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Abstract

We consider a competitive extraction industry comprising many small
�rms, each with a slightly di¤erent quality of mineral holdings. With
"rapidly" declining quality of holding per �rm we observe rent declining
over an interval. We then take up the familiar planning model and iso-
late the tax required to make decentralized extraction by many distinct,
competitive �rms replicate the planning solution.

� Keywords: exhaustible resources; resource rent; competitive extrac-
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1 Introduction

An issue of long-standing in oil-extraction economics is extending the Hotelling

[1931] case of the competitive industry with identical small �rms to one with

small �rms with distinct qualities of respective small holdings of stock. Linked

to "the heterogeneous stock problem" is the question of whether observed rent

across periods is declining or increasing. Livernois and Martin [2001] investi-

gated the canonical (planning) model of industry extraction of a non-homogeneous

stock (eg. Richard Gordon [1967], Cummings [1969], and Levhari and Leviatan

[1977]) and argue that fairly standard assumptions allows one to rule out rent

ever declining. Here we come at the question of industry extraction from the

stand-point of the marginal extracting �rm in the industry at any date. When

�Far Eastern National University, Vladivostok, Queen�s University, Kingston, Ontario and
Central University of Finance and Economics, Beijing. An earlier version was presented at a
workshop at McGill University in January, 2008. We are indebted to participants for valuable
comments.
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we then move up to the competitive industry we observe that declining rent is

a fairly natural outcome, given su¢ cient heterogeneity in endowments across

extractive �rms. Our result comes naturally because we work up from the level

of the extractive �rm rather than down from the level of the industry in a plan-

ning problem, as is standard in the literature (eg. Levhari and Leviatan [1977]

and Livernois and Martin [2001]). A benchmark of our case as well as others is

Hotelling�s analysis.

We will distinguish two sorts of heterogeneous stock models. In the �rst,

the value of the current stock is serving purely as an address of where current

extraction, Q(t) is occuring in the problem. For this case one �rm�s extraction

has no spillover into the costs of the �rms that follow. This sort of model we

report on �rst. There is heterogeneity of stock holding across �rms but no cost

externality. This type of model seems new to the literature. Our illustration is

that of a deep pipe of oil with each ton owned by a distinct �rm, a ton being

small relative to the total stock. The oil can be intrinsically homogeneous but

since each ton is more expensive to extract than that preceding, we characterize

the setting as distinct qualities across �rms with quality declining as the deposit

is extracted from (top down over time). We demonstrate that this sort of model

allows for non-trivial intervals of declining resource rent. Roughly speaking the

"more heterogeneity" in oil stock holdings across �rms, the more prevalent is

the interval of declining rent. In the second sort of model, one �rm�s current

extraction shifts the cost function for each subsequent �rm doing extraction. For

example, the current �rm�s extraction can draw o¤ pressure from an oil �eld

and drive up the extraction cost of each �rm following. The pressure draw-o¤

can be thought of as varying with the quantity path of the oil drawdown from

the deposit. In this case the "prices" in a �rm�s extraction cost function can be

viewed as not parametric to the �rm and an externality is operative. This sort of

heterogeneous stock model is standard in the literature and the problem of the

externality has been explicitly recognized (Richard Gordon1 [1967], Cummings

1Richard L. Gordon [1967; p. 282] is explicit that the solution (for heterogeneous extractive
frims) with "e¢ cient socialist managers" di¤ers from that"of individual �rms in a competitive
industry". He fails to address the question of a corrective tax. Cummings re�ects on Gordon�s
planning solution for the problem with heterogeneous �rms and also fails to address the matter
of a corrective tax. The idea of a market failure does not appear in the analyses of Levhari
and Leviatan and of Livernois and Martin.
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[1969]) though we know of no presentation of a tax which internalizes the cost-

spillover externality across �rms. We report on the required tax here. Much of

our analysis is carried out in a framework of discrete time and we feel that this

approach makes the analysis clearer than it would be if we worked in continuous

time. We are nonetheless about to specify the form of the required tax for the

familiar continuous time model. It is also true that by working with our �rst

sort of model, we are able to make the analysis of the "traditional" model and

its corrective tax clearer. Livernois and Martin [2001] have proved that rent

cannot decline over time in the "traditional" model with standard assumptions,

under central planning. Since planning models are rarely implemented in the

real world, we doubt that predictions from such models about rent paths have

much utility. Part of our analysis deals with models that "permit" declining

rent paths for the real world.

