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Abstract

In this paper a nonparametric variance ratio testing approach is proposed for determining
the cointegration rank in fractionally integrated systems. The test statistic is easily calculated
without prior knowledge of the integration order of the data, the strength of the cointegrating
relations, or the cointegration vector(s). The latter property makes it easier to implement than
regression-based approaches, especially when examining relationships between several variables
with possibly multiple cointegrating vectors. Since the test is nonparametric, it does not require
the speci�cation of a particular model and is invariant to short-run dynamics. Nor does it require
the choice of any smoothing parameters that change the test statistic without being re�ected
in the asymptotic distribution. Furthermore, a consistent estimator of the cointegration space
can be obtained from the procedure. The asymptotic distribution theory for the proposed
test is non-standard but easily tabulated or simulated. Monte Carlo simulations demonstrate
excellent �nite sample properties, even rivaling those of well-speci�ed parametric tests. The
proposed methodology is applied to the term structure of interest rates, where, contrary to
both fractional and integer-based parametric approaches, evidence in favor of the expectations
hypothesis is found using the nonparametric approach.

JEL Classi�cation: C32.

Keywords: Cointegration rank, cointegration space, fractional integration and cointegration,
interest rates, long memory, nonparametric, term structure, variance ratio.

Short title: Nonparametric Fractional Cointegration Analysis.

1 Introduction
Traditionally, cointegration analysis has been developed mostly in the context of processes

that are integrated of integer orders, and the most popular case is where observed series are each
assumed to have a single unit root. In that case, �rst di¤erencing an individual series or taking a
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cointegrating linear combination of two or more series yields a weakly dependent stationary and
invertible process. A recent direction of this research area both in theoretical and empirical work
is to allow the time series in question to be fractionally integrated, i.e. they may be integrated
of an unknown, possibly non-integer order. Indeed, the original formulation by Granger (1981)
accommodated this more general class of processes.

For economic or �nancial time series, cointegrating relations de�ne long-run equilibria between
the variables in the sense that the time series are tied together by one or more linear combinations
that reduce the memory or persistence in the series. Models of cointegration are standard in modern
empirical macroeconomics and �nancial economics since cointegration in a simple and coherent way
bridges economic theory (long-run equilibria between variables) and empirical econometric analysis.

To �x ideas, �rst the concepts of fractional integration and cointegration are de�ned for a vector
time series.

De�nition 1 The n-vector time series Zt is fractionally integrated of order d, denoted Zt 2 I(d),
if

Zt = �
�d
+ vt; t = 1; 2; : : : ; (1)

where vt has continuous spectral density matrix that is bounded, positive semi-de�nite, and bounded
away from the zero matrix at all frequencies.

De�nition 2 The n-vector time series Zt is cointegrated if Zt 2 I(d), but there exists a full rank
n� r matrix � such that �0Zt 2 I(d� b) for b > 0. The number r is the cointegration rank and the
space spanned by the columns of � is the cointegration space.

For any (vector or scalar) time series xt, the operator �+ is de�ned by

��d+ xt = (1� L)�d+ xt =

t�1X
j=0

� (j + d)

� (d) � (j + 1)
xt�j

so that only values corresponding to a positive time-index (denoted by the subscripted �+) enters
the expression, which is a truncated version of the binomial expansion of (1� L)�d. The operator
�+ has the advantage that the right-hand side of (1) is well-de�ned for any value of d, see for
instance Marinucci & Robinson (2000) who call this a �type II�process.

The truncation in the �+ operator in (1) implies that a time series that is I(d) according
to De�nition 1 is not stationary for any value of d 6= 0. However, when d < 1=2 the time se-
ries is asymptotically stationary. The remainder of this paper applies the terms stationary and
asymptotically stationary synonymously when this should cause no confusion.

De�nition 1 de�nes an I(d) process to be one whose d�th di¤erence has continuous spectral
density matrix that is bounded, positive semi-de�nite, and bounded away from the zero matrix,
i.e. all eigenvalues of the spectral density matrix are non-negative and bounded and at least
one eigenvalue is bounded away from zero. De�nition 1 applies to both scalar and vector time
series Zt. In the scalar case, an I(0) process is de�ned as having spectral density function that is
continuous, bounded, and bounded away from zero. In the vector case, the assumption of positive
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semi-de�niteness (as opposed to positive de�niteness) allows some of the elements of vt = �d
+Zt to

be over-di¤erenced. At the same time, the assumption that the spectral density matrix is bounded
away from the zero matrix ensures that at least one element of vt is not over-di¤erenced. Thus,
the de�nition implies that if the components of the vector time series Zt are integrated of di¤erent
orders, then Zt 2 I(d), where d is the highest order of integration of the components of Zt. Note that
De�nition 1 has the advantage that it is invariant to non-singular linear transformations. If instead,
e.g. Engle & Granger (1987), Zt were de�ned to be I(d) if and only if all the components of Zt are
themselves I(d), that de�nition would not be invariant to non-singular linear transformations when
the components of Zt are cointegrated. This is exempli�ed by De�nition 2 where a non-singular
linear transformation including � as columns would result in some elements of the transformed
vector being I(d�b) and hence the transformed vector would not be I(d) according to the alternative
de�nition. In the integer integration case, De�nition 1 has been applied by Johansen (1988, 1991)
and Breitung (2002), among others. However, the methodology in this paper also applies with little
modi�cation under the alternative de�nition of fractional integration for vector time series. Indeed,
it is no problem to pre-test or pre-estimate the fractional integration orders of the variables, and
then choose to include in the analysis only variables with the same integration order. This would
have no in�uence on the asymptotic distribution of the rank test. For a discussion of several di¤erent
de�nitions of fractional integration (for vectors) and cointegration, see Robinson & Yajima (2002).

The cointegration concept in De�nition 2 is called fractional cointegration if d and/or b are non-
integer valued, and the �traditional model�appears as the special case d = b = 1. Hence, fractional
cointegration generalizes the conventional I(1)� I(0) cointegration framework where d = b = 1 by
allowing both d and b to be real numbers. The ability to accommodate non-integer values of the frac-
tional di¤erencing parameters, d and b, is very attractive because many economic and �nancial time
series are known to exhibit nonstationarity that may not be exactly I(1), and even more importantly
there is no strong a priori reason to assume that the unobservable equilibrium relation is exactly
I(0). Thus, fractional cointegration avoids a knife-edge distinction between I(1) and I(0) processes
and enables substantially more �exible modeling of long-run relationships between time series.

Recently, fractional integration and cointegration is attracting increasing attention from both
theoretical and empirical researchers in economics and �nance. For a recent survey, see Henry &
Za¤aroni (2003). Although often assumed to be one, a natural starting point in any econometric
cointegration analysis is to determine the number of linearly independent cointegrating relations
(equilibrium relations), i.e. to determine the cointegration rank. Standard techniques for deter-
mining cointegration rank were developed for traditional I (1) � I (0) cointegration, e.g., Stock &
Watson (1988) and Johansen (1988, 1991) in a vector autoregressive (VAR) framework, Phillips
& Ouliaris (1988) and Harris (1997) using principal components methods, and Bierens (1997) and
Breitung (2002) in a nonparametric framework. However, these methods rely on the assumption
that d = b = 1, and are mostly inapplicable to the more general fractional cointegration considered
here. In the fractional cointegration literature the focus has been mostly on estimation of the coin-
tegrating relation, while assuming that there is only one of them. However, there has been some
work on determining cointegration rank in fractional systems as discussed in section 3 below.

In this paper a nonparametric testing approach to determine the cointegration rank is proposed
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and analyzed. An integral part of this methodology is to allow the possibly fractional integration
orders to be unknown. Hence, as argued recently by e.g. Robinson & Hualde (2003), if there
is no strong a priori reason to pick any particular integration orders it is important to make
only minimal assumptions on their values and possibly allow them to be estimated as part of the
procedure. Similar nonparametric cointegration rank testing approaches were suggested by Bierens
(1997) and Breitung (2002) in the traditional I (1) � I (0) cointegration model but motivated by
nonlinear cointegration alternatives. In the present fractional cointegration framework the proposed
nonparametric approach has many additional advantages. For example, the test statistic does
not depend on the integration order of the observed variables, d, and neither the test statistic
nor its asymptotic distribution depend on the strength of the cointegrating relation(s), b. The
latter property is especially useful in fractional cointegration models since b is unobserved and
estimating b would require also estimating the cointegrating relations which in turn requires the
cointegration rank to be speci�ed. Furthermore, the approach does not require estimating the
cointegration vector(s) and is thus easier to implement than regression-based approaches, especially
when examining relationships between several variables with possibly multiple cointegrating vectors.

Because the proposed procedure is nonparametric it allows the cointegration rank to be deter-
mined without relying on the speci�cation of a particular data generating process or model. This
feature in particular distinguishes the approach from fully parametric cointegration rank testing
approaches such as Johansen (1988, 1991) for traditional I (1)� I (0) cointegration and Breitung &
Hassler (2002) for fractional cointegration. Of course, this aspect is a consequence of the nonpara-
metric nature of the variance ratio test statistic, and is empirically important because misspeci�ed
short-run dynamics leads to inconsistent estimation of the remainder of the model and hence to
erroneous inferences on the cointegration rank. There is also no need to specify a bandwidth as
in the nonparametric approach of Bierens (1997) or the recent semiparametric frequency domain
approaches of Robinson & Yajima (2002), Chen & Hurvich (2003), and Nielsen & Shimotsu (2007).
The approach proposed here is based on a family of test statistics indexed by a parameter d1 de-
�ned below. Interestingly, this user-chosen parameter appears in the asymptotic distribution of the
cointegration rank test statistic (unlike tuning parameters such as lag lengths, bandwidths, etc., in
other approaches) which thus re�ects the value of d1.

Furthermore, estimation of the cointegration space is considered. As usual in the cointegration
literature, only a basis for the space spanned by the cointegration vectors can be estimated. Since
the proposed nonparametric framework is designed for testing cointegration rank, it does not deliver
a straightforward distribution theory for the estimated cointegration space. However, it is shown
that the estimated cointegration space is consistent in the sense that the angle between the estimated
and the true cointegration spaces converges to zero.

To document the �nite sample feasibility of the methods proposed in the paper, a simulation
study is conducted. The simulations show that the nonparametric cointegration rank test is useful
and has non-trivial power and good size in the models considered, even though the sample sizes
(T = 100 and T = 250) would typically be considered quite small for nonparametric inference. In
particular, the proposed test seems to be very robust to di¤erent speci�cations of the simulated
model, including cointegrated alternatives of both fractional and autoregressive types. This is in
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contrast to parametric cointegration rank tests, whose performance is typically sensitive to both
the underlying model and the lag-augmentation employed.

Finally, the proposed nonparametric methodology is applied to an analysis of the expectations
hypothesis for the term structure of interest rates in a system of four interest rates of di¤erent
maturities. The expectations hypothesis implies that n � 1 cointegrating relations should exist
among n interest rates of di¤erent maturities. Therefore, the expectations hypothesis provides a
suitable application of the type of test proposed here since it is supported by rejection of a sequence
of null hypotheses (that the cointegration rank is zero, then one, etc.), and thus the most powerful
test should o¤er most support, assuming that the expectations hypothesis is true. Applying the
nonparametric approach, there is clear evidence in favor of the implications of the expectations
hypothesis. This contrasts with parametric approaches, both fractional and integer-based, from
which no clear-cut conclusions can be drawn.

The paper proceeds as follows. The next section brie�y introduces the nonparametric variance
ratio testing approach in a univariate framework and the following section presents the cointegration
rank test in a fractional cointegration framework. In section 4 estimation of the cointegration space
is discussed and consistency (with rates) of the estimator is shown. Section 5 presents simulation
evidence, section 6 presents the empirical application to the term structure of interest rates, and
section 7 o¤ers some concluding remarks. All proofs are gathered in the appendix.

The following notation is used throughout the paper. The bracket b�c denotes the integer part of
the argument, and the norm kAk = (tr (A0A))1=2 = (

Pl
i=1

Pm
j=1A

2
ij)
1=2 is the usual Euclidean norm

of an l�m matrix A (if A is a scalar kAk is the absolute value). The double arrow =) means weak

convergence of a process in D [0; 1] endowed with the Skorohod topology, whereas D! and P! denote
convergence in distribution and probability, respectively, on Rl�m. The process Wd is type II frac-
tional standard Brownian motion of order d (> 1=2), e.g. Marinucci & Robinson (2000), de�ned as

Wd (r) = 0, a.s., r = 0; (2)

Wd (r) =
1

� (d)

Z r

0
(r � s)d�1 dW1 (s) , r > 0: (3)

Note that with this de�nition W1 is the standard Brownian motion.

2 Variance Ratio Testing Approach
To illustrate the ideas behind the nonparametric variance ratio approach, �rst brie�y consider a

univariate version of the general test, i.e. a univariate test for fractional integration of a particular
order such as unity (the unit root hypothesis). The test statistic is constructed as a ratio of variances
of the observed series and its fractional partial sum, thereby canceling nuisance parameters from
the limiting distribution. Speci�cally, consider the behavior of the observed univariate time series
fztgTt=1 generated according to

zt = �
�d
+ ut; d > 1=2; t = 1; 2; : : : ; (4)

and consider also its fractional partial sum

~zt = �
�d1
+ zt; d1 > 0; t = 1; 2; : : : : (5)
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It is well known that for d > 1=2 and under regularity conditions on ut, a (fractional) functional
central limit theorem is obtained for zt, i.e.

