Likelihood inference for a nonstationary fractional autoregressive model

This paper discusses model-based inference in an autoregressive model for fractional processes which allows the process to be fractional of order d or d􀀀b. Fractional di¤er- encing involves in…nitely many past values and because we are interested in nonstation- ary processes we model the data X1; : : : ;XT given the initial values X􀀀n; n = 0; 1; : : :, as is usually done. The initial values are not modeled but assumed to be bounded. This represents a considerable generalization relative to all previous work where it is assumed that initial values are zero. For the statistical analysis we assume the condi- tional Gaussian likelihood and for the probability analysis we also condition on initial values but assume that the errors in the autoregressive model are i.i.d. with suitable moment conditions. We analyze the conditional likelihood and its derivatives as stochastic processes in the parameters, including d and b, and prove that they converge in distribution. We use the results to prove consistency of the maximum likelihood estimator for d; b in a large compact subset of f1=2 < b < d < 1g, and to …nd the asymptotic distribution of the estimators and the likelihood ratio test of the associated fractional unit root hypothesis. The limit distributions contain the fractional Brownian motion of type II.

Issue Date:
Publication Type:
Working or Discussion Paper
DOI and Other Identifiers:
Record Identifier:
Total Pages:
JEL Codes:
Series Statement:
Working Paper No. 1172

 Record created 2018-06-13, last modified 2020-10-28

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)