When our result contradicts the central result of Livernois and Martin we are

not indicating that the details of their analysis are faulty, rather we suggest that

the concept of industry equilibrium which they work with, one "embedded in"

a planning framework, may not be good at capturing the problem of extraction

with many competitive �rms, each with a distinct small holding of the total

stock. We wish to make the point here that declining exhaustible resource rent

may be a fairly natural property of the data on resource rents. We return to

the matter of the appropriate model below.

2 The Analysis

We focus �rst on the condition for zero pro�t arbitrage for the marginal �rm

in period t. Our set up involves each �rm with a distinct extraction cost and

each �rm owning a very small amount of oil, say 1 ton for concreteness. In our

industry equilibrium there will be Q(t) �rms extracting at date t and the mar-

ginal �rm, will have extraction costs for its ton as C(Q(t); S(t)): Each other �rm

extracting at date t will have extraction costs lower than C(Q(t); S(t)): Hence

the marginal �rm will earn a "Hotelling" rent on its unit extracted whereas

each intramarginal �rm which is active at the same instant will earn the same
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Figure 1: Q(t) in period t and Q(t+ 1) in period t+1, with the marginal �rm
in period t being the intra marginal �rm in period t+1. For the marginal �rm
to be indi¤erent between extracting between periods, its pro�t on its ton must
di¤er between periods by r%: Hence p(t + 1) � C(Q(t); S(t)) = (1 + r)[p(t) �
C(Q(t); S(t))]:

"Hotelling" rent plus some "quality" (Ricardian) rent. In Figure 1 we illustrate

extraction of Q(t) �rms at date t and Q(t + 1) �rms t+1 in a discrete time

"approximation".

In Figure 1, we have the arbitrage condition for the marginal �rm in period

t, in

p(t+ 1)� C(Q(t); S(t)) = (1 + r)[p(t)� C(Q(t); S(t))]:

In continuous time this zero pro�t arbitrage condition for a �rm is taken as

_p(t) = [p(t)� C(Q(t); S(t))]r: (1)

r is the constant discount (interest) rate.

We turn to an example in order to illustrate industry equilibrium and rent

declining over time. We take C(Q(t); S(t)) as [S0 � S(t) + Q(t)]D for D a

positive constant and S0 the initial stock comprising S0 single-ton holdings by

S0 distinct �rms. Think of the S0 tons in a long geological pipe vertical in the
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ground. It is cheaper to extract any ton closer to the surface. Q(t) is then the

number of �rms extracting at date t. (This implies that it is appropriate to

view our [S0 � S(t) +Q(t)]D schedule as a step function, with each runner one

ton wide.2) We assume that the market (industry) demand schedule is linear

as in p(t) = A�BQ(t) for A and B positive constants. For end date T; we take
Q(T ) = 0 and terminal rent as A�S0D > 0:3 Then Q(T � 1) gets de�ned from
p(T � 1) � [S0 � S(T � 1) + Q(T � 1)]D =

h
1
1+r

i
[A � S0D]: (For the special

case of D = 0 we have Hotelling�s original competitive industry with his linear

demand schedule.) Then industry equilibrium involves solving

�B _Q(t) = [A�BQ(t)� [S0 � S(t) +Q(t)]D]r

and _S(t) = �Q(t):

Note that the �rst equation above indicates that� _Q(t) is proportional to current
rent, the factor of proportionality being r=B: Thus if rent is declining, � _Q(t)
will be declining. In textbook renderings of Hotelling�s competitive industry

model, � _Q(t) is usually indicated to be increasing with time and we observe
this behavior for the case of D near zero. The �geology�of this example was

sketched in the introduction. One thinks of S0 �rms each owning one unit of

homogeneous stock, with each unit stacked on others as with a straight pipe

moving down toward the center of the earth. The pipe would have depth S0:

�Early��rms face lower extraction costs because their holding is less deep than

�later��rms. The cost of extraction per �rm increases in a linear fashion as

�the process�moves deeper as time passes.