T 1=2�dzbsT c =) �zWd (s) ; 0 < s � 1; (6)

as T !1 for some �z > 0, and similarly for ~zt.
It follows that the rescaled (uncentered) sample second moments of zt and ~zt satisfy

T�2d
TX
t=1

z2t
D! �2z

Z 1

0
Wd (s)

2 ds (7)

T�2(d+d1)
TX
t=1

~z2t
D! �2z

Z 1

0
Wd+d1 (s)

2 ds (8)

as T !1. The variance ratio statistic is

� (d1) = T 2d1
PT

t=1 z
2
tPT

t=1 ~z
2
t

D!
R 1
0 Wd (s)

2 dsR 1
0 Wd+d1 (s)

2 ds
(9)

so the nuisance parameter �2z is eliminated from the asymptotic distribution without the need to
estimate any parameters. The statistic � (d1) in (9) is the univariate variance ratio statistic. Note
that (9) generalizes the idea of Vogelsang (1998a, 1998b) and Breitung (2002) who suggested using
the ratio of the sample variance of zt and that of the partial sum of zt (i.e. d1 = 1) to eliminate
the nuisance parameter �2z and avoid estimation of serial correlation parameters.

The idea of using a variance ratio with fractional summation was previously explored by Nielsen
(2008) who applied the univariate variance ratio statistic in (9) to test for a unit root in the usual
autoregression, i.e. with d = 1. This paper further develops the idea and extends the variance ratio
testing approach to allow for time series that are fractionally integrated, to testing cointegration
rank in multivariate fractional systems, and also demonstrates that a consistent estimator of (a
basis for) the associated cointegration space may be obtained from the procedure. These results
are obtained without requiring that the fractional integration orders d and b, or the cointegration
vectors, are known.

Note that d is the integration order of the observed data, whereas the parameter d1 indexes
the family of tests and is chosen by the econometrician. Since d1 actually appears in the asymp-
totic distribution of the variance ratio statistic, unlike the tuning parameters (e.g. lag length or
bandwidth parameters) in the usual Dickey-Fuller type unit root tests, it may be possible to tailor
the test in such a way that power is maximized against relevant alternatives. Thus, Nielsen (2008)
conducts an asymptotic local power analysis and demonstrates that the asymptotic local power of
the variance ratio test is monotonic in d1, and that d1 = 0:1 appears to be a good choice in the
sense that it has uniformly (in the local noncentrality parameter) higher power relative to higher
values of d1 and that the gain in power from choosing an even smaller value of d1 is very minor. It
also seems unwise to choose d1 too small, since then d1 acts as if it depends inversely on the sample
size which may distort the size properties of the test. Another typical choice could be d1 = 1, i.e.
partial summation, based on computational simplicity. In the integer integration framework with
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d = 1, the latter choice would in fact lead to the statistic suggested by Breitung (2002) to test for a
unit root against nonlinear alternatives, see also Taylor (2005). However, that test can be improved
upon, at least against linear alternatives, even within the usual class of autoregressive models by
admitting non-integer values of d1 < 1. In section 5 below, further evidence in favor of choosing
d1 = 0:1 relative to d1 = 1 is presented based on simulation evidence from models of fractional
cointegration as well as autoregressive models of I (1)� I (0) cointegration.

3 Cointegration Rank Test
Suppose an observed n-vector time series fZtgTt=1 is cointegrated according to De�nition 2. As

discussed above, testing of cointegration rank is important in economic and �nancial applications to
determine the number of linearly independent long-run equilibrium relationships, which are given
by the columns of �.

The fractional cointegration literature has focused mostly on estimation of cointegration rela-
tions, although formal testing of cointegration rank has received some attention recently. On the
parametric side, Breitung & Hassler (2002) use a score test motivation to develop a trace test for
cointegration rank which is applicable when the time series in question may be fractionally inte-
grated and cointegrated. However, the properties of their parametric fractional trace test depend
on the correct speci�cation of the short-run dynamics via a lag-augmentation, as would any para-
metric test. In addition, their test also depends on the speci�cation of the integration order of
the observed variables, d, and, although seemingly innocuous, estimation of this parameter in a
preliminary step changes the asymptotic distribution of their test.

An alternative semiparametric frequency domain approach has been studied by Robinson &
Yajima (2002), who exploited the fact that if Zt is cointegrated the spectral density matrix of
vt = (1� L)d Zt has reduced rank at the origin, see also Phillips & Ouliaris (1988). The normalized
eigenvalues of the averaged periodogram matrix of the di¤erenced observations are used in a model
selection procedure to estimate the cointegration rank. However, no formal testing procedure is
available to �nd the rank (the testing procedure is only valid for r = 0), and the model selection
procedure requires several bandwidth parameters to be chosen by the researcher which may induce
additional uncertainty about the results obtained. Robinson & Yajima (2002) considered stationary
variables with d < 1=2, and their approach was extended to accommodate both stationary and
nonstationary data by Chen & Hurvich (2003, 2006) and Nielsen & Shimotsu (2007).

In this section, an alternative and completely nonparametric approach to cointegration rank
testing is analyzed. The precise conditions on Zt are collected in the following assumption.

Assumption 3 There exists a full rank orthonormal n � n matrix R = [Rn�r; Rr], where Rn�r
has n� r columns and Rr has r columns with 0 � r � n� 1, such that

R0Zt =

"
��d+ In�r 0(n�r)�r
0r�(n�r) �

�(d�b)
+ Ir

#
ut; t = 1; 2; : : : ; (10)

where Im is the m-dimensional identity matrix and d� b < 1=2 < d. If r = 0, R = Rn�r and (10)
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is R0Zt = ��d+ ut; t = 1; 2; : : :. Here, ut is generated by the linear process

ut = 	(L) "t =
1X
k=0

	k"t�k; t = 1; 2; : : : :

The n � n coe¢ cient matrices 	k satisfy
P1

k=0 k
1=2 k	kk < 1, rank (	 (1)) = n if r = 0,

rank (	 (1)) � n � r + 1 and rank (	11 (1)) = n � r if r � 1, where 	11 (1) is the upper left
(n� r)� (n� r) block of 	(1) =

P1
k=0	k; the remaining blocks being 	12(1);	21(1), and 	22(1).

The "t are i:i:d: with E"t = 0, E"t"0t = In, E k"tkq <1 for some q > max (4; 2= (2d� 1)).

The representation in Assumption 3 is the assumption of cointegration (when r � 1). When
the vector time series Zt satis�es Assumption 3, it is fractionally integrated of order d according to
De�nition 1 and, when r � 1, also cointegrated according to De�nition 2 with cointegration rank
equal to rank(Rr) = r. That is, in the terminology of De�nition 2, for a full-rank n � r matrix
� with cointegration vectors �k; k = 1; : : : ; r, as columns, �0Zt 2 I (d� b) which implies by (10)
that �k 2 C (Rr), where C (�) denotes the column space of its matrix argument. The subspace
spanned by all the linearly independent cointegration vectors, span (f�k; k = 1; : : : ; rg) = C (Rr),
is the cointegration space. Since Rr and Rn�r are orthogonal it follows that the (right) null space
of R0n�r, denoted N

�
R0n�r

�
, also spans the cointegration space, i.e. C (Rr) = N

�
R0n�r

�
. It follows

from Assumption 3 that dim (C (Rr)) = r, which is the cointegration rank. Note that this can
also be seen through the well known equality dim

�
N
�
R0n�r

��
= n � rank

�
R0n�r

�
= r from the

solution of the homogeneous linear system R0n�rx = 0 (in a conforming vector x). The formulation
in Assumption 3 is quite general and includes several popular generating mechanisms such as the
common unobserved components model and the error correction model of Johansen (2008, pp.
652-653). For instance, Zt could have the common trends or common unobserved components
representation Zt = Az1t + Bz2t, where z1t is an (n� r)-vector of common stochastic I (d) trends
and z2t is an r-vector of common stochastic I (d� b) trends. It then follows that the null spaces of
A0 and R0n�r coincide, i.e. N (A0) = N

�
R0n�r

�
.

Note that because rank (	11 (1)) = n � r, R0n�rZt are exactly those linear transformations
of Zt that are not cointegrating. On the other hand, because 	(1) can have reduced rank, no
restrictions are placed on the possibility of cointegration among the variables in R0rZt, or on the
possibility that the variables in R0rZt are (fractionally) integrated of di¤erent orders as long as the
highest integration order among those variables is d�b, i.e. R0rZt 2 I(d�b) according to De�nition
1. Also note that it is assumed that d � b < 1=2 < d, such that Zt is nonstationary but the
cointegrating relations are stationary. This assumption is needed for the proofs as will be explained
below. However, while this condition does represent a drawback of the variance ratio approach,
Monte Carlo simulation evidence in section 5 shows that the variance ratio tests do have power to
detect cointegration even when d� b � 1=2 (and b > 0).

Under Assumption 3 a functional central limit theorem for Zt is obtained in the non-cointegrating
directions given by C (Rn�r). Speci�cally, de�ning the full rank (n � r) � (n � r) matrix � as
��0 = [	11(1);	12(1)][	11(1);	12(1)]0, the weak convergence

T 1=2�dR0n�rZbsT c =) �Wn�r
d (s) ; 0 < s � 1; (11)
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holds, e.g. Corollary 1 of Marinucci & Robinson (2000). Note that E"t"0t = In without loss of
generality since 	0 is unrestricted. Also note that only weak convergence in the non-cointegrating
directions C (Rn�r) is needed. In (11), the superscript denotes the dimension of the vector fractional
standard Brownian motion given by stacking independent copies of (2)�(3).

Generalizing the variance ratio statistic (9) from the univariate case, consider testing for coin-
tegration rank with a sequence of tests for r = 0; : : : ; n� 1 based on the statistic

RT (d1) = ATB
�1
T ; (12)

where

AT =
TX
t=1

ZtZ
0
t; BT =

TX
t=1

~Zt ~Z
0
t; (13)

and
~Zt = �

�d1
+ Zt; d1 > 0; t = 1; 2; : : : : (14)

Let �1 � �2 � : : : � �n be the ordered eigenvalues of RT (d1) which are found as the solutions to
the eigenproblem

j�BT �AT j = 0; (15)

thus ensuring that both the eigenvalues and corresponding eigenvectors are real (note that the
eigenvectors of RT (d1) are not necessarily real because RT (d1) is not necessarily symmetric).

If �j denotes the eigenvector associated with �j , the eigenvalues are

�j =
�0jAT �j
�0jBT �j

; j = 1; : : : ; n; (16)

and the behavior of the eigenvalues depends on the direction of the associated eigenvector. Intu-
itively, if �j 2 C (Rn�r), i.e. �j lies in the non-cointegrating directions, then T�2d�0jAT �j = OP (1)

and T�2d�2d1�0jBT �j = OP (1) resulting in T 2d1�j = OP (1), where the OP (1) rates are exact.
On the other hand, if �j 2 C (Rr) = N

�
R0n�r

�
such that �j lies in the cointegrating directions,

then T�2max(1=2;d�b)�0jAT �j = OP (1) and T�2max(1=2;d�b+d1)�0jBT �j = OP (1), where again the
OP (1) rates are exact. Noting that d1 > 0, it follows that �j = OP (1) if d � b + d1 < 1=2,
T 2(d�b)+2d1�1�j = OP (1) if d� b < 1=2 and d� b+ d1 > 1=2, and T 2d1�j = OP (1) if d� b > 1=2.
In other words, if the eigenvector �j is not a cointegration vector, the associated eigenvalue �j con-
verges to zero at rate OP (T�2d1), and if �j is a cointegration vector, �j is OP (T

1�max(2d�2b+2d1;1))

if d� b < 1=2 or OP (T�2d1) if d� b > 1=2.
These arguments illustrate how the order of magnitude of �j depends on the direction of �j ,

and thus how the di¤erence in convergence rates depending on whether or not �j is a cointegration
vector can be used in testing for cointegration rank, and also illustrates the necessity of the condition
d� b < 1=2 for the proofs. Thus, the condition appears to be rather speci�c to the variance ratio
cointegration rank testing approach, and does not necessarily apply to other approaches. Indeed,
for Gaussian estimation of cointegrating vectors it is whether b < 1=2 or not that is more important.
For instance Robinson & Hualde (2003) and Hualde & Robinson (2007) show that when b < 1=2

their estimator is asymptotically normal and otherwise mixed normality is obtained.
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The statistic (12) can be adjusted for a non-zero mean or deterministic time trend in the
observed time series by preliminary regression. The following assumption is made to accommodate
deterministic terms.

Assumption 4 The observed time series fYtgTt=1 is generated by

Yt = �0�t + Zt; t = 1; 2; : : : ; (17)

where Zt is de�ned in Assumption 3 and �t is the deterministic term. Here, �t = 0 when there
are no deterministic terms, �t = 1 when there is a non-zero mean, and �t = [1; t]0 when there is
correction for a non-zero deterministic linear trend.

Assumption 4 is an unobserved components representation. In the case with correction for non-
zero deterministic terms, the calculation of AT and BT and consequently the eigenvalues of (15) are
based on least squares residuals Ẑt = Yt� �̂0�t = Zt� (�̂��)0�t with �̂ = (

PT
t=1 �t�

0
t)
�1PT

t=1 �tY
0
t .

The variance ratio corrected for deterministic terms is de�ned as in (12) but with the residuals
Ẑt replacing Zt in (13) and (14). As expected, the asymptotic distribution changes to re�ect the
detrending, see Theorem 1 below.

