [1°°])

B d T Bias  RMSE Bias  RMSE Bias RMSE Bias RMSE
40 -25 128 ~0175 2337 ~0040  .1424 ~.0266 2410 .0024 1458
256 -0102 1735 -0046  .1089 -.0181 1762 -.0032 1110

512 -0128  .1395 0010  .0815 -.0178 1413 -.0004 0824

0 128 -0320  .2302 0175 .1370 -.0309 2361 -.0019 1391
256 -0167 1744 -0085  .1024 -.0165 1754 -.0006 1039

512 -0142 1391 -.0066  .0760 -.0143 1386 -.0021 .0760

25 128 0465 2418 -0233  .1419 -.0368 2447 .0000 1447
256 0225 1773 0162 .1083 -.0177 1782 -.0054 1071

512 -0149  .1395 0113 .0774 -.0134 1421 -.0056 .0764

45 128 -0192 2262 -0107  .1385 -.0069 2273 0276 1462
256 -0099 1782 0010 .1054 -.0007 1806 0201 1144

512 -0090  .1416 0012  .0812 -.0035 1433 0148 0914

80 -.25 128 0232 2381 0104 .1644 -.0300 2486 -.0049 1689
256 0136 .1699 0072 .1199 -.0179 1743 -.0041 1225

512 0134 1410 -0033  .0933 -.0188 1424 -.0028 0943

0 128 0277 2367 -0182  .1666 -.0272 2451 -.0048 1706
256 -0169  .1732 0132 .1244 -.0164 1746 -.0042 1265

512 0105  .1372 0068  .0932 -.0116 1399 -.0021 0942

25 128 0233 2304 -.0239  .1643 -.0101 2383 -.0014 1667
256 0266 .1812 0178 .1314 -.0222 1850 -.0064 1321

512 -0193  .1397 0118 .0974 -.0170 1446 -.0065 .0973

45 128 0185 2381 -.0238  .1668 -.0053 2304 .0085 1698
256 -0111 1798 0053 .1224 -.0016 1730 0149 1300

512 0063  .1403 -0043  .0893 .0032 1421 .0083 0983




Table 25: Semiparametric III - ARFIMA (0,d,0)-ARCH(1)

LPW (m =[1°7])

LPW (m = [17%])

BRLPR (m = [1°°])

BRLPR (m = [1°°°])

B8 d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
40 -25 128 -.1290 7423 -.0376 .2600 .0105 5751 .0127 .3003
256 -.0602 .3479 -.0205 1812 .0122 4048 .0106 2198

512 -.0580 2793 -.0182 .1407 .0024 .2941 .0076 .1601

0 128 -.1253 5348 -.0607 .2639 .0015 .5819 -.0051 .2999
256 -.0622 .3651 -.0265 .1806 .0105 .3928 .0046 2131

512 -.0560 2753 -.0189 1327 -.0058 .3065 -.0002 .1607

25 128 -.1439 .8190 -.0684 .2701 .0145 .5883 -.0061 .3022
256 -.0743 4059 -.0362 1828 -.0143 4105 -.0133 .2159

512 -.0637 .3285 -.0250 1311 -.0060 3161 -.0059 .1536

45 128 -.1599 9706 -.0361 .2549 -.0083 .6041 .0140 2971
256 -.0891 .5893 -.0154 .1820 .0138 3973 .0252 2148

512 -.0255 .4888 -.0145 .1369 .0338 3183 .0101 1575

.80 -.25 128 -.1109 .5447 -.0466 .2702 -.0030 .5544 .0005 .3084
256 -.0667 .3441 -.0220 1740 .0018 .3798 .0025 .2066

512 -.0490 .2644 -.0159 1381 .0062 2978 -.0011 .1606

0 128 -.1226 5194 -.0542 3227 .0007 .5624 .0066 .3076
256 -.0677 .3361 -.0250 1798 -.0008 4016 .0052 .2160

512 -.0431 .2576 -.0161 .1389 -.0074 .3084 .0038 .1584

25 128 -.1387 .6261 -.0465 .2626 -.0130 .5619 -.0012 3128
256 -.0768 4317 -.0320 .1869 .0161 .3894 .0012 2278

512 -.0693 2756 -.0250 1379 -.0150 .3043 -.0047 .1567

45 128 -.1364 7163 -.0378 .2601 .0067 .5438 .0141 .3055
256 -.0785 5197 -.0229 1853 .0043 .4097 .0012 .2239

512 -.0488 .2919 -.0125 .1296 .0125 .3068 .0063 .1566




Table 26: Haar Wavelet OLS - ARFIMA (0,d,0)-ARCH(1)

J=K=0 J=2,K=0 J=K=2

B8 d T Bias RMSE Bias RMSE Bias RMSE
40 -25 128 -.0823 2125 .0142 .1402 -.1722  .3938
256 -.0662  .1608 .0163  .0982 -.1365  .2788

512 -.0484  .1251 0171 .0754 -.1015  .2070

0 128 -.1269 2216 -.0436 .1401 - 1988  .3833

256 -.1009  .1804 -.0342  .0992 -.1522  .2923

512 -.0918  .1529 -.0289  .0770 -.1349  .2350

.25 128 -.1563  .2502 -.0880  .1628 -.2118  .4088

256 -.1326  .2007 -.0705  .1193 -.1759  .3070

512 -.1130  .1647 -.0571  .0928 -.1452 2359

45 128 -1724 2650 -.1026 1699 -.2274 4325

256 -.1322 2023 -.0815  .1274 -.1619  .2997

512 -.1094 1633 -.0685  .1015 -.1297 2287

.80 -.25 128 -.0873  .2101 0122 .1624 -1762 3731
256 -.0619  .1698 .0151 1202 -.1262 2816