The above pair of equations becomes the second order linear equation in

S(t) :

d _S

dt
+ a1 _S + a2S = R0: (2)

2Each �rm sees itself as having a constant unit cost extraction schedule and each �rm�s
schedule is distinct.

3A di¤erent end-point condition has rent equal to zero at the end and some high-cost stock
left unextracted. We work with the case of all stock extracted and terminal rent positive.
We address the question of �tting an initial stock, S0 into a �nite number of time slots by
solving backwards in time and thus "choosing" our S0 to be exact for our given number of
time slots. Obviously the question of �tting a given S0 to a given number of time slots exactly
is peripheral to our analysis here. See the interesting analysis of Lozda [1993] on the matter
of �tting a given "arbitrary" S0 into a �nite and "correct" number of time slots.
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for a1 = �
�
B+D
B

�
r; a2 = �

�
Dr
B

�
and R0 =

�
A�S0D

B

�
r: A � S0D is rent cor-

responding to Q(T ) = 0 and S(T ) = 0 and must be non-negative. We turn

to solve equation (2) in S. Note that the limits of the model require that the

values of parameters A;S0; D and r are such that R0 > 0: Otherwise, for R0 = 0

we have trivial solution S(t) � 0 and for R0 < 0 we have negative S(t) for all
t 2 (0; T ):
In the simplest case, the boundary conditions will be S(T ) = 0 and _S(T ) =

�Q(T ) = 0: Hence the solution involves obtaining the Q(0) which results in the
boundary condition being satis�ed at end date T:4 In our case the solution of

(2) is

S(t) = C1e
�1t + C2e

�2t + F

because the determinant of the characteristic equation � = a21 � 4a2 for the
corresponding homogeneous equation is always positive in our problem. We

have �1 = (�a1 +
p
�)=2 and �2 = (�a1 �

p
�)=2 - the roots of the char-

acteristic equation and F = R0=a2 is a particular solution of the nonhomo-

geneous equation (2). Using terminal condition _S(T ) = 0 we have C1 =

�C2�2eT (�2��1)=�1: Substituting it into (2) and using the initial condition
S(0) = S0 = C2

�
1� �2eT (�2��1)=�1

�
+R0=a2 we obtain

C2 =
S0 �R0=a2

1� �2
�1
eT (�2��1)

and C1 = �
S0 �R0=a2

�1
�2
eT (�1��2) � 1

:

Then we can use the second terminal condition S(T ) = 0 in order to de�ne T :

C2(T )e
�2T + C1(T )e

�1T +R0=a2 = 0

or
S0 �R0=a2

1� �2
�1
eT (�2��1)

e�2T � S0 �R0=a2
�1
�2
eT (�1��2) � 1

e�1T +
R0
a2
= 0

which after transformations can be written as follows

e��2T = R1 +
�2
�1
e��1T (3)

where R1 = (1� a2S0=R0) (1� �2=�1) : Nonlinear equation (3) in T has a

unique positive solution (Fig. 2) because �2 < 0; a2 < 0 which follows R1 > 1:

4A more complicated case will have price rise relatively rapidly and some high cost �rms
will choose not to extract because their pro�t would be negative.
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Figure 2: Solution of equation in T .

Figure 3: "Acceleration" of extraction, � _Q(t) for D = 0:1 (solid line), D = 0:15
(dotted line), and D = 0:25 (in circles).