Now introduce the nonparametric variance ratio trace statistic,

�n;r (d1) = T 2d1
n�rX
j=1

�j ; r = 0; : : : ; n� 1; (18)

where �j ; j = 1; : : : ; n, are the eigenvalues of (15) possibly corrected for deterministic terms. Note
that (18) de�nes a family of tests indexed by the fractional integration/summation parameter, d1.
In the integer-based model with d = 1, the choice d1 = 1 leads to the test of Breitung (2002) which
is therefore a special case of (18). The asymptotic distribution of �n;r (d1) is given in the following
theorem.

Theorem 1 Suppose Assumptions 3 and 4 hold for the observed time series Yt. Let �n;r (d1) be
given by (18) with residuals Ẑt replacing Zt in (13) and (14), and let j = 0 when �t = 0, j = 1

when �t = 1, and j = 2 when �t = [1; t]
0. For d1 > 0 and r = 0; : : : ; n� 1;

�n;r (d1)
D! Un�r (d; d1) = tr

(Z 1

0
Bn�r
j;d (s)Bn�r

j;d (s)0 ds

�Z 1

0

~Bn�r
j;d;d1

(s) ~Bn�r
j;d;d1

(s)0 ds

��1)
(19)

as T !1, where
Bn�r
j;d (s) =Wn�r

d (s) ; j = 0;

and the demeaned (j = 1) or detrended (j = 2) standard fractional Brownian motions are de�ned
as

Bn�r
j;d (s) =Wn�r

d (s)�
Z 1

0
Wn�r
d (r)Dj (r)

0 dr

�Z 1

0
Dj (r)Dj (r)

0 dr

��1
Dj (s) ; j = 1; 2;

10



Table 1: Simulated critical values CV�;n�r (1; d1) with �t = 0
n� r

d1 � 1 2 3 4 5 6 7 8
0.10 0.10 1.54 3.07 4.78 6.60 8.51 10.49 12.54 14.64

0.05 1.62 3.16 4.86 6.68 8.59 10.57 12.62 14.73
0.01 1.77 3.33 5.03 6.85 8.75 10.74 12.80 14.90

0.25 0.10 2.78 5.94 9.90 14.50 19.63 25.25 31.35 37.85
0.05 3.15 6.33 10.34 14.97 20.13 25.78 31.92 38.44
0.01 3.89 7.13 11.23 15.90 21.12 26.82 33.03 39.61

0.50 0.10 6.77 18.41 35.29 57.27 84.44 116.66 154.17 196.94
0.05 8.49 20.91 38.59 61.27 89.04 121.99 160.22 203.56
0.01 12.61 26.32 45.56 69.32 98.44 132.39 171.87 216.87

0.75 0.10 15.36 57.43 129.39 234.47 376.66 560.01 788.39 1064.26
0.05 21.05 69.48 148.44 260.02 409.23 600.84 836.97 1121.25
0.01 36.82 99.06 192.12 315.21 482.83 683.28 934.70 1240.08

1.00 0.10 33.69 175.52 473.65 967.52 1702.29 2727.18 4092.73 5849.63
0.05 49.39 226.69 570.13 1113.51 1906.13 3008.15 4444.85 6282.55
0.01 99.45 363.74 808.99 1450.00 2398.07 3607.89 5207.49 7229.55

Note: The simulated critical values are based on 100,000 replications and sample size 1,000. The test rejects when
the test statistic is larger than the critical values in this table.

with D1 (s) = 1, D2 (s) = [1; s]0, and

~Bn�r
j;d;d1

(s) = Wn�r
d+d1

(s); j = 0;

~Bn�r
j;d;d1

(s) = Wn�r
d+d1

(s)�
Z 1

0
Wn�r
d (r)Dj (r)

0 dr

�Z 1

0
Dj (r)Dj (r)

0 dr

��1 Z s

0

(s� r)d1�1

� (d1)
Dj (r) dr; j = 1; 2:

The asymptotic distribution Un�r (d; d1) of �n;r (d1) presented in Theorem 1 depends only on
the type of deterministic terms included, i.e. j, the integration order of the observed time series, d,
the parameter d1 indexing the family of tests, and the dimensionality of the problem or number of
common stochastic trends, n� r. There is no dependence on the parameter b since the asymptotic
theory in Theorem 1 is dominated by the asymptotic behavior in the non-cointegrating directions
and b is only relevant in the cointegrating directions. Hence, the asymptotic distribution can easily
be simulated to obtain quantiles on a case by case basis. For the special case d = 1, which is
particularly important in empirical economic analyses, quantiles of Un�r (1; d1) for several values
of the parameter d1 are given in Tables 1-3 for n � r = 1; 2; : : : ; 8. The quantiles are simulated
based on 100,000 replications and sample size 1,000. Alternatively, quantiles of Un�r (d; d1) using
a consistent estimate of the integration order of the observed data, i.e. quantiles of Un�r(d̂; d1)

for some d̂ P! d, can be simulated to obtain an asymptotic distribution of the variance ratio trace
statistic which does not depend on any prespeci�ed fractional integration order. The latter method
will be used in the empirical application below.1

In the fractional integration case, the nonparametric variance ratio setup o¤ers even greater ad-
vantages than in the traditional I (1)�I (0) cointegration model. The reason is that the asymptotic

1Note that, for this approach to yield reasonable size properties in practice, the critical values should be a smooth
function of d. If the critical values change dramatically for small changes in d, then the actual size may be far from the
nominal size whenever d is not estimated with su¢ cient precision. Unreported simulations con�rm that the critical
values vary smoothly in d.
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Table 2: Simulated critical values CV�;n�r (1; d1) with �t = 1
n� r

d1 � 1 2 3 4 5 6 7 8
0.10 0.10 1.76 3.50 5.32 7.23 9.21 11.26 13.36 15.52

0.05 1.82 3.57 5.40 7.31 9.29 11.34 13.45 15.60
0.01 1.94 3.71 5.54 7.46 9.45 11.50 13.61 15.76

0.25 0.10 3.86 7.82 12.33 17.38 22.96 28.96 35.42 42.26
0.05 4.19 8.22 12.77 17.87 23.47 29.50 35.99 42.85
0.01 4.89 9.03 13.66 18.81 24.47 30.55 37.10 44.02

0.50 0.10 12.26 27.73 47.92 73.28 104.12 139.88 180.94 227.16
0.05 14.44 30.74 51.63 77.58 109.17 145.43 187.26 234.16
0.01 19.50 37.10 59.43 86.50 119.40 156.78 200.05 248.03

0.75 0.10 31.81 88.63 175.62 298.06 461.04 665.50 917.25 1217.34
0.05 40.90 104.13 198.10 326.10 498.24 709.54 969.15 1278.58
0.01 64.06 139.60 248.84 389.16 577.09 802.86 1080.02 1403.63

1.00 0.10 69.11 264.93 625.27 1193.84 2032.40 3165.29 4664.48 6563.52
0.05 97.91 331.65 740.21 1359.66 2264.41 3474.60 5051.41 7038.12
0.01 179.32 499.54 1018.16 1740.85 2790.42 4149.45 5889.12 8045.26

Note: The simulated critical values are based on 100,000 replications and sample size 1,000. The test rejects when
the test statistic is larger than the critical values in this table.

distribution in (19) has the obvious advantage of not depending on the unobservable parameter b,
the degree of cointegration. Thus, if a consistent estimate of d can be found by preliminary estima-
tion and subsequently used to �nd relevant critical values, or if d can be attributed some value from
economic theory (e.g. d = 1), then this approach enables hypothesis testing on the cointegration
rank with no need to specify the unobserved degree of fractional cointegration, b. Indeed, from
Assumption 3 and by inspection of the proof of Theorem 1, it is clear that the parameter b does not
have to be the same for each cointegrating vector. That is, it can be the case that �0kZt 2 I(d� bk)
for k = 1; : : : ; r without changing the result in Theorem 1.

The multivariate variance ratio statistic (18) is related other variance ratio type tests of the
cointegration rank hypothesis (20) by, e.g., Phillips & Ouliaris (1988), Stock & Watson (1988),
and Shintani (2001), in the same way that the univariate variance ratio statistic is related to,
e.g., the KPSS statistic of Kwiatkowski, Phillips, Schmidt & Shin (1992). However, these other
test statistics are based on (eigenvalues of) the ratio of the sample second moment matrix of Ẑt
and that of �Ẑt, and rely on either parametric or nonparametric estimation of the (one-sided or
two-sided) long-run covariance matrix to eliminate serial correlation nuisance parameters from the
limiting distribution. On the other hand, the variance ratio statistic (18) relies on the sample second
moment matrix of the fractional partial sum of Ẑt rather than on �Ẑt, which implies that there is
no need to estimate serial correlation parameters or long-run covariance matrices. Thus, �n;r (d1)
is asymptotically invariant to any short-run dynamics in the data generating process for Yt. As a
result, any hypothesis test based on the variance ratio statistic will share this useful property.

Furthermore, there is no need to estimate the cointegration vectors or the subspace spanned by
the cointegration vectors in order to implement the variance ratio approach as in, e.g., Harris (1997)
and Snell (1999), who require estimation of the I (1) and I (0) subsystems employing a principal
components approach. There is also no need to specify a bandwidth as in the nonparametric
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Table 3: Simulated critical values CV�;n�r (1; d1) with �t = [1; t]0

n� r
d1 � 1 2 3 4 5 6 7 8
0.10 0.10 1.93 3.81 5.75 7.74 9.80 11.90 14.06 16.26

0.05 1.98 3.88 5.82 7.82 9.88 11.99 14.15 16.35
0.01 2.08 4.01 5.97 7.97 10.04 12.15 14.31 16.51

0.25 0.10 4.84 9.57 14.73 20.29 26.31 32.74 39.58 46.77
0.05 5.18 9.98 15.20 20.80 26.86 33.30 40.17 47.39
0.01 5.83 10.79 16.13 21.77 27.92 34.41 41.36 48.64

0.50 0.10 19.70 40.68 66.24 96.36 131.88 172.50 218.55 269.51
0.05 22.46 44.18 70.64 101.23 137.67 178.89 225.42 277.17
0.01 28.29 51.54 79.32 111.23 149.17 191.36 239.51 292.54

0.75 0.10 70.31 159.00 281.48 439.52 643.94 892.65 1192.40 1542.26
0.05 85.11 180.11 310.84 475.95 688.77 945.67 1252.74 1612.75
0.01 119.35 228.93 372.68 551.65 781.30 1052.08 1378.49 1757.86

1.00 0.10 228.18 586.52 1157.34 1970.49 3113.59 4589.24 6484.16 8829.19
0.05 291.93 697.41 1325.41 2202.48 3418.60 4973.74 6957.87 9404.43
0.01 457.46 971.59 1706.81 2709.98 4074.66 5797.09 7956.28 10613.21

Note: The simulated critical values are based on 100,000 replications and sample size 1,000. The test rejects when
the test statistic is larger than the critical values in this table.

approach of Bierens (1997) or the semiparametric frequency domain approaches of Robinson &
Yajima (2002), Chen & Hurvich (2003), and Nielsen & Shimotsu (2007). All these parameters
are tuning parameters which change the test statistics and possibly also the inference drawn from
the data since the asymptotic distribution theory does not re�ect the particular choice of tuning
parameters. The present nonparametric approach does not depend on any such tuning parameters
although the parameter d1 does need to be speci�ed and may be considered a tuning parameter
in �nite samples. However, an important di¤erence between d1 and tuning parameters is that d1
appears in the asymptotic distribution for �n;r (d1). This opens up the possibility of �nding a value
of d1 for which the corresponding test has desirable properties, and Nielsen (2008) argues in favor
of d1 = 0:1 in an asymptotic local power analysis of the univariate variance ratio test. Simulation
evidence in section 5 below also supports the choice of d1 = 0:1 compared to d1 = 1. The value
d1 = 0:1 is used in the simulations and in the empirical application below, although comparisons
with results for d1 = 1 are also made.

Next, consider using the statistic �n;r (d1) to construct a test for cointegration rank, where large
values of �n;r0 (d1) are associated with rejection of

H0 : r = r0 vs H1 : r > r0: (20)

The properties of this test are given in the next theorem.

Theorem 2 Under the assumptions of Theorem 1, the test that rejects the null hypothesis H0 in
(20) when �n;r0 (d1) > CV�;n�r0 (d; d1), where CV�;n�r0 (d; d1) is found from

P (Un�r0 (d; d1) > CV�;n�r0 (d; d1)) = �;

has asymptotic size � and is consistent against H1 : r > r0.
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Armed with the results of Theorems 1 and 2, the following straightforward testing strategies can
be suggested for determining the cointegration rank based on the variance ratio rank test. First of
all, if r0 in (20) is speci�ed based on some a priori knowledge of the model, simply calculate the test
statistic (18) and compare it with the relevant critical value CV�;n�r0 (d; d1). One problem with this
approach, however, is that the test is one-sided since it is consistent only against r > r0, and so will
not be able to detect deviations from the null in the direction r < r0. Secondly, it is most often the
case that there is no a priori information about r, or even if there is a priori information it is often
desirable to estimate r based on the observed data. Thus, consider the following sequence of tests.
First, compare �n;0 (d1) with the relevant critical value CV�;n (d; d1). If �n;0 (d1) < CV�;n (d; d1), i.e.
the hypothesis that r = 0 is not rejected, then r̂ = 0. If �n;0 (d1) > CV�;n (d; d1), the hypothesis
that r = 0 is rejected and �n;1 (d1) is then compared with the critical value CV�;n�1 (d; d1). If
�n;1 (d1) < CV�;n�1 (d; d1), then r̂ = 1 and if �n;1 (d1) > CV�;n�1 (d; d1) the hypothesis that r = 1
is rejected and �n;2 (d1) is compared with the critical value CV�;n�2 (d; d1), etc. This testing strategy
de�nes an estimate of the cointegration rank which, based on Theorems 1 and 2, is equal to the
true cointegration rank with probability 1� � as T ! 1 and converges in probability to the true
cointegration rank if also � ! 0 as T !1.