512 -.0472 1303 .0107 .0888 -.0956  .2078

0 128 -.1200  .2272 -.0415 .1685 -.1875  .3810

256 -.1023 1842 -.0322  .1189 -.1557 2904

512 -.0863  .1564 -.0245 .0896 -1275 2369

.25 128 -.1568  .2544 -.0922  .1854 -.2095 4071

256 -.1308  .2060 -.0729  .1400 -.1695  .3064

512 -.1159 1716 -.0571 1072 - 1478 2447

45 128 -1703 2542 -.1207 1980 -.2010  .3884

256 -.1389  .2095 -.0898  .1441 -.1665  .3040

512 - 1179 1742 -.0678  .1090 -.1390  .2409




Table 27: Daubechiesd Wavelet OLS - ARFIMA (0,d,0)-ARCH(1)

J=K=0 J=2,K=0 J=K=2

B8 d T Bias RMSE Bias RMSE Bias RMSE
40 -25 128 -.1003 .2252 .0005 .1349 -.1905  .4085
256 -.0761 1657 -.0034  .0998 -1377 2799

512 -.0713 1454 -.0062 .0737 -.1228  .2325

0 128 -.1258 .2219 -.0505  .1440 -.1970 3851

256 -.1048 .1807 -.0381  .1041 -.1586  .2898

512 -.0912 1477 -.0269 .0736 -.1334 2248

25 128 -.1159 .2169 -.0726  .1501 -.1499 3631

256 -.1058 .1956 -.0568  .1137 -.1380  .3061

512 -.0814 .1460 -.0422  .0809 -.1020  .2165

45 128 .0044 .1864 -.0776  .1578 .0786 .3427

256 -.0007  .1467 -.0552 .1124 .0438 .2485

512 -.0066  .1189 -.0484  .0887 .0232 1874

.80 -.25 128 -.0989 2218 -.0173  .1660 -.1724 3819
256 -.0822 1789 -.0163  .1193 -.1383  .2905

512 -.0684 .1459 -.0153 .0883 -.1106  .2270

0 128 -.1321 .2410 -.0592 1834 -.1971 .3985

256 -.1034 1837 -.0372 1234 -.1513 2847

512 -.0920 .1550 -.0301 .0947 -.1332 2311

25 128 -.1039 2174 -.0702  .1726 -.1281 .3549

256 -.0883 1738 -.0565 .1276 -.1079 .2603

512 -.0788 .1448 -.0447  .0971 -.0962 .2070

45 128 .0082 .1939 -.0859  .1817 .0981 .3591

256 .0006 .1541 -.0624  .1337 .0525 .2607

512 -.0024 1207 -.0514  .0982 .0332 .1902




Table 28: Wavelet MLE - ARFIMA(0,d,0)-ARCH(1)

Haar (K = 2) Haar (K =4) Daub4 (K = 2) Daub4 (K =4)

B8 d T Bias RMSE Bias RMSE Bias RMSE Bias RMSE
40 -25 128 .0094 1921 -.0679  .6902 -.0027 1931 -.0880  .6554
256 .0139 1254 -.0270  .3335 .0032 .1229 -.0307  .3280

512 .0247 .0825 -.0061 1807 .0056 .0802 -.0182 1933

0 128 -.0308 .2394 -.1123 7189 -.0309 1854 -.0675  .6532

256 -.0157 1331 -.0477 3344 -.0138 1247 -.0509  .3829

512 -.0134 1512 -.0249 .1861 -.0119 .1056 -.0259 2034

25 128 -.0434 1981 -.1124  .6516 -.0123 1935 -.0329  .6366

256 -.0269 1239 -.0513  .3214 -.0030 .1239 -.0136  .3319

512 -.0207 .0791 -.0367 1897 -.0036 .0783 -.0051 1874

45 128 -.0393 .1989 -1115  .6747 1232 .2400 .3907 .7305

256 -.0235 1282 -.0398  .3416 .0779 .1534 2212 .3985

512 -.0177 .0842 -.0262 1917 .0483 .1007 1236 2421

.80 -.25 128 .0055 2334 -.1012  .6475 -.0065 .2310 -.0693  .6389
256 .0218 1511 -.0280 3377 -.0021 .1526 -.0250 .3482

512 .0235 1137 -.0072  .2069 .0041 .1045 -.0049  .2078

0 128 -.0206 .2077 -.1098 .6465 -.0158 .2181 -.0595 .6600

256 -.0137 .1496 -.0507 3174 -.0110 1472 -.0414 .3354

512 -.0063 .1018 -.0268 .1959 -.0028 .1101 -.0197 .1901

25 128 -.0318 2175 -.1064 6712 .0046 .2062 -.0121 .6256

256 -.0259 .1464 -.0537 3421 -.0036 1432 -.0039 .3295

512 -.0190 1112 -.0382 .1986 -.0021 .1049 -.0029 1876

45 128 -.0331 .2189 -.0988 .6558 .1403 .2632 3984 7597

256 -.0204 .1468 -.0464 .3474 .0877 .1907 2162 4282

512 -.0147 .1035 -.0271 .2062 .0576 1231 1378 .2623