This implies that we have in the left hand side an exponentially increasing func-

tion starting from unity and in the right hand side an increasing function starting

from the value which is greater than unity but less than R1 and asymptotically

approaching R1:

We report on numerical example with r = 0:1; A = 50; and B = 0:9 that

growth in D follows the inverted hump-shaped accelerations � _Q(t) (Fig. 3)5 .
This indeed implies the decreasing pattern of rent in a neighborhood of initial

point t = 0 for D = 0:25 (Fig. 4).

The corresponding behavior of extraction Q(t) and price p(t) are depicted

5For the values of D = 0:1; D = 0:15; and D = 0:25 equation (3) implies T0:1 = 7:45;
T0:15 = 7:94; and T0:25 = 9:28:
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Figure 4: Rent function for D = 0:1 (solid line), D = 0:15 (dotted line), and
D = 0:25 (in circles).

Figure 5: Extractions.

on �gures 5 and 6.

Observe that quantity and price paths in Figures 5 and 6 each have a point

of in�ection for D = 0:15 and D = 0:25:

3 Planning Solution versus Market Solution

The textbook planning solution (Levhari and Leviatan [1977] and Livernois

and Martin [2001]) works with an extraction cost function de�ned on current

industry output, Q(t) in C(Q(t); S(t)). S(t) is the current stock remaining. It

Q(t) is viewed as say Q(t) distinct �rms extracting at date t ; then it is standard,

given this approach to quality change across �rms to view each �rm�s extraction
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Figure 6: Price.

as a¤ecting the cost of extraction of every �rm following the one in question. We

assume that @C(t)@Q(t) > 0 and C(0; S(t)) = 0; and
@C(t)
@S(t) < 0: The physical account

involves Q(t) = S(t)�S(t+1): The planner has of course perfect foresight and is
able to vary current industry output in order to "smooth" extraction costs over

periods by varying industry output across periods with a view to maximizing

the present value of surpluses. We will represent current gross consumer surplus

as B(Q(t)); with p(t) = dB(Q(t))
dQ(t) : For our discrete time formulation, the planner

is assumed to maximize

W = [B(Q(0))� C(Q(0); S(0))] +
�
1

1 + r

�
[B(Q(1))� C(Q(1); S(1))]

+

�
1

1 + r

�2
[B(Q(2))� C(Q(2); S(2))]

+

�
1

1 + r

�3
[B(Q(3))� C(Q(3); S(3))]

+:::

+

�
1

1 + r

�T
[B(Q(T ))� C(Q(T ); S(T ))]

where the Q(t)0s are the control variables and S(0) is �nite. The necessary

condition (Euler equation) for this problem is

p(t)� CQ(q(t); S(t)) =

�
1

1 + r

�
[p(t+ 1)� CQ(Q(t+ 1); S(t+ 1))]

�
�
1

1 + r

�
CS(Q(t+ 1); S(t+ 1))
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where CS(Q(t+1); S(t+1)) is usually referred to as "the stock size" e¤ect.6 The

other terms represent an r% rule in rent across periods. Hence the necessary

condition is an "amended" Hotelling Rule.7

We can re-write this condition by adding and subtracting
h

1
1+r

i
CQ("; S(t+

1)) (for " a small positive quantity representing the marginal �rm�s quantity at

date t) to the right-hand side to get

p(t)� CQ(Q(t); S(t)) =
�
1

1 + r

�
[p(t+ 1)� CQ("; S(t+ 1)) + �(t+ 1)]

where �(t) = [CQ("; S(t+1))�CQ(Q(t+1); S(t+1))�CS(Q(t+1); S(t+1))] is
the tax required for decentralizing the socially optimal solution. "On its own"

the marginal �rm at date t would extract to equalize p(t)�CQ(Q(t); S(t)) andh
1
1+r

i
[p(t+ 1)� CQ("; S(t+ 1))]: Recall the argument in the previous section.

Hence the need for a tax. Since CS(:; :) is assumed to be negative and CQ(Q;S)

is assumed to be increasing in Q, this tax could be of either sign and possibly

be close to zero.