4 Estimation of the Cointegration Space
As usual in the cointegration literature, without identifying restrictions it is only possible to

estimate a basis for the space spanned by the cointegration vectors, i.e. span (f�k; k = 1; : : : ; rg) =
C (Rr) = N

�
R0n�r

�
, see e.g. Johansen (1988, 1991), Bierens (1997), and more recently Chen &

Hurvich (2003, 2006). It is thus not constructive in the present framework to de�ne particular
eigenvectors of the problem (15) as estimators of the cointegration vectors, since their consistency
would not be well de�ned. Moreover, since the nonparametric variance ratio framework is a testing
strategy for cointegration rank, it does not deliver a straightforward distribution theory for the
estimated cointegration space (the space spanned by a subset of the eigenvectors of (15)). It will
be shown, however, that the estimated cointegration space is consistent in the sense that the angle
between the estimated and the true cointegration spaces converges to zero as T !1.

The cointegration rank or equivalently the dimension of the column space of Rr was determined
in section 3 above and is, in this section, assumed known. For the purpose of testing cointegration
rank, the n� r smallest eigenvalues of (15) were used to �nd the dimension of C (Rr) = N

�
R0n�r

�
.

However, for estimation of the cointegration space C (Rr), the eigenvectors �j of (15) corresponding
to the r largest eigenvalues are used. Denote the n�r matrix with these eigenvectors as columns by
� (r). The estimator of the cointegration space is given by � (r), the columns of which are linearly
independent and thus form a basis for C (� (r)).

The next theorem shows that the angle between the estimated basis for the cointegration space,
� (r), and the basis for the true cointegration space, Rr, vanishes as T ! 1, and also gives the
rate at which the angle disappears. Denote the angle between � (r) and Rr by �. It is well known
from linear algebra, e.g. Harville (1997, pp. 60-61), that the cosine of the angle is

cos � =
tr(R0r� (r))

kRrk k� (r)k
: (21)
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If the angle � between the estimated and true bases for the cointegration space converges to zero,
then cos � should converge to unity as T ! 1. On the other hand, if the angle between � (r)
and Rr is �, then the angle between � (r) and Rn�r is � � �=2 because the columns of R are all
orthogonal and in particular Rr and Rn�r are orthogonal. Thus, as an alternative to (21), the angle
� can equivalently be described in terms of the sine function and the matrix Rn�r as

sin � = cos
�
� � �

2

�
=
tr(R0n�r� (r))

kRn�rk k� (r)k
: (22)

A related interpretation of sin �, see Chen & Hurvich (2003), is that it is the square-root of the sum
of the squared lengths of the residuals from the orthogonal projections of

�
�n�r+1; : : : ; �n

	
onto

C (Rr), i.e. onto the space spanned by the true cointegrating vectors. The formulation (22) leads
to a simple proof of the following theorem.

Theorem 3 Let the n� r matrix � (r) denote the matrix of eigenvectors of (15) corresponding to
the r largest eigenvalues and let R = [Rn�r; Rr] be de�ned as in (10). Under the assumptions of
Theorem 1, the angle � between � (r) and Rr satis�es, as T !1,

sin � =
tr(R0n�r� (r))

kRn�rk k� (r)k
= OP

�
T�d�d1+max(d�b+d1;1=2)

�
:

The rate of convergence of sin � for d�b+d1 > 1=2, i.e. OP
�
T�b

�
, is the same as that obtained

by Chen & Hurvich (2003) in their semiparametric frequency domain framework. However, the
proof of the sin � result in Theorem 3 seems more direct than that in Chen & Hurvich (2003),
who rely on results for invariant subspaces of perturbed matrices. Finally, note that in the integer
integration case with d = b = d1 = 1, the rate of convergence of sin � in Theorem 3 is the same as
that obtained by Bierens (1997) for his nonparametric estimator in the I (1) � I (0) cointegration
model.

5 Finite Sample Performance
In this section simulation evidence is provided to evaluate the �nite sample performance of the

proposed nonparametric variance ratio test compared to other procedures. The bivariate vector
Yt = (y1t; y2t)

0 is simulated according to the simple triangular model

y1t = ��d+ u1t; t = 1; : : : ; T; (23)

y2t = y1t + u2t; t = 1; : : : ; T; (24)

where the properties of ut = (u1t; u2t)
0 determine the cointegration properties (and in particular

the cointegration rank) of the model. Three di¤erent generating mechanisms are considered for ut.
First, Model A is the fractional system,

Model A : u1t = "1t; u2t = �
�(d�b)
+ "2t; t = 1; : : : ; T: (25)
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Table 4: Simulated size and size-corrected power for Model A

Panel A: Uncorrelated errors (� = 0)
T = 100 T = 250

b �2;0 (0:1) �2;0 (1) BH0 BH1 BH4 JT0 JT1 JT4 �2;0 (0:1) �2;0 (1) BH0 BH1 BH4 JT0 JT1 JT4
0.0 0.04 0.04 0.05 0.06 0.09 0.05 0.06 0.08 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.06
0.2 0.13 0.08 0.37 0.15 0.06 0.20 0.11 0.06 0.15 0.09 0.85 0.42 0.13 0.36 0.21 0.10
0.4 0.38 0.18 0.93 0.51 0.12 0.76 0.42 0.13 0.51 0.20 1.00 0.97 0.45 0.97 0.82 0.40
0.6 0.83 0.39 1.00 0.87 0.24 1.00 0.90 0.33 0.96 0.49 1.00 1.00 0.82 1.00 1.00 0.90
0.8 1.00 0.71 1.00 0.98 0.40 1.00 1.00 0.68 1.00 0.85 1.00 1.00 0.97 1.00 1.00 1.00
1.0 1.00 0.95 1.00 1.00 0.59 1.00 1.00 0.94 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Panel B: Correlated errors (� = 0:5)

T = 100 T = 250
b �2;0 (0:1) �2;0 (1) BH0 BH1 BH4 JT0 JT1 JT4 �2;0 (0:1) �2;0 (1) BH0 BH1 BH4 JT0 JT1 JT4
0.0 0.04 0.04 0.05 0.06 0.09 0.05 0.06 0.08 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.06
0.2 0.14 0.09 0.49 0.19 0.07 0.26 0.14 0.07 0.15 0.09 0.95 0.55 0.16 0.48 0.28 0.13
0.4 0.41 0.19 0.98 0.65 0.15 0.87 0.54 0.17 0.55 0.21 1.00 0.99 0.56 0.99 0.91 0.51
0.6 0.84 0.40 1.00 0.94 0.30 1.00 0.96 0.40 0.97 0.50 1.00 1.00 0.89 1.00 1.00 0.95
0.8 1.00 0.72 1.00 0.99 0.47 1.00 1.00 0.75 1.00 0.86 1.00 1.00 0.98 1.00 1.00 1.00
1.0 1.00 0.96 1.00 1.00 0.64 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: The simulated size and size-corrected rejection frequencies for Model A in (23)�(25) are reported for the
uncorrelated error case with � = 0 (Panel A) and the correlated error case with � = 0:5 (Panel B). For each test,
entries in the rows labeled b = 0:0 are simulated rejection frequencies under the null, i.e. the size of the test, and all
other entries denote size-corrected power. �n;r (d1) is the variance ratio cointegration rank test in (18), BHp is the
Breitung & Hassler (2002) cointegration rank test with lag-augmentation p, and JTp is the Johansen (1988) trace
test with lag-augmentation p. The simulations are based on 100,000 replications and use critical values from Table
1, the �2 (4) distribution, and Johansen (1995, Table 15.1), respectively.

In Model B short-run dynamics is added to the system,

Model B : u1t = e1t; u2t = �
�(d�b)
+ e2t; t = 1; : : : ; T; (26)

ejt = 0:5ej;t�1 + "jt; j = 1; 2; t = 1; : : : ; T; (27)

and Model C is based on the traditional autoregressive alternatives,

Model C : u1t = "1t; u2t = au2;t�1 + "2t; t = 1; : : : ; T: (28)

In all three models, "t = ("1t; "2t)
0 is i.i.d. normal with mean zero, unit variances, and contempo-

raneous correlation coe¢ cient �.
Throughout, the focus is on the case where d = 1, i.e. the observed bivariate vector Yt is

I (1). Thus, Models A and B are fractionally cointegrated (rank is one) when b > 0, and when
b = 0 there is no cointegration (rank is zero). In Model C there is cointegration of the traditional
I (1)� I (0) kind with rank one when a < 1, and when a = 1 there is a unit root in u2t in (24) and
no cointegration. The sample sizes considered are T = 100 and T = 250, signi�cance level � = 5%
was employed throughout, and 100; 000 replications were used. All calculations were made in Ox,
see Doornik (2006).

Table 4 presents simulated rejection frequencies for Model A with b = 0 (the null of no cointe-
gration), i.e. the simulated size of the tests, and with b = 0:2; 0:4; : : : ; 1:0 (fractional cointegration).
In the latter case, the simulated rejection frequencies correspond to �nite sample power of the tests,
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Table 5: Simulated size and size-corrected power for Model B

Panel A: Uncorrelated errors (� = 0)
T = 100 T = 250

b �2;0 (0:1) �2;0 (1) BH0 BH1 BH4 JT0 JT1 JT4 �2;0 (0:1) �2;0 (1) BH0 BH1 BH4 JT0 JT1 JT4
0.0 0.02 0.03 1.00 0.07 0.10 0.28 0.07 0.09 0.03 0.04 1.00 0.06 0.07 0.28 0.06 0.07
0.2 0.10 0.07 0.00 0.07 0.05 0.02 0.06 0.05 0.11 0.08 0.00 0.13 0.09 0.02 0.10 0.08
0.4 0.23 0.12 0.00 0.14 0.08 0.02 0.15 0.08 0.33 0.15 0.00 0.46 0.27 0.04 0.45 0.26
0.6 0.53 0.24 0.00 0.33 0.14 0.06 0.43 0.18 0.77 0.33 0.00 0.87 0.57 0.40 0.95 0.72
0.8 0.90 0.47 0.00 0.59 0.23 0.32 0.86 0.40 1.00 0.65 0.00 0.99 0.84 1.00 1.00 0.99
1.0 1.00 0.77 0.03 0.83 0.35 0.92 1.00 0.72 1.00 0.94 0.03 1.00 0.96 1.00 1.00 1.00
Panel B: Correlated errors (� = 0:5)

T = 100 T = 250
b �2;0 (0:1) �2;0 (1) BH0 BH1 BH4 JT0 JT1 JT4 �2;0 (0:1) �2;0 (1) BH0 BH1 BH4 JT0 JT1 JT4
0.0 0.02 0.03 1.00 0.06 0.10 0.28 0.07 0.09 0.03 0.04 1.00 0.06 0.07 0.27 0.06 0.06
0.2 0.10 0.07 0.01 0.07 0.06 0.04 0.07 0.06 0.12 0.08 0.00 0.16 0.11 0.06 0.13 0.09
0.4 0.24 0.13 0.01 0.18 0.09 0.14 0.19 0.10 0.35 0.16 0.00 0.59 0.34 0.39 0.57 0.34
0.6 0.55 0.24 0.03 0.40 0.16 0.47 0.53 0.22 0.79 0.34 0.03 0.94 0.65 0.96 0.98 0.80
0.8 0.90 0.47 0.12 0.66 0.26 0.91 0.91 0.46 1.00 0.66 0.25 1.00 0.87 1.00 1.00 1.00
1.0 1.00 0.77 0.36 0.85 0.38 1.00 1.00 0.75 1.00 0.94 0.75 1.00 0.97 1.00 1.00 1.00

Note: The simulated size and size-corrected rejection frequencies for Model B in (23)�(24) and (26)�(27) are reported
for the uncorrelated error case with � = 0 (Panel A) and the correlated error case with � = 0:5 (Panel B). For each
test, entries in the rows labeled b = 0:0 are simulated rejection frequencies under the null, i.e. the size of the test,
and all other entries denote size-corrected power. �n;r (d1) is the variance ratio cointegration rank test in (18), BHp
is the Breitung & Hassler (2002) cointegration rank test with lag-augmentation p, and JTp is the Johansen (1988)
trace test with lag-augmentation p. The simulations are based on 100,000 replications and use critical values from
Table 1, the �2 (4) distribution, and Johansen (1995, Table 15.1), respectively.

which are size-corrected.2 Panel A reports the results for the uncorrelated error case with � = 0

and Panel B for the correlated error case with � = 0:5. The reported tests are the variance ratio
cointegration rank test �2;0 (d1), the Breitung & Hassler (2002) fractional trace test (denoted BH),
and the Johansen (1988) trace test (denoted JT). All the tests take the null to be non-cointegration.
The variance ratio test is implemented with d1 = 0:1 and d1 = 1 with critical values from Table 1.
The BH and JT tests are implemented with lag-augmentations 0, 1, and 4, denoted by subscripts,
with critical values from the �2((n�r)2) distribution and Johansen (1995, Table 15.1), respectively.

The results of Table 4 show that all tests have very good size properties in Model A, except BH4
and JT4, which are both slightly oversized when T = 100. In the smaller sample, the size-corrected
power of the variance ratio test with d1 = 0:1 is close to that of the parametric BH and JT tests
with lag-augmentation 1, and the variance ratio test has much higher power than the BH and JT
tests with lag-augmentation 4. Even for the larger sample size, the �2;0(0:1) test has size-corrected
�nite sample rejection frequencies that are comparable to those of the parametric tests with lag-
augmentation between 1 and 4. These conclusions hold even though the samples are quite small
for nonparametric inference. Not surprisingly, the BH0 (which is a correctly speci�ed parametric
test in Model A) and the JT0 tests have higher power than the variance ratio test in this model.

In Table 5, laid out as the previous table, simulated rejection frequencies for Model B are
reported. Here, short-run dynamics distort the performance of the BH and JT tests in the smaller

2Uncorrected power simulations are available from the author upon request.
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Table 6: Simulated size and size-corrected power for Model C

Panel A: Uncorrelated errors (� = 0)
T = 100 T = 250

a �2;0 (0:1) �2;0 (1) BH0 BH1 BH4 JT0 JT1 JT4 �2;0 (0:1) �2;0 (1) BH0 BH1 BH4 JT0 JT1 JT4
1.0 0.04 0.05 0.05 0.06 0.09 0.05 0.06 0.08 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.06
0.9 0.27 0.15 0.11 0.13 0.09 0.20 0.18 0.13 0.68 0.37 0.25 0.34 0.31 0.84 0.79 0.63
0.8 0.57 0.32 0.28 0.30 0.16 0.65 0.55 0.30 0.98 0.66 0.74 0.81 0.65 1.00 1.00 0.98
0.7 0.83 0.50 0.55 0.53 0.24 0.96 0.86 0.48 1.00 0.80 0.98 0.98 0.84 1.00 1.00 1.00
0.6 0.96 0.63 0.81 0.73 0.32 1.00 0.98 0.64 1.00 0.88 1.00 1.00 0.93 1.00 1.00 1.00
0.5 0.99 0.73 0.95 0.86 0.38 1.00 1.00 0.74 1.00 0.93 1.00 1.00 0.96 1.00 1.00 1.00
Panel B: Correlated errors (� = 0:5)

T = 100 T = 250
a �2;0 (0:1) �2;0 (1) BH0 BH1 BH4 JT0 JT1 JT4 �2;0 (0:1) �2;0 (1) BH0 BH1 BH4 JT0 JT1 JT4
1.0 0.04 0.05 0.05 0.06 0.09 0.05 0.06 0.08 0.05 0.05 0.05 0.05 0.06 0.05 0.06 0.06
0.9 0.26 0.14 0.15 0.18 0.12 0.32 0.28 0.18 0.67 0.37 0.41 0.51 0.45 0.96 0.94 0.81
0.8 0.56 0.32 0.44 0.44 0.22 0.86 0.74 0.42 0.98 0.65 0.92 0.94 0.79 1.00 1.00 1.00
0.7 0.82 0.49 0.76 0.70 0.32 1.00 0.96 0.62 1.00 0.81 1.00 1.00 0.92 1.00 1.00 1.00
0.6 0.95 0.63 0.95 0.87 0.40 1.00 1.00 0.75 1.00 0.89 1.00 1.00 0.97 1.00 1.00 1.00
0.5 0.99 0.73 0.99 0.95 0.46 1.00 1.00 0.83 1.00 0.94 1.00 1.00 0.98 1.00 1.00 1.00

Note: The simulated size and size-corrected rejection frequencies for Model C in (23)�(24) and (28) are reported for
the uncorrelated error case with � = 0 (Panel A) and the correlated error case with � = 0:5 (Panel B). For each test,
entries in the rows labeled a = 1:0 are simulated rejection frequencies under the null, i.e. the size of the test, and all
other entries denote size-corrected power. �n;r (d1) is the variance ratio cointegration rank test in (18), BHp is the
Breitung & Hassler (2002) cointegration rank test with lag-augmentation p, and JTp is the Johansen (1988) trace
test with lag-augmentation p. The simulations are based on 100,000 replications and use critical values from Table
1, the �2 (4) distribution, and Johansen (1995, Table 15.1), respectively.

sample. As expected, the parametric tests with no lag-augmentation are overwhelmingly oversized
and are thus not useful for Model B. The augmented BH test with 4 lags is moderately size distorted
with �nite sample rejection frequencies of 10 and 7 percent under the null (b = 0) for T = 100 and
T = 250, respectively. On the other hand, the variance ratio test is just slightly undersized. This
model hence illustrates the usefulness of the nonparametric nature of the variance ratio test when
compared to the parametric BH test. In the smaller sample, the size-corrected power of the variance
ratio test with d1 = 0:1 is superior to both the BH and JT tests for all three lag-augmentations.
For the larger sample size, the �2;0(0:1) test has size-corrected �nite sample rejection frequencies
that are in between those of the parametric tests with lag-augmentations 1 and 4.

For comparison, Table 6 presents simulation results for the autoregressive alternative given in
Model C, which is simulated for a = 0:5; 0:6; : : : ; 1:0 where a = 1:0 is the null of no cointegration.
As expected, the JT test is superior in this case, especially the correctly speci�ed parametric JT0
test. However, perhaps more surprisingly, the nonparametric variance ratio test with d1 = 0:1

has much better power properties than the BH test against this type of alternative. Indeed, the
variance ratio test with d1 = 0:1 actually has �nite sample power comparable to (and in some cases
better than) the JT1 and JT4 tests. Hence, the power loss due to the nonparametric nature of the
variance ratio test is about as small as the power loss from overparameterization of the JT test (1-4
lags vs no lags), even in Model C for which the JT test is designed.

As a general observation, the variance ratio test with d1 = 0:1 has much better �nite sample
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power properties than the test with d1 = 1. Since the model (23)�(24) was simulated with d = 1, the
test with d1 = 1 coincides with the cointegration rank test of Breitung (2002). It is therefore clear
from the simulation results reported in this section that non-trivial power gains can be obtained
by allowing fractional values of d1 less than unity. This is the case even in Model C which is a
non-fractional traditional I (1)� I (0) cointegration model.

It is also worth observing that, based on Tables 4 and 5, the variance ratio tests have power
when b = 0:2 or b = 0:4, thus detecting cointegration even when d � b � 1=2. This suggests that,
although it is necessary for the proofs, the condition d � b < 1=2 from Assumption 3 may not be
necessary in practice, and hence that this condition may not be a serious drawback of the variance
ratio approach in practice.

It is clear from the simulations that the nonparametric variance ratio test is useful with good size
and power in the models considered here, even though the sample sizes T = 100 and T = 250 would
typically be considered quite small for nonparametric inference. In particular, the variance ratio
test seems to be robust to di¤erent speci�cations of the model, including cointegrated alternatives
of both fractional and autoregressive types. This is in contrast to the parametric Johansen (1988)
and Breitung & Hassler (2002) cointegration rank tests, whose properties are very sensitive to the
choice of lag-augmentation.

6 Empirical Application
The proposed nonparametric methodology is applied to the expectations hypothesis for the term

structure of interest rates and its implications in a cointegrated system which have attracted much
attention in the last two decades. The restrictions laid down by the expectations hypothesis in
terms of cointegration rank are tested within the fractional cointegration framework. For a general
overview of term structure theory, see e.g. the survey by Pagan, Hall & Martin (1996).

Denote the interest rate at time t with maturity h by it (h), where h is measured in years,
and consider a system of n interest rates of di¤erent maturities, h1; h2; : : : ; hn. Assuming that
interest rates are (fractionally) integrated processes, the expectations hypothesis has a number of
cointegration implications, see e.g. Hall, Anderson & Granger (1992). First of all, the expectations
hypothesis for the term structure of interest rates implies that among these n variables there should
be n� 1 cointegrating relations, or equivalently that there should be only one common stochastic
trend moving the interest rates. Second, for any linear combination of such n interest rates with
di¤erent maturities, say a1it (h1)+a2it (h2)+: : :+anit (hn), the coe¢ cients should sum to zero when
the expectations hypothesis holds, i.e. in equilibrium. In terms of the cointegration implications,
this means the coe¢ cients in each of the cointegration vectors, say �k for k = 1; : : : ; n� 1, should
add up to zero. In principle, the zero-sum restriction can be tested by

� = H�; H =

�
In�1
��

�
; (29)

where � = [1; : : : ; 1] such that H is a n� (n� 1) matrix and � is a (n� 1)� (n� 1) matrix of free
parameters, see Hall et al. (1992) and Engsted & Tanggaard (1994). Geometrically, the cointegration
vectors should be spanned by the columns of H, C (�) � C (H). In (29), note that the restrictions
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Figure 1: Time series plots of interest rates covering all business days from 1/4/82 to 9/23/05
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in the �rst n� 1 rows of H are identifying and the restrictions in the last row are overidentifying.
Thus, the zero-sum restriction in (29) imposes only n � 1 testable parameter restrictions on �.
However, the present methodology is meant for testing the cointegration rank, so the focus here is
on testing the rank restriction although the estimated cointegration space is also brie�y compared
informally to H.

These ideas were applied by Campbell & Shiller (1987) who tested the rank and zero-sum re-
strictions jointly by conducting cointegration tests on spreads between two interest rates. The
analysis was generalized to a systems framework by Stock & Watson (1988) who applied their com-
mon trends test to testing the rank condition, and by Hall et al. (1992) and Engsted & Tanggaard
(1994), among others, who applied the Johansen (1988, 1991) VAR methodology to test both the
rank and zero-sum restrictions. The analysis most closely related to the present study is Chen
& Hurvich (2003), who conduct a fractional cointegration analysis of eight di¤erent interest rates
using their semiparametric cointegration rank test. They �nd that, although each series is insigni�-
cantly di¤erent from I (1), fractional cointegration is important because the cointegration residuals
are fractionally integrated. They also conclude that there are six cointegrating relations among
their eight interest rates series, and argue that there could be one common trend driving the short
maturity interest rates and another common trend driving the long maturity interest rates. It has
also been argued in the literature that the expectations hypothesis may hold better in the shorter
end of the yield curve, and thus the interest rates considered here are for relatively short maturities.

The interest rate data considered here is a system of four U.S. Treasury Bill interest rates
with constant maturities of 3 months, 6 months, 1 year, and 2 years, respectively. The data
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Table 7: Univariate analysis
Panel A: GSP estimates of d

Bandwidth it (1=4) it (1=2) it (1) it (2)
m =

�
T 0:4

�
= 32 0.96 1.02 1.02 1.01

m =
�
T 0:6

�
= 183 1.08� 1.07 1.09� 1.10��

m =
�
T 0:8

�
= 1043 1.01 1.01 1.03� 1.03�

Panel B: Univariate variance ratio test
d1 it (1=4) it (1=2) it (1) it (2)
0:1 1.93 1.93 1.93 1.94
1:0 255.51 240.15 228.97 214.29

Note: Panel A reports GSP estimates based on the �rst di¤erence of the interest rate data with unity added back
and Panel B reports the univariate variance ratio test � (d1) for the detrended interest rate data. Standard errors

for the GSP estimates can be found from the asymptotic distribution
p
m(d̂� d) D! N (0; 1=4), see Robinson (1995).

The critical values for the variance ratio test of the hypothesis d = 1 can be found in Table 3 under n� r = 1. One
and two asterisks denote rejection of d = 1 at 5% and 1% signi�cance levels, respectively.

set is extracted from the Federal Reserve Board of Governors H.15 release and consists of daily
observations for all business days from 4 January, 1982, until 23 September, 2005, for a total of
T = 5; 932 observations covering a span of over 23 years. Hence, the data set is quite long, both in
terms of the number of observations and in terms of the span of time covered. A larger data set
including also interest rates with maturities 3, 5, 7, and 10 years was also analyzed, and the results
were qualitatively very similar to the results shown here. Speci�cally, the nonparametric variance
ratio approach indicated a cointegration rank of r = 6 (i.e. two common stochastic I(1) trends),
whereas the parametric approaches indicated a much lower rank. Since it has been argued in the
literature that the expectations hypothesis may hold better in the shorter end of the yield curve
only the results for the four interest rates with maturities up to 2 years are reported here.

In Figure 1 the four interest rates are plotted. The graphical evidence shows quite clearly that
the interest rates tend to move together over time, but also that deviations can be quite persistent,
e.g. towards the end of the sample period. The existence of a non-zero maturity risk premium and
some trending behavior is evident from Figure 1, and consequently the following analysis allows for
both non-zero mean and trend terms.

Table 7 presents univariate results for the interest rate series. Panel A reports Gaussian semi-
parametric (GSP) estimates of d based on the �rst di¤erence with unity added back, and Panel B
reports the univariate variance ratio test � (d1) for the detrended interest rate data. One and two
asterisks denote rejection of d = 1 at 5% and 1% signi�cance levels, respectively. Note that the
tests of d = 1 in Panel A are against the two-sided alternative, whereas the alternative in Panel
B is given in Theorems 1�2. Also note that the GSP estimates are invariant to non-zero mean
and trend terms, and that their standard errors can be found from the asymptotic distributionp
m(d̂� d) D! N (0; 1=4), see Robinson (1995). The critical values for the variance ratio test of the

hypothesis d = 1 can be found in Table 3 under n�r = 1. It is seen that, with the exception of some
evidence from the middle bandwidth for the GSP estimates, the interest rates appear insigni�cantly
di¤erent from I (1). This supports previous evidence in the literature, e.g. Chen & Hurvich (2003).

In Panel A of Table 8 the eigenvalues of (15) are reported and in Panel B the corresponding
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Table 8: Variance ratio cointegration rank tests
Panel A: Eigenvalues
d1 �1 �2 �3 �4
0:1 338.15 383.39 412.69 521.51
1:0 0.0057 0.0126 0.0218 0.0730
Panel B: �n;r (d1)
d1 n� r = 1 n� r = 2 n� r = 3 n� r = 4
0:1 1.92 4.10�� 6.45�� 9.41��

1:0 201.68 645.46 1412.61� 3979.62��

Note: Panel A reports the eigenvalues (�1,000) of the problem (15) and Panel B reports the variance ratio cointe-
gration rank test �n;r (d1) for the detrended interest rate data. The critical values assuming d = 1 can be found in
Table 3 and the critical values using the average GSP estimate with m = 32 for d̂ can be found in Table 9. One and
two asterisks denote rejection at 5% and 1% signi�cance levels, respectively, according to the critical values in Table
9.

Table 9: Simulated critical values CV�;n�r(d̂; d1) with mean and trend
n� r

d1 � 1 2 3 4
0.1 0.10 1.93 3.81 5.75 7.74

0.05 1.98 3.87 5.83 7.82
0.01 2.08 4.00 5.97 7.97

1.0 0.10 228.81 586.32 1159.92 1960.74
0.05 293.45 691.22 1330.46 2198.69
0.01 447.33 950.59 1691.45 2695.75

Note: The simulated critical values are based on 10,000 replications and sample size 1,000. The average GSP estimate
with m = 32 for the detrended interest rate data was used for d̂. The test rejects when the test statistic in Table 8
is larger than the critical values in this table.

variance ratio cointegration rank tests are reported for the detrended interest rate series. Both
panels of Table 8 report the results for d1 = 0:1 as well as d1 = 1. Assuming d = 1 the critical
values of the variance ratio tests can be found in Table 3. On the other hand, using the average
GSP estimate with m = 32 for d̂, the critical values have been simulated and are reported in Table
9. The asterisks in Table 8 denote rejection using these simulated critical values. Note that since d̂
is close to one, the critical values in Table 9 are close to those for d = 1, and the conclusions reached
do not change qualitatively if the critical values for d = 1 from Table 3 were used instead. Also
note that the estimates for the larger bandwidth parameters in Table 7 are generally a little higher,
and the larger bandwidths could have induced a bias in the estimation. Given the large number of
observations in the data set it seems prudent to use the results for the bandwidth m = 32 which
presumably should be less in�uenced by bias.

The results of the variance ratio tests reported in Tables 8 and 9 depend on the value of d1. For
the reasons given above, i.e. to maximize the power of the cointegration rank tests, most weight
should be given to the d1 = 0:1 results which clearly indicate the presence of only one common
stochastic trend among the four interest rates, or in other words, the presence of three cointegrating
relations. The results for d1 = 1 are less clear but seem to indicate r = 2. These results are
presumably a consequence of the improved power of the variance ratio test when d1 = 0:1 compared
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Table 10: Parametric cointegration rank tests
Panel A: Johansen (1988, 1991) trace test
Lag length n� r = 1 n� r = 2 n� r = 3 n� r = 4

0 5.67� 29.59�� 139.06�� 527.11��

21 10.11� 31.05�� 69.32�� 149.42��

63 15.27�� 37.80�� 70.13�� 105.69��

126 15.19�� 33.22�� 51.46�� 79.56��

Panel B: Breitung & Hassler (2002) fractional trace test
Lag length n� r = 1 n� r = 2 n� r = 3 n� r = 4

0 4.68� 36.94�� 428.08�� 879.26��

21 3.51 11.00 40.66�� 115.21��

63 2.35 8.98 27.84�� 58.10��

126 0.02 2.56 17.17 47.71��

Note: In Panel A the Johansen (1988, 1991) trace test for cointegration rank is reported for the interest rate data
with a unrestricted constant and trend terms. The critical values can be found in Johansen (1995, Table 15.5). In
Panel B the Breitung & Hassler (2002) fractional trace test with estimated mean and trend is reported, and the
critical values can be found from the �2((n� r)2) distribution. One and two asterisks denote rejection at 5% and 1%
signi�cance levels, respectively.

to d1 = 1, c.f. the simulation results above. Note that support of the expectations hypothesis is
by rejection of the sequence of null hypotheses, r0 = 0; r0 = 1; : : : ; r0 = n � 2, and thus the more
powerful test will o¤er more support of the expectations hypothesis, if it is indeed true.

For comparison, Table 10 presents the results of the Johansen (1991) cointegration rank trace
tests with unrestricted constant and trend terms (Panel A) and the Breitung & Hassler (2002)
fractional trace tests with estimated mean and trend in levels (Panel B). The lag-augmentations
chosen for the two tests are 0, 21, 63, and 126 business days, corresponding to about 0, 1, 3, and 6
calendar months, respectively. The critical values for the Johansen tests can be found in Johansen
(1995, Table 15.5) and the critical values for the Breitung & Hassler (2002) tests can be found
from their asymptotic �2((n � r)2) distribution. It appears from Panel A of Table 10 that the
Johansen trace tests clearly reject all the hypotheses. The same rejection problem appears for the
Breitung-Hassler tests in Panel B when there is no lag-augmentation. With a lag-augmentation,
the conclusions of the Breitung-Hassler tests vary and depend on the length of the augmentation,
with r = 1 as the result in the case with the most generous lag-augmentation. These seemingly
con�icting results could be due to misspeci�cation of the lag-augmentation of the parametric tests,
and it is not attempted here to conduct a more thorough investigation. Instead, note once more
that the nonparametric variance ratio test does not depend on speci�cation of short-run dynamics.

Table 11 presents the eigenvectors of (15) for the detrended interest rate data. The eigenvectors
are sorted in the same order as the eigenvalues in Panel A of Table 8, i.e. �j corresponds to �j for
j = 1; : : : ; 4, and the �nal row reports the sum of all the elements of the corresponding eigenvector.
According to the expectations hypothesis, the elements of all the columns of any basis for the
cointegration space should sum to zero, and it is noted from Table 11 that this may indeed be the
case for all the eigenvectors. Since the eigenvectors are not normalized in the most intuitive way
and should not be considered estimates of particular cointegration vectors, the interpretation of the
eigenvectors is not so straightforward. Instead, if the eigenvectors corresponding to the three largest
eigenvalues are gathered in the matrix � (3) = [�2; �3; �4], the cointegration space can be rotated
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Table 11: Eigenvectors of (15)
d1 = 0:1 d1 = 1:0

�1 �2 �3 �4 �1 �2 �3 �4
it (1=4) 4:25 �1:75 �14:91 68:93 �0:02 �0:10 �0:11 0:77
it (1=2) �2:65 �17:14 �31:50 �129:87 0:06 0:23 �0:25 �1:42
it (1) 3:43 60:53 68:87 66:54 �0:09 �0:33 0:58 0:57
it (2) 0:01 �45:16 �23:76 �2:21 0:07 0:19 �0:24 0:13
sum 5:03 �3:52 �1:30 3:39 0:02 �0:01 �0:02 0:05

Note: The eigenvectors (�1,000) of the problem (15) are reported for the detrended interest rate data. The eigenvec-
tors are sorted in the same order as the eigenvalues in Panel A of Table 8, i.e. �j corresponds to �j for j = 1; : : : ; 4.
The �nal row reports the sum of all the elements of the corresponding eigenvector.

Table 12: Estimated cointegration space for r = 3
d1 = 0:1 d1 = 1:0

�2 �3 �4 �2 �3 �4
it (1=4) 1 0 0 1 0 0
it (1=2) 0 1 0 0 1 0
it (1) 0 0 1 0 0 1
it (2) �1:09 �1:12 �1:10 �0:89 �0:97 �1:00
sum �0:09 �0:12 �0:10 0:11 0:03 0:00

Note: The estimated and rotated cointegration space assuming r = 3, i.e. the renormalized � (3), is reported for the
detrended interest rate data. Only identifying restrictions are imposed on the cointegration space.

to facilitate the interpretation. Thus, Table 12 reports the elements of � (3) ([I3; 03�1] � (3))
�1,

which is normalized such that each vector of the estimated and rotated cointegration space can be
interpreted as an estimated spread between two interest rates, c.f. (29). Note that no restrictions
are imposed in Table 12 except identi�cation.

The results in Table 12 show informally that the estimated cointegration space is very close to
the hypothesized space in (29). Although the nonparametric variance ratio testing approach does
not yield a straightforward distribution theory for the estimated cointegration space, and hence
does not lead to a natural formal test of (29), it is consistent as shown in Theorem 3. In particular,
for both choices of d1, the columns of the estimated and rotated cointegration space are close to
being just the di¤erences between two interest rates of di¤erent maturities.

In general, this empirical application illustrates the usefulness of the nonparametric cointegra-
tion rank test. While the parametric tests of Johansen (1988, 1991) and Breitung & Hassler (2002)
depend heavily on the choice of lag-augmentation, the nonparametric test does not depend on any
such tuning parameters, but only on d1 which it is argued should be set at d1 = 0:1. Intuitively,
there may be several reasons for the parametric testing procedures to fail to indicate the correct
cointegration rank. In �nite samples, the Johansen tests may fail to detect some cointegrating
relations if the cointegrating strength, i.e. b, for those relations is low. In particular, if d � b > 0,
the cointegration errors have long memory, and may not be detected as a cointegrating relation by
the I (1)�I (0)-motivated Johansen tests. On the other hand, the Breitung-Hassler tests should be
able to detect the presence of such fractional cointegrating relations. Most importantly, however,
the parametric nature of the Johansen and Breitung-Hassler tests may cause the tests to lead to
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incorrect conclusions simply due to misspeci�ed autocorrelation structure and lag-augmentation.
Hence, this illustrates the usefulness of the nonparametric variance ratio methodology, and in par-
ticular highlights the advantages of its nonparametric nature and its ability to detect fractional
cointegration among nonstationary fractionally integrated variables.

7 Concluding Remarks
In this paper a nonparametric variance ratio testing approach has been proposed for determining

the cointegration rank in fractionally integrated systems. An integral part of the approach is to
allow the integration orders to be unknown, i.e., if there is no strong a priori reason to pick particular
integration orders, it is important to make only minimal assumptions on their values and possibly
allow them to be estimated as part of the procedure. The proposed approach is nonparametric in
the sense that it does not require the speci�cation of a particular data generating process or model
and is asymptotically invariant to the short-run dynamics of the time series. Furthermore, the
approach does not require estimating the cointegration vector(s) and is thus easier to implement
than regression-based approaches, especially when examining relationships between several variables
with possibly multiple cointegrating vectors. Finally, a consistent estimator of (a basis for) the
cointegration space can be obtained from the procedure.

The usefulness of the proposed approach was documented in a simulation study with samples
as small as T = 100 or T = 250 which would often be considered quite small for nonparametric
inference. The test appears to be robust to di¤erent speci�cations of the simulated model, includ-
ing cointegrated alternatives of both fractional and autoregressive types. Finally, the proposed
methodology was applied to an analysis of the term structure of interest rates, where, contrary to
both fractional and integer-based parametric approaches, clear evidence in favor of the restrictions
implied by the expectations hypothesis was found using the nonparametric approach.

Appendix: Proofs
This section begins with three lemmas that describe the behavior of processes and product

moments in the stationary and nonstationary directions, complementing similar results in, e.g.,
Robinson & Hualde (2003, Appendix D) and Johansen & Nielsen (2009, Appendix C). Throughout
C denotes a �nite positive constant which may take di¤erent values in di¤erent places.

Lemma 4 Let �k(u) = �(k+u)=(�(u)�(k+1)) denote the k�th coe¢ cient in the binomial expansion
of ��u and de�ne

�T (u; v) = max
1�l;m�T

TX
t=max(l;m)

j�t�l(u)�t�m(v)j: (30)

Then
�T (u; v) � C(log T )Ifu+v=1gTmax(u+v�1;u�1;v�1;0); (31)

where IfAg denotes the indicator function of the event A and the constant does not depend on u; v;
or T .
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Proof. By symmetry it is enough to consider v � u. Note that �k(u) satis�es j�k(u)j � Cku�1; k �
1, and j�0(u)j � C. In the case where v = 0 it holds that �t�m(0) = CIft=mg so that

TX
t=max(l;m)

j�t�l(u)�t�m(0)j = Cj�m�l(u)j � CTmax(u�1;0);

and similarly for u = 0. Thus, assume that u 6= 0 and v 6= 0.
For the term with t = max(l;m) and l = m, it follows that j�t�l(u)�t�m(v)j = j�0(u)�0(v)j � C.

When t = max(l;m) and l > m, j�t�l(u)�t�m(v)j = j�0(u)�l�m(v)j � CTmax(v�1;0); l < m is
similar. So now consider only the terms with t � max(l;m) + 1.

Replacing �t�l(u) and �t�m(v) by their upper bounds for t � max(l;m) + 1 and u 6= 0; v 6= 0,
yields the term

PT
t=max(l;m)+1(t � l)u�1(t � m)v�1. If u � 1 � 0 then also v � 1 � 0 and hence

(t� l)u�1(t�m)v�1 � (t�max(l;m))(u+v�1)�1 such that
TX

t=max(l;m)+1

(t� l)u�1(t�m)v�1 � C(log T )Ifu+v=1gTmax(u+v�1;0):

If u� 1 > 0 then (t� l)u�1 � T u�1 and
TX

t=max(l;m)+1

(t�l)u�1(t�m)v�1 � T u�1
TX

t=max(l;m)+1

(t�m)v�1 � CT u�1+max(v;0) � CTmax(u+v�1;u�1):

Lemma 5 Let Xj;t =
P1

k=0 � j;k"j;t�k; j = 1; 2, be nj-dimensional stationary linear processes withP1
k=0 k� j;kk <1 for nj�nj matrices � j;k and nj-dimensional i.i.d. random variables "j;t with zero

mean and �nite fourth moments. De�ne the product moment QijT (u; v) = T�1
PT

t=1�
�u
+ Xi;t�

�v
+ X 0

j;t.
(a) For 1=2 < v � u it holds that

T�u�v+1QijT (u; v) = OP (1); i; j = 1; 2:

(b) For v < 1=2 < u it holds that

T�u+1=2QijT (u; v)
P! 0; i; j = 1; 2:

(c) For v = 1=2 � u it holds that

T�u+1=2(log T )�Ifu=1=2gQijT (u; v) = OP (1); i; j = 1; 2:

Proof. The proof is given for the scalar case n1 = n2 = 1. The proof for nj � 2 is the same, but
the notation is more complicated. The second moment of QijT (u; v) is

E(T�1
TX
t=1

tX
l=1

tX
m=1

�t�l(u)�t�m(v)Xi;lXj;m)
2

= T�2
TX

t1;t2=1

t1X
l1;m1=1

t2X
l2;m2=1

�t1�l1(u)�t1�m1(v)�t2�l2(u)�t2�m2(v)E(Xi;l1Xi;l2Xj;m1Xj;m2)

� �T (u; v)
2

TX
l1;l2;m1;m2=1

T�2 kE(Xi;l1Xi;l2Xj;m1Xj;m2)k ;
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and in view of (31) in Lemma 4 the proof is completed by showing that the second factor is bounded
by a constant that does not depend on T .

The last factor is

T�2
TX

l1;l2;m1;m2=1

l1�1X
p1=0

l2�1X
p2=0

m1�1X
q1=0

m2�1X
q2=0

k� i;p1� i;p2� j;q1� j;q2E("i;l1�p1"i;l2�p2"j;m1�q1"j;m2�q2)k :

Note that the number of terms in the eight summations is proportional to T 8, but most are zero
because E("j;t) = 0 for j = 1; 2. Speci�cally, there is a non-zero contribution only if the second
subscripts on the four "�s are equal in pairs (or all equal, which is a special case), i.e. if l1 =
l2+p1�p2;m1 = m2+q1�q2 or l1 = m1+p1�q1; l2 = m2+p2�q2 or l1 = m2+p1�q2; l2 = m1+p2�q1.
Each of these three cases impose two constraints, thus eliminating two summations and leaving in
each case six summations of the generic form

T�2
TX

l;m=1

TX
p1=0

l�1X
p2=0

TX
q1=0

m�1X
q2=0

k� i;p1� i;p2� j;q1� j;q2k � C

TX
p1=0

jj� i;p1 jj
TX

p2=0

jj� i;p2 jj
TX

q1=0

jj� j;q1 jj
TX

q2=0

jj� j;q2 jj

� C

 1X
k=0

jj� i;kjj
!2 1X

k=0

jj� j;kjj
!2

:

This is �nite because
P1

k=0 k� j;kk <1 for j = 1; 2, showing that T�2
PT

l1;l2;m1;m2=1
kE(Xi;l1Xi;l2Xj;m1Xj;m2)k

is bounded by a constant which only depends on � j;k and � i;k and not on T .
For the next lemma, de�ne the number  = max(d� b+ d1; 1=2), the process ~Yt = ��d1+ Ẑt, c.f.

(14), and the functionals

ZT (s) = T 1=2�dR0n�rZbsT c;

ẐT (s) = T 1=2�dR0n�rẐbsT c;

~ZT (s) = T 1=2�d�d1R0n�r ~ZbsT c = T 1=2�d�d1��d1+ R0n�rZbsT c;

~YT (s) = T 1=2�d�d1R0n�r ~YbsT c = T 1=2�d�d1��d1+ R0n�rẐbsT c:

Also de�ne the matrices FT =
PT

t=1R
0ẐtẐ 0tR and GT =

PT
t=1R

0 ~Yt ~Y 0tR, which are decomposed as

FT =

�
F11T F12T
F 012T F22T

�
and GT =

�
G11T G12T
G012T G22T

�
;

where

F11T =
TX
t=1

R0n�rẐtẐ
0
tRn�r; F12T =

TX
t=1

R0n�rẐtẐ
0
tRr; F22T =

TX
t=1

R0rẐtẐ
0
tRr;

G11T =
TX
t=1

R0n�r ~Yt ~Y
0
tRn�r; G12T =

TX
t=1

R0n�r ~Yt ~Y
0
tRr; G22T =

TX
t=1

R0r ~Yt ~Y
0
tRr:

Finally, de�ne the limits

F11 = �

Z 1

0
Bn�r
j;d (s)Bn�r

j;d (s)0 ds�0; F22 = V ar(��(d�b)u2t);

G11 = �

Z 1

0

~Bn�r
j;d;d1

(s) ~Bn�r
j;d;d1

(s)0 ds�0:
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Lemma 6 Under the assumptions of Theorem 1, as T !1,
(a) : T�2dF11T = T�2d

PT
t=1R

0
n�rẐtẐ

0
tRn�r

D! F11;

(b) : T�1F22T = T�1
PT

t=1R
0
rẐtẐ

0
tRr

P! F22;

(c) : T�d�1=2F12T = T�d�1=2
PT

t=1R
0
n�rẐtẐ

0
tRr

P! 0;

(d) : T�2d�2d1G11T = T�2d�2d1
PT

t=1R
0
n�r ~Yt ~Y

0
tRn�r

D! G11;

(e) : T�2 (log T )�If =1=2gG22T = T�2 (log T )�If =1=2g
PT

t=1R
0
r
~Yt ~Y

0
tRr(

P! V ar(��(d�b+d1)u2t) if d� b+ d1 < 1=2;
= OP (1) if d� b+ d1 � 1=2;

(f) : T�d�d1� (log T )�If =1=2gG12T = T�d�d1� (log T )�If =1=2g
PT

t=1R
0
n�r ~Yt ~Y

0
tRr(

P! 0 if d� b+ d1 � 1=2;
= OP (1) if d� b+ d1 > 1=2;

where u2;t is the r-vector with the last r elements of ut.

Proof. Proof of (a) and (d): It is �rst shown that ẐT (s) = T 1=2�dR0n�rẐbsT c =) �Bn�r
j;d (s) and

~YT (s) = T 1=2�d�d1R0n�r ~YbsT c =) � ~Bn�r
j;d;d1

(s), from which results (a) and (d) will follow by the
continuous mapping theorem.

Recall that Ẑt = Zt�(�̂� �)0 �t, where Zt is de�ned in Assumption 3. From (11) the convergence

ZT (s) = T 1=2�dR0n�rZbsT c =) �Wn�r
d (s)

holds, which proves the result when �t = 0. For �t 6= 0 de�ne N1(T ) = 1 and N2(T ) = diag(1; T�1)

and write
T 1=2�dR0n�r (�̂� �)

0 �bsT c = T 1=2�dR0n�r (�̂� �)
0Nj(T )

�1Nj(T )�bsT c;

where

T 1=2�dR0n�r (�̂� �)
0Nj(T )

�1 =

 
T�1

TX
s=1

T 1=2�dR0n�rZs�
0
sNj(T )

! 
T�1

TX
s=1

Nj(T )�s�
0
sNj(T )

!�1

=

 
T�1

TX
s=1

T 1=2�dR0n�rZsDj(s=T )

! 
T�1

TX
s=1

Dj(s=T )Dj(s=T )
0

!�1
D! �

�Z 1

0
Wn�r
d (s)Dj (s)

0 ds

��Z 1

0
Dj (s)Dj (s)

0 ds

��1
(32)

as T !1 by application of (11) and the continuous mapping theorem, and

Nj(T )�bsT c = Dj(bsT c =T )! Dj(s) as T !1: (33)

It thus follows that

ẐT (s) = T 1=2�dR0n�rẐbsT c =) �Bn�r
j;d (s) ; j = 0; 1; 2: (34)

Next, for

~YT (s) = T 1=2�d�d1��d1+ R0n�rẐbsT c

= T 1=2�d�d1��d1+ R0n�rZbsT c � T 1=2�d�d1��d1+ R0n�r (�̂� �)
0 �bsT c;
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the convergence
~ZT (s) = T 1=2�d�d1��d1+ R0n�rZbsT c =) �Wn�r

d+d1
(s)

holds from (11) because the operator �+ satis�es �
d1
+�

d2
+ Zt = �d1+d2

+ Zt for any d1 and d2. For
the remaining term,

T 1=2�d�d1��d1+ R0n�r (�̂� �)
0 �bsT c = T 1=2�d�d1

bsT c�1X
k=0

�k (d1)R
0
n�r (�̂� �)

0 �bsT c�k

= T 1=2�d�d1
bsT cX
k=1

�bsT c�k (d1)R
0
n�r (�̂� �)

0 �k

=
�
T 1=2�dR0n�r (�̂� �)

0Nj(T )
�1
�0@T�d1 bsT cX

k=1

�bsT c�k (d1)Nj(T )�k

1A ;

the �rst factor converges by (32) and the last factor is deterministic and satis�es the convergence

T�d1
bsT cX
k=1

�bsT c�k (d1)Nj(T )�k = T�d1
bsT cX
k=1

�bsT c�k (d1)Dj(k=T )

= T�d1
bsT cX
k=1

(bsT c � k)d1�1

� (d1)
Dj(k=T ) + o(1)

= T�1
bsT cX
k=1

�
bsT c
T � k

T

�d1�1
� (d1)

Dj(k=T ) + o(1)

!
Z s

0

(s� r)d1�1

� (d1)
Dj (r) dr as T !1: (35)

The second line follows from the substitution �k (d) = kd�1(� (d)�1 +O(k�1)), which implies that
the remainder term in the second line is of order T�d1

PbsT c
k=1 (bsT c�k)d1�2 = O(Tmax(�d1;�1)(log T )) =

o(1) (uniformly in s). Hence, it follows that

~YT (s) =) � ~Bn�r
j;d;d1

(s) ; j = 0; 1; 2;

which proves results (a) and (d).
Proof of (b): First suppose �t = 0. Since d�b < 1=2, de�ne the zero-mean stationary time series

(with no truncation) �Zt = ��(d�b)u2;t =
P1

k=0 �k(d� b)u2;t�k. For �Zt the law of large numbers for
stationary ergodic time series implies that

T�1
TX
t=1

�Zt �Z
0
t
P! E( �Zt �Z

0
t) = V ar(��(d�b)u2;t):

The processes �Zt and R0rZt are related as �Zt = R0rZt + Vt, where Vt =
P1

k=t �k(d � b)u2;t�k.
From Assumption 3, ut =

P1
l=0	l"t�l with

P1
l=0 l

1=2jj	ljj < 1 such that the Beveridge-Nelson
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decomposition implies that ut = (
P1

l=0	l)"t+
P1

l=0
~	l�"t�l with

P1
l=0 jj~	ljj2 <1. Then, letting

	2;l and ~	2;l denote the last r rows of 	l and ~	l, respectively,

Vt = (

1X
l=0

	2;l)

1X
k=t

�k(d� b)"t�k +
1X
l=0

~	2;l

1X
k=t

�k(d� b� 1)"t�k�l

using that
P1

k=t �k(d� b)�"t�k =
P1

k=t �k(d� b� 1)"t�k. For Vt it holds that E(Vt) = 0 and

E(T�1
TX
t=1

VtV
0
t ) = (

1X
l=0

	2;l)(

1X
l=0

	2;l)
0T�1

TX
t=1

1X
k=t

�k(d� b)2

+T�1
TX
t=1

1X
l=0

1X
k1=t

1X
k2=t

~	2;l ~	
0
2;l+k1�k2�k1(d� b� 1)�k2(d� b� 1)

+(

1X
l1=0

	2;l1)

1X
k1=t

1X
k2=t

�k1(d� b)�k2(d� b� 1)~	02;k1�k2

+

1X
k1=t

1X
k2=t

�k1(d� b)�k2(d� b� 1)~	2;k1�k2(
1X
l1=0

	2;l1)
0:

The �rst two terms have norms bounded by

CT�1
TX
t=1

1X
k=t

k2(d�b)�2 � CT�1
TX
t=1

t2(d�b)�1 ! 0;

CT�1
TX
t=1

1X
k1=t

1X
k2=t

kd�b�21 kd�b�22 � CT�1
TX
t=1

t2(d�b)�2 ! 0;

and the norms of the last two terms hence also converge to zero by the Cauchy-Schwarz inequality.
It follows that the probability limit of T�1

PT
t=1R

0
rZtZ

0
tRr is the same as that of T

�1PT
t=1

�Zt �Z
0
t.

When �t 6= 0, T�1
PT

t=1Nj(T )�tZ
0
tRr has mean zero and variance with norm bounded by

jj2ET�2
TX
t=1

TX
s=t

Nj(T )�tZ
0
tRrR

0
rZs�

0
sNj(T )jj � jjCT�2

TX
t=1

TX
s=t

Nj(T )�t

t�1X
k=0

� 0k� s�t+k�
0
sNj(T )jj

� CT�2
TX
t=1

TX
s=t

t�1X
k=1

kd�b�1(s� t+ k)d�b�1

� CT�2
TX
t=1

TX
s=t

(s� t+ 1)d�b�1
t�1X
k=1

kd�b�1 � CT 2(d�b)�1

such that

T�1
TX
t=1

Nj(T )�tZ
0
tRr = OP (T

d�b�1=2); (36)

Nj(T )
�1(�̂� �)Rr =

 
T�1

TX
t=1

Nj(T )�t�
0
tNj(T )

!�1
T�1

TX
t=1

Nj(T )�tZ
0
tRr = OP (T

d�b�1=2);(37)

Nj(T )�t = Dj(t=T ) = OP (1): (38)
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From (36)-(38) it follows that

T�1
TX
t=1

R0rZt�
0
t(�̂� �)Rr = OP (T

2(d�b)�1); (39)

T�1
TX
t=1

R0r (�̂� �)
0 �t�

0
t(�̂� �)Rr = OP (T

2(d�b)�1); (40)

such that the result is the same as when �t = 0.
Proof of (c): From Lemma 5(b) it follows that T�d�1=2

PT
t=1R

0
n�rZtZ

0
tRr

P! 0 which proves
the result for �t = 0. When �t 6= 0 the result is unchanged if

T�d�1=2
TX
t=1

R0n�rZt�
0
t (�̂� �)Rr

P! 0; (41)

T�d�1=2
TX
t=1

R0n�r (�̂� �)
0 �tZ

0
tRr

P! 0; (42)

T�d�1=2
TX
t=1

R0n�r (�̂� �)
0 �t�

0
t (�̂� �)Rr

P! 0: (43)

By the Cauchy-Schwarz inequality the left-hand side of (41) is

OP

0@ T�2d TX
t=1

EjjR0n�rZtjj2
!1=2 

T�1
TX
t=1

Ejj�0t (�̂� �)Rrjj2
!1=21A ;

where the �rst factor is OP (1) by Lemma 5(a) and the second is oP (1) by (40). Next, using (32),
(42) is

T 1=2�dR0n�r (�̂� �)
0Nj(T )

�1T�1
TX
t=1

Nj(T )�tZ
0
tRr = OP

 
T�1

TX
t=1

Nj(T )�tZ
0
tRr

!
;

which is OP (T d�b�1=2) as in (36). The term (43) follows in the same way from (32) and (40).
Proof of (e): When d� b+d1 < 1=2 this result follows exactly as in (b). When d� b+d1 � 1=2

and �t = 0 write

T�2(d�b+d1)(log T )�If =1=2g
TX
t=1

R0r ~Zt ~Z
0
tRr = OP

 
T�2(d�b+d1)(log T )�If =1=2g

TX
t=1

EjjR0r ~Ztjj2
!
(44)

and the result follows from Lemma 5(a) for d� b+ d1 > 1=2 and Lemma 5(c) for d� b+ d1 = 1=2.
When d � b + d1 � 1=2 and �t 6= 0, the additional term Jt =

Pt
k=1 �t�k (d1)R

0
r (�̂� �)

0 �k arises
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and we have

T�2(d�b+d1)(log T )�If =1=2g
TX
t=1

R0r ~Yt ~Y
0
tRr

= T�2(d�b+d1)(log T )�If =1=2g
TX
t=1

R0r ~Zt ~Z
0
tRr + T

�2(d�b+d1)(log T )�If =1=2g
TX
t=1

JtJ
0
t (45)

�T�2(d�b+d1)(log T )�If =1=2g
TX
t=1

Jt ~Z
0
tRr � T�2(d�b+d1)(log T )�If =1=2g

TX
t=1

R0r ~ZtJ
0
t: (46)

The result therefore follows if (46) and the second term of (45) are all OP (1). Note from (35) thatPt
k=1 �t�k (d1)Nj(T )�k = O(T d1), which together with (37) implies that

Jt = (R
0
r (�̂� �)

0Nj(T )
�1)(

tX
k=1

�t�k (d1)Nj(T )�k) = OP (T
d�b+d1�1=2):

Thus, the second term of (45) is

OP (T
�2(d�b+d1)(log T )�If =1=2g

TX
t=1

EjjJtjj2) = OP (1);

and by application of the Cauchy-Schwarz inequality and the bounds in Lemma 5(a,c), (46) is

OP

0@T�2(d�b+d1)(log T )�If =1=2g  TX
t=1

EjjJtjj2
!1=2 TX

t=1

Ejj ~Z 0tRrjj2
!1=21A = OP (1);

which proves the result.
Proof of (f): If d�b+d1 < 1=2 the proof follows as in part (c). When d�b+d1 � 1=2, applying

the Cauchy-Schwarz inequality shows that the left-hand side is

OP

0@ T�2d�2d1 TX
t=1

EjjR0n�r ~Ytjj2
!1=2 

T�2 (log T )�2If =1=2g
TX
t=1

EjjR0r ~Ytjj2
!1=21A ;

where the �rst factor is OP (1) by part (d) and the second factor is OP ((log T )�If =1=2g) by part
(e).

Note that the proofs of (e) and (f) in Lemma 6 in the case with d � b + d1 > 1=2 would
follow easily from the functional central limit theorem and continuous mapping theorem if the
assumptions included the existence of q > max(2; 2=(2d � 2b + 2d1 � 1)) moments and full rank
of 	(1), in which case the limits of G12T and G22T would be functionals of fractional Brownian
motion and the convergence would be weak. However, with only q > max(4; 2=(2d� 1)) moments
the proof is completed instead by application of the bounds in Lemma 5, and G12T and G22T can
only be described as OP (1) when d� b+ d1 � 1=2.
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Proof of Theorem 1. Following the method of proof of Johansen (1988, 1991), the stochastic
orders of magnitude of all the eigenvalues of (15), corresponding to eigenvectors in both the coin-
tegrating and non-cointegrating directions, are derived �rst. The statistic �n;r (d1) in Theorem 1
is a simple function of the ordered eigenvalues 0 � �1 � �2 � : : : � �n of (15), which are also
eigenvalues of the eigenproblem

j�GT � FT j = 0; (47)

where FT =
PT

t=1R
0ẐtẐ 0tR and GT =

PT
t=1R

0 ~Yt ~Y 0tR. The eigenproblem (47) has the advantage
over (15) that the cointegrating and non-cointegrating directions are delivered directly through the
pre- and post-multiplication by the orthonormal matrix R, which does not change the eigenvalues
of the problem.

Letting

MT =

�
T�d�d1�1=2+ In�r 0(n�r)�r

0r�(n�r) T�1=2Ir

�
and �F =

�
0(n�r)�(n�r) 0(n�r)�r
0r�(n�r) F22

�
it follows by direct application of Lemma 6 that

MTFTMT =

�
T�2d�2d1�1+2 F11T T�d�d1�1+ F12T
T�d�d1�1+ F 012T T�1F22T

�
P! �F ; (48)

T 1�2 MTGTMT =

�
T�2d�2d1G11T T�d�d1� G12T
T�d�d1� G012T T�2 G22T

�
;

where T�2d�2d1G11T
D! G11, which is symmetric and positive de�nite a.s., T�d�d1� G12T =

OP (1); T
�2 G22T = OP (1), and F22 is deterministic, symmetric, and positive de�nite.

Next de�ne � = �T 2 �1. Then the ordered eigenvalues of (47) are the same as those of����T 1�2 MTGTMT �MTFTMT

��� = 0 (49)

Denote by �(A;B) the function that associates with a pair of matrices (A;B) the ordered
eigenvalues of the problem j�A�Bj = 0. Since this function is continuous in its two matrix
arguments and (T 1�2 MTGTMT ;MTFTMT ) is tight, it follows from (48) that

jj�(T 1�2 MTGTMT ;MTFTMT )��(T 1�2 MTGTMT ; �F )jj
P! 0:

The solutions of �(T 1�2 MTGTMT ; �F ) satisfy

0 =

����� � T�2d�2d1G11T T�d�d1� G12T
T�d�d1� G012T T�2 G22T

�
�
�
0(n�r)�(n�r) 0(n�r)�r
0r�(n�r) F22

�����
= j�T�2d�2d1G11T jj�(T�2 G22T � (T�d�d1� G12T )0(T�2d�2d1G11T )�1(T�d�d1� G12T ))� F22j:

(50)

This decomposition is valid because T�2d�2d1G11T is symmetric and positive de�nite a.s.
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From the �rst factor of (50) it holds that �j
P! 0 for j = 1; :::; n�r because T�2d�2d1G11T

D! G11
which is symmetric and positive de�nite a.s. For the second factor, introduce � = ��1 which solves

0 = j(T�2 G22T � (T�d�d1� G12T )0(T�2d�2d1G11T )�1(T�d�d1� G12T ))� �F22j

= jF�1=222 (T�2 G22T � (T�d�d1� G12T )0(T�2d�2d1G11T )�1(T�d�d1� G12T ))F�1=222 � �Irj; (51)

where the second equality holds because F22 is symmetric and positive de�nite. By the continuous
mapping theorem (T�2d�2d1G11T )

�1 D! G�111 since G11 is positive de�nite almost surely. This
implies, in particular, that (T�2d�2d1G11T )�1 = OP (1). Since also T�d�d1� G12T = OP (1) and
T�2 G22T = OP (1), the solutions of (51) satisfy �j = OP (1) for j = 1; :::; r. It follows that �

�1
j =

OP (1) for j = n � r + 1; :::; n and hence that the r largest roots of (15) satisfy ��1j = OP (T
2 �1)

for j = n� r + 1; : : : ; n.
Now de�ne

KT =

�
T�dIn�r 0(n�r)�r
0r�(n�r) T�1=2Ir

�
such that, by Lemma 6,

KTFTKT =

�
T�2dF11T T�d�1=2F12T

T�d�1=2F 012T T�1F22T

�
D!
�

F11 0(n�r)�r
0r�(n�r) F22

�
; (52)

T�2d1KTGTKT =

�
T�2d�2d1G11T T�d�1=2�2d1G12T

T�d�1=2�2d1G012T T�1�2d1G22T

�
D!
�

G11 0(n�r)�r
0r�(n�r) 0r�r

�
;(53)

noting that convergence in probability implies convergence in distribution on Rm�q. Again, the
ordered eigenvalues of (47) are the same as those of

j�KTGTKT �KTFTKT j = 0;

and letting � = (T 2d1�)�1 they are also the same as those of���T�2d1KTGTKT � �KTFTKT

��� = 0: (54)

Since the eigenvalues are continuous functions of the argument matrices, (52) and (53) imply
that the ordered eigenvalues of (54) converge in distribution to those of����� G11 0(n�r)�r

0r�(n�r) 0r�r

�
� �

�
F11 0(n�r)�r

0r�(n�r) F22

����� = 0:
This equation has r zero roots (because F22 is deterministic and positive de�nite) and n � r a.s.
positive roots (because both G11 and F11 are symmetric and positive de�nite a.s.) given by the
solutions of jG11 � �F11j = 0.

It follows that T 2d1�1; : : : ; T 2d1�n�r converge in distribution to the solutions of
��G11T 2d1�� F11�� =

0 and hence

T 2d1
n�rX
j=1

�j
D! tr

�
F11G

�1
11

	
:
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Proof of Theorem 2. If r > r0 the proof of Theorem 1 shows that ��1n�r+1; : : : ; �
�1
n�r0 are

OP (T
2 �1). Hence, under the alternative that r > r0, the test statistic satis�es �n;r0(d1) =

T 2d1
Pn�r0

j=1 �j � T 2d1�n�r0 and (T
2d1�n�r0)

�1 = OP (T
2 �1�2d1), noting that �j � 0 for all j.

Since 2d1+1� 2 > 0 when d� b < 1=2, it follows that �n;r0 (d1) diverges to +1 as T !1. This
establishes consistency of the test against r > r0. The asymptotic size of the test is � by Theorem
1 and the de�nition of CV�;n�r0 (d; d1).
Proof of Theorem 3. The ordered eigenvectors �j of (15) and the eigenvectors v̂j of (49) are
related by v̂j =M�1

T R�1�j =M�1
T R0�j for j = 1; : : : ; n. Moreover, denoting the last r eigenvectors

of (49) by v̂(r), it follows that

v̂(r) =M�1
T R0�(r) =M�1

T

�
R0n�r�(r)

R0r�(r)

�
: (55)

Denoting the last r eigenvectors of (50) by v(r), it follows from the proof of Theorem 1 that the
space C(v̂(r)) spanned by the columns of v̂(r) converges to C(v(r)). The eigenvectors vj ; j = 1; : : : ; n;
of (50) are normalized such that

v0j

�
0(n�r)�(n�r) 0(n�r)�r
0r�(n�r) F22

�
vj = �j ; j = 1; : : : ; n; (56)

v0j

�
T�2d�2d1G11T T�d�d1� G12T
T�d�d1� G012T T�2 G22T

�
vj = 1; j = 1; : : : ; n; (57)

where, from the proof of Theorem 1, �1; : : : ; �n�r = oP (1) and �
�1
n�r+1; : : : ; �

�1
n = OP (1).

Since T�2d�2d1G11T
D! G11, which is positive de�nite a.s., (57) implies that the �rst n � r

elements of vj are (stochastically) bounded and have norm bounded away from zero for all j. The
�rst n� r rows of (55) are T d+d1+1=2� R0n�r�(r) showing that R0n�r�(r) = OP (T

�d�d1�1=2+ ).
Since F22 is positive de�nite, (56) implies that the last r elements of vj ; j = n � r + 1; : : : ; n,

i.e. the last r rows of v(r), must have norm (stochastically) bounded away from zero. The last r
rows of (55) are T 1=2R0r�(r) which shows that k� (r)k

�1 = OP (T
1=2). It follows that

sin � =
tr(R0n�r� (r))

kRn�rk k� (r)k
= OP

�
T�d�d1+ 

�
:
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