In the previous section (our model with no cost spillovers between �rms)

we had essentially CQ("; S(t + 1)) = CQ(Q(t); S(t)) and this seems to be an

empirically plausible assumption to make. This is indicating that the marginal

�rm at date t has approximately the same extraction cost for its ton as the

intra-marginal �rm at date t+ 1: The marginal �rm at t and the intramarginal

�rm at date t+1 are assumed to be very close neighbors in the array of �rms in

the stock. CQ("; S(t+ 1)) = CQ(Q(t); S(t)) would obtain, given an assumption

on smoothness in cost increases across "close" holdings by distinct �rms in the

oil �eld. Given smoothness across costs for neighboring �rms, the appropriate

tax becomes

[CQ(Q(t); S(t))� CQ(Q(t+ 1); S(t+ 1))� CS(Q(t+ 1); S(t+ 1))]: (4)

6 In a continuous time analysis, the corresponding Euler equation works out as
d[p(t)�CQ(t)

dt
= [p(t)� CQ(t)]r + CS(t):

7For the end point we assume that S0 is exhausted and terminal rent is positive. We also
assume that S0 �ts exactly into the "correct" number of time periods. End point conditions
for such discrete time formulations are tricky because one is �tting a �nite stock into a �nite
number of periods, with the initial stock of arbitrary size. Informally we have a cookie-cutter
problem in this "�ttting problem". See Lozada [1993] for the analysis of a related problem.
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The continuous time version of the problem (Levhari and Leviatan [1977])

is

max
fQ(t)g

Z T

0

[B(Q(t))� C(Q(t); S(t))]e�rtdt

subject to _S(t) = �Q(t) and
Z T

0

Q(t)dt 5 S0:

The necessary condition (Euler equation) for this problem is

_p(t) = [p(t)� CQ(t)] + _CQ(t) + CS(t):

Obviously _CQ(t) + CS(t) is an approximation to �[CQ(Q(t); S(t))� CQ(Q(t+
1); S(t + 1)) � CS(Q(t + 1); S(t + 1))] in (4) and the expression in (4) is a
candidate for the corrective tax �(t): Hence we can express the Euler equation

for the continuous time problem as

_p(t) = [p(t)� CQ(t)]r � �(t) (5)

for �(t) = �[ _CQ(t) + CS(t)]: Thus one can envisage an appropriate corrective
tax, even in the standard continuous time model, though our analysis has been

made easier by approaching the issue of sustaining the socially optimal solution

�rst o¤ in a discrete time setting. If one compares equation (5) with equation

(1), one sees how the model in the preceding section is a version of our model

here, only "free" of a corrective tax. We constructed our model in the previous

section to have no cost spillover between �rms and hence no need for a tax.

Casual empiricism suggests that, in general, extraction around the world is

not guided by a tax structured along the lines above. A reasonalbe inference is

that extraction follows an essentially second best path, a path with spillovers in

costs across �rms uncorrected. Presumably the welfare cost of this "lapse" in

�rst best pricing is not high.

4 Concluding Remark

We have constructed an example of extraction by many �rms with a small hold-

ing of oil, each holding distinct, which has Hotelling [1931] as a special case. The

solved example fails to exhibit steadily increasing rent over time, the outcome
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that Livernois and Martin [2001] established as the inevitable outcome in their

model, a model in the tradition of Richard Gordon [1967], Cummings [1969]

and Levhari and Leviatan [1977] (a planning solution to the industry extrac-

tion problem). Our aim is to establish that in a plausible model of competitive

extraction, heterogeneity of stock can lead in an unforced way to periods of

declining rent. Our model was carefully speci�ed to have no cost spillovers

across �rms. We then turned to the "traditional" model with essential cost

spillovers across �rms and its planning solution. We proceeded to obtain the

corrective tax which is necessary at each date in order for a decentralized solu-

tion to mimic the optimal planning solution. Our �nal point was that corrective

taxes are not in e¤ect in the real world for cases analogous to those under study

here and hence that the real world is a "second best morass", one that proba-

bly exhibits dead weight losses su¢ ciently small to not merit the complicated

interventions that are required to sustain �rst best extraction paths.